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Summary

This thesis focuses on formal techniques based on static program analysis, model
checking and abstract interpretation that offer means for reasoning about soft-
ware, verification of its properties and discovering potential bugs.

First, we investigate an algebraic approach to static analysis and explore its
connections to abstract interpretation framework. We introduce the notion of
a flow algebra, which is an algebraic structure similar to semirings, but closer
to the classical monotone frameworks. We also generalize Galois connections to
flow algebras and discuss when a flow algebra is an upper-approximation of (or
induced from) another flow algebra.

Furthermore, we show how flow algebras can be used in communicating or
weighted pushdown systems. To achieve that, we show that it is possible to
relax some of the requirements imposed by original formulation of those tech-
niques without compromising the soundness or completeness results.

Moreover, we present a new application of pushdown systems in the context of
an aspect-oriented process calculus. The addition of aspect-oriented features
makes it possible for a process to exhibit a recursive structure. We show how
one can faithfully model and analyze such a language.

We also introduce an abstract domain that symbolically represents the messages
sent between the concurrently executing processes. It stores prefixes or suffixes
of communication traces including various constraints imposed on the messages.
Since the problem has exponential complexity, we also present a compact data
structure as well as efficient algorithms for the semiring operations.
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Apart from that, we discuss an improvement to Pre∗ and Post∗ algorithms for
pushdown systems, making it possible to directly use program representations
such as program graphs. We present a modular library implementing those
algorithms, which also provides a lot of flexibility with respect to, e.g., various
constraints solvers.

Finally, we describe one such experimental solver based on Newton’s method.
It allows solving equation systems over abstract domains that were not accom-
modated by other solving techniques, e.g., Kleene iteration. We present such a
domain and provide a preliminary evaluation of our implementation.

To conclude, we believe the thesis presents a number of contributions interesting
both from the theoretical point of view as well as from an implementation one.



Resumé

Afhandlingen fokuserer p̊a formelle teknikker, baseret p̊a statiske program anal-
yse, model tjek og abstrakt fortolkning. Disse teknikker kan bruges til at vurdere
software, verificere visse egenskaber ved software, og finde potentielle fejl.

Først undersøger vi en algebraisk tilgang til statisk analyse og udforsker dens
forbindelser til abstrakt fortolkning. Vi introducerer begrebet flow algebra, der
er en algebraisk struktur svarende til semiringe, men som er mere beslægtet
med de klassiske monotone frameworks. Vi viser hvordan man kan generalisere
Galois-forbindelser til flow algebraer og diskuterer hvorn̊ar en flow algebra er en
over-approksimation af (eller er induceret fra) en anden flow algebra.

Dernæst viser vi, hvordan flow algebraer kan anvendes i kommunikerende eller
vægtede push-down systemer. For at opn̊a dette, viser vi, at det er muligt
at slække p̊a nogle af de krav p̊alagt af den oprindelige formulering af disse
teknikker uden at det g̊ar ud over de ønskede sundheds og fuldstændigheds
resultater.

Desuden præsenterer vi en ny anvendelse af push-down systemer i forbindelse
med et aspekt-orienteret proces sprog. Tilføjelsen af aspekt-orienterede kende-
tegn gør det muligt for de processer at fremvise en rekursiv struktur. Vi viser,
hvordan man kan modellere og analysere et s̊adant sprog.

Vi ogs̊a indfører et abstrakt domæne, som symbolsk repræsenterer de beskeder
der sendes mellem de samtidigt udførende processer. Det benyttes til at huske
præfikser eller suffikser af kommunikations forløb, og inkluderer ogs̊a betingelser
som p̊atrykkes af beskeder der udveksles. Da problemets kompleksitet er ekspo-
nentiel, har vi ogs̊a præsenteret en kompakt datastruktur med samt effektive
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algoritmer til semiring operationer.

Ydermere diskuterer vi en forbedring af Pre* og Post* algoritmerne for push-
down systemer, som gør det muligt direkte at bruge program repræsentationer
som for eksempel program grafer. Vi præsenterer en modulær bibliotek som
implementerer disse algoritmer; dermed opn̊as stor fleksibilitet med hensyn til
forskellige metoder til løsning af constraint systemer.

Endelig beskriver vi en eksperimentel metode til løsning af constraint systemer
baseret p̊a Newtons metode. Den gør det muligt at løse ligningssystemer over
abstrakte domæner, som tidligere løsningsteknikker, f.eks Kleene iteration, ikke
kunne magte. Vi præsenterer en s̊adant domæne og giver en foreløbig evaluering
af vores implementation.

Sluttelig mener vi, at afhandlingen præsenterer en mængde af bidrag som er
interessante b̊ade fra teoretisk og et praktisk synspunkt.
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Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Software verification . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 7

2.1 Partial orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Lattices and functions over lattices . . . . . . . . . . . . . . . . . 9

2.3 Monoids and semirings . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Intraprocedural analysis using flow algebras 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Flow algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Galois connections for flow algebras . . . . . . . . . . . . . . . . . 19

3.4 Program graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Flow algebras over program graphs . . . . . . . . . . . . . . . . . 24

3.6 Galois connections for program graphs . . . . . . . . . . . . . . . 27

3.7 Application to the bakery algorithm . . . . . . . . . . . . . . . . 30

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



x CONTENTS

4 Interprocedural analysis 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Pushdown systems . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Weighted pushdown systems . . . . . . . . . . . . . . . . . . . . . 43
4.4 Communicating pushdown systems . . . . . . . . . . . . . . . . . 46
4.5 Brief comparison between WPDS and CPDS . . . . . . . . . . . 52
4.6 Pushdown systems and flow algebras . . . . . . . . . . . . . . . . 55

5 Pushdown systems for monotone frameworks 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Monotone frameworks, semirings and flow algebras . . . . . . . . 61
5.3 Pushdown systems . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Analysis of an aspect-oriented calculus 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Pushdown systems . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Symbolic prefix/suffix abstractions 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Library for pushdown systems 125
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.3 Graph-based algorithms . . . . . . . . . . . . . . . . . . . . . . . 129
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Implementation of Newton’s method 141
9.1 Introduction and preliminaries . . . . . . . . . . . . . . . . . . . 142
9.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3 Semilinear sets and their abstractions . . . . . . . . . . . . . . . 150



CONTENTS xi

9.4 Examples and experiments . . . . . . . . . . . . . . . . . . . . . . 155
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10 Conclusions 161

A Proofs for Chapter 3 165
A.1 Proof of Lemma 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . 165
A.2 Proof of Lemma 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . 166
A.3 Proof for Lemma 3.14 . . . . . . . . . . . . . . . . . . . . . . . . 167
A.4 Proof of Proposition 3.16 . . . . . . . . . . . . . . . . . . . . . . 167
A.5 Proof of Lemma 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . 170

B Proofs for Chapter 5 171
B.1 Soundness proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.2 Continuity proof (Lemma 5.6) . . . . . . . . . . . . . . . . . . . . 176
B.3 Completeness proofs . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Algorithms and examples from Chapter 8 189
C.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
C.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

D Algorithms and examples for Chapter 9 195
D.1 Kleene star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
D.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



xii CONTENTS



Chapter 1

Introduction

1.1 Software verification

Modern societies depend on software in almost every aspect of every-day life,
from PCs, phones or tablets to cars, medical equipment and avionics. We not
only use software in more and more places, but we also increase the complexity
of the tasks performed with it. In other words we want more functionality,
performance, ease of use and at the same time we also expect that it is correct,
robust and reliable. Those goals often work against each other — the higher
the complexity, the more difficult it is to ensure correctness. Software that was
considered advanced and complex a decade ago is often considered to be quite
basic by today’s standards. With all of this in mind it is not difficult to see
why creating high quality software is a huge challenge. Therefore, many people
around the world work on different ways to improve the way we create software
— from the design and development processes to different ways of testing and
performing code reviews. Many of those improvements are not formal in the
sense of being based on mathematical rigor, yet often they are quite effective [40].
On the other hand, as observed by Dijkstra [22]:

[. . . ] program testing can be a very effective way to show the pres-
ence of bugs, but it is hopelessly inadequate for showing their ab-
sence.
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Therefore, in many areas that require highest levels of reliability, development
processes or testing are not always enough. Apart from that, in the last decade
we have witnessed another great shift — the rise of multi-core systems. Nowa-
days, the performance gains are mainly due to more cores and CPUs and not
as much due to faster cores themselves. This puts additional pressure on creat-
ing parallel and concurrent software in order to utilize modern hardware. And
again, it only increases the complexity of the software and makes it more dif-
ficult to reason about it. It is also much harder to test it, since many errors
can only be observed in a very specific conditions, e.g., only for highly unusual
program interleavings.

Due to such challenges, in recent years there has been a lot of activity and
progress in using formal methods to improve the software. This includes creating
tools on top of formal theories that help in finding bugs or even allowing to verify
various properties of the software. Moreover, they can be used at different
levels of abstraction and different stages of the design and implementation of
the system. The main approaches to formal analysis and verification of various
systems are static analysis, abstract interpretation and model checking.

Static analysis is a technique of computing approximate behaviors of programs
statically at compile-time. It was initially created and developed in the context
of optimizing compilers, for the purpose of improving the performance of the
generated code. However, currently the main focus of static analysis is shifting
towards the problem of bug finding and software verification. One of the main
strengths of static analysis is that it allows to statically prove certain properties
of programs. Thus, they will hold for every execution of the program, for all
possible input value, etc. Of course, the price for this is that the analyses
can often be quite complex and computationally demanding, since they have to
consider all those various possibilities.

Another close technique is abstract interpretation [19], which provides a rigorous
approach to creating sound analyses. This is usually achieved by establishing a
connection (more precisely a Galois connection) between the static semantics of
a program and some abstract domain. By formally describing the relationship
of an analysis to the semantics of the program one can create analyses that are
semantically correct by construction. Furthermore, it provides a framework for
creating new abstract domains from already existing ones [20].

Finally, model checking [3] is an automated technique for determining whether
a given model meets a given specification. This is achieved by exhaustive ex-
ploration of the model, which means that it is possible to determine whether
the system satisfies the specification. Moreover, with modern, sophisticated al-
gorithms and data structures it is possible to model check very large systems
(e.g., the technique is commonly used for hardware verification). However, due
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to the state space explosion problem, it is often not directly applicable to soft-
ware verification. There are many different formalism in which it is possible to
define the specification, such as LTL, CTL, PCTL, etc.

Unfortunately most of the interesting questions about software are undecid-
able [68]. Therefore, if the analysis is to be sound (i.e., admit only false-
positives) then some over-approximation is often necessary. Alternatively some
approaches go for under-approximation, which can be quite effective in bug find-
ing. However, they obviously cannot be used for verification, since they admit
false-negatives, i.e., the analysis might not find any problems, even though some
exist. Therefore, nowadays when analyzing and verifying complex software sys-
tems, one often uses a combination of all of the above approaches. And so the
popular term “software model checking” [44] is a bit of a misnomer and usually
includes techniques from all of these areas.

1.2 Contributions

The contributions of this thesis apply several slightly different areas. However,
they are all connected and can be expressed in a single sentence, namely the
main theme of this thesis is:

An algebraic approach to analysis and verification of recursive and
concurrent systems.

This presents some of the main topics that we focus in this thesis: an algebraic
approach to program analysis, analysis/verification of programs containing re-
cursive structure and which are concurrent. We will briefly discuss those three
points one by one.

