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Automated algorithm for generalised tonic-clonic
epileptic seizure onset detection based on sEMG

zero-crossing rate
Isa Conradsen, Student Member, IEEE, Sándor Beniczky, Karsten Hoppe, Peter Wolf and Helge B.D.

Sorensen Member, IEEE

Abstract—Patients are not able to call for help during a
generalized tonic-clonic epileptic seizure. Our objective was to
develop a robust generic algorithm for automatic detection of
tonic-clonic seizures, based on surface electromyography (sEMG)
signals suitable for a portable device. Twenty-two seizures were
analysed from 11 consecutive patients. Our method is based on
a high-pass filtering with a cut-off at 150Hz, and monitoring
a count of zero-crossings with a hysteresis of ±50µV . Based
on data from one sEMG electrode (on the deltoid muscle) we
achieved a sensitivity of 100% with a mean detection-latency of
13.7s, while the rate of false detection was limited to 1 false alarm
per 24 hours. The overall performance of the presented generic
algorithm is adequate for clinical implementation.

Index Terms—Epilepsy, seizure detection, tonic-clonic, sEMG.

I. INTRODUCTION

EPILEPSY is a neurological disorder that causes seizures
due to an abnormal excessive or synchronous neural ac-

tivity in the brain [1]. About 0.5-1% of the world’s population
suffers from this condition [2]. In spite of much progress
with pharmacological, surgical and alternative treatments (ke-
togenic diet and vagal nerve stimulation), about 30-40% of
epilepsy patients continue to have seizures [2]. For many
of these patients, seizure onset is unpredictable, impairing
independent living and increasing the risk of injuries, e.g.
by falls or burns. As patients do not remember the seizures,
many of these episodes will be unrecorded (if not observed
by someone else). The lack of precise data on the frequency
of seizure occurrence precludes the optimal adjustment of the
treatment. Therapy resistant patients with generalized tonic-
clonic seizures have an increased risk of dying in connection
with a seizure, especially when they live alone and the seizures
occur during sleep [3], [4]. An alarm system, capable of
detecting these seizures, could help the patients by alerting
relatives and caretakers, whenever a seizure occurs.
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Previously we have focused on using multi-modal data,
including sEMG and accelerometers for detection of epileptic
seizures with motor manifestations [5], [6]. One other group
has also tried to detect seizures based on a combination
of accelerometers and sEMG [7]. Other authors have used
electroencephalography (EEG) [8], [9], [10], electrocardio-
graphy (ECG) [11] or accelerometers [12], [13], [14], [15],
[16] to develop a seizure detection system for tonic-clonic
seizures. One group have even tried to discriminate tonic-
clonic seizures from other seizures based on accelerometers
[17], [18]. Both Kramer et al. and Lockman et al. achieved
promising results on detecting tonic-clonic seizures based on
accelerometer data. However the seizures were detected rather
late since the accelerometers were best at detecting the clonic
phase of the seizures. Our aim was to obtain better results
by developing a sensitive and specific algorithm that detects
the seizures already in the tonic-phase (that precedes the
clonic one). We chose surface electromyograms (sEMG) as
our modality (signals), because there is an intensive activation
of the muscles during the tonic phase. To make the system
feasible (easy to wear by the patients) we aimed at using as
few sensors as possible (only two channels). Furthermore we
focused on keeping the algorithm computationally efficient
to make an implementation of the algorithm in a portable
device possible. The main aim of the study is to propose
the first algorithm based on only sEMG signals for detecting
epileptic generalised tonic-clonic seizures. Our hypothesis is
that the information content of the sEMG is sufficient for early
detection of tonic-clonic seizures. A preliminary version of this
work has been reported[19].

