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Quest for consistency, symmetry, and simplicity — The legacy

of Albert Tarantola

Klaus Mosegaard’

ABSTRACT

On 6 December 2009, the distinguished Spanish-French
physicist and geoscientist, Albert Tarantola, passed away at
the age of 60. Born in Barcelona in 1949, he went to Paris
where he lived most of his life, and worked as a professor at
Institut de Physique du Globe de Paris. His extensive scien-
tific production and remarkable achievements in inverse pro-
blem theory and geophysical data analysis established him
as one of the most influential mathematical geoscientists of
our time. He became the father of probabilistic inverse the-
ory, a theory that he passionately defended against severe
criticism and managed to propagate to a major part of
the geophysical community. Another major achievement
was his contributions to the theory of seismic waveform
inversion — a work that right now is unfolding its potential
in large-scale computations. Albert’s contributions were not
limited to geoscience. He started his career in astrophysics,
and later in his life he wrote several papers and books on
physics and probability, including new formulations of fluid
dynamics, elasticity theory, global positioning, and scientific
inference. Albert possessed a unique combination of excep-
tional skills and remarkable mental energy. He was a veri-
table powerhouse with an unusual work ethic, and his
passion for science will remain an ideal for all those who
worked with him.

INTRODUCTION

Albert Tarantola died 6 December 2009, a couple of months after
a sudden and totally unexpected stroke while on a visit to Chile,
where he lectured at University of Santiago. Albert was born in
Barcelona in 1949, but he spent most of his life in Paris, where
he unfolded his unusual talent for science and mathematics. After

completing university studies in Barcelona, he went to Paris where
he in 1976 wrote a Ph.D. thesis on theoretical astrophysics at Uni-
versité de Paris 6. The thesis dealt with the evolution of clusters of
galaxies, using the general theory of relativity, and was driven by a
desire to gain a deep understanding of the structure of the universe.
However, while working on his thesis, Albert realized that science is
still far from achieving this goal. As a result, he turned his interests
toward inverse problems, a topic of importance and profound
philosophical implications, not only to geophysics, but also to
the physical sciences in general.

Albert was appointed professor at Institut de Physique du Globe
de Paris in 1983, and in 1991 he was promoted to professor in the
category classe exceptionnelle. Over the years, he received several
awards for his work on inverse problems based on a probabilistic
foundation. He formed a research group — The Geophysical
Tomography Group — which, during the years 1985-2000, made
pioneering work on nonlinear inversion of seismic waveforms. In
this fertile period, Albert and his group made many novel contribu-
tions of both theoretical and practical importance, and he published
the first edition of his widely known book Inverse Problem Theory
(first edition: Elsevier, 1987, second edition: SIAM, 2005), a book
which can be found on the bookshelves of many geoscientists all
over the world. The book is recommended reading for any scientist
seeking details from the “engine room” of geophysical inversion in
general, and seismic inversion in particular.

PURE PROBABILISM

To appreciate Albert Tarantola’s impact on computational
geoscience, we must understand the underlying motives and inter-
ests behind his extensive scientific production. In all the problems
he worked on, he strived toward a complete and invariant physical
description, based on a simple mathematical formalism without un-
necessary concepts. This consequent reductionism was guided by a
strong eye for symmetries, and supplemented by a systematic avoid-
ance of inconsistencies.

Albert’s most important writings were dedicated to inverse pro-
blem theory, the system of ideas and methods used to infer
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information about a physical system, e.g., the Earth’s interior,
from observational data and any other prior information. The
physical system is described by a set of model parameters
m = (my,my, ...,my) or spatial functions m(x)= (m(x),
my(X), ..., my(x)), usually denoted the model, and a set of obser-
vations, the data, d = (d,d,, ...,dy) which are theoretically
related to the model via a set of equations

d = g(m). (M

In addition to this, there is usually some information available on
data uncertainties, and a priori constraints on the model. The latter
may or may not be formulated in probabilistic terms. Throughout
his career, Albert was mostly interested in the seismic problem for
which g(m) is usually a highly nonlinear function, but his theore-
tical work was very general, covering all types of inverse problems.

From the very outset, Albert was dissatisfied about inverse theory
as it was formulated by the end of the 1970s. In his opinion it was an
ungraceful mixture of highly diverse and often scientifically unjus-
tified concepts: arbitrary regularizations, arbitrary parameteriza-
tions, disregarded uncertainties, and not least prior information
that was generally discounted.