Structures such as monoids and semirings [23] have already been used in many
contexts of computer science. Semirings in particular appear to be quite useful
for program analysis purposes [66, 67, 10, 11], where the summation operator
corresponds to merging of the information from different paths and the multi-
plication operator to concatenating the paths. Moreover, many analyses can be
expressed in terms of semirings. However, there are many classical analyses that
do not exactly fit into this formulation. One of the contributions of the thesis is
to introduce flow algebras [30], that are less restrictive and admit more analyses.
We study the how they can be used in the context of abstract interpretation
in Chapter 3, where we generalize Galois connections from complete lattices to
flow algebras. Acknowledgement: Chapter 3 is based on [30].
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Furthermore, we also investigate using flow algebras for interprocedural analy-
sis. To that end we investigate the communicating/weighted pushdown systems
that use semirings to represent the analysis information. In Chapter 5 we es-
tablish that it is possible to use flow algebras instead, thus disposing of some
of the strong requirements imposed by the semirings on the abstract domains.
Acknowledgement: Chapter 5 is based on [77].

We continue exploring algebraic approach to static analysis in Chapter 9, where
we experiment with an implementation of Newton’s method generalized to ω-
continuous semirings. The technique allows us to compute the least solution
of a system of equations in some cases when Kleene iteration is not able to.
Acknowledgement: Chapter 9 is based on [71].

Another topic that this thesis is exploring is the concurrency based on chan-
nel communication. The main starting point is the concept of communicating
pushdown systems, where the language of synchronization actions of different
processes is over-approximated and then used in order to prove unreachability
of error states. We use the main ideas of the approach in Chapter 6 and propose
a novel analysis approach to a process calculi with aspect-oriented features. It
turns out that introducing aspects can introduce a recursive structure to such
processes making the analysis much more difficult. In order to handle this case
we use pushdown systems in quite a different way than usual, which allows us
to achieve both good precision and model the aspect-oriented features correctly.
Acknowledgement: Chapter 6 is based on [76].

Motivated by some of the challenges encountered during the above work, in
Chapter 7 we describe a new symbolic abstract domain that extends the ith-
prefix and ith-suffix abstractions of [14]. Our abstract domain represents the
variables symbolically and allows to include constraints over those variables,
making it possible to achieve high precision and good performance of the anal-
ysis. Furthermore, we also develop and implement a data structure to represent
the communication traces in a compact and efficient way, along with algorithms
for language union and concatenation (cf. flow algebra summation and multipli-
cation operators). The satisfiability checking of the constraints is is made quite
easy by modern SMT solvers.

As already mentioned above, one of the major areas of focus of this thesis is the
analysis of systems with some recursive structure, e.g., procedural programs.
We have decided to use pushdown systems annotated with algebraic weights to
model such systems. Pushdown systems are already a popular technique for such
problems. One of our main contributions is joining the work on flow algebras and
weighted pushdown systems — in Chapter 5 we show by reformulating the Pre∗

and Post∗ algorithms, it is possible to use flow algebras instead of semirings. We
prove both the soundness (the analysis result is a safe approximation of join-
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over-all-valid paths), as well as completeness (provided the flow algebra satisfies
certain additional properties, the analysis result coincides with the join-over-all-
valid paths) results. Another of our contributions in this area is showing how
one can use pushdown systems for modelling an aspect-oriented process calculi,
in Chapter 6.

Finally, the thesis also features contributions that are interesting from the imple-
mentation point of view. In Chapter 7 we introduce an efficient data structure
for representing finite languages along with optimized algorithms for both the
binary operations. We also extend it with the ability to capture symbolic con-
straints that makes it possible to avoid some of the problems connected to using
weighted pushdown systems for message passing (and not only synchronization).
Moreover, in Chapter 8 we present improved algorithms for computing Pre∗ and
Post∗ based on graph traversal. We believe that even though they do not offer
an asymptotic improvement in performance, they do make it much easier to
incorporate weighted pushdown systems into existing tools and with less over-
head. Furthermore, by decoupling the constraint solving from the Pre∗ and
Post∗ computations we make it possible to use a dedicated solver specialized
for a particular domain as well as to compute solutions of various domains in
parallel or only when needed. This makes it possible to use various constraint
solvers, e.g., using Kleene iteration or solvers based on the recent results in
generalizing of Newton’s method to ω-continuous semirings.

In conclusion, the thesis contains many contributions both from the theoretical
point of view, as well as from the practical one. We believe that this is essential
since software verification techniques should be based on rigorous foundations
but at the same time, to be really useful, it should be possible to implement
and apply them.
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Chapter 2

Preliminaries

This section provides a quick introduction to some of the basic, but essential
background as well as notation that will be used throughout this thesis. Most
of this section follows [59], where the reader can find more detailed description
along with the proofs for most of the results. However, we also introduce some
important algebraic concepts that are not presented in [59].

2.1 Partial orders

We start with one of the most fundamental concepts, namely that of a partial
ordering.

Definition 2.1 A partial ordering is a binary relation v on some set L that is:

• reflexive: ∀l ∈ L : l v l

• transitive: ∀l1, l2, l3 ∈ L : l1 v l2 ∧ l2 v l3 =⇒ l1 v l3

• anti-symmetric: ∀l, l′ ∈ L : l v l′ ∧ l′ v l =⇒ l = l′
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Definition 2.2 A partially ordered set (poset) (L,v) is a set L with a partial
ordering v.

We sometimes write vL if L is not clear from the context.

When we consider subsets of a poset, it is often desirable to distinguish some
elements of the poset that are “larger” or “smaller” than all the elements of the
subset.

Definition 2.3 An element lb ∈ L is an upper bound of Y ⊆ L if

∀l ∈ Y : l v lb

Additionally lb is a least upper bound if for all upper bounds l of Y we have
that lb v l.

The (greatest) lower bound is defined similarly:

Definition 2.4 An element lb ∈ L is a lower bound of Y ⊆ L if

∀l ∈ Y : lb v l

Additionally lb is a greatest lower bound if for all lower bounds l of Y we have
that l v lb.

It is important to emphasize that in a partially ordered set not every subset Y
has a least upper bound or greatest lower bound. However, if they exist they
are unique due to the anti-symmetry of v. We denote them as

⊔
Y (called join)

and
d
Y (called meet).

Definition 2.5 A subset Y ⊆ L of a poset (L,v) is a chain if

∀l1, l2 ∈ Y : l1 v l2 ∨ l2 v l1

Many algorithms in static analysis expect certain properties of the domain in
order to always terminate (e.g., calculating the least fixed point using Kleene
iteration). One of such requirements is the ascending chain condition that we
introduce below. An ascending chain is simply a sequence (ln)n∈N such that

∀i ≤ j : li v lj

We say that a sequence (ln)n eventually stabilizes if and only if

∃n0 ∈ N : ∀n ∈ N : n0 ≤ n =⇒ ln0
= ln
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Definition 2.6 A partially ordered set L satisfies the ascending chain condition
if and only if all ascending chains eventually stabilize.

2.2 Lattices and functions over lattices

Definition 2.7 A complete lattice (L,v,t,u) is a partially ordered set such
that every subset has least upper and greatest lower bounds.

Since we will often talk about various functions defined over lattices, we intro-
duce some of the important concepts below.

Definition 2.8 A function f : L→ L is monotone if and only if

∀l1, l2 : l1 v l2 =⇒ f(l1) v f(l2)

Definition 2.9 A function f : L→ L is distributive if and only if

∀l1, l2 : f(l1) t f(l2) = f(l1 t l2)

Definition 2.10 A function f : L→ L is affine if and only if

∀Y ⊆ L : Y 6= ∅ :
⊔
{f(l) | l ∈ Y } = f(

⊔
Y )

Definition 2.11 A function f : L→ L is completely distributive if and only if

∀Y ⊆ L :
⊔
{f(l) | l ∈ Y } = f(

⊔
Y )

Since a strict function is a function such that f(⊥) = ⊥ we could also say that
f is completely distributive if and only if it is both affine and strict.

In many practical situations it is useful to abstract from some precise but com-
putationally expensive lattice to a less precise but more tractable one. This can
be achieved by establishing a Galois connection and is a standard technique in
abstract interpretation [19, 20].

Definition 2.12 A Galois connection is a tuple (L,α, γ,M) such that L and
M are complete lattices and α, γ are monotone functions called abstraction and
concretization functions. They satisfy:

α ◦ γ v λm.m
γ ◦ α w λl.l
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We also distinguish a special case of Galois connections called Galois insertion.

Definition 2.13 A Galois insertion is a Galois connection (L,α, γ,M) such
that

α ◦ γ = λm.m

Lemma 2.14 For a Galois connection (L,α, γ,M) the following claims are
equivalent:

• (L,α, γ, L) is a Galois insertion

• α is surjective: ∀m ∈M : ∃l ∈ L : α(l) = m

• γ is injective: ∀m1,m2 ∈M : γ(m1) = γ(m2) =⇒ m1 = m2

• γ is order-similarity: ∀m1,m2 ∈M : γ(m1) v γ(m2) ⇐⇒ m1 v m2

The proof for the lemma is available in [59].

2.3 Monoids and semirings

Since both weighted and communicating pushdown systems are using semirings,
we will introduce some of the basic definitions associated with them [23], starting
with the definition of a monoid.

Definition 2.15 A monoid is a tuple (M,⊗, 1̄) such that M is non-empty, ⊗
is an associative operator on M and 1̄ is a neutral element for ⊗, i.e.,

∀a ∈M : a⊗ 1̄ = 1̄⊗ a = a

A monoid is idempotent if ⊗ operator is idempotent, that is

∀a ∈M : a⊗ a = a

Similarly it is commutative if the operator is commutative, in which case we
usually use the symbol ⊕ to denote it (and also use 0̄ to for the neutral element):

∀a, b ∈M : a⊕ b = b⊕ a

A commutative monoid (M,⊕, 0̄) is naturally ordered if the relation defined as

∀a, b ∈M : a v b ⇐⇒ ∃c ∈M : a⊕ c = b
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is a partial order. Moreover, if the monoid is idempotent then it is naturally
ordered and we have that

∀a, b ∈M : a v b ⇐⇒ a⊕ b = b

and ⊕ is the least upper bound operator. Note that this corresponds to a join
semi-lattice.

Now we are ready do define the semiring structure.

Definition 2.16 A semiring is a tuple (S,⊕,⊗, 0̄, 1̄) such that

• (S,⊕, 0̄) is a commutative monoid (hence 0̄ is a neutral element for ⊕)

• (S,⊗, 1̄) is a monoid (hence 1̄ is a neutral element for ⊗)

• ⊗ distributes over ⊕, that is

a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)
(a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c)

• 0̄ is an annihilator for ⊗, that is a⊗ 0̄ = 0̄⊗ a = 0̄

Similarly to the above, we call a semiring idempotent if ⊕ is idempotent, and
commutative if ⊗ is commutative. The ordering for idempotent semiring is
defined in the same way as for idempotent and commutative monoids, with the
additional requirement that ⊗ preserves the order (i.e., is monotonic).

Note that an idempotent semiring (S,⊕,⊗, 0̄, 1̄) is a join semilattice, where:

• t = ⊕

• ⊥ = 0̄

• a v b if and only if a⊕ b = b.

Finally, a bounded semiring is a semiring with no infinite ascending chains [66,
67].
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Chapter 3

Intraprocedural analysis using
flow algebras

Semirings have been used in computer science in a variety of contexts and
have also found their way into the areas of static analysis and software model
checking. Examples include weighted [66, 67] and communicating pushdown
systems [10, 11], which use them to annotate the pushdown rules and create
weighted automata. But the ideas of using monoids for static analysis can be
already found in [69]. In this chapter we introduce the notion of a flow al-
gebra and explore how they fit in the abstract interpretation framework. Flow
algebras are algebraic structures that are less restrictive than idempotent semir-
ings in that they replace distributivity with monotonicity and dispense with the
annihilation property; therefore they are closer to the approach taken by Mono-
tone Frameworks and other classical analyses. We present a generic framework
for static analysis based on flow algebras and program graphs.1 Furthermore,
we generalize Galois connections from complete lattices to flow algebras. Our
framework allows to induce new flow algebras using Galois connections such that
correctness of the analyses is preserved. We believe that this development of-
fers additional insight into the use of such algebraic structures in static analysis
and abstract interpretation. The approach is illustrated for a mutual exclusion
algorithm.