II. RECORDINGS

Sixty consecutive patients admitted to the Epilepsy Monitor-
ing Unit at the Danish Epilepsy Center in Dianalund, Denmark
for diagnostic reasons, who had a history of tonic-clonic
seizures in the referral were included. Eleven patients had
tonic-clonic seizures. The rest of the patients had seizures
other than tonic-clonic or did not have epileptic seizures at
all during the monitoring period. The study was approved by
the regional ethics committee, and it was conducted according
to the declaration of Helsinki. The recordings included EEG,
video, ECG and sEMG electrodes. We used 9mm silver/silver
chloride sEMG electrodes placed on the deltoid and anterior
tibial muscles on both sides in a monopolar setting (the active
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electrode was placed on the midpoint of the muscle belly,
while the reference electrode was placed on the acromyocla-
vicular joint, just proximal to the insertion of the muscle).
For this study we have only analysed the signals from the left
deltoid and anterior tibial muscles. The admission lasted 1-4
days depending on the patient. The sEMG was sampled with
a frequency of 1024Hz. The long-term video-EEG recordings
were reviewed by a clinical neurophysiologist and an epilep-
tologist, who marked the time-epochs containing a tonic-clonic
seizure, based on visual analysis. The physician marked the
start of the tonic phase, when this was unequivocal. In total we
recorded 22 tonic-clonic seizures in 776 hours. The number of
seizures, the demographic data and the recording time for each
patient is listed in Table I. During the long term monitoring,

TABLE I
THE PATIENTS GENDER, AGE, THE AMOUNT OF SEIZURES AND THE

LENGTH OF THE FILES.

Patient Gender Age # seizures File length [h]
1 F 23 1 15.9-25.3
2 F 26 2 92.5-95.2
3 M 39 1 89.4-93.4
4 M 25 1 46.6
5 M 62 2 89.9-95.5
6 M 38 1 90.9-95.2
7 M 19 1 91.5-94.3
8 M 55 3 12.4-16.2
9 F 30 4 37.2
10 M 11 3 88.1
11 M 26 3 89.0

trained neurophysiology technicians monitored the recordings
to make sure that data showed EMG activity and not noise,
which would imply a loose connection (high impedance). It
happened that the sEMG electrodes were accidentally detached
in some patients. In these cases the technicians corrected this
as soon as possible. The epochs with detached/loose electrodes
were excluded from the analysis, but in total more than 96%
of the data was used, making it reasonable to look at the
algorithm working both at night and during the day. Since
some periods were excluded, the time lengths were not exactly
the same for the two muscles, therefore different time length
are given in Table I.

III. METHODS

The methods section is divided into two sections: the feature
extraction and the detection approach, respectively.

A. Feature Extraction

In a previous study we analyzed the similarities and dif-
ferences between sEMG signals from real epileptic seizures
and sEMG signals from simulated seizures [20]. We showed,
that real seizures in contrast to normal activity had a large
proportion of data in the frequency band above 100 Hz. In this
study a visual evaluation of all seizures from the 11 patients
revealed that the differences between seizures and normal
activities, were even more pronounced, when processed with
a high-pass filter with a cut-off frequency at 150 Hz. The high
pass filtering furthermore ensures, that a larger amount of the
artifacts will be removed. We have used a Butterworth filter
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Fig. 1. Figure ’A’ shows the seizure (with surrounding activity) before
filtering and figure ’B’ the signal after filtering. The right and left black
vertical lines denote the beginning and end of the generalised tonic-clonic
seizure, whereas the middle black vertical line denotes the start of the clonic
phase, marked by the physician. The data is from the left deltoid.

with an order of 20 for the filtering, where the group delay is
ensured to be linear in the frequency band of interest. A seizure
from a representative patient, is shown in Fig. 1 before and
after filtering.

