Nitrogen uptake in temperate heath vegetation and soil microbes is influenced by elevated temperature, CO2 and drought

Andresen, L.C.; Michelsen, Anders; Johansson, Sven; Beier, Claus; Ambus, Per

Publication date:
2009

Citation (APA):
Nitrogen uptake in temperate heath vegetation and soil microbes is influenced by elevated temperature, \(\text{CO}_2 \) and drought

1Louise C. Andresen, 1Anders Michelsen, 1Sven Jonasson, 2Claus Beier, 2Per Ambus

1 University of Copenhagen, Denmark; louisea@bio.ku.dk and loand@life.ku.dk
2 Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark
Micobes: no effect from fertilization

Roots increase in biomass with N and NNP

Nielsen, Andresen, Michelsen, Schmidt and Kongstad

Applied Soil Ecology (2009); vol 42 279 – 287
FACE [CO2] = 510 ppm

Temperature [T] : + 2 °C
(Nighttime IR-reflectance)

Drought [D]: Rain exclusion Campaigns
Glycine 15N 13C$_2$ addition
Immediate root 15N uptake:

- $T \uparrow$
- $CO_2 \uparrow$

Grass fine root enrichment (μmol 15N·g$^{-1}$N)

Submitted to Acta Oecologica (2009)
Andresen, Michelsen, Jonasson, Ambus, Beier
Ammonium concentration: TCO2 ↑

Ammonium NH_4^+-N (µgN·g$^{-1}$SOM)

DTCO2
T*CO2 *
T*D *
D*T*CO2 *

To be submitted, Andresen et al.
DON:
TCO2 ↓

To be submitted, Andresen et al.
Microbial carbon:

\[T \uparrow \]

\[\text{CO}_2 \uparrow \]

\[\text{TCO}_2 \rightarrow \]

To be submitted, Andresen et al.
Heather
flower N %:
CO2 ↓

To be submitted, Andresen et al.
Heather

N pool:

D ↑

To be submitted, Andresen et al.
Heather

15N recovery:

$D \uparrow$

To be submitted, Andresen et al.
Nitrification rate:

D ↓

ALSO litter decomposition:

D ↓

0.6
0.4
0.2

D:**

Δ µgN·g⁻¹SOM·day⁻¹

A D T TD CO2 DCO2 TCO2 DTCO2

½ year incubated Deschampsia soil with no plants

Submitted to Plant and Soil (2009)
Andresen, Michelsen, Jonasson, Mikkelsen, Schmidt, Ambus, Beier
Microbial 15N recovery:

- $T \uparrow$
- $CO_2 \uparrow$
- $TCO_2 \rightarrow$

To be submitted, Andresen et al.
TWO years of climate change treatments:

- Combined warming and elevated CO$_2$ kicks up mineralization of DON into ammonium
- Microbial biomass C and 15N tracer recovery higher in warmed and elevated CO$_2$ plots (not in TCO$_2$)
- CO$_2$ dilutes nitrogen in Heather flowers (and fine roots)
- Drought increases Heather N pool, biomass and tracer recovery
Papers from the field site:

Louise C. Andresen:

louisea@bio.ku.dk and loand@life.ku.dk
Acknowledgements:

Leader of the CLIMAITE VKR center of excellence **Claus Beier**

Teis Mikkelsen, Sven Jonasson, Martin Holmstrup, Inger K. Schmidt, Per Ambus, Kim Pilegaard, Anders Michelsen, Kristian Albert, Marie Arndal, Niels Bruun, Søren Christensen, Svend Danbæk, Per Gundersen, Preben Jørgensen, Leon Linden, Jane Kongstad, Kristine Maraldo, Anders Priemé, Torben Riis-Nielsen, Helge Ro-Poulsen, Karen Stevnbak, Merete Selsted, Poul Sørensen, Klaus S. Larsen, Mette S. Carter, Andreas Ibrom, Torben Martinussen, Franco Miglietta, Harald Sverdrup, Gosha Sylvester, Karna Heinsen, Esben Nielsen, Pia L. Nielsen

The Villum Kann Rasmussen foundation

Air Liquide

DONG

Jægersprislejren