1Program graphs are often used in model checking to model concurrent and distributed
systems.
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The structure of the chapter is as follows. In Section 3.2 we introduce the flow
algebras and then we show how Galois connections are defined for them in Sec-
tion 3.3. We perform a similar development for program graphs by defining them
in Section 3.4, presenting how to express analysis using them in Section 3.5 and
then describing Galois connections for program graphs in Section 3.6. Finally,
we present a motivating example of our approach in Section 3.7 and conclude
in Section 3.8.

Acknowledgement: This chapter is based on joint work with Piotr Filipiuk and
my supervisors, which was published as [30].

3.1 Introduction

In the classical approach to static analysis we usually use the notion of Monotone
Frameworks [45, 1] that work over flow graphs as an abstract representation of
a program. A Monotone Framework, primarily used for data-flow analysis [49],
consists of a complete lattice describing the properties of the system (without
infinite ascending chains) and transfer functions over that lattice (that are mono-
tone). When working with complete lattices, one can take advantage of Galois
connections to induce new analyses or to over-approximate them [20]. Recall
that a Galois connection is a correspondence between two complete lattices that
consists of abstraction and concretization functions. It is often used to move an
analysis from a computationally expensive lattice to a less costly one and plays
a crucial role in abstract interpretation [19].

In this chapter we introduce a similar framework that uses flow algebras to define
analyses. Flow algebras are algebraic structures consisting of two monoids quite
similar to idempotent semirings, which, as presented in the preliminaries, have
already been used in software analysis. However, flow algebras are less restrictive
and allow to directly express some of the classical analysis, which is simply not
possible with idempotent semirings.2 Furthermore, as representation of the
system under consideration we use program graphs, in which actions label the
edges rather than the nodes. The main benefit of using program graphs is that
we can model concurrent systems in a very straightforward manner. Moreover,
since a model of a concurrent system is also a program graph, all the results are
applicable both in the sequential as well as in the concurrent setting.

We also define both the Meet Over all Paths (MOP) solution of the analysis

2Note that it is possible to introduce some additional artificial elements to the abstract
domain and add special cases to the ⊗ operator in order to express such analyses in terms of
semirings.
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as well as a set of constraints that can be used to obtain the Maximal Fixed
Point (MFP) solution. By establishing that the solutions to the constraint
system constitute a Moore family, we know that there always exists a least
(i.e., best) solution. Intuitively the main difference between MOP and MFP is
that the former expresses what we would like to compute, whereas the latter
is sometimes less accurate but computable in some cases where MOP is not.
Finally, we establish that they coincide in case of distributive analyses.

We also extend the notion of Galois connections to flow algebras and program
graphs. This allows us to easily create new analyses based on existing ones.
In particular we can create Galois connections between the collecting semantics
(defined in terms of our framework) and various analyses, which ensures their
semantic correctness.

Finally, we apply our results to a variant of the Bakery mutual exclusion algo-
rithm [56]. By inducing an analysis from the collecting semantics and a Galois
insertion, we are able to prove the correctness of the algorithm. Thanks to our
previous developments we know that the analysis is semantically correct.

3.2 Flow algebra

3.2.1 Definition

Now we will introduce the notion of a flow algebra.3 It is an algebraic structure
that is less restrictive than an idempotent semiring — flow algebras do not
require the distributivity and annihilation properties. Instead we replace the
first one with a monotonicity requirement and dispense with the second one. A
flow algebra is formally defined as follows.

Definition 3.1 A flow algebra is a structure of the form (F,⊕,⊗, 0̄, 1̄) such
that:

• (F,⊕, 0̄) is an idempotent commutative monoid:

– (f1 ⊕ f2)⊕ f3 = f1 ⊕ (f2 ⊕ f3)

– 0̄⊕ f = f ⊕ 0̄ = f

– f1 ⊕ f2 = f2 ⊕ f1
3The name comes from the idea of performing dataflow analyses using an algebraic struc-

ture.
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– f ⊕ f = f

• (F,⊗, 1̄) is a monoid:

– (f1 ⊗ f2)⊗ f3 = f1 ⊗ (f2 ⊗ f3)

– 1̄⊗ f = f ⊗ 1̄ = f

• ⊗ is monotonic in both arguments:

– f1 ≤ f2 ⇒ f1 ⊗ f ≤ f2 ⊗ f

– f1 ≤ f2 ⇒ f ⊗ f1 ≤ f ⊗ f2

where f1 ≤ f2 if and only if f1 ⊕ f2 = f2.

Clearly in a flow algebra all finite subsets {f1, . . . , fn} have a least upper bound,
which is given by 0̄⊕ f1 ⊕ · · · ⊕ fn.

Since the assumptions on a flow algebra are less demanding than in the case of
idempotent semirings, we additionally introduce the notions of distributive and
strict flow algebras.

Definition 3.2 A distributive flow algebra is a flow algebra (F,⊕,⊗, 0̄, 1̄), where
⊗ distributes over ⊕ on both sides, i.e.,

f1 ⊗ (f2 ⊕ f3) = (f1 ⊗ f2)⊕ (f1 ⊗ f3)

(f1 ⊕ f2)⊗ f3 = (f1 ⊗ f3)⊕ (f2 ⊗ f3)

We also say that a flow algebra is strict if

0̄⊗ f = 0̄ = f ⊗ 0̄

Fact 3.3 Every idempotent semiring is a strict and distributive flow algebra.

We consider flow algebras because they are closer to Monotone Frameworks and
to other classical static analyses. Restricting our attention to semirings rather
than flow algebras would mean restricting attention to strict and distributive
frameworks. Note that the classical bit vector frameworks [59] are distribu-
tive, but not strict; hence they are not directly expressible using idempotent
semirings.
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Definition 3.4 A complete flow algebra is a flow algebra (F,⊕,⊗, 0̄, 1̄), where
F is a complete lattice; we write

⊕
for the least upper bound. It is affine [59]

if for all non-empty subsets F ′ 6= ∅ of F

f ⊗
⊕

F ′ =
⊕
{f ⊗ f ′ | f ′ ∈ F ′}⊕

F ′ ⊗ f =
⊕
{f ′ ⊗ f | f ′ ∈ F ′}

Furthermore, it is completely distributive if it is affine and strict.

If the complete flow algebra satisfies the ascending chain condition [59] then
it is affine if and only if it is distributive. The proof is analogous to the one
presented in Appendix A of [59].

In general a good intuition behind flow algebras is to consider a complete lattice
L → L of monotone functions over the complete lattice L. Then we can easily
define a flow algebra for forward analyses by taking (L → L,t, #, λf.⊥, λf.f)
where (f1 # f2)(l) = f2(f1(l)) for all l ∈ L. It is easy to see that all the laws of
a complete flow algebra are satisfied. If we restrict the functions in L → L to
be distributive, we obtain a distributive and complete flow algebra. Note that
it can be used to define data-flow analyses such as reaching definitions [1, 59].
We look a bit more closely at some of such analyses below.

3.2.2 Example

As an example let us consider the family of forward “may” analyses that are
instances of bit vector framework. They are generally defined in the following
way:

• The lattice L is equal to P(D) for some finite D.

• The least upper bound operator is
⋃

.

• The transfer functions are monotone functions of the shape

fi(l) = (l \ ki) ∪ gi

where ki, gi ∈ P(D) correspond to the elements of D that are “killed” and
“generated” at some program point i. This is also the source of a popular
name for similar analyses — “kill/gen” analyses.

• The least element ⊥ = ∅.
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In order to use such analyses with weighted pushdown systems we will construct
a flow algebra (F ,⊕,⊗, 0̄, 1̄) that works on the level of functions P(D)→ P(D).
Since we are dealing here with a “kill/gen” analysis, this is actually quite easy
— we express a function fi(l) = (l \ ki) ∪ gi by a pair (ki, gi). Therefore, we
have:

• F = P(D)× P(D)

• The ⊕ operator is defined as

f1 ⊕ f2 = (k1, g1)⊕ (k2, g2) = (k1 ∩ k2, g1 ∪ g2)

• The ⊗ operator is defined as

f1 ⊗ f2 = (k1, g1)⊗ (k2, g2) = (k1 ∪ k2, (g1 \ k2) ∪ g2)

• 0̄ = (D, ∅)

• 1̄ = (∅, ∅)

It should be easy to see that ⊕ is idempotent and commutative. Therefore, the
semiring is naturally ordered with f1 v f2 ⇐⇒ f1 ⊕ f2 = f2. Furthermore, 0̄
is a neutral element for ⊕ and 1̄ is neutral for ⊗.

However, the interesting part is that 0̄ is not an annihilator for ⊗. Consider the
following:

(D, ∅)⊗ (k, g) = (D ∪ k, (∅ \ k) ∪ g)

= (D, g)

which clearly is not equal to 0̄ (unless g = ∅). Interestingly the annihilation
works from the right:

(k, g)⊗ (D, ∅) = (k ∪D, (g \D) ∪ ∅)
= (D, ∅)
= 0̄

This makes perfect sense if we consider for a moment the classical transfer
functions of such analyses. If we extend the ordering of P(D) pointwise to the
monotone functions P(D) → P(D), the least element will be a function that
always returns ∅, i.e., f⊥ = λl.∅. Clearly we have that:

∀f : f⊥ ◦ f = f⊥
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but in general it is not the case that:

∀f : f ◦ f⊥ = f⊥

Therefore, such analyses do not naturally form a semiring, yet they fit quite
well in the approach based on flow algebras.

3.3 Galois connections for flow algebras

Let us recall that Galois connection is a tuple (L,α, γ,M) such that L and M
are complete lattices and α, γ are monotone functions (called abstraction and
concretization functions) that satisfy α ◦ γ v λm.m and γ ◦ α w λl.l. A Galois
insertion is a Galois connection such that α ◦ γ = λm.m. In this section we will
present them in the setting of flow algebras.

In order to extend the Galois connections for flow algebras, we need to define
what it means for a flow algebra to be an upper-approximation of another flow
algebra. In other words we need to impose certain conditions on ⊗ operator
and 1̄ element of the less precise flow algebra. The requirements are presented
in the following definition.

Definition 3.5 For a Galois connection (L,α, γ,M) we say that the flow al-
gebra (M,⊕M ,⊗M , 0̄M , 1̄M ) is an upper-approximation of (L,⊕L,⊗L, 0̄L, 1̄L)
if

α(γ(m1)⊗L γ(m2)) vM m1 ⊗M m2

α(1̄L) vM 1̄M

If we have equalities in the above definition, then we say that the flow algebra
(M,⊕M ,⊗M , 0̄M , 1̄M ) is induced from (L,⊕L,⊗L, 0̄L, 1̄L).

Example 3.1 Assume that we have a Galois connection (L,α, γ,M) between
complete lattices L and M . We can easily construct (L → L,α′, γ′,M → M)
which is a Galois connection between monotone function spaces over those lat-
tices (for more details about this construction please see Section 4.4 of [59]),
where α′, γ′ are defined as

α′(f) = α ◦ f ◦ γ
γ′(g) = γ ◦ g ◦ α
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When both (M → M,⊕M ,⊗M , 0̄M , 1̄M ) and (L → L,⊕L,⊗L, 0̄L, 1̄L) are for-
ward analyses (as mentioned in Section 3.2.1), we have

α′(γ′(g1)⊗L γ′(g2)) = α′((γ ◦ g1 ◦ α) # (γ ◦ g2 ◦ α))

= α′(γ ◦ g2 ◦ α ◦ γ ◦ g1 ◦ α)

v α′(γ ◦ g2 ◦ g1 ◦ α)

= α ◦ γ ◦ g2 ◦ g1 ◦ α ◦ γ
v g2 ◦ g1
= g1 ⊗M g2

α′(1̄L) = α ◦ λl.l ◦ γ = α ◦ γ v λm.m = 1̄M

Hence a flow algebra over M →M is a upper-approximation of the flow algebra
over L → L. Note that in case of a Galois insertion the flow algebra over
M →M is induced.