Our previous study [20] on the sEMG signals during real
and simulated seizures showed that simple features are able
to distinguish between the two groups. Therefore we chose
to focus this study on finding a simple and computationally
efficient feature, that would be able to discriminate tonic-
clonic seizures from normal activity. The final method is
meant to be used in a seizure detection system and it is
therefore important to capture the seizures soon after the onset.
Since the seizures are started by a tonic phase, we searched
for a feature to discriminate this part of the seizure from
normal activities. In our previous study [20] we found that
the epileptic (generalised tonic and the tonic phase of the
generalised tonic-clonic) seizures contained a larger proportion
of higher frequencies than normal activities. We have therefore
chosen to focus our feature choice on the frequency domain,
since this might distinguish both types of seizures from normal
activities (though we only focus on one type in this study).
The authors of [12], [13], who have used accelerometer data,
found algorithms to distinguish the clonic part from normal
activities. These methods seem to perform well, but have
longer latencies, because the clonic phase only comes after
the tonic phase of the seizure. We chose a simple measure
for the instantaneous frequency through the zero-crossing
compared to the power spectrum (used in [20]), since it is more
convenient for implementation in a portable detection device.
Previously other groups [21], [22] have used zero-crossing
for prediction of epileptic seizures based on EEG. Since we
wanted our algorithm to focus only on actual sEMG data,
we decided to count only those zero-crossing, which extended
above and below a hysteresis. This ensured that the actual
zero-crossing count would not be affected by noise. From a
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quantitative inspection of our data, we found background noise
with a standard deviation (SD) as high as 15µV, so to ensure
that the zero-crossing only operates outside the noise region,
we chose to include a hysteresis of ±50µV, corresponding
to 3SD≈ 50µV. A zero-crossing is then only counted when
the signal peaks preceding and following it exceed 50µV and
−50µV respectively. So if the signal starts by rising above
50µV one count is set when the signal goes below −50µV and
another count is set, when the signal again is above 50µV and
so on. We found that when applying the zero-crossing method
with a hysteresis of ±50µV on the filtered data, the number
of crossings was high throughout the entire tonic phase, see
Fig. 2. The count of zero-crossings is seen to decrease at the
end of the tonic phase and throughout the clonic phase. This
decrease is however caused by the clonic phase consisting of
alternating periods with high activity and no activity at all. We
evaluated the count of zero-crossings with a smaller window
size and found that the count is as high in the active clonic
phases as in the tonic phase, so the reason for the decrease
in the number of counts is that the window includes both the
active periods and the periods with no activity in the clonic
phase.
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Fig. 2. The number of zero-crossings in windows of 1 second as a function
of the time for the filtered data in Fig. 1 (one seizure from a representative
patient). It is clearly seen that the number of zero-crossings rises fast at the
start of the tonic phase, stays high throughout the tonic phase and drops at the
beginning of the clonic phase. The right and left black vertical lines denote
the beginning and end of the generalised tonic-clonic seizure, whereas the
middle black vertical line denotes the beginning of the clonic phase.

B. Detection Approach

Although many more parameters could be varied to make
the algorithm more advanced, in our search for the optimal
method to classify the data into tonic-clonic seizures or normal
activity, we chose to vary two parameters. The first one is
the number of zero-crossings in a given window (called the
threshold) and the second one is the number of succeeding
windows, where the number of zero-crossings exceeds the
threshold, needed to finally classify a seizure. As in one of
our previous studies, we chose to use a window of 1 second

[6]. In this study we opted for an overlap of 75% for the
windows. These two values, length and overlap of windows,
were chosen based on a visual inspection of the feature-plot
(see example in Fig. 2) for all seizures. Furthermore, this
inspection showed that the maximum number of zero-crossings
during the tonic phase of the seizures was about 255 counts
if all seizures were to be detected. We varied the threshold
from 200 (180 for anterior tibial muscle) to 300, with an
interval of 5 counts between (180) 200 and 240 and between
260 and 300, whereas we had an interval of one count from
241-259. When seeking to avoid too many false detections
and at the same time ensuring a sufficiently short latency,
the band of properly chosen numbers of windows to make a
seizure detection is most likely narrow. We therefore varied the
number of windows to make a seizure detection from 2 to 30,
where two windows correspond to a minimum delay of 1.25
seconds and 30 to a minimum delay of 8.25 seconds, to ensure
that all possible solutions are tested. The number of windows
was varied with intervals of two between 2 and 10 and between
20 and 30, whereas it was varied with intervals of one between
11 and 19. The beginning of the tonic-clonic seizures were
marked by clinical neurophysiologist and epileptologist by a
visual evaluation of data, as this is more reliable than any
automated method, thus far. However the exact start-time was
sometimes uncertain. In these cases we opted for marking
the clinical time-point that unequivocally showed the onset
of the tonic phase. Thus, in theory this marking might come
a few seconds later than the real seizure-onset. We therefore
added an equation in our interpretation of the results which
changed the latency to the minimum (based on the number of
windows included) if the estimated start-time turned out to be
earlier than the clinical (actual) time-point (though within 100
seconds from it). For each pair of parameters three measures
were calculated to evaluate the results:

- The sensitivity (SEN): the percentage of the seizures,
which were classified by the algorithm.

- The false detection rate (FDR): the amount of false
detections (normal activity classified as a seizure) per
hour. This is a measure of the specificity.

- The latency (LAT): the time from the beginning of a
seizure to the detection of that seizure.