By the end of the 1970s, geophysical inverse theory was domi-
nated by two main methods aimed at linear or linearized problems,
namely the regularization methods (Levenberg, 1944; Tikhonov,
1963; Marquardt, 1970), and the method of Backus and Gilbert
(Backus and Gilbert, 1967, 1970). Each of these methods had its
own way of dealing with nonuniqueness, that is, multiple (often
infinitely many) solutions to an inverse problem. If a linear inverse
problem

d=Gm, )

where data d and unknown model parameters m are related through
a linear operator G, was underdetermined, the inverse of G did not
exist, but a unique “acceptable” solution could be generated through
regularization. In its simplest form, the regularized solution was
given by the expression (Tikhonov, 1963):

m; = (G'G + 1)~'G'd 3)

where 1 was the so-called regularization parameter, an adjustable
parameter found after some experimentation. The criterion for
choosing a value of 1 was usually that the resulting solution myz
looked “reasonable.” The regularization method, which is still very
popular today, was considered unscientific by Albert. The choice of
regularization parameter was crucial for the method, but, in his opi-
nion, completely arbitrary. Clearly, some sort of prior information
about the solution was needed to choose A, but it was unclear how 4
was related to that information. Added to this, nonuniqueness of the
solution due to uncertainty of the data was not dealt with by the
method and had to be analyzed separately.

The Backus-Gilbert method dealt with nonuniqueness in an en-
tirely different way. Instead of choosing one of many possible solu-
tions, as in Tikhonov’s method, Backus and Gilbert avoided a priori
constraints and instead devised a method for calculating unique lo-
calized averages. A Backus-Gilbert solution mpg to (2) was a linear
function of the data d, designed to jointly minimize the variance of
the model uncertainty, and maximize the resolution in the sense that

if the data d were generated by a delta function mg, then mgg would
be as close as possible to m; in some predefined sense.

Albert found that this method had three drawbacks: (1) it was not
obvious how to extend the method to general, nonlinear inverse pro-
blems, (2) nonuniqueness of the solution due to data uncertainties
were not dealt with, and (3) it avoided the use of prior information.
Backus and Gilbert defended a non-Bayesian standpoint, consider-
ing prior information as an unwanted “subjective” bias. Their view-
point was supported by the fact that, in practice, most Bayesian
computations relied on arbitrary priors, usually chosen for purposes
of mathematical convenience and simplicity. Albert’s vision was to
use priors that were rooted in earlier observations or, as recom-
mended by Jeffreys (1939), in symmetry arguments, rather than
in pure subjective belief. In this way he rejected the widespread
use of arbitrary priors. To realize his vision of probabilistic inverse
theory, Albert felt that there was a need for a method that could
combine information from several independent sources: new data,
old data (geophysical or other kinds), geological experience, sym-
metry considerations, etc.

This position became the starting point for his and Bernard
Valette’s work on a new formulation of inverse theory, first pub-
lished in the seminal paper “Inverse problems = quest for informa-
tion” (Tarantola and Valette, 1982a). The paper represented a radical
departure from established theory. It was axiomatic, and it insisted
on a purely probabilistic formulation where physical parameters
were fully represented, not by numbers, but by probability distribu-
tions. Moreover, the same probability distributions were assumed to
be a complete description of the state of information we have on the
corresponding parameters. Solving the inverse problem could now
be formulated as an act of combining different and independent
states of information on the model parameters, some of which came
from observations, others from prior information.

Based on a set of simple and natural axioms, Tarantola and
Valette derived a mathematical expression for the combination of
states of information on a set of parameters. This expression could
be used to combine prior (data-independent) information on the
parameters, and information contained in the data. Assuming that
information from two independent sources of information on a set
of parameters x are described by the probability densities f (x) and
f2(x), respectively, Tarantola and Valette found that the two pieces
of independent information could be combined into a new probabil-
ity density f(x) through the simple equation

_A®A)
fo =5 @

where the (everywhere positive) probability density u(x) repre-
sented null information. The mathematical object p(x) was new
and controversial in inverse problem theory. It became the focus
of a heated debate between Albert and proponents of the “frequen-
tist” school of thought that dominated the field at that time.
Albert’s critics claimed that p(x) could not be an adequate
description of null information. In their opinion, the simple, non-
probabilistic statement: “The solution resides in a certain sub-
volume .A” carried less information than a distribution that equaled
the “noninformative” probability density p(x) in the subvolume A,
and was zero outside. y(x) would, in addition, allocate equal prob-
abilities to equal volumes in 4 (see, e.g., Backus, 1988).
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Albert’s notion of information was based entirely on Shannon’s
probabilistic definition (Shannon, 1948), and he found that his
critics’ mixing of probabilistic concepts of information with non-
probabilistic concepts was meaningless. He resisted their arguments
for several years, but eventually he complied to some extent with the
criticism and changed the name of p(x) to “the homogeneous prob-
ability density.” This term was first used in Mosegaard and
Tarantola (2002), a precursor to the second edition of Albert’s book
on inverse problem theory (Tarantola, 2005). In retrospect, the con-
troversy about u(x) was perhaps one of the few cases where he gave
up prematurely. A correct resolution of this conflict would have re-
quired that the two parties at least had agreed on a definition of the
notion of “information,” but such an agreement never materialized.