Definition 3.5 requires a bit of care. Given a flow algebra (L,⊕L,⊗L, 0̄L, 1̄L)
and a Galois connection (L,α, γ,M) it is tempting to define ⊗M by m1⊗Mm2 =
α(γ(m1)⊗Lγ(m2)) and 1̄M by 1̄M = α(1̄L). However, it is not generally the case
that (M,⊕M ,⊗M , 0̄M , 1̄M ) will be a flow algebra. This motivates the following
development.

Lemma 3.6 Let (L,⊕L,⊗L, 0̄L, 1̄L) be a flow algebra, (L,α, γ,M) be a Galois
insertion, define ⊗M by m1 ⊗M m2 = α(γ(m1) ⊗L γ(m2)) and 1̄M by 1̄M =
α(1̄L). If

1̄L ∈ γ(M) and ⊗L : γ(M)× γ(M)→ γ(M)

then (M,⊕M ,⊗M , 0̄M , 1̄M ) is a flow algebra (where ⊕M is tM and 0̄M is ⊥M ).

Proof. We need to ensure that ⊗M is associative:

(m1 ⊗M m2)⊗M m3 = α(γ(α(γ(m1)⊗L γ(m2)))⊗L γ(m3))

= α(γ(α(γ(m′)))⊗L γ(m3))

= α(γ(m1)⊗L γ(m2)⊗L γ(m3))

m1 ⊗M (m2 ⊗M m3) = α(γ(m1)⊗L γ(α(γ(m2)⊗L γ(m3))))

= α(γ(m1)⊗L γ(α(γ(m′))))

= α(γ(m1)⊗L γ(m2)⊗L γ(m3))
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and similarly we need to show that 1̄M is a neutral element for ⊗M
1̄M ⊗m = α(1̄L)⊗M m

= α(γ(α(1̄L))⊗L γ(m))

= α(γ(α(γ(m′)))⊗L γ(m))

= α(γ(m′)⊗L γ(m))

= α(1̄L ⊗L γ(m))

= α(γ(m))

= m

where 1̄L = γ(m′) for some m′. The remaining properties of flow algebra hold
trivially. �

The above requirements can be expressed in a slightly different way. This is
presented by the following two lemmas.

Lemma 3.7 For flow algebras (L,⊕L,⊗L, 0̄L, 1̄L), (M,⊕M ,⊗M , 0̄M , 1̄M ) and
a Galois insertion (L,α, γ,M), the following are equivalent:

1. 1̄L = γ(1̄M )

2. α(1̄L) = 1̄M and 1̄L ∈ γ(M)

Proof. The proof is available in Appendix A.1.

Lemma 3.8 For flow algebras (L,⊕L,⊗L, 0̄L, 1̄L), (M,⊕M ,⊗M , 0̄M , 1̄M ) and
a Galois insertion (L,α, γ,M), the following are equivalent:

1. ∀m1,m2 : γ(m1)⊗L γ(m2) = γ(m1 ⊗M m2)

2. ∀m1,m2 : α(γ(m1) ⊗L γ(m2)) = m1 ⊗M m2 and ⊗L : γ(M) × γ(M) →
γ(M)

Proof. The proof is available in Appendix A.2.

3.4 Program graphs

This section introduces program graphs, a representation of software (hard-
ware) systems that is often used in model checking [3] to model concurrent and
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distributed systems. Compared to the classical flow graphs [49, 59], the main
difference is that in the program graphs the actions label the edges rather than
the nodes.

Definition 3.9 A program graph over a space S has the form

(Q,Σ,→,QI ,QF ,A, S)

where

• Q is a finite set of states;

• Σ is a finite set of actions;

• → ⊆ Q× Σ× Q is a transition relation;

• QI ⊆ Q is a set of initial states;

• QF ⊆ Q is a set of final states; and

• A : Σ→ S specifies the meaning of the actions.

A concrete program graph is a program graph where S = Dom ↪→ Dom, where
Dom is the set of all configurations of a program, and A = T where T is the
semantic function. An abstract program graph is a program graph where S is
a complete flow algebra.

Now we can define the collecting semantics [19, 59] of a concrete program graph
in terms of a flow algebra. This can be used to establish the semantic correctness
of an analysis by defining a Galois connection between the collecting semantics
and the analysis.

Definition 3.10 We define the collecting semantics of a program graph using
the flow algebra (P(Dom)→ P(Dom),∪, #, λ.∅, λd.d), by

AJaK(S) = {T JaK(s) | s ∈ S ∧ T JaK(s) is defined}

where Dom is the set of all configurations of a program and T is the semantic
function.

Now let us consider a number of processes each specified as a program graph
PGi = (Qi,Σi,→i,QI i,QF i,Ai, S) that are executed independently of one an-
other except that they can exchange information via shared variables. The
combined program graph PG = PG1 ||| · · · ||| PGn expresses the interleaving
between n processes.
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Definition 3.11 The interleaved program graph over S

PG = PG1 ||| · · · ||| PGn

is defined by (Q,Σ,→,QI ,QF ,A, S) where

• Q = Q1 × · · · × Qn,

• Σ = Σ1 ] · · · ] Σn (disjoint union),

• 〈q1, · · · , qi, · · · , qn〉
a−→ 〈q1, · · · , q′i, · · · , qn〉 if qi

a−→i q
′
i,

• QI = QI1 × · · · × QIn,

• QF = QF 1 × · · · × QF n, and

• AJaK = AiJaK if a ∈ Σi.

Note that Ai : Σi → S for all i and hence A : Σ→ S.

Analogously to the previous definition, we say that a concrete interleaved pro-
gram graph is an interleaved program graph where S = Dom ↪→ Dom, and
A = T where T is the semantic function. An abstract interleaved program
graph is an interleaved program graph where S is a complete flow algebra.

The application of this definition is presented in the example below, where we
model the Bakery mutual exclusion algorithm. Note that the ability to create
interleaved program graphs allows us to model concurrent systems using the
same methods as in the case of sequential programs. This will be used to
analyze and verify the algorithm in Section 3.7.

Example 3.2 As an example we consider a variant of the Bakery algorithm
for two processes. Let P1 and P2 be the two processes, and x1 and x2 be two
shared variables both initialized to 0. The algorithm is as follows:

do true ->

x1 := x2 + 1;

do ¬((x2 = 0) ∨ (x1 < x2)) ->

skip

od;

critical section

x1 := 0

od

do true ->

x2 := x1 + 1;

do ¬((x1 = 0) ∨ (x2 < x1)) ->

skip

od;

critical section

x2 := 0

od



24 Intraprocedural analysis using flow algebras

`1

`2

`3

x1 := x2 + 1

¬(x2 = 0 ∨ x1 < x2)

x2 = 0 ∨ x1 < x2

x1 := 0

Figure 3.1: Program graph for the first process.

The variables x1 and x2 are used to resolve the conflict when both processes want
to enter the critical section. When xi is equal to zero, the process Pi is not in
the critical section and does not attempt to enter it — the other one can safely
proceed to the critical section. Otherwise, if both shared variables are non-zero,
the process with smaller “ticket” (i.e., value of the corresponding variable) can
enter the critical section. This reasoning is captured by the conditions of busy-
waiting loops. When a process wants to enter the critical section, it simply takes
the next “ticket” hence giving priority to the other process.

The program graph corresponding to the first process is quite simple and is pre-
sented in Figure 3.1 (the program graph for the second process is analogous).
Now we can use the Definition 3.11 to obtain the interleaving of the two pro-
cesses, which is depicted in Figure 3.2.

Since the result is also a program graph, it can be analysed in our framework.

3.5 Flow algebras over program graphs

Having defined flow algebras and program graphs, it remains to show how to
obtain the analysis results. We shall consider two approaches, namely MOP
and MFP. As already mentioned, these stand for Meet Over all Paths and
Maximal Fixed Point, respectively. However, since we take a join (least upper
bound) to merge information from different paths, in our setting these really
mean join over all paths and least fixed point. However, we use the MOP and
MFP acronyms for historical reasons.
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a1 : x1 := x2 + 1

a2 : (x2 = 0) ∨ (x1 < x2)

a3 : ¬((x2 = 0) ∨ (x1 < x2))

a4 : x1 := 0

b1 : x2 := x1 + 1

b2 : (x1 = 0) ∨ (x2 < x1)

b3 : ¬((x1 = 0) ∨ (x2 < x1))

b4 : x2 := 0

Figure 3.2: Interleaved program graph.



26 Intraprocedural analysis using flow algebras

We consider the MOP solution first, since it is more precise and captures what
we would ideally want to compute.

Definition 3.12 Given an abstract program graph (Q,Σ,→,QI ,QF ,A, F ) over
a complete flow algebra (F,⊕,⊗, 0̄, 1̄), and two sets Q◦ ⊆ Q and Q• ⊆ Q we are
interested in

MOPF (Q◦,Q•) =
⊕

π∈Path(Q◦,Q•)

AJπK

where

Path(Q◦,Q•) = {a1a2 · · · ak | ∃q0, q1, · · · qk :

q0
a1−→ q1

a2−→ · · · ak−→ qk,

q0 ∈ Q◦, qk ∈ Q•}

and

AJa1a2 · · · akK = 1̄⊗AJa1K⊗AJa2K⊗ · · · ⊗ AJakK

Since the MOP solution is not always computable (e.g., for Constant Propaga-
tion), one usually uses the MFP one which only requires that the lattice satisfies
the Ascending Chain Condition and is defined as the least solution to a set of
constraints. Let us first introduce those constraints.

Definition 3.13 Consider an abstract program graph (Q,Σ,→,QI ,QF ,A, F )
over a complete flow algebra (F,⊕,⊗, 0̄, 1̄). This gives rise to a set AnalysisF
of constraints:

AnQ◦F (q) w

{ ⊕
{AnQ◦F (q′)⊗AJaK | q′ a−→ q} ⊕ 1F , if q ∈ Q◦⊕
{AnQ◦F (q′)⊗AJaK | q′ a−→ q} , if q /∈ Q◦

where q ∈ Q, Q◦ ⊆ Q.

We write AnQ◦F |= AnalysisF whenever AnQ◦F : Q → F is a solution to the
constraints AnalysisF . Now we establish that there is always a least (i.e., best)
solution of those constraints.

Lemma 3.14 The set of solutions to the constraint system from Definition 3.13
is a Moore family (i.e., it is closed under

d
), which implies the existence of the

least solution.

Proof. The proof is in Appendix A.3.
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Definition 3.15 We define MFP to be the least solution to the constraint sys-
tem from Definition 3.13.

The following result states the general relationship between MOP and MFP
solutions and shows in which cases the they coincide.

Proposition 3.16 Consider the MOP and MFP solutions for an abstract pro-
gram graph (Q,Σ,→,QI ,QF ,A, F ) over a complete flow algebra (F,⊕,⊗, 0̄, 1̄),
then

MOPF (Q◦,Q•) v
⊕
q∈Q•

MFPQ◦
F (q)

If the flow algebra is affine and either ∀q ∈ Q : Path(Q◦, {q}) 6= ∅ or the flow
algebra is strict then

MOPF (Q◦,Q•) =
⊕
q∈Q•

MFPQ◦
F (q)

Proof. The proof is in Appendix A.4.

This is consistent with the previous results, e.g., for Monotone Frameworks,
where the MOP and MFP coincide in case of distributive frameworks and oth-
erwise MFP is a safe approximation of MOP [45].

3.6 Galois connections for program graphs

In the current section we show how the generalization of Galois connections
to flow algebras can be used to upper-approximate solutions of the analyses.
Namely, consider a flow algebra (L,⊕L,⊗L, 0̄L, 1̄L) and a Galois connection
(L,α, γ,M). Moreover, let (M,⊕M ,⊗M , 0̄M , 1̄M ) be a flow algebra that is an
upper-approximation of the flow algebra over L. We show that whenever we
have a solution for an analysis in M then, when concretized, it is an upper-
approximation of the solution of an analysis in L. First, we state necessary
requirements for the analyses and then present the results for the MOP and
MFP solutions.

