Simulation of a basic catalyzed continuous process for the production of biodiesel

Paz-Garcia, Juan Manuel; Rubio, A. García; Merchán, M. C. Rey; Lahoz, C. Gómez; Alonso, C. Vereda

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
This work presents a preliminary design study of a conventional biodiesel plant using the alkaline homogeneous catalysis. The plant is designed for the treatment of 1 kmol h⁻¹ of triolein (more than 7000 tons / year), which is chosen to represent the vegetable oil. The usual methanol to oil molar ratio (6:1) for the alkaline homogeneous catalysis is assumed. The study is performed using the process simulation software HYSYS 2006.5 developed by Aspen Technology, Inc. The process flowsheet diagram is presented below, in which the more remarkable information for the simulation is showed.

Acknowledgement

This work was performed using an academic license of HYSYS acquired by the University of Málaga and kindly provided by Aspen Tech.

Table 1. Arrhenius' parameters for the kinetics from (Vicente et al., 2005)

<table>
<thead>
<tr>
<th></th>
<th>(k_1) (m³ kmol⁻¹ s⁻¹)</th>
<th>(k_2)</th>
<th>(k_3)</th>
<th>(k_4)</th>
<th>(k_5)</th>
<th>(k_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_0')</td>
<td>7.37 × 10⁹</td>
<td>2.12 × 10¹⁰</td>
<td>4.55 × 10¹⁴</td>
<td>2.60 × 10¹⁴</td>
<td>1.17 N.R.*</td>
<td></td>
</tr>
<tr>
<td>(E_{a,i}) (J/mol)</td>
<td>72891</td>
<td>71413</td>
<td>95690</td>
<td>94653</td>
<td>13713 N.R. a</td>
<td></td>
</tr>
</tbody>
</table>

* Not reversible.

Methanol recovery column
The methanol recovery is performed in a packet distillation column, because the biodiesel capacity production of this plant is not very high. According to the rigorous model of HYSYS, 18 equilibrium stages are needed for a recovery of 99.9% of methanol. If the packing material is 3" Raschig rings, the column size is 0.6 m diameter by 8 m height (HTEP=0.43 m), according to the empirical correlation used by HYSYS, which is based on the flooding velocity.

Thermodynamic predictions for the settler
The reliability of the partition of the main components predicted by HYSYS in the settler is assessed by the comparison of the simulation results with the experimental results from Negi et al. (2006) for the liquid-liquid phase equilibrium in the ternary system at 60 °C. The density values calculated by the property package of HYSYS are incorrect to such an extent that the density value of the glycerol phase can become lower than that of the methyl ester phase. Therefore the tabular package in conjunction with the property package should be used, in this case density was calculated applying the default mixing rule in mole basis with mixing parameters (\(f \)) equal to −1.