Albert had a good reason for defending his introduction of y(x):
it was crucial for the use of equation 4 to solving inverse problems.
When information, given by a probability density f(x), was aug-
mented with null information, the result should be f(x), perhaps
except for a constant. In other words, f,(x) = u(x) should lead
to f(x) = f,(x). Only if u(x) was always constant could we do
without it in the denominator, but Albert pointed to a number of
cases where the assumption of a constant y(x) could not be main-
tained. The most notable examples are the Jeffreys parameters,
parameters v which are inherently positive and whose reciprocal
parameters 1/v are also commonly employed. Well-known exam-
ples are electrical conductivity (the reciprocal of electrical resistiv-
ity) and acoustic velocity (the reciprocal of acoustic slowness).

Jeffreys parameters v could not have a constant u(v), because the
probability that v lies between v and v, should equal the probabil-
ity that its reciprocal y = 1/v lies between 1/v; and 1/v,. Jeffreys
(1939) had advocated the use of u(v) = const/v and pu(y) =
const/y as symmetric definitions of homogeneous probability den-
sity for v and y to satisfy this requirement.

To Albert, the requirement (symmetry) that homogeneous prob-
ability densities for mutually reciprocal parameters had the same
mathematical form was important. He started his career working
with general relativity in astrophysics, a theory that grew out of
Einstein’s vision of formulating physical laws that were invariant
under a change of reference frame. With equation 4, and by insisting
on nonconstant homogeneous probability densities, he had reached
a similar goal in inverse problem theory.

UNCERTAIN THEORIES

In Tarantola and Valette’s most general formulation of inverse
problem theory, based on equation 4, they retained the possibility
that the relation d = g(m) was not known exactly. This was an
entirely new concept in inverse theory, and one that is still quite
advanced. Let us assume that the inverse problem is characterized
by the following three elements: (1) a so-called prior probability
distribution p,,(m) carrying the information we have on m before
any new data are analyzed, (2) uncertain observations, described by
a probability distribution p,(d), from which our observed data set
d,,, is a realization, and finally (3) a possibly uncertain relation d =
g(m) described by a distribution 6(d, m) over the joint data/model
space. If we assume that the prior information on the model param-
eters is data-independent, the joint prior satisfies p(d,m) =
p4(d)p,,(m), and we can now use equation 4 to combine all the
information we have on the inverse problem, which is contained
in p(d, m) and 6(d, m). The result is the so-called posterior prob-
ability density (see Figure 1):

o(d,m) = (5)
(d.m) p(d, m)
In many applications this leads to
6,,(m) = kp,,(m)L(m) ©)
where
o,(m) = / o(d, m)dd @)
D

is the marginal posterior probability distribution over the model
space, and where the likelihood function L(m), measuring the mod-
el’s fit to the observed data, is given by

L(m) = /D W((:l)j(((;;ml)dd. @)

Here we have assumed that 8(d, m) = 6(d|m),, (m), meaning that
0(d, m) expresses the correlation between d and m, but no infor-
mation about m. Another assumption behind equation 6 is that the
homogeneous probability density u(d, m) in the joint model/data
space can be simplified to u(d, m) = u,(d)u,,(m).

The concept of “uncertain theories” is important in applied phy-
sics in general, and in geoscience in particular. For instance, in seis-
mic inversion, approximate modeling schemes are widely used to
cut down on the computational work needed to solve large-scale
problems. It is fully recognized that these approximations influence
the result, but unfortunately it is not clear how one could obtain
reasonable modelization uncertainties, and how realizations of
the uncertainties could be obtained. Today, it is still an open ques-
tion whether progress can been made in specifying uncertainties in,
e.g., seismic modeling, but it is Albert’s groundbreaking theoretical
work that forms the basis for this research area and paves the way
for future solutions.

SIDESTEPPING BAYES

In the special case where we have an exact relation d = g(m)
between model parameters and data, it is tempting to put
0(djm) = 6(d — g(m)), where & is a delta function, and to set

d o(d,m)

Opp(m)

Figure 1. Tarantola and Valette (1982a) saw inversion as a combi-
nation of independent pieces of information, describing the prior
information on data and unknown parameters, p(d, m), and the
information carried by a theoretical relation between data and
parameters, 6(d, m).
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uq(g(m)) equal to a constant, after which the likelihood function (8)
simplifies to

L(m) = py(g(m)). )
In this case, equation 6 becomes

If we change the notation slightly, introducing conditioning on dy

explicitly ~ through the identifications f(m|dy) = 6,,(m),
f(dops|m) = py(g(m)), f(m) = p(m), and f(doys) = 1/k we obtain
Bayes’ Theorem:
f(m)f(dobs|m)
mld,,) =——>2—> = (11)
f( | ° ) f(dobs)

relating a posterior probability density f(m|d,,) to a prior probabil-
ity density f(m), and a likelihood function f(d,p|m). As dgg is a
constant vector, f(dyp) is just a constant.

