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Abstract — The use of demand response programs enables the 

adequate use of resources of small and medium players, 

bringing high benefits to the smart grid, and increasing its 

efficiency. One of the difficulties to proceed with this paradigm 

is the lack of intelligence in the management of small and 

medium size players. In order to make demand response 

programs a feasible solution, it is essential that small and 

medium players have an efficient energy management and a fair 

optimization mechanism to decrease the consumption without 

heavy loss of comfort, making it acceptable for the users. This 

paper addresses the application of real-time pricing in a house 

that uses an intelligent optimization module involving artificial 

neural networks.  

Index Terms— Artificial Neural Network, Demand Response, 

Load Management, Multi-Agent Systems, Real-Time Price. 

I. INTRODUCTION 

The recent liberalization of electricity markets must be 
followed by the restructuration of power systems towards the 
practical implementation of smart grids [1]. This new 
paradigm, besides other concepts, comprises the active 
participation of small and medium players in the smart grid 
environment. The integration of small and medium players 
will increase the complexity of the smart grid’s management. 
Despite this, only the active participation of such players will 
enable the success of smart grids. 

The integration of small and medium players can be done 
through Demand Response (DR) programs [2][3]. The 
aggregation between the players allows them to be represented 
by an external entity that can interact with high level players 
of the grid. The aggregation of players enables small and 
medium players to participate in large programs formerly 
exclusive to large players. 

The aggregation of resources belonging to small and 
medium players can be achieved with new players, such as 
Virtual Power Players (VPP) [4] and Curtailment Service 

Providers (CSP). They act as mediators between the 
Independent System Operator (ISO) and the aggregation 
composed of the small and medium players. 

The use of DR programs can be seen in works such as [5], 
[6] or [7]. Moreover, to enhance the potential of DR programs 
it is mandatory to test these programs outside of a simpler 
simulated environment. The impact motivated by DR 
programs in people daily life can lead to the non-acceptance of 
DR programs by real consumers. 

To solve the problem of the negative impact of DR in the 
daily life, this paper uses a Multi-Agent System (MAS) to 
simulate a smart grid environment and it uses a combination 
of physical and simulated loads to represent a house. Using 
this integration between physical and simulated worlds it is 
possible to test the real impact of DR programs in a house. 

This paper also uses a load management system entitled 
SCADA House Intelligent Management (SHIM) which deals 
with environmental variables. The existence of an 
optimization module is almost mandatory to enable small and 
medium players to participate in DR programs in an 
autonomous and efficient way. 

An appropriated optimization module is crucial to achieve 
the integration of small and medium players in the smart grid 
environment. DR programs can bring economic benefits to the 
small and medium players, but for users, the importance of 
DR programs is the impact they produce in their lives. That is 
the reason why this paper deals with DR programs from the 
point of view of the consumers’ comfort used for this project. 
The minimization of the DR negative impact must be 
controlled not to intimidate the small and medium players. In 
previous works, the authors demonstrate the learning 
capabilities of the optimization module [8] and the benefits of 
the optimization during DR programs [9]. In this paper, the 
authors focus on the users’ comfort, showing three case 
studies that illustrate optimization module ability to address 
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the environment conditions, keeping a satisfactory level of 
comfort to the users.  

After this initial introductory section, Section II presents 
the proposed system based on the MAS methodology and the 
physical laboratory. Section III presents the SHIM and 
describes this module regarding the optimization processes, 
giving particular attention to the use of the Artificial Neural 
Networks (ANN). Section IV presents the case study 
considering three scenarios that show the impact of Real-Time 
Price (RTP) inside the house. Finally, Section V presents the 
most important conclusions of the presented work. 

II. SYSTEM’S ARCHITECTURE 

This section will address the system architecture used to 
test the proposed methodology. The two sub-sections will 
discuss the Multi-Agent System used to simulate a realistic 
smart grid environment with all the main players, and the 
physical laboratory used to simulate the analyzed house. 

A. Multi-Agent System 

To be able to test DR programs, the project uses a MAS to 
simulate a smart grid environment. The use of MAS applied to 
distributed energy systems for management and test purposes 
has been shown to be feasible and very useful [10][11]. The 
MAS has been chosen due to the existing abstraction in the 
code that each agent executes, ensuring that the Installation 
Agent, studied in this paper, may be added to any other MAS 
that would like to deal with a facility with real loads and not 
only simulated loads. 

In order to adequately test the methodology proposed in 
this paper, two MAS are used: 

 MASCEM – a modeling and simulation tool developed 

for studying complex restructured electricity markets 

[12]; 

 MASGriP – a simulation platform that allows studying 

the integration of small and medium players in a smart 

grid perspective [13]. 