3.6.1 Upper-approximation of Program Graphs

Since analyses using abstract program graphs are defined in terms of functions
specifying effects of different actions, we need to impose conditions on these
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functions.

Definition 3.17 Consider a flow algebra (M,⊕M ,⊗M , 0̄M , 1̄M ) that is an upper-
approximation of (L,⊕L,⊗L, 0̄L, 1̄L) by a Galois connection (L,α, γ,M). A
program graph (Q,Σ,→,QI ,QF ,B,M) is an upper-approximation of another
program graph (Q,Σ,→,QI ,QF ,A, L) if

∀a ∈ Σ : α(AJaK) vM BJaK

It is quite easy to see that this upper-approximation for action implies one for
paths.

Lemma 3.18 If a program graph (Q,Σ,→,QI ,QF ,B,M) is an upper-approximation
of (Q,Σ,→,QI ,QF ,A, L) by (L,α, γ,M), then for every path π we have that

AJπK vL γ(BJπK)

Proof. The proof is in Appendix A.5.

Consider a flow algebra (M,⊕M ,⊗M , 0̄M , 1̄M ) induced from (L,⊕L,⊗L, 0̄L, 1̄L)
by a Galois connection (L,α, γ,M). As in case of flow algebras, we say that a
program graph (Q,Σ,→,QI ,QF ,B,M) is induced from (Q,Σ,→,QI ,QF ,A, L)
if we change the inequality from Lemma 3.18 to

∀a ∈ Σ : α(AJaK) = BJaK

3.6.2 Preservation of the MOP and MFP solutions

Now we will investigate what is the relationship between the solutions of an
analysis in case of original program graph and its upper-approximation. Again
we will first consider the MOP solution and then MFP one.

3.6.2.1 MOP

We want to show that if we calculate the MOP solution of the analysis B in
M and concretize it (using γ), then we will get an upper-approximation of the
MOP solution of A in L.
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Lemma 3.19 If a program graph defined by (Q,Σ,→,QI ,QF ,A,M) is an upper-
approximation of (Q,Σ,→,QI ,QF ,A, L) by (L,α, γ,M) then

MOPL(Q◦,Q•) v γ(MOPM (Q◦,Q•))

Proof. The result follows from Lemma 3.18. �

3.6.2.2 MFP

Let us now consider the MFP solution. We would like to prove that when-
ever we have a solution AnM of the constraint system AnalysisM then, when
concretized, it also is a solution to the constraint system AnalysisL. This is
established by the following lemma.

Lemma 3.20 If a program graph given by (Q,Σ,→,QI ,QF ,A,M) is an upper-
approximation of (Q,Σ,→,QI ,QF ,A, L) by (L,α, γ,M) then

AnQ◦M |= AnalysisM =⇒ γ ◦AnQ◦M |= AnalysisL

and in particular
MFPQ◦

L v γ ◦MFPQ◦
M

Proof. We consider only the case where q ∈ Q◦ (the other case is analogous).
From the assumption we have:

γ ◦AnQ◦M w λq.γ
(⊕

{AnQ◦M (q′)⊗ BJaK | q′ a−→ q} ⊕ 1̄M

)
w λq.

⊕
{γ(AnQ◦M (q′)⊗ BJaK) | q′ a−→ q} ⊕ γ(1̄M )

Now using the definition of upper-approximation of a flow algebra it follows that

λq.
⊕
{γ(AnQ◦M (q′)⊗ BJaK) | q′ a−→ q} ⊕ γ(1̄M )

w λq.
⊕
{γ(AnQ◦M (q′))⊗ γ(BJaK) | q′ a−→ q} ⊕ 1̄L

w λq.
⊕
{γ(AnQ◦M (q′))⊗AJaK | q′ a−→ q} ⊕ 1̄L

We also know that every solution AnQ◦L to the constraints AnalysisL must
satisfy

AnQ◦L w λq.
⊕
{AnQ◦L (q′)⊗AJaK | q′ a−→ q} ⊕ 1̄L

and it should be clear that γ ◦AnQ◦M is also a solution these constraints. �
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3.7 Application to the bakery algorithm

In this section we use flow algebras and Galois insertions to verify the correctness
of the Bakery mutual exclusion algorithm. Although the Bakery algorithm is
designed for an arbitrary number of processes, we consider the simpler setting
with two processes, as in Example 3.2. For reader’s convenience we recall the
pseudo-code of the algorithm:

do true ->

x1 := x2 + 1;

do ¬((x2 = 0) ∨ (x1 < x2)) ->

skip

od;

critical section

x1 := 0

od

do true ->

x2 := x1 + 1;

do ¬((x1 = 0) ∨ (x2 < x1)) ->

skip

od;

critical section

x2 := 0

od

We want to verify that the algorithm ensures mutual exclusion, which is equiva-
lent to checking whether the state (3, 3) (corresponding to both processes being
in the critical section at the same time) is unreachable in the interleaved pro-
gram graph. First we define the collecting semantics, which tells us the potential
values of the variables x1 and x2. Since they can never be negative, we take the
complete lattice to be the monotone function space over P(Z × Z). This gives
rise to the flow algebra C of the form

(P(Z× Z)→ P(Z× Z),∪, #, λZZ.∅, λZZ.ZZ)

The semantic function is defined as follows

T Jx1 := x2 + 1K = λZZ.{(z2 + 1, z2) | (z1, z2) ∈ ZZ}
T Jx2 := x1 + 1K = λZZ.{(z1, z1 + 1) | (z1, z2) ∈ ZZ}
T Jx1 := 0K = λZZ.{(0, z2) | (z1, z2) ∈ ZZ}
T Jx2 := 0K = λZZ.{(z1, 0) | (z1, z2) ∈ ZZ}
T JeK = λZZ.{(z1, z2) | EJeK(z1, z2) ∧ (z1, z2) ∈ ZZ}

where E : Expr → (Z × Z → {true, false}) is used for evaluating expressions.
Unfortunately, as the values of x1 and x2 may grow unboundedly, the underlying
transition system of the parallel composition of two processes is infinite. Hence
it is not possible to naively use it to verify the algorithm.
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Therefore, we introduce some abstraction. Using our approach we would like to
define an analysis that is an upper-approximation of the collecting semantics.
This should allow us to compute the result and at the same time guarantee that
the analysis is semantically correct. The only remaining challenge is to define
a domain that is precise enough to capture the property of interest and then
show that the analysis is an upper-approximation of the collecting semantics.

For our purposes it is enough to record when the conditions allowing to enter
the critical section (e.g. (x2 = 0) ∨ (x1 < x2)) are true or false. For that we
can use the Sign Analysis. We take the complete lattice to be the monotone
function space over P(S × S ×S), where S = {−, 0̄,+}. The three components
record the signs of variables x1, x2 and their difference i.e. x1−x2, respectively.
We define a Galois connection (P(Z×Z), α, γ,P(S ×S ×S)) by the extraction
function

η(z1, z2) = (sign(z1), sign(z2), sign(z1 − z2))

where

sign(z) =


− if z < 0

0̄ if z = 0

+ if z > 0

Then α and γ are defined by

α(ZZ) = {η(z1, z2) | (z1, z2) ∈ ZZ}
γ(SSS) = {(z1, z2) | η(z1, z2) ∈ SSS}

for ZZ ⊆ Z× Z and SSS ⊆ S × S × S.

However, note that the set P(S × S × S) contains superfluous elements, such
as (0, 0,+). Therefore, we reduce the domain of the Sign Analysis to the subset
that contains only meaningful elements. For that purpose we use the already
defined extraction function η. The resulting set P(η[Z× Z]) is defined using

η[Z× Z] = {η(z1, z2) | (z1, z2) ∈ Z× Z}

It is easy to see that

η[Z× Z] =

{
(0̄, 0̄, 0̄), (0̄,+,−), (+, 0̄,+),

(+,+, 0̄), (+,+,+), (+,+,−)

}

This gives rise to a Galois insertion (recall Example 3.1)

(P(Z× Z)→ P(Z× Z), α′, γ′,P(η[Z× Z])→ P(η[Z× Z]))

where:
α′(f) = α ◦ f ◦ γ
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γ′(g) = γ ◦ g ◦ α
We next consider the flow algebra S given by

(P(η[Z× Z])→ P(η[Z× Z]),∪, #, λSSS.∅, λSSS.SSS)

and note that it is induced from the flow algebra C by the Galois insertion (for
details refer to Example 3.1). Now we can induce transfer functions for the Sign
Analysis. As an example let us consider the case of x2 := 0 and calculate

AJx2 := 0K(SSS) = α(T Jx2 := 0K(γ(SSS)))

= α(T Jx2 := 0K({(z1, z2) | η(z1, z2) ∈ SSS}))
= α({(z1, 0) | η(z1, z2) ∈ SSS})
= {(s1, 0, s1) | (s1, s2, s) ∈ SSS}

Other transfer functions are induced in a similar manner and are omitted.

Clearly the program graph over flow algebra S is an upper-approximation of
the concrete program graph (i.e., one defined over the collecting semantics).
It follows that the Sign Analysis is semantically correct. Therefore, we can
safely use it to verify the correctness of the Bakery algorithm. For the actual
calculations of the least solution for the analysis problem we use the Succinct
Solver [60], in particular its latest version [29] that is based on Binary Decision
Diagrams [12]. The analysis can be expressed in ALFP (Alternation-free Least
Fixed Point logic, i.e., the constraint language of the solver) and, as expected,
the result obtained for the node (3, 3) is the empty set, which means that the
node is unreachable. Thus the mutual exclusion property is guaranteed.

3.8 Conclusions

In this chapter we presented a general framework that uses program graphs
and flow algebras to define analyses. One of our main contributions is the
introduction of flow algebras, which are algebraic structures less restrictive than
idempotent semirings. Their main advantage and our motivation for introducing
them is the ability to directly express the classical analyses, which is clearly not
possible when using idempotent semirings. Moreover, the presented approach
has certain advantages over Monotone Frameworks, such as the ability to handle
both sequential and concurrent systems in the same manner. We also define
both MOP and MFP solutions and establish that the classical result of their
coincidence in case of distributive analyses carries over to our framework.

Furthermore, we investigated how to use Galois connections in this setting. They
are a well-known and powerful technique that is often used to “move” from a
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computationally costly analysis to a less expensive one. Our contribution is the
use of Galois connections to upper-approximate and induce flow algebras and
program graphs. This allows creating new analyses such that their semantic
correctness is preserved.

We also demonstrated our approach by applying it to a variant of the Bakery
mutual exclusion algorithm. We verified its correctness by moving from a pre-
cise, but uncomputable analysis to the one that is both precise enough for our
purposes and easily computable. Since the analysis is induced from the col-
lecting semantics by a Galois insertion, we can be sure that it is semantically
correct.

Finally, it should be noted that in this chapter we only considered an intrapro-
cedural analysis. In Chapter 4 we review some techniques for interprocedural
analysis focusing mainly on communicating and weighted pushdown systems
and briefly discuss how those techniques link back to this chapter and the con-
cept of flow algebras. Then we show in Chapter 5 that flow algebras can be
used directly with pushdown systems.
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Chapter 4

Interprocedural analysis

In this chapter we will briefly present some preliminaries and previous work in
the area of interprocedural analysis. We will start with some introduction to
interprocedural analysis in Section 4.1. This will set the scene for the introduc-
tion and discussion of pushdown systems along with some of their extensions.
In Section 4.2 we will present the basic definitions and then go on to present the
weighted pushdown systems in Section 4.3 as well as communicating pushdown
systems in Section 4.4. We will also have a brief discussion on the similarities
and some minor differences between the weighted and communicating push-
down systems. Finally, we will show that some of the concepts we developed in
Chapter 3 are useful in the context of weighted and communicating pushdown
systems.