For many years, Bayes’ theorem has been widely used as the
main tool for probabilistic inversion, but Albert’s analysis revealed
an unpleasant inconsistency in this theorem. The inconsistency
came from the operation of putting 6(d/m) = (d — g(m)), which
corresponds to forming a conditional probability density. This can
be done in several ways, as illustrated in Figure 2. Each possibility
is characterized by its own way of obtaining §(d — g(m)) as a limit
of “narrowing” a distribution that is constant in a corridor surround-
ing the curve d = g(m). The upper part of the figure shows the re-
sult of letting the upper and lower boundaries of the corridor
approach vertically, whereas the lower part shows a limit where
the boundaries converge by keeping a constant width of the corri-
dor. The problem here is that the two limits give different results
for o(m).

The standard procedure of Bayes’ theorem, where we simply put
d =g(m),

f(x,¥0)

f(¥o) 12

fxly=y) =

4

I

Figure 2. The definition of a conditional probability density as the
limit of the probability mass along a corridor whose width tends
to zero. The fact that such a limit can be obtained in many
different ways makes the notion of a conditional probability density
ambiguous.

corresponds to a special limit operation where the width of the cor-
ridor decreases “along cordinate axes.” A simple example shows
how this traditional definition of conditional probability density
may lead to a self-contradiction:

Consider a situation where we are told that a meteorite will hit the
Earth’s surface, and that the probability distribution (probability per
unit area) for the impact point is constant everywhere on the surface.
If we recall that the probability density f(6, ¢) as a function of
latitude @ and longitude ¢ is defined such that the probability of
having an impact in an area dfd¢ around point (6, ¢) is

f(6.9)dodg, (13)

it is easily shown that f(6,¢) = cos 8/4x. If we subsequently
learned that new calculations had revealed that the meteorite would,
in fact, hit the Earth at, say, ¢ = ¢, it would be tempting to con-
clude (following the thinking behind Bayes’ theorem) that the
probability density we now have for § would be

_ o _[f(0.¢y) cos @

(14)

where

=)

F(do) = / L £(0. )b (15)

2

The probability density 14 is nonconstant, and this is obviously a
false conclusion: the probability that the meteorite will hit points on
the ¢ = ¢y meridian is obviously constant over the meridian. We
have run into the so-called Borel paradox.

The reason for the self-contradictory result is the hidden limiting
procedure in Bayes’ theorem, where the corridor around the ¢ = ¢
meridian is narrowed while keeping its angular width constant (with
boundaries of constant longitudes). Had we instead kept the phy-
sical width (in km) of the corridor constant in the limiting process,
we would have obtained a constant distribution on the meridian, and
no self-contradiction would have occurred.

From this, Albert concluded that the notion of conditional prob-
ability density is inconsistent, and that the correct solution of an
inverse problem requires specification of a nonsingular 6(d, m).

PRAGMATISM

The work of Tarantola and Valette (1982a) was followed by a
companion paper (Tarantola and Valette, 1982b) where the theory
was applied to linear and weakly nonlinear problems with Gaussian
noise and Gaussian prior. This paper was dedicated to the method of
least-squares, which was, in fact, later criticized strongly by Albert.
We shall come back to this criticism later, but first let us take a look
at the main results of the paper. For purely linear, Gaussian pro-
blems, Tarantola and Valette arrived at formulas similar to those
of the so-called method of stochastic inversion (Franklin, 1970).
However, they also derived iterative formulas for solving weakly
nonlinear problems, a method later known as the Tarantola-Valette
method. The formulas expressed how an initial model m;
numerically evolves into a solution close to the one with maximum
value of the posterior probability density. Each iteration is typically
based on the equation
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my, = my — £, (CyFiCp' (dy — dgps) + (my — my.))

(16)

where d, is the observed data, my, is the prior mean model
(sometimes called the “prior” model), my, is the kth approximation
to the model, d is the kth computed data, C, and C,; are covar-
iance matrices for data and prior, respectively, and F is the matrix of
derivatives of data with respect to the model parameters. The cov-
ariance matrix for the posterior probability density is evaluated from

Cy ~ (FL,Cp'Fy, + C )7, (17)

where F, refers to the value of the matrix of partial derivatives at
the convergence point.