We used a 4-fold cross validation method [23], where the
11 patients (pt) were randomly partitioned into four subgroups
(1: pt 2,6,11; 2: pt 1,4,9; 3: pt 5,7,10; 4: pt 3,8), to evaluate
which parameters were optimal. From the 4 subgroups one was
retained for validation of the parameters, whereas the other
three subgroups were used for training the optimal choice of
parameters. The validation group was then used to evaluate the
trained choice of parameters. The cross-validation process was
repeated four times, one time with each of the four subgroups
as validation group. This method ensured that all patients
were used (an equal number of times) for both training and
validation. The optimal parameters for each training session
were chosen from a 2D-plot, which express the relationship
between the sensitivity and FDR (specificity), and the latency.
The plot express the mean latency (for all seizures in the
training groups) on the abscissa:
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abscissa = LAT, (1)

and the sensitivity minus the false detection rate on the
ordinate:

ordinate =

{
SEN − FDR, for SEN − FDR ≥ 0

0, for SEN − FDR < 0

}
(2)

where SEN is the sensitivity (between 0 and 1) and FDR is
the false detection rate given per hour (the FDR corresponds
to the specificity). If none of the seizures for a patient are
detected the latency is given the value of the maximum latency
of the patients involved in the training session. The approach
of plotting the sensitivity and the FDR on one axis, and the
latency on the other makes it easier to search parameters that
both ensures high sensitivity, low FDR (i.e. high specificity)
and short latency. In Fig. 3 an example of the plot is shown
for the training session of group 1-3. The point on the curves
in Fig. 3 is chosen as the best trade-off between the sensitivity
and the FDR and the latency in our point of view. We have
prioritized a sensitivity as close to 100% as possible and at the
same time as low an FDR as possible, secondly we also tried
to obtain a short latency. This is because we would rather have
the detections delayed by a second, than not detecting them
at all. In Fig. 3 the optimal point with respect to achieving
both high sensitivity and specificity would be as close to 1 as
possible on the y-axis. Secondly we chose the point so as the
latency would not be too large (the point being placed too far
right on the x-axis). The optimal parameters are considered not
to be outliers, so that small changes in the threshold or number
of windows to finalize a detection does not change drastically
(e.g. the amount of seizures detected). If so another set of
optimal parameters will be searched.
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Fig. 3. Each curve shows different threshold levels and for each curve the
number of windows is varied. The black circle marks the chosen point on the
curves. The thicker curve highlights the mean of the curves.

The optimal choice of parameters (chosen based on a plot
equal to the one shown in Fig. 3) for each of the four training
sessions are given in Table II for the three training branches:
deltoid muscle data alone, anterior tibial muscle data alone and

the combination of data from both muscles. The parameters for
the combination of the two muscles are achieved by requesting
that the seizure should be visible through the features in both
muscles (channels) at the same time. This combination should
reduce the number of false alarms, which are only visible in
one muscle. Therefore lower values are expected for the two
parameters, compared to the detection being based on just one
muscle.

TABLE II
THE PARAMETERS CHOSEN TROUGH THE FOUR TRAINING PHASES.

#WIN=NUMBER OF WINDOWS, TH=THRESHOLD.

Training Deltoid Tibialis Combined
groups # win th # win th # win th
1,2,3 19 241 26 195 8 200
1,2,4 15 253 28 195 8 195
1,3,4 19 245 24 190 8 200
2,3,4 19 240 24 205 8 200

IV. RESULTS

The test results for the two electrode placements (deltoid
and anterior tibial) are presented in Table III together with
the combined results where an alarm is generated if it is
registered in both muscles at the same time. The overall results
of the evaluation are very promising and suggest that it is
possible to choose parameters such that the same algorithm
(incl. parameters) may be used for all patients, providing a
generic method for a detection system for epileptic patients
with generalised tonic-clonic seizures.

When using data only from the deltoid muscle all seizures
are detected with an acceptable mean latency. The latency
is different however for the different patients, since not all
patients have seizures which start equally abruptly and fur-
thermore how early the muscles are recruited into the seizure
varies. A visual inspection of the sEMG data compared to
the video shows that the seizures for patient 9, for whom the
latency is very long, involve the deltoid muscle relatively late.
Besides good sensitivity and latency, the results for the deltoid
muscle alone also show a very low FDR. The mean FDR is
0.04, which corresponds to approximately 1 in 24-hours. Most
of the false detections are in the daytime, and only three were
during the night (12pm-8am) for the results on the deltoid
muscle data, see Fig. 4. This is only approximately 10% of
the false alarms, so if the algorithm was implemented in a
system only to be used during the night, where a surveillance
system is mostly needed, the FDR would be approximately
one false alarm for every tenth day.