From the combination of these two systems a unique MAS 
emerges, accommodating several distinct players with their 
own characteristics and goals. This creates a perfect 
environment of agents capable of communicating among 
themselves and pursuing their personal goals. This system 
provides the opportunity for simulating DR programs and 
testing their impact in a real facility. Figure 1 presents the 
integration of MASCEM and MASGriP. 

The system also allows the use of three types of consumer 
players: 

 Virtual Consumer – in this case all loads present in the 

player are simulated by a computer; 

 Physical Consumer – with regard to players that use 

only physical loads; 

 Hybrid Consumer – in this case the player had a 

mixture of Virtual and Physical loads. 

These three types of players enable the system to be more 
than a conventional virtual simulator, enabling it to 
accommodate physical players. 

All agents have an Extensible Markup Language (XML) 
file to define their configurations and actions in the smart grid. 
The communications between agents are made by internet 
sockets, allowing a multi-machine system. For now, these 
communications use XML to structure messages and their 
information. Furthermore, the communications will be 
standardized by the FIPA-ACL, opening this MAS to outside 
players [14]. 

 

Figure 1.  MAS platform for smart grid simulation. 

B. Physical Laboratory 

In order to analyze the impact of DR programs and the 
load optimization that most DR events require, this paper will 
focus on a Hybrid Consumer, from now on referred to as 
Installation Agent that combines simulated loads and physical 
loads. 

The physical loads of the Installation Agent are located at 
the Intelligent Energy Systems Laboratory (LASIE), at 
GECAD (the Knowledge Engineering and Decision Support 
Research Center) – Polytechnic of Porto [15][16]. LASIE 
includes physical loads controlled and managed by the 
Installation Agent, making this a very realistic simulator.  

Besides the physical loads the agent also deals with virtual 
loads simulated by the agent, enabling the inclusion of loads 
that are not physically available. 

The control of the loads can be done with: 

 Switches – only the physical loads can be controlled 
by physical switches; 

 Computer – all the loads can be controlled and 
managed by a computer with the appropriate software; 

 Mobile Device – all the loads can be controlled and 
managed through an application that runs in android 
devices. 

When the users use a Computer or a Mobile Device to 
control the loads, in addition to manage the loads, they can 



also access to information regarding DR programs, the 
previous consumption and the energy prices of the last hours. 

The Installation Agent is responsible for the physical 
loads, the simulated loads and the connection between these 
loads and the smart grid environment (Figure 2). In Figure 1, 
the Installation Agent is considered a Small Player and it can 
be seen as a Domestic Consumer. 

 

Figure 2.   Communications of the Installation Agent. 

The Installation Agent corresponds to a small house in the 
smart grid. This agent is prepared to manage the loads and 
manage DR programs launched in the grid. The DR programs 
are treated according to the user’s will; for this reason the 
agent has a configuration file (in XML) with information on 
the actions of each DR program in which the user wants to 
participate. For this paper the main goal of the Installation 
Agent is to save money for the user, through the participation 
of DR events, while maintaining the comfort level of the 
house. 

The Installation Agent, described in this paper, uses a 
SCADA House Intelligent Management (SHIM) that is 
responsible for reducing the consumption in real time. This 
intelligent module uses ANNs and General Algebraic 
Modeling System (GAMS) to achieve its reduction goal 
(Section III). 

The SHIM uses the ANN to define the priorities of the 
loads at the time of the reduction in the consumption. These 
priorities are modelled by preference factors and they are the 
values that will indicate if the user wants a certain load to 
maintain its initial state (initial state is the state before the 
optimization process) [8]. 

III. SCADA HOUSE INTELLIGENT MANAGEMENT 

The optimization of loads from the consumer’s standpoint 
is critical to participate in DR programs, which mainly 
culminates in a reduction in the consumption on the 
consumer’s side. This section will present the structure of the 
SHIM integrated in the Installation Agent. 

A. Optimization 

The optimization present in the Installation Agent can be 
executed for three different reasons: when the user intends to; 
when a DR event (that the facility must or may react to) 

occurs; and when an offset of consumption is defined and the 
user exceeds the offset of consumption. 

The process of optimization is composed of the initial 
context characterization, using the environmental variables, 
such as the inside temperature, the inside clarity, the season of 
the year, the day of week, the time of the day, the number of 
people in the facility and the people’s locations. 