Equations 16 and 17 were derived under a simplifying assump-
tion of constant y,(d) and p,,(m). The method of Tarantola and
Valette, expressed through equation 16, looks like a straightforward
application of a steepest ascent algorithm to maximize the posterior
probability, but in cases where u, and y,, are not constant (e.g., in
seismic problems) their theory calls for, not a maximation of the
posterior ¢(m), but rather a maximation of the ratio

(M) (18)

Albert had discovered that maximizing o(m), as usually recom-
mended in the literature, may lead to different results in different
model parameterizations. Consider an acoustic (or simplified seis-
mic) inverse problem where the unknown subsurface structure v is
parameterized as wave velocities in a set of grid points. Assume that
we, for given prior information p, (v), invert the data by maximizing
6,(v) and obtain a solution V. If, for some reason, we now change
our parameterization from velocities v; to slownesses s; = 1/v;,
transform the prior from p, to p,, and seek the solution § in terms
of slowness, maximizing o(s) would provide a different answer
(inconsistent with the first solution ¢, (Vv)): for each slowness param-
eter 5, the relation § = 1/9' would, in general, not be satisfied. If
we instead realize that velocities and slownesses are Jeffreys param-
eters and introduce the homogeneous probability densities

m(v) = HVl Hs(s) = Hsl

k=1

. 19)

»
-
)
~ |

the inconsistency disappears. The same thing happens if we, instead
of working with the original parameters, work with logarithmic
parameters v’ = log (v;/vo) and s, = log (si/so), Where vy is a
reference velocity and s, is a reference slowness. It is easy to
demonstrate that such logarithmic parameters have constant homo-
geneous probability densities. To Albert, the above considerations
confirmed the need for accepting p,(v) and u,(s) as homogeneous
probability densities for v and s, respectively.

It is, however, interesting that, among practitioners adhering to
Albert’s probabilistic inversion, g is rarely assumed nonconstant
for Jeffreys parameters. Despite the inconsistency, there seems to
be a psychological barrier preventing numerical modelers from
weighing small values of, e.g., velocity and slowness higher than
large values.

A MOST DIFFICULT PROBLEM

Albert was very consequent in his striving toward creating a con-
sistent theory, but at critical moments in his career he became very
pragmatic. After his work on the two 1982 inversion papers, his
vision was to make serious progress in one of the most important
and ambitious fields of applied geophysics: inversion of seismic
reflection data. This field was (and is) characterized by huge com-
putational demands, so Albert realized that simplifications were
unavoidable.

In a series of seminal papers (Tarantola, 1984, 1986, and 1988) he
carefully described how iterative nonlinear waveform inversion of
general reflection data from a 3D-subsurface could be carried
out, using the formalism outlined in Tarantola and Valette (1982b).
Albert was influenced by Jon Claerbout, Patrick Lailly, and others
(Claerbout, 1971; Lailly, 1983), but he was the first to undertake the
ambitious project of developing a general theory of waveform
inversion where the goal was to carefully reproduce all details of
the observed field (Lailly, 2010). Starting with the purely acoustic
case (Tarantola, 1984), he worked his way through the problem,
removing one approximation after the other, crowning his
work with the paper “Theoretical Background for the Inversion
of Seismic Waveforms, Including Elasticity and Attenuation”
(Tarantola, 1988).

In each paper in this series, a steepest descent algorithm minimiz-
ing the misfit function was developed, but the calculations were
supplemented with a new and important insight: each iteration
consisted of a propagation of the actual source in the current
medium, a propagation of the residuals — acting as if they were
sources — backward in time, and a correlation of the resulting
two wave fields. Remarkably, this interpretation of each step of
the algorithm closely resembled the well-known imaging principle
which was the backbone of Jon Claerbout’s theory of migration of
seismic reflection data (Claerbout, 1971). It gave a unique physical
insight into the problem, a very characteristic element in Albert’s
approach to science.

Albert’s method of using propagated waveform residuals back-
ward in time as a means of determining the gradient of the misfit
function is an example of what has later become known as the
“adjoint method” (Talagrand and Courtier, 1987) a very important
concept in modern seismic data analysis.

A crucial property of Albert’s method was that only two wave-
fields should be computed for each shot. This property significantly
cut down the computational workload required by the inversion, and
was instrumental in helping the subsequent numerical experiments
materialize. The computer resources of that time were barely suffi-
cient for such experiments, but Albert and his research group —
The Geophysical Tomography Group — had some success in
the late 1980s with the first, careful full-waveform inversions
(see, e.g., Crase et al., 1992). A later example of inversions by
Albert’s group (Charara et al., 1996, 2000; Barnes et al., 1998;
Tarantola, 2005) is shown in Figures 3-7b reproduced from
Tarantola (2005). Three-component seismometers, located between
2 and 4 kilometers depth in a borehole, record seismic waves gen-
erated at the surface (Figure 3). The source is offset 2 km from the
borehole (see a sketch of the measurement geometry in Figure 4).
The a priori model my;,, is horizontally layered. The subsurface
model obtained from a viscoelastic, full-waveform inversion is seen
in Figures 5a—06b. It is seen from the data residuals in Figure 7b that
most of the coherent energy in the data is modeled in the inversion
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process, although some artifacts (e.g., imprints of “raypaths” in the
P-velocity model of Figure 5a) are present in the final model.