The results for the data from the anterior tibial muscle alone
are not as good as for the deltoid muscle. For the anterior tibial
the mean sensitivity is 77%. Only for 7 of the patients are all
seizures detected, for two of the remaining three, none of the
seizures are detected. This may be caused by the high number
of windows. If the number of windows is too high the length
of the period they cover might exceed the length of the tonic
phase for some patients, and thereby cause detection to fail.
The mean latency is longer for detections based only on the
anterior tibial muscles compared to those based on the deltoid
muscle. However for some patients latency is lower than for
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TABLE III
THE RESULTS FOR VALIDATION OF THE TRAINED PARAMETERS (SEE TABLE II), BASED ON A SINGLE MUSCLE OR THE COMBINATION OF TWO.

Patient
Deltoid Anterior Tibial Combined

SEN [%] FDR [/h] LAT [s] SEN [%] FDR [/h] LAT [s] SEN [%] FDR [/h] LAT [s]
G

ro
up

1 2 100 0.03 8.38 0 0.01 - 100 0.01 4.88

6 100 0.04 7.75 100 0.03 6.75 100 0.03 4.25

11 100 0.00 6.00 100 0.84 7.25 100 0.02 3.33

G
ro

up
2 1 100 0.00 9.00 100 0.06 6.75 100 0.00 6.00

4 100 0.09 11.25 100 0.09 19.25 100 0.00 14.75

9 100 0.03 34.44 100 0.00 27.44 100 0.00 26.31

G
ro

up
3 5 100 0.04 7.13 50 0.05 11.75 100 0.19 5.75

7 100 0.03 17.00 100 0.11 14.75 100 0.00 9.75

10 100 0.14 7.17 67 0.31 24.88 100 0.02 13.00

G
ro

up
4

3 100 0.00 10.25 0 0.68 - 100 0.01 9.75

8 100 0.00 12.33 100 0.32 11.08 100 0.16 7.33

Mean 100 0.04 13.66 77 0.20 14.11 100 0.04 9.85
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Fig. 4. Histograms of the false alarms for all 11 patients. The abscissa shows
the time of the day (24-hours).

the deltoid muscle and for some patients it is higher. For all
those with a lower latency all seizures are detected. The same
pattern is seen for the FDR, where the mean is much higher
for the results on the anterior tibial muscle compared to the
deltoid muscle, but for three patients it is actually lower.

If the two sets of data are combined the results improve
somewhat regarding latency, as expected. Similarly to the
results based on the deltoid muscle alone, all seizures are
detected, the mean FDR is low, but the mean latency is even
shorter for the detection based on both muscles. However
for two patients (4 and 10) the latencies are increased for
the combination of both muscles as compared to the deltoid
muscle alone. The explanation may be found in the fact that the
latency is very high for these patients, when only the anterior
tibial data are used, which implies that the seizures are seen
later in this muscle than in the deltoid muscle.

V. DISCUSSION

The different results for the two muscles and the combina-
tion of both are not only dependent on the chosen muscle,
but also on the chosen parameters, see Table II. Thus for
the combined method the number of windows for a detection
is low, which explains the short latency and for the anterior
tibial muscle the number of windows is large, which gives
long latencies. Looking at the parameters in Table II, one will
see that they are more alike for the combination of the two
muscles, than for the deltoid muscle alone, where group three
is tested with parameters somewhat different from the others.
If group three had instead been tested with parameters more
alike to the other three groups (19 windows and a threshold
of 241), the sensitivity would have stayed the same, but the
latency would have been longer and the FDR smaller, which
would bring the mean FDR to 0.03 and the mean latency
to 13.9 for the deltoid muscle data alone. This suggests that
an equivalent well result as presented in Table III would be
obtained by using the exact same parameters for all patients.

Since combining the deltoid data with the anterior tibial
data only improves the latency (by 4s on average), a detection
system would more appropriately be based on the deltoid
muscle alone, since the gain of adding data from an extra
muscle is too small. If data should be combined from two
muscles in a detection system one would probably choose
two muscles closer together, than the two we have used in
this study.