4.1 Introduction

Static analysis algorithms usually operate on a program representation called
control flow graph (CFG), which consists of a set of basic blocks and edges con-
necting them. Basic blocks usually correspond to some statement (or sequence
of statements) and the edges represent the control flow. CFGs are usually used
to represent a single procedure and it is often assumed that it has unique entry
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and exit blocks. To represent a program consisting of multiple procedures an
interprocedural control flow graph (ICFG) can be used. It consists of a number
of CFGs connected by call-edges which go from the call site to the entry point
of the procedure and return-edges that connect the exit and the return points.

The presence of procedures is an interesting challenge for static analysis, es-
pecially when recursion is allowed. Without recursion it is possible to simply
inline all procedures and thus transform the program to one without procedures
and then perform intraprocedural analysis. The price for this approach is that
it can result in an exponential blowup of the size of the program, which can
make the analysis problem intractable. What is more, if we allow recursion,
this simple approach is not possible, because the inlining procedure itself can
fail to terminate. Furthermore, an analysis cannot explicitly track the contents
of the stack since it can grow arbitrarily.

A näıve approach to the problem can simply ignore the stack or any calling
context and treat both the call- and return-edges as usual CFG edges. However,
analyses based on this approach, known as context-insensitive analyses, are quite
imprecise. Intuitively this is due to the fact that by ignoring the context of
procedure calls, they are not able to distinguish between different calls. A very
clear example of this problem is that they are not capable of matching procedure
calls with their returns. In other words, such analyses will also consider paths
that are not possible at runtime, thus making the result of the analysis far less
precise.

A possible remedy for this problem is to take the calling context into account.
Analyses that do so are called context-sensitive and achieve better precision, but
often at the cost of efficiency. One of the most influential works concerning the
interprocedural analysis is due to Sharir and Pnueli [73], where two approaches
to interprocedural analysis were proposed: functional approach and so-called
call strings. We will briefly describe the former since it is quite relevant in the
context of weighted pushdown systems. The idea behind the functional approach
to interprocedural analysis is that every statement can be considered as a state
transformer that describes how it changes the state of the program (i.e., if we
have a lattice L consider the functions L → L). A sequence of statements can
then be considered as a composition of their corresponding transformers and
merging of various branches as the least upper bound of the summarizations
corresponding to those branches. With this, one can transform an interproce-
dural program into a set of non-linear equations, which when solved provide the
summarization of each procedure (i.e., the changes from the entry to the exit
point of the procedure). Having that information it is not difficult to compute
the state transformer summarizing the changes from the beginning of the pro-
gram to any of its points. Then one can apply some initial information to this
summarization to obtain the final result (in this way one can reuse the summa-
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rization for different initial contexts). Moreover, it should be emphasized that
once the first set of equations is solved, it can be reused, i.e., the procedures
themselves are analyzed only once. However, there are also some downsides to
this approach. One of the most serious ones is that some analyses represented in
terms of functions might fail to satisfy certain useful properties, e.g., the ascend-
ing chain condition. Furthermore, efficient representation of those transformers
can be quite challenging itself.

Some other well-known results in the area of interprocedural analysis include
the interprocedural coincidence theorem in the presence of local variables due
to Knoop and Steffen [50]. Another significant contribution is by Cousot and
Cousot [18] that give the abstract interpretation [19] based approach to inter-
procedural analysis. As well as paper by Sagiv, Reps and Horwitz [70] where
the taken approach reduces the interprocedural analysis to a graph reachability
problem.

Finally, it is interesting to discuss where the pushdown systems enter the picture.
Commonly many interprocedural analyses will merge together information from
all calling contexts for any given point in a procedure. In other words once
we have the results of the analysis it is not possible to recover the dataflow
information for some specific calling context (e.g., a specific stack). Pushdown
systems allow exactly that, in fact they even make it possible to pose queries
with respect to regular languages of stack contents. Therefore, the WPDS can
be considered as a generalization of the functional approach to interprocedural
analysis.

4.2 Pushdown systems

Pushdown systems [9, 26, 72] and weighted pushdown systems [66, 67] have
recently become one of the most common techniques for describing and repre-
senting recursive programs. They have been used for verification purposes in
many different projects and contexts. The examples include the Moped [72]
and jMoped [75] model checkers that extensively use pushdown systems or
Codesurfer [4] that takes advantage of weighted pushdown systems. What
is more, weighted pushdown systems have been used also in scenarios differ-
ent than recursive programs, for instance, to model SPKI/SDSI authorization
framework [42, 43] or for process calculi with aspect-oriented features [76] (which
will be also discussed in Chapter 6). In this section we will recall some of the
basic definitions of pushdown systems as well present the main results and try
to provide some intuition behind them. The section mostly follows [9, 26, 72].
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Definition 4.1 A pushdown system is a tuple P = (P,Γ,∆) where P is a finite
set of control locations, Γ is a finite set of stack symbols and ∆ is a finite set of
pushdown rules of the form 〈p, γ〉 ↪→ 〈p′, w〉, where w ∈ Γ∗ and |w| ≤ 2.

Note that the requirement |w| ≤ 2 is not a serious restriction and any pushdown
system can be transformed to satisfy it. This can be achieved by adding some
fresh control locations and pushing |w| in a few steps. Nevertheless, this is often
unnecessary since the three rules are enough to encode control flow of a recursive
program:

• 〈p1, γ1〉 ↪→ 〈p2, γ2〉 corresponds to ordinary statement that goes from lo-
cation γ1 to γ2,

• 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 corresponds to a procedure call where the entry point
of the procedure is γ2 and the procedure should return to the location γ3,

• 〈p1, γ1〉 ↪→ 〈p2, ε〉 corresponds to returning from a procedure.

To get some intuition behind the pushdown systems, note that they can be
used in a very natural way to describe boolean programs, that is procedural
programs (possibly with recursion) where all variables are of type Boolean.
Boolean programs have been successfully used in Bebop tool [6] which is used
in the SLAM toolkit [7, 5] for verifying device drivers.

Example 4.1 To represent Boolean programs in terms of a pushdown system,
one can encode the global variables in the control locations and local variables
in the stack contents. For instance an assignment when going from node n1 to
node n2 can be expressed using the following pushdown rule:

〈g1, (n1, l1)〉 ↪→ 〈g2, (n2, l2)〉

where g1 and g2 (l1 and l2 represent the state of global (local) variables before
and after the assignment. The pop rule is quite easy — we might need to update
the global variables, but all the local information can be popped from the stack.

〈g1, (n1, l1)〉 ↪→ 〈g2, ε〉

Finally, the push rule can be defined as follows:

〈g1, (n1, l1)〉 ↪→ 〈g2, (n2, l2)(n3, l3)〉

where l2 are the local variables of the called procedure and l3 are the variables
saved on the stack (and thus will be restored by popping the stack).
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One of the most important concepts when discussing the pushdown systems is
that of a configuration.

Definition 4.2 A configuration of a pushdown system P = (P,Γ,∆) is a pair
〈p, s〉 where p ∈ P and s ∈ Γ∗.

As an example, a configuration can be thought of as the state or description of
an abstract program at some point during its execution — the control location
describing the global state and the stack which provides the current location
along with all the return addresses (corresponding to the procedure that have
been called).

Clearly a pushdown system gives rise to a (possibly infinite) transition systems,
where we can move between configurations using the pushdown rules. The
transition relation for this system is defined more formally below. For every
pushdown rule r = 〈p1, γ〉 ↪→ 〈p2, w〉 we have

〈p1, γs〉
r

=⇒ 〈p2, ws〉

for all s ∈ Γ∗. Sometimes we will omit the annotation of the specific pushdown
rule — this means that we assume there exists a rule that allows moving between
the given configurations. The reflexive, transitive closure of =⇒ will be denoted
as =⇒∗ (and annotated with sequences of pushdown rules). Having a precise
definition of the transition relation (and its reflexive transitive closure) allows
us to define the concepts of successor and predecessor configurations. We call a
configuration c2 an immediate successor (predecessor) of c1 if c1 =⇒ c2 (c2 =⇒
c1). Similar to immediate successors (predecessors) one can also define the
general successors (predecessors) using the =⇒∗, namely a configuration c2 a
successor (predecessor) of c1 if c1 =⇒∗c2 (c2 =⇒∗c1).

In many verification problems it is desirable to talk about the sets of succes-
sors or predecessors of a given configuration or set of configurations. They are
often denoted as Post∗(C) and Pre∗(C) respectively, where C is some set of
configuration. More formally:

Post∗(C) = {c2 | c1 =⇒∗c2, c1 ∈ C}
Pre∗(C) = {c2 | c2 =⇒∗c1, c1 ∈ C}

Note that those sets can be in general infinite (even if C is finite). In order to
compute the sets of successors and predecessor we need some symbolic repre-
sentation. This leads to the following definition:

Definition 4.3 Given a pushdown system P = (P,Γ,∆) a P-automaton is a
tuple (Q,Γ,−→, P, F ), where:
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• Q is a finite set of states such that P ⊆ Q

• −→⊆ Q× Γ×Q is a finite set of transitions

• P ⊆ Q is a finite set of initial states

• F ⊆ Q is a finite set of final states

We define a transition relation −→∗ : Q × Γ∗ × Q that is the smallest relation
such that:

• q ε−→∗ q for every q ∈ Q

• if q1
γ−→ q2 then q1

γ−→∗ q2 if

• if q1
γ1−→ q2 and q2

γ2−→ q3 then q1
γ1γ2−−−→∗ q3.

We say that a P-automaton accepts a configuration 〈p, s〉 if and only if p
s−→∗ q

where q ∈ F . Moreover, a set of configurations is regular if it is accepted by
some P-automaton. Finally, one of the crucial results in the pushdown systems
says that the sets of successors or predecessors of a regular set of configurations
are regular themselves [9, 26, 72]. This is essential since it guarantees that we
can always represent those sets as P-automata.

Therefore, the algorithms for Pre∗ and Post∗ take as input a pushdown system
and an initial automaton A that represents the set of configurations whose
predecessors or successors we want to compute. Both algorithms are basically
saturation procedures, i.e., they keep adding new transitions to A according
to some rule, until no further transitions can be added. Since the number
of possible transitions is finite (in Pre∗ the algorithm does not add any new
states, and in Post∗ always a bounded number of them), the algorithms must
terminate and return the Apre∗ or Apost∗ , which represent the possibly infinite
number of reachable configurations. Additionally, the procedures assume that
the initial automaton A does not contain any transitions into initial states, nor
any ε-transitions.

We will start with the computation of Apre∗ as it is slightly easier. The proce-
dure can be expressed in just one rule:

If 〈p1, γ〉 ↪→ 〈p2, w〉 ∈ ∆ and p2
w−→∗ q in the current automaton (for

some q ∈ Q) then add a transition p1
γ−→ q.
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Note that the procedure does not add any new states, nor any ε-transitions.

It might be helpful to consider the following example, which should provide
some intuition behind the rule.

Example 4.2 Let us have a pushdown rule 〈p1, γ〉 ↪→ 〈p2, w〉 and a configu-
ration 〈p2, ws〉 (where s ∈ Γ∗) that is a predecessor of some configuration of

interest c, namely there exists σ such that 〈p2, ws〉
σ

=⇒∗c and thus in the au-
tomaton we have:

p2
w−→∗ q s−→∗ qf

where q ∈ Q and qf ∈ F . But the configuration 〈p1, γs〉 is clearly also a pre-

decessor of c, since 〈p1, γs〉
r

=⇒ 〈p2, ws〉
σ

=⇒∗c. So we should add a transition

p1
γ−→ q to have:

p1
γ−→ q

s−→∗ qf

For the actual algorithm we refer the reader to [26], here we recall only its time
complexity: O(|∆||Q|2) and space complexity: O(|∆||Q|+ | −→ |).