After knowing the context, the Artificial Neural Network 
(ANN) will transform this context into preference factors 
regarding each load in the facility. The preference factors are 
numerical representations of the user preference for each load. 
After the optimization, the ANN can learn through the user 
interaction, recording this data into the users’ profile [8]. 

The last step of the optimization combines the loads states 
and the preference factors to proceed with an optimization 
according to the preference factors, the loads that are turned 
on and the cut that is requested. 

To execute the optimization, this paper uses GAMS to 
achieve an optimal, or near to optimal, solution for the 
reduction of consumption.  

The optimization problem in GAMS can be formulated as 
follows: 

 Objective function: 
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GAMS is responsible for the actual optimization process, 
deciding the loads that are left turned on and the loads that 
will be turned off. GAMS also provides the consumption for 
each load, being prepared to work with variable loads and 
with discrete loads. 

 

Figure 3.   Scada House Intelligent Management. 



B. ANN Structure 

ANN can be used to predict future situations based on past 
events [8][17][18]. The SHIM uses the ANN to predict 
preference factors regarding users’ preferences for each 
individual load in the facility, every time the optimization is 
requested. After obtaining the preferences factors, the SHIM 
will use GAMS to thereby conclude the optimization. 

Because GAMS produces an optimal or near optimal 
solution, the outputs produced by the ANN are critical to 
obtain a plausible optimization according to the user 
preferences. Changing the weights of the preference factors 
we can obtain a totally different result after the execution of 
the optimization. 

The structure of the ANN, integrated in the SHIM, is of 
feedforward backpropagation type and it is composed of a 
single hidden layer of 77 nodes (the amount achieved through 
thorough tests). The Levenberg–Marquardt algorithm is used 
to train the structure of the ANN. The implementation of the 
ANN was done in MATLAB, using the Neural Network 
Toolbox. 

As inputs, the ANN uses the following variables of context 
acquired during the initial step of the optimization:  

 Temperature – this value represents the average 

temperature, in Celsius degrees, in the facility; 

 Clarity – this value represents the average clarity, or 

visibility, in the facility; 

 Season – the season of the year (0 – Spring; 1 – 

Summer; 2 – Autumn; 3 – Winter); 

 Day – the day of the week (from 0 to 6); 

 Hour – the time of the day (from 0 to 23); 

 People – this parameter represents more than one input, 

creating one input for each room in the facility, 

indicating the number of people inside that room. 

The retraining of the ANN is made based on the users’ 
actions after the optimization process takes place. After the 
optimization executes and changes the state of the loads to 
achieve the desired consumption limit, users cannot agree with 
all the changes and turn back on a load that was turned off by 
the optimization. These types of behaviors are recorded in the 
system for a further retraining of the ANN (a process that can 
be seen in [8]) 

IV. CASE STUDY 

This case study uses the Demand Response (DR) program 
of Real-Time Price (RTP) [19], which produces real-time 
variations of the price of energy (EUR/kWh), allowing 
consumers, such as the Installation Agent, to act in the best 
way according to their goal. For this case study the Installation 
Agent must create offsets of consumption when a high price of 
energy is detected. 

This DR program has the advantage of not overloading 
network communications in the smart grid. Being the 
management core centralized on the consumer side, it is the 
consumer player that manages the reaction, if there is any, of 
the DR program. 

The SHIM present on the Installation Agent of this case 
study will use the following variables of context as inputs of 
the ANN: 

 Temperature; 

 Clarity in the facility; 

 Season; 

 Day; 

 Hour; 

 Position of the people in the facility. 

This case study will analyze the impact of the RTP event  
in the Installation Agent present on the MAS proposed, which 
was described in Section II-a. This Installation Agent will 
represent the Physical Laboratory, described in Section II-b, 
and use the SHIM with the ANN, described in Section III. 

This case study will not analyze the learning carried out by 
the ANN. The learning process can be seen in detail in [8]. 
This case study will only analyze the impact of the 
optimization in real time according to the users’ position 
inside the house. 

To correctly analyze the impact of the RTP, the case study 
will present similar scenarios differing only on the number of 
people and their distribution in the facility. 

On this case-study, the prices will be given by the ISO 
agent. The Installation Agent, studied on this case-study, will 
access the prices of energy and act according to its XML 
configuration file. 

To participate in the RTP, the Installation Agent was 
configured as shown in Table I, where are indicated the offsets 
of consumption defined by the user. These offsets define the 
maximum consumption allowed during a time of a certain 
price of energy, saving therefore users’ money.  

TABLE I. 