The sensitivity and specificity of seizure detection systems
based on EEG signals vary widely: 70-100% (for sensitivity)
and 0.5 -72 false detections / 24 hours (for specificity)[24],
[25], [26], [27]. The best performing ones are based on
invasive recordings (intracranial electrodes) or many scalp
electrodes (> 60)[27]. In the best of these studies they achieve
the same sensitivity as our approach, but a lower FDR and
shorter latency. It should, however, be considered, that their
system would not be feasible for a long-term monitoring in
the patients home or in the everyday life of a patient. In spite
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of using signals from a non-invasive recording (sEMG) and
just one channel, we obtained a sensitivity of 100% and a
specificity of 1 false-detection / 24 hours. This is compatible
with the best performing EEG-based systems, but our system
is easier implemented, because it is non-invasive.

If we compare our deltoid results to other studies [12],
[13] who have developed an algorithm to detect tonic-clonic
seizures based on motion-data, ours are more sensitive (SEN
= 100% versus 88%[12] and 91%[13]). The study by Kramer
et al. [13] includes 15 patients (22 seizures as in our study),
whereas the results by Lockman et al. [12] is based on a very
limited database (6 patients with 8 seizures). At the same time
our algorithm captures seizures in the tonic-phase, whereas the
other methods focus on the clonic-phase. Therefore our laten-
cies are shorter than in these two studies with accelerometers.
We are not able to compare the FDR to [12], since they have
not listed how long their recordings were, but only that they
captured 204 false alarms for the 8 patients. They do, however,
state that they have a large false detection rate, so we would
expect their system to have a larger FDR, than what we are
able to provide. Kramer et al. [13] reports an FDR of 0.004
(8 false alarms on 1692 hours), which is lower than what we
have provided, but this should be held up against the lower
sensitivity they achieved, which we find is more important to
keep as close to 100% as possible.

Very few time periods were excluded from the evaluation of
data, but in a real time situation it is important, that all data is
useful. That means that in real time the electrode(s) collecting
the data for the algorithm must be extra adhesive, so as they
will not become loose. In periods where the electrode(s) are
loose or have completely fallen off, the algorithm will not be
able to detect any seizures.

The electrodes used to collect the data are wired; the
impedances are kept low by the healthcare personal monitoring
the signals and making sure that the background noise does
not increase too highly. More than 96% of the data are used.
In a home situation wireless-electrodes, firmly attached by a
plaster specifically designed for this purpose (Ictalcare A/S,
Denmark) would be used. The next step in our process is to
implement the algorithm into the hardware of a device with
such a wireless-electrode.

Other muscles might be used as well. These two muscles
were chosen since, in our experience, the deltoid muscle is
always strongly involved in generalised tonic-clonic seizures.
Anterior tibial muscle provides a less visible placement for a
detection device, if it should be worn in daytime situations.

To the best of our knowledge this is the first seizure
detection algorithm based solely on the sEMG modality. We
have developed a generic (the same algorithm/parameters are
used for all patients) seizure detection system that is non-
invasive (based on sEMG recordings), feasible (was applicable
in all recruited patients), with high sensitivity (100%), low rate
of false alarms (1 / 24 hours) and able to run in real-time.
The algorithm was evaluated with a 4-fold cross-validation on
one or two channels of sEMG from the deltoid or anterior
tibial muscle from 11 patients with tonic-clonic seizures.
It can only detect one seizure type: the tonic-clonic ones.
Nevertheless it is the group of patients with this seizure type

that has the highest risk for injuries following seizures and
SUDEP (Sudden Unexpected Death in Epilepsy Patients)[28].
Implemented in a portable device, the algorithm presented
provide advantages over the alarm devices used today, based
on accelerometers in a wristband or a bedalarm.

VI. CONCLUSION

We have developed a generic seizure detection algorithm,
which is the first of its kind to be based on sEMG data alone.
The algorithm focuses on detection of tonic-clonic seizures
as compared to normal activity. Our algorithm was validated
with a 4-fold cross validation and we found that it is highly
sensitive, with low false detection rate and short detection
latency. For one muscle alone (deltoid) our method performed
with a sensitivity of 100%, a median latency of 13.7 seconds
and a median FDR of 0.04/h corresponding to one false
alarm in 24-hours. The algorithm performs well enough to
be implemented in clinical practice. A first implementation
in a nighttime only device would provide a median FDR of
approximately one in ten days.
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