During the 1980s, Albert pointed out that a vital part of seismic
inversion problems cannot be solved by iterative algorithms like 16,
unless you have a starting model that is close to the true solution.
The dependence of the data on the long wavelengths of the velocity
field is so nonlinear that steepest descent methods and other local
optimization strategies are likely to fail.

EMBRACING RANDOMNESS

In fact, the results displayed in Figures 4, 5, 6, and 7 would not
have been obtained without an initial Monte Carlo search for a rea-
sonable velocity model fitting most of the arrival times of major
events (see Barnes et al., 1998). Once this was done, a precondi-
tioned steepest descent algorithm was able to provide an acceptable
model in a few tens of iterations (see Charara et al., 1996, 2000).

VSP WEST filtered real data X

N

,<>1/3//// / l

|

[ARSNNNSSE

|

e : v A
1000 1500 2000 2500 3000 3500 4000
Time (ms)

Figure 3. Horizontal and vertical component data were used in the
full waveform inversion of Charara et al. (1996, 1998, 2000). The
figure shows the horizontal component only. The instantaneous po-
larization of the wave is shown by the color code.

1 km
—_—

..

Figure 4. A sketch of the measurement geometry in the full-wave-
form inversion example of Charara et al. (1996, 2000), and Barnes
et al., 1998.

In the beginning, Albert saw Monte Carlo methods as a means of
finding optimal solutions to the “background velocity problem,” the
problem of finding the best-fitting long-wavelength velocity field.
For this reason he was strongly attracted to simulated annealing,
genetic algorithms, and similar stochastic optimization methods.
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Figure 5. P-velocity model (top) and S-velocity model (bottom)
obtained from waveform inversion of the data (and the correspond-
ing vertical component data). The velocity unit is m/s.
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In the late 1980s, the use of these methods and the wider class of
Markov Chain Monte Carlo (MCMC) methods in large-scale com-
putations emerged as a real possibility (see, e.g., Rothman, 1986;
Vestergaard and Mosegaard, 1991), and Albert was fascinated by
their potential. Furthermore, he realized that Monte Carlo methods
could actually help bridge the gap between his and Valette’s
original — and very general — theory, and more practical nonlinear
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Figure 6. (a) Density model and (b) model obtained from wave-
form inversion of the data (and the corresponding vertical compo-
nent data). The density unit is kg/m?.

inversion. The reason is that MCMC methods allowed probability
densities to be sampled, thereby generating, e.g., subsurface models
with a density in model space proportional to the posterior probabil-
ity density. Albert saw that a collection of such sample models
would in themselves constitute a far better description of a strongly
non-Gaussian posterior probability than just reporting a mean
model and a covariance matrix.

In the following years, he worked hard on this idea. A first paper,
demonstrating the use of MCMC methods for analysis of nonlinear
problems, was published by Koren etal. (1991). This paper described
aMonte Carlo solution to the background velocity problem. For each
velocity model, synthetic travel times were calculated, and a wave-
form misfit in corridors along synthetic traveltime curves was com-
puted. Each background velocity field generated by the MCMC
algorithm was used to produce a migrated stack which was subse-
quently displayed. Using this procedure, Koren, et al., realized, for
the first time, the vision of generating a sample of posterior models
for a geophysical problem of a (for that time) reasonable scale. At
the same time, it was a first demonstration of the movie strategy, where
the many sample models were presented to the spectator in the form of
asequential display of images (see Figure 8) In fact, the movie strategy
was afirstexample of amethod which was later described in computer
visualization science (e.g., Zuk, and Carpendale, 2006).

The sampling strategy for nonlinear inversion was described in
detail in a paper by Mosegaard and Tarantola (1995). It was essen-
tially similar to Bayesian computation (see, e.g., Bernardo and
Smith, 1994), except that it was based on the covariant theory
of Tarantola and Valette (1982a). The method was received with
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Figure 7. (a) Synthetic data and (b) data residuals after the final
iteration of the waveform inversion.
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Figure 8. Migrated stacks generated from five posterior samples of
a background velocity model for a seismic reflection data set
(Koren et al., 1991). Each image shows a vertical cross section
of width ca. 14 km and depth 2 km. By displaying a large number
of such “posterior images,” well-resolved and poorly resolved
structures are revealed. Well-resolved structures are preserved in
most of the sample models, whereas poorly resolved structures tend
to vary between models. Poorly resolved structures can be seen in
the lower left part of the image. The figure shows historic photo-
graphs taken in the late 1980s from a television set replaying
images of the model, hence the poor quality of the figure.