The procedure for computing Post∗ is a bit more complex. Due to how the Post∗

algorithm works, we will use the reverse arrow notation for the transitions of

the automata, i.e., we will write q
γ←− p for the transition that we previously

denoted by p
γ−→ q. This will be useful when discussing the relationship between

the transition system that arises due to the pushdown rules and the Apost∗
automata (see also the below example). Apart from that, one of the main
differences compared to Pre∗ is the fact that it does add some new states as
well as ε-transitions to the automaton. Thus, for clarity we additionally denote
∗ ε←− ◦ γ←− ◦ ∗ ε←− as

γ
L99. Finally, the whole procedure is performed in in two

stages:

1. For every pushdown rule r ∈ ∆ such that r is of the form

〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉

add to the automaton a new state r and a transition r
γ2←− p2.1

2. Perform the saturation procedure according to the following rules:

• If 〈p1, γ〉 ↪→ 〈p2, ε〉 and q
γ
L99 p1 in the current automaton add a new

transition q
ε←− p2.

1It is interesting to note that some formulations of the procedure add a state qp2,γ2 . We
will discuss this difference in Section 4.5.
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• If 〈p1, γ1〉 ↪→ 〈p2, γ2〉 and q
γ1
L99 p1 in the current automaton add a

new transition q
γ2←− p2.

• If r = 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 and q
γ1
L99 p1 in the current automaton

add a new transition q
γ3←− r.

The additional complexity if Post∗ is due to the fact that we have three cases
of the right hand of a pushdown rule (i.e., w = ε, w = γ or w = γ1γ2). Since
the most interesting case is for w = 2 let us consider how the procedure handles
this situation. Hopefully this example will also show that using the “reversed”
arrows for automata transitions is quite intuitive in this scenario.

Example 4.3 Consider a pushdown rule r1 = 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 and a con-
figuration 〈p1, γ1s〉 (where s ∈ Γ) that it is a successor of some configuration of

interest c, namely there exists σ such that c
σ

=⇒∗〈p1, γ1s〉 and thus we have in
the automaton

qf
∗ s←− q γ1←− p1

where q ∈ Q and qf ∈ F . But the configuration 〈p2, γ2γ3s〉 is also a successor
of c, since

c
σ

=⇒∗〈p1, γ1s〉
r1=⇒ 〈p2, γ2γ3s〉

In order to model the fact that the stack grows, we add the additional state and
have:

qf
∗ s←− q γ3←− r1

γ2←− p2
Now consider the case when there is also a rule saying r2 = 〈p2, γ2〉 ↪→ 〈p3, ε〉.
In this situation 〈p3, γ3s〉 we will also be a successor since we have:

c
σ

=⇒∗〈p1, γ1s〉
r1=⇒ 〈p2, γ2γ3s〉

r2=⇒ 〈p3, γ3s〉

This is modeled using the ε-transition, i.e., we have

qf
∗ s←− q γ3←− r1

ε←− p3

Finally, as noted in [10, 11] if A satisfies our requirements, then
γ
L99 is actually

equal to
γ←− ◦ ε←− ∪ γ←−. To see why this holds consider the following facts:

• there are no ε transitions in the original automaton,

• the original automaton does not have any transitions going to initial states
and the saturation procedure does not add such transitions (i.e., a transi-
tion from an initial state always goes to some non-initial state),
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• the saturation procedure only adds ε-transitions going from initial states.

Therefore, an ε-transition is only possible from some initial state, but since only
the first state in a run of the automaton is initial, then we cannot make more
than one ε-transition.

Again for the actual algorithm we refer the reader to [26], here we recall only
its time and space complexity: O(|P ||∆|(|∆|+ |Q|) + |P || −→ |).

4.3 Weighted pushdown systems

One of the limitations of pushdown systems is that they require finite abstrac-
tions — both the set of control locations and stack alphabet must be finite. This
makes it difficult to use them in situations that required infinite abstractions.
This problem was solved in [66, 67, 65, 53] by introducing weighted pushdown
systems, which are additionally equipped with an abstract domain that forms
a bounded, idempotent semiring. Every pushdown rule is associated with some
value from this domain and they are used during the Pre∗ and Post∗ proce-
dures to produce a weighted automaton. The main restriction on the semiring
is that it must not contain infinite ascending chains, which makes it possible to
calculate the least solution using fixpoint approach based on Kleene iteration.

A similar development in [10, 11] uses almost the same idea but additionally
allows idempotent semirings that might contain infinite ascending chains, but
where ⊗ operator is commutative. In this section we will focus on weighted
pushdown systems and discuss the second approach in Section 4.4.

Definition 4.4 A weighted pushdown system (WPDS) is a tupleW = (P,S, f),
where P is a pushdown system, S = (S,⊕,⊗, 0̄, 1̄) is a bounded idempotent
semiring and f : ∆→ S maps pushdown rules to the elements of S.

Now we can use the fact that every pushdown rule has a semiring weight to
define the weight of a sequence of pushdown rules. Let σ = [r1, . . . , rn] ∈ ∆∗ be
such a sequence, then we define v(σ) = f(r1)⊗ · · · ⊗ f(rn).

It is important to recall that because of the unbounded stack, a PDS gives
rise to an infinite graph of configurations. At the same time WPDS aim to
calculate the semiring value for each of the potentially infinite configurations.
Ordinary pushdown systems do not include any weights and solve the problem
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by creating an automaton that represents all successor or predecessor configura-
tions. Similarly, WPDS achieve their goal by using a weighted automaton, i.e.,
where every transition of the Apre∗ and Apost∗ is additionally annotated with
a semiring value. This makes it possible to compute the result for any given
configuration (or even regular set of configurations) by reading the weights from
the automaton. We will try to give some more intuition behind this approach
by reviewing the WPDS saturation rules for both Pre∗ and Post∗ procedures.

More formally, WPDS allow us to compute:

• in case of predecessors of some regular set of configurations C

δ(c1) =
⊕
{v(σ) | c1

σ
=⇒∗c2, c2 ∈ C}

i.e., what is the semiring value of all the paths going from configuration
c1 to some configuration in C,

• in case of successors of some regular set of configurations C

δ(c1) =
⊕
{v(σ) | c2

σ
=⇒∗c1, c2 ∈ C}

i.e., what is the semiring value of all the paths going from some configu-
ration in C to c1.

The biggest advantage of this extension is that the only requirement is that the
domain forms an idempotent semiring with no infinite ascending chains. Thus,
infinite abstractions are possible.

First, let us look at the rule for Pre∗.

If r = 〈p1, γ〉 ↪→ 〈p2, w〉 and p2
w−→∗ q with weight d in the current

automaton (for some q ∈ Q) then add a transition p1
γ−→ q with

weight f(r)⊗ d.

The rule is almost the same as in case of PDS — the only difference is the
addition of semiring weights.

Example 4.4 Let us have a pushdown rule 〈p1, γ〉 ↪→ 〈p2, w〉 and a configura-
tion 〈p2, ws〉 (where s ∈ Γ∗) that it is a predecessor of some configuration of

interest c, namely there exists σ such that 〈p2, ws〉
σ

=⇒∗c with weight d1 and
thus in the automaton we have:

p2
w−→∗ q s−→∗ qf
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where q ∈ Q and qf ∈ F . As before it is clear that configuration 〈p1, γs〉 is also

a predecessor of c, since 〈p1, γs〉
r

=⇒ 〈p2, ws〉
σ

=⇒∗c. So we add a transition to
have:

p1
γ−→ q

s−→∗ qf

but the weight of p1
γ−→ q should be f(r) ⊗ d1 to express that we additionally

perform r1 at the beginning.

Now if the path q
s−→∗ qf has weight d2 then the weight of getting from 〈p1, γs〉

to some configuration of interest would be f(r)⊗ d1 ⊗ d2.

It is important to note here the order in which we “multiply” the weights of
the transitions — we do that in the order of transitions that are taken. We
emphasize this because it is an important difference when compared to the way
one treats the Apost∗ automaton.

As in the case of plain PDS the procedure for Post∗ is slightly more complex.
Nevertheless, the basic mechanism is almost the same and the only thing that
requires additional attention is how we compute the weights.

1. For every pushdown rule r ∈ ∆ such that r is of the form 〈p1, γ1〉 ↪→
〈p2, γ2γ3〉 add to the automaton a new state qp2,γ2

2. Perform the saturation procedure according to the following rules:

• If 〈p1, γ〉 ↪→ 〈p2, ε〉 and q
γ
L99 p1 is in the current automaton with

weight d add a new transition q
ε←− p2 with weight d⊗ f(r).

• If 〈p1, γ1〉 ↪→ 〈p2, γ2〉 and q
γ1
L99 p1 is in the current automaton with

weight d add a new transition q
γ2←− p2 with weight d⊗ f(r).

• If r = 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 and q
γ1
L99 p1 is in the current automaton

with weight d add two new transitions q
γ3←− qp2,γ2 and qp2,γ2

γ1←− p1
and with weights d⊗ f(r) and 1̄ respectively.

Now let us consider the above on an example similar to the one from the previous
section and see how the weights fit the picture.

Example 4.5 Consider a pushdown rule r1 = 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 and a con-
figuration 〈p1, γ1s〉 (where s ∈ Γ) that it is a successor of some configuration of

interest c, namely there exists σ such that c
σ

=⇒∗〈p1, γ1s〉 and thus we have in
the automaton:

qf
∗ s←− q γ1←− p1
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where q ∈ Q and qf ∈ F . But the configuration 〈p2, γ2γ3s〉 is also a successor
of c, since:

c
σ

=⇒∗〈p1, γ1s〉
r1=⇒ 〈p2, γ2γ3s〉

In order to model the fact that the stack grows, we add the additional state and
have:

qf
∗ s←− q γ3←− qp2,γ2

γ2←− p2

and the weights are: d1 ⊗ f(r1) for qf
∗ s←− q

γ3←− qp2,γ2 and 1̄ for qp2,γ2
γ2←− p2.

Now consider the case when there is also a rule r2 = 〈p2, γ2〉 ↪→ 〈p3, ε〉. In this
situation 〈p3, γ3s〉 will also be a successor since we have:

c
σ

=⇒∗〈p1, γ1s〉
r1=⇒ 〈p2, γ2γ3s〉

r2=⇒ 〈p3, γ3s〉

This is modeled using the ε-transition, i.e., we have:

qf
∗ s←− q γ3←− qp2,γ2

ε←− p3

where qp2,γ2
ε←− p3 is assigned weight 1̄ ⊗ f(r2). However, note the crucial

difference here compared to Pre∗ — we need to read the weights of a path in
the reverse order. That is multiply the weight of the first transition at the very
end. Assuming that qf

∗ s←− q is just a single transition with weight d0, we should
multiply the weights in the following order d0 ⊗ d1 ⊗ f(r1)⊗ 1̄⊗ f(r2).

The intuition behind reading the weights of a path in the automaton in the
reverse order is that when a configuration 〈p, γk . . . γ1〉 is accepted, this means
that there are transitions in the automaton such that the first one is labeled
with γk, the second with γk−1 and so on. However, when one thinks how the
program would actually execute, it would build the stack from the other end,
i.e before it can push γ2 on the stack, it must push γ1. Therefore, the weights
should be multiplied in the reverse order.

4.4 Communicating pushdown systems

The communicating pushdown systems (CPDS) have been introduced in [10, 11]
and then subsequently used in [14] to analyze concurrent C programs (where the
authors managed to uncover previously unknown bug in the Bluetooth driver for
the Windows operating system). CPDS in many regards are very similar to the
weighted pushdown systems — both of the formalisms use PDS and annotate all
the pushdown rules with some additional information. However, their purpose
is obviously quite different — while WPDS can be seen as a generalization of
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interprocedural dataflow analysis, the CPDS are concerned with multiple re-
cursive processes communicating with each other using synchronization actions.
And thus the annotations on the pushdown rules are often quite different: in
case WPDS it is usually some dataflow state transformer, whereas in CPDS
it is usually some abstraction of a synchronization action. Furthermore, the
information obtained from the analysis is often used for different purposes, in
WPDS it provides some information about the state of a single process, whereas
in CPDS one is often interested in the reachability of a system of concurrent
processes. Nevertheless, most of the principles behind CPDS and WPDS are
very similar.