OFFSETS CONFIGURED ON THE AGENT FOR THE RTP EVENTS 

Price (EUR/kWh) Offset 

Less than  0.12 None 

More than 0.12 and less than 0.14 4 kW 

More than 0.14 and less than 0.16 2.5 kW 

More than 0.16 and less than 0.18 2.7 kW 

More than 0.18 and less than 0.20 2 kW 

More than 0.20 1.75 kW 

According to the correct offset for a given period of time, 
the Installation Agent will proceed, if require, to the 
optimization process in order to minimize the consumption in 
the facility. 

To analyze the impact, Table II shows seven scenarios 
tested in the Installation Agent. These seven scenarios can be 
aggregated into three groups: I and II; III and IV; and V to 
VII. These three groups have similar start points, differing on 
the number of people and their distribution in the facility. 

As we can see in Table II, the optimization process was 
successfully capable of reducing the consumption to a value 
closed to the offset desired in each scenario. 



TABLE II. 
CHARACTERISTICS OF THE DIFFERENT PERIODS 

 
I II III IV V VI VII 

Temperature (ºC) 23 23 7 7 -10 -10 -10 

Clarity (%) 70 70 5 5 0 0 0 

Season Summer Summer Winter Winter Winter Winter Winter 

Day Monday Monday Wednesday Wednesday Friday Friday Friday 

Hour 12h00 12h00 19h00 19h00 20h00 20h00 20h00 

Persons 0 1 (Kitchen) 1 (Living Room) 
2 (Living Room, 

Kitchen) 
0 2 (2xRoom) 

3 (2xLiving Room, 

Kitchen) 

Consumption (W) 4544 4544 2906 2836 3066 3076 3086 

Price of Energy 
(EUR/kWh) 

0.15 0.15 0.18 0.18 0.16 0.16 0.16 

Offset (W) 2500 2500 2000 2000 2500 2500 2500 

Consumption After 

Optimization (W) 
2474 2538 1990 1998 2420 2408 2550 

 
According to Table II, the changes of the number and 

location of people does not affect the optimization process, 
although in Figure 4 we can see that the optimizations are very 
different from each others. 

The table shows the global context of the facility before 
and after the optimization occurs. Figure 4 shows the 
consumptions before and after the optimization process, 
according to the type of components and rooms of the house. 
And easily observe the impact of the optimization and the 
effects on the loads according to the type of components and 
rooms of the house. 

In scenarios I and II, it is visible the impact that the 
position of the person represents on the optimization process. 
The reduction in the consumption is similar in both scenarios, 

but as it can be seen, in scenario II the loads are mostly found 
in the kitchen, being this one the location of the user.  

Another important aspect of the data presented in Figure 4 
is the HVAC loads. Even with a temperature of 23ºC, scenario 
I show the HVAC loads turned on, but in scenario II, when a 
user is in the facility, the HVAC loads are turned off, so the 
loads inside the kitchen can be remain turned on. On the other 
hand, in scenarios III and IV the HVAC loads were kept 
turned on after the optimization because of the low 
temperature of the day (7ºC).  

Scenarios V, VI and VII feature a temperature of -10ºC, 
even when users are in the facilities, the HVAC loads 
remained turned on, despite being forced to reduce their 
consumption in order to be capable of dealing with the 
existence of several users in the facility. 

 

Figure 4.   Results of the optimization mechanism in seven periods. 



V. CONCLUSIONS 

Electricity markets and smart grids brought a new 
paradigm to the power systems operation. To deal with this 
new paradigm distributed generation and the active 
participation of small and medium players must be ensured. 

The participation of small and medium players is made 
possible by Demand Response programs in the smart grid 
context. These programs can be triggered by any kind of 
player that aggregates, physically or contractually, other 
players.  

Although the use of Demand Response is often advocated 
in a smart grid environment to increase the performance of the 
grid, this implies a correct management inside the small and 
medium players and it causes a direct impact on the 
consumer’s daily life. Besides the wide amount of Demand 
Response programs, the majority of these programs leads to a 
reduction of consumption from the small and medium players. 

This paper proposes an optimization methodology that can 
be integrated into small and medium players to prevent a 
negative impact by the Demand Response programs. Using 
Artificial Neural Networks to learn the users’ preferences, and 
using an optimal, or near to optimal, optimization it is possible 
to create an optimization module capable of producing 
different optimization results according to the context that we 
are in. The case study is the proof that an optimization 
according to contexts is possible.  

The integration of small and medium players in the smart 
grid environment is mandatory to produce automatic 
responses that are not invasive to users and does not produce a 
negative impact in users’ daily life. Otherwise, the inclusion of 
small and medium players will pass through a path of 
problems and discomfort to users. 
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