skepticism by many specialists in inverse theory, particularly
because its treatment of resolution and uncertainty deviated signif-
icantly from the trodden paths of linear inverse theory. Uncertainty
and resolution were no longer conceptually separate entities, but
together they were represented by frequencies of occurrence of
model structure, as seen in the posterior sample. The critics of
the late 1990s argued that the method would just produce a mean-
ingless accumulation of models, without giving the user any infor-
mation about the properties of the solution. Albert maintained that,
on the contrary, the method expressed the essence of the inverse
problem: a certain feature of the subsurface was “well-resolved”
when its frequency of occurrence in the collection of posterior sam-
ple models was much larger than in the collection of prior sample
models. Its presence was “amplified” in the posterior movie,
because its existence was needed to explain the data.

Soon, it became clear that the sampling method had a much larger
potential for producing realistic solutions to inverse problems than
believed in the first place. Together with Miguel Bosch, Albert de-
veloped one of the first methods for rock property inversion, based
on MCMC methods (Bosch, 1998). The method was novel, because
it formulated the inverse problem as a quest, not for physical param-
eters of the rocks, but directly for their lithological classification.
The property parameters were related to the data through a combi-
nation of empirical data (empirical distributions of physical param-
eters for each rock type) and physical relations (connecting rock
physical parameters with the geophysical data). This type of pro-
blem was unsolvable with traditional methods, but with sampling
methods it became possible. See also Khan et al. (2007).

Later in the 2000s, a new and exciting possibility of exploiting
sampling methods for producing realistic solutions appeared. From
his very first writings on seismic waveform inversion, Albert
Tarantola had the vision that realistic prior information for inver-
sions could be learned from a large collection of “training images”
of the subsurface. In the early years of waveform inversion this was,
however, not realizable because of limited computer resources, and
because the necessary learning algorithms were not yet developed.

It was not until 2003, when Albert met the founder of modern
Monte Carlo-based geostatistics, Andre Journel from Stanford
University, that events unfolded. They were both invited by
Jean-Laurent Mallet (the inventor of Gocad) to a thesis defense
in Nancy. They made the two-way travel by train from Paris and
Nancy and had ample time to discuss ideas.

Journel defended what he called the “algorithm-driven” approach
to define probability models, and this viewpoint was closely related
to Albert’s nonparametric vision of defining prior probability dis-
tributions only from their samples. The result of these discussions
was that Andre Journel invited Albert Tarantola to spend three
months at Stanford to teach a course on probability and inverse pro-
blems. In this period, Albert and Andre took new steps toward in-
tegrating modern geostatistical methods with geophysical inversion.

Albert’s idea was to exploit the sampling methods of modern
geostatistics to generate realistic earth models as prior information
in a sampling-based inversion. The Stanford group had developed
methods based on sequential simulation (Strebelle, 2002) which
allowed them to efficiently generate geologically realistic models,
constrained on statistical properties derived from a series of “train-
ing images” of relevant geological examples created by, e.g., experi-
enced geologists. This scenario was exactly what Albert had
looked for.

Downloaded 02 Dec 2011 to 87.63.71.61. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



The legacy of Albert Tarantola W59

Consider a very simple inverse problem where the data are borehole
measurements, say porosities, in 50 wells, as shown in Figure 9a. The
unknown model is a porosity map over the entire area. It must be con-
sistent with the well data, and at the same time be consistent with the
prior: a stochastic process obtained from statistical analysis of training
images of possible porosity maps. In this simple example, the prioris a
2D Gaussian process, but in general the prior can be more complex.
Figure 9b, 9c¢, and 9d show three realizations of the posterior prob-
ability density, and by displaying such realizations the analyst gains
an insight into acceptable realistic structures.

To Albert, the analysis of posterior realizations was essential, be-
cause it allowed discovery of well-resolved structure that would
otherwise remain hidden if only statistics (mean models, covar-
iances, higher-order moments, etc.) were displayed. The common
practice of computing least-squares solutions (posterior mean mod-
els or “best-fitting” models) was particularly criticized by Albert
because it produces models that look unrealistic. Figure 10 shows
the posterior mean model for our simple inverse problem. The
difference between the structure of this model and typical sample
models like those of Figure 9b, 9c, and 9d is apparent. It was this
observation that eventually led Albert to reject the least-squares
method in favor of sampling strategies.

During the following years, it became clear that the integration of
geophysical and geostatistical data was not
easily carried through for large-scale, nonlinear
inverse problems. Considerable progress in seis- a)

One of his major endeavors was his work on invariant formula-
tions of the laws of physics, that is, formulations independent of
parameterizations or coordinate systems. The aim of this ambitious
project was to extend the relativistic concept of invariance to math-
ematical physics in general, and in 2006 he wrote the book
Elements for Physics presenting the theory. The main thesis of
the book was that, although most current physical theories had been
reformulated in an invariant language, this was not the case for the-
ories like linear elasticity and the Fourier theory of heat conduction.
For example, in the theory of elasticity, Hooke’s law is still ex-
pressed through a particular choice of parameters/quantities:
stress, stiffness, and strain. But a formulation using instead the
exponential of the strain, or the inverse of the stiffness, would lead
to equations of a fundamentally different form. Albert criticized the
inconsistency of such theories. He showed that, under certain cir-
cumstances, they lead to unphysical results, and he proposed a way
to recast them in a new and invariant formulation.

In a third and unfinished book — Mapping of Probabilities —
Albert attempted to build a new theory of measurement, free of
contradictions. This required a clarification of some of the basic
concepts of probability theory (especially the problems related to
the Borel paradox), but he also wanted to start afresh and rethink
the theory of inference, going back to set theory as the starting

mic waveform inversion methods had taken
place (see, e.g., Pratt, 1999), but simultaneously
constraining subsurface models by full seismic
waveforms and complex geostatistical models
seemed to be an overwhelming computational
task. Albert’s original vision had run into diffi- .
culties, but he insisted on the feasibility of the .
approach. Many times before, Albert’s persis- :
tence had paid off, and in this case he preserved
his optimism. His hope was that it would be pos-
sible to find a semi-deterministic way of finding .
solutions that (1) fit the data acceptably, and
(2) have a high prior probability, as defined by =

the stochastic process derived from the training
images. Recently, there are signs that important
progress is being made toward a solution to this
problem (Suzuki and Caers, 2008).

EPILOGUE

Albert Tarantola dedicated much of his life
and work to geoscience, but as a scientist his vi-
sion was more far-reaching and manifold. In his
early years, general relativity taught him to strive
toward consistency and invariance, and later in
his life inverse problem theory stimulated his fas-
cination for probability as an epistemological
instrument. These two themes became important
guiding lights for the rest of his career where he
devoted much time and enthusiasm to a number
of basic problems, including new formulations
of fluid dynamics, elasticity theory, and global
positioning.

Figure 9. (a) Data, measured at well locations. The data values are shown in color
(arbitrary scale with low values in blue and high values in red). (b-d): Earth models,
modeled as realizations of 2D Gaussian stochastic process, expressing the a priori
information. The realizations were generated by sequential simulation, and were
constrained by the well data shown in (a).
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point. With this book, he was preparing a new revision of probabil-
istic inference. Like his old opponents, the frequentists, Albert was
critical of the Bayesian paradigm, but for completely different
reasons.

These two little-known books show Albert as an independent
thinker. Albert did not follow the mainstream of science. He fol-
lowed his own ideals, although it sometimes led to controversial
conclusions. The ideas laid out in Elements for Physics were created
without much interaction with the physics community. This added
to the originality of the work, but it also made it hard for him to
publish it.

Contrary to mainstream thinking, Albert believed that scientists
should publish only when their ideas were fully matured and
worked through. They should strive for scientific quality measured
by pure academic standards and not aim at maximizing the number
of publications, citations, or patents. Late in his career, he carefully
followed these principles. He rejected work that he thought would
only improve slightly on existing ideas, and work that avoided dis-
cussions about fundamental principles.

Albert possessed a unique combination of exceptional skills and
remarkable mental energy. Those who have spent time working
with Albert in his favorite Parisian café, Café Beaubourg, know
the enthusiasm and joy he radiated during these sessions. After
many hours of concentrated work with his companions, he would
go home and sum up the discussions on dozens of densely written
and carefully typeset pages, supplemented with new material and
new insights. He was a veritable powerhouse with an unusual work
ethic, even for a person at his scientific level.

Albert was persistent, and in many cases it was worthwhile. In
much of his work, he was many years ahead of computational
possibilities. He supported development of Monte Carlo methods
long before they were accepted as useful methods, and today we
see large-scale waveform inversion of seismic data emerging as
a real possibility.

Figure 10. The least-squares solution to the problem of interpolat-
ing between the well data shown in Figure 9a. The fact that this
solution is a very unlikely outcome of the stochastic process, whose
realizations are illustrated in Figure 9b, 9c, and 9d, led Albert to
reject the least-squares technique as a satisfactory method.

With Albert’s death, the scientific community has lost a unique
scientist and person. Albert died much too early, still actively pur-
suing his scientific goals. He will be missed by family, friends, and
colleagues.
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