We we will define CPDS as originally presented in [10, 11] and we will only briefly
mention some of the similarities and differences to the WPDS presentation [66,
67, 53], i.e., whenever we believe it helps with the presentation. We will spend
some more time on discussing those differences in Section 4.5.

The original presentation of communicating pushdown systems [10, 11] used a
slightly different definition of a pushdown system itself. We recall it below.

Definition 4.5 A pushdown system (PDS) is a four-tuple (P,Γ,∆,Act) where
P is a finite set of control locations, Γ is a finite set of stack symbols and ∆ is a

finite set of pushdown rules of the form 〈p, γ〉 a
↪−→ 〈p′, w〉, where a ∈ Act, w ∈ Γ∗

and |w| ≤ 2.

Note that the definition is very similar to the one of WPDS — instead of a
weight function (mapping each rule to its weight) we annotate each rule with
some action. In other words the difference is strictly notational and one can
easily switch between the two. Therefore, we will use both of them, depending
on which one is more natural and results in cleaner exposition in the given
context.

Now that we can define the communicating pushdown systems.

Definition 4.6 A communicating pushdown system (CPDS) is a tuple of push-
down systems (P1, . . . ,Pn) over the same set of synchronization actions Act.

Note that the above definition can also be formulated using WPDS, where the
weight functions have the same co-domain. However, the notation used for
CPDS is often a bit more intuitive, since the set Act often corresponds to syn-
chronization actions and one can think of a single pushdown system as generat-
ing a language of synchronization actions.
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The idea of configuration of a PDS is extended to the case of CPDS in a
straightforward manner. Namely, a global configuration of a CPDS is a tu-
ple g = (c1, . . . , cn) of configurations of P1, . . . ,Pn. Similarly the relation

a
=⇒

can be extended to global configurations:

• g τ
=⇒ g′ if there is 1 ≤ i ≤ n such that ci

τ
=⇒ c′i and c′j = cj for all j 6= i

• g a
=⇒ g′ if there are i 6= j such that ci

a
=⇒ c′i and cj

a
=⇒ c′j (“a” is

a synchronization action). Finally, for all k 6= i ∧ k 6= j we have that
c′k = ck.

Furthermore, it is important to recall that one of the assumptions of the CPDS
as introduced in [10, 11] is that every channel is used by at most two processes
(below we will see why this is important).

Now let us consider a CPDS (P1, . . .Pn) and assume that we are interested in
the question whether a configuration from C ′1×· · ·×C ′n is reachable from some
configuration from C1 × · · · × Cn. In the following we will use Lj = L(Cj , C

′
j)

to denote the language summarizing all paths of the process j that go from any
configuration of Cj to any configuration of C ′j . The case for just two processes is
not that complex — this problem is really nothing else than testing for emptiness
of the intersection of the languages L1 and L2. The intuition behind this is that
the intersection is empty only if there are no communication traces of the two
processes that would match. Generalization for arbitrary number of processes
requires a “shuffle” operator to modify the language of every process — we want
allow for other processes to communicate (i.e., allow for communication that
does not involve the current process). It can be considered as an interleaving
operator that simply inserts synchronization actions of other processes into the
paths of Pi. The resulting language for process i will be denoted by L̂i and can
be defined as

L̂i = Li � (
⋃

k 6=i,l 6=i

Chank,l)
∗

where Chank,l are the channels used between processes k and l. This is also
the reason for the requirement that every channel is used by exactly two pro-
cesses [10, 11]. Note that the shuffle can also be expressed in terms of an inverse
homomorphic image:

L̂i = h−1i Li

where hi homomorphism is defined as

hi (s, r, t) =

{
(s, r, t) if r = i ∨ s = i

ε otherwise
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With the above we can finally reason about the reachability in a system of
arbitrary many processes. More formally, if we have sets of global configurations
G = C1 × · · · × Cn and G′ = C ′1 × · · · × C ′n and if

L̂1 ∩ · · · ∩ L̂n = ∅

then we can conclude that no configuration of G′ is reachable from any config-
uration of G. However, there is still one remaining problem — the generated
languages are in general context-free. To see this consider the simple example
of a procedure that performs synchronization action a then either does an in-
ternal action or calls itself recursively, finally performs b and returns. Clearly
the generated language is {anbn|n ∈ N}. Unfortunately, checking the empti-
ness of the intersection of context-free languages is undecidable. Therefore, one
can use the approach of using some abstract domain for which the notion of
intersection is decidable. This can be accomplished by establishing a Galois
connection (α : P(Act∗) → D, γ : D → P(Act∗)) between the complete lattice
of languages over Act and some complete lattice D that also forms a semiring,
i.e., (D,⊕D,⊗D, 0̄D, 1̄D). The Galois connection can be defined in a generic
manner [10, 11]:

α(L) =
⊕
D

{va1 ⊗D · · · ⊗D van | a1 · · · an ∈ L}

γ(d) = {a1 · · · an ∈ Act∗ | va1 ⊗D · · · ⊗D van v d}

where va is the abstract value for synchronization action a. This allows us to
move from the language of traces of a process to some abstract domain. The
main motivation for this is to compute the abstraction of traces, for which the
notion of “intersection” is decidable. Imposing an additional requirement:

γ(⊥) = ∅

we get the desired result:

∀L1, . . . , Ln : α(L1) u . . . u α(Ln) = ⊥ =⇒ L1 ∩ . . . ∩ Ln = ∅

In other words if the intersection of communications is empty in the abstract
domain then it is also empty for the languages of actual traces. Note that this
last requirement, in our case, corresponds to demanding that γ(0̄D) = ∅. Apart
from that, it is usually also required that 1̄D is the element corresponding to
the 1̄L = {ε}, in other words:

α({ε}) = vε = 1̄D

This corresponds to the abstraction of empty trace (e.g., a trace that corresponds
to internal actions of a process) being a neutral element for ⊗ in the abstract
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domain. This should feel quite natural — when abstracting internal actions we
do want the result to be neutral to the abstraction of synchronization actions.

The procedures for computing the weighted automata for CPDS [10, 11] are
quite similar to those presented in [66, 67]. The main difference is the fact
that they explicitly generate the constraint system and only then solve it. The
advantage of this scheme is that while the algorithms for WPDS only work for
abstractions satisfying the ascending chain condition, here one can use different
solvers depending on the abstraction. This obviously includes algorithms based
on Kleene iteration, but also other approaches such as the recent work on New-
ton’s method generalized to ω-continuous semirings [27], which among other
things allows us to compute the least solution of equation systems over commu-
tative abstractions that do have infinite ascending chains. We will explore this
technique and its experimental implementation in Chapter 9.

Now we will present the procedures proposed for CPDS and in Section 4.5
discuss other differences when compared to the approach of WPDS. Again we
assume that the initial automata do not contain any ε-transitions or transitions
going into the initial states.

The Pre∗ procedure basically proceeds exactly as in the case of PDS for comput-
ing the Apre∗ , but additionally generates a number of constraints, which when
solved provide the weights for the transitions of the computed automaton. Our
presentation of Post∗ for CPDS will be slightly different than the one in [10, 11],
where the weights were “multpiplied” in the same order as in the case of Pre∗.
This required to introduce (−)R operator that “reversed” the weights after read-
ing them off the Apost∗ automaton. We will multiply the weights in the opposite
order than in the case of Pre∗, which is closer to the approach WPDS take and
also makes it possible to avoid (−)R operator.

The constraints are generated from the pushdown rules:

1. If t = q1
γ−→ q2 for some q1, q2 ∈ Q was already a transition of A then

1̄ v l(t)

2. For every rule r = 〈p1, γ〉 ↪→ 〈p2, γ2〉 and every q ∈ Q:

f(r)⊗ l(p2
γ2−→ q) v l(p1

γ−→ q)

3. For every rule r = 〈p1, γ〉 ↪→ 〈p2, ε〉

f(r) v l(p1
γ−→ p2)
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4. For every rule r = 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 and every q1 ∈ Q⊕
q2∈Q

(
f(r)⊗ l(p2

γ2−→ q2)⊗ l(q2
γ3−→ q1)

)
v l(p1

γ1−→ q1)

The procedure for Post∗ is again somewhat more involved. Moreover, the ap-
proach presented in [10, 11] uses a slightly different first phase of the saturation
procedure compared to WPDS.2

For each pushdown rule r ∈ ∆ of the form r = 〈p1, γ1〉
a
↪−→ 〈p2, γ2γ3〉

add a new state r and a new transition r
γ2←− p2.

The constraints are generated in a similar way as in the case of Pre∗:

• If t = q2
γ←− q is already a transition in A then

1̄ v h(t)

• For every rule r = 〈p1, γ〉 ↪→ 〈p2, γ2〉 and every q ∈ Q

h′(q
γ←− p1)⊗ f(r) v h(q

γ2←− p2)

• For every rule r = 〈p1, γ〉 ↪→ 〈p2, ε〉 and every q ∈ Q

h′(q
γ←− p1)⊗ f(r) v h(q

ε←− p2)

• For every rule r = 〈p1, γ〉 ↪→ 〈p2, γ2γ3〉 and every q ∈ Q

h′(q
γ←− p1)⊗ f(r) v h(q

γ3←− r)

where the h′(q
γ←− p) denotes the summary of all the runs of the form q

γ
L99 p:

h′(q
γ←− p) = h(q

γ←− p)⊕
⊕
{h(q

γ←− q′)⊗ h(q′
ε←− p) | q′ ∈ Q}

In both cases the result is an automaton and a set of constraints — their solution
provides the weights for each of the transitions of the automaton. Note that this
is slightly different than the approach taken by WPDS where the computation
of weights is part of the saturation procedure itself.

2Again, we will discuss the difference in Section 4.5.
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4.5 Brief comparison between WPDS and CPDS

The presentations of CPDS and WPDS are clearly very similar and especially
in the procedures for computing the weighted automata are almost the same.
However, when looking a bit more closely, one can see the approaches do differ
in some details. Here we will briefly consider under what circumstances they
are actually equivalent.

Consider the procedure for Pre∗. For rule of the form:

〈p1, γ〉 ↪→ 〈p2, ε〉

in the CPDS approach will generate a constraint:

f(r) v l(p1
γ−→ p2)

and in the case of WPDS we will have an operation:

f(r)⊗ l(p1
ε−→ q) v l(p1

γ−→ p2)

but since the automaton does not have epsilon transitions, then p
ε−→ q can only

be different from 0̄ if p = q. So let us consider the second case and see under
which circumstances it coincides with the first one. There are only two cases
possible — either the l(p

ε−→ q) is equal to 1̄ (when q = p) or otherwise it is
equal to 0̄. Since both of the approaches assume a semiring structure, then we
can assume that ∀g ∈ G : g ⊗ 0̄ = 0̄, and have two cases to consider:

• f(r) ⊗ 0̄ = 0̄ v l(p1
γ−→ p2) so the constraint is always satisfied and does

not change anything; therefore the result is the same as in the case of
WPDS.

• f(r)⊗ 1̄ v l(p1
γ−→ p2) which is, again, the same constraint as in the case

of WPDS.

Which clearly makes both formulations coincide.

In case of Post∗ there is another slight difference in the way the weights are
handled in case of rules of the form

r = 〈p1, γ〉 ↪→ 〈p2, γ1γ2〉

Using the approach of CPDS we will generate the following constraints:

f(r)⊗
(
h(q

γ1←− p)⊕
⊕
{h(q

γ1←− q′)⊗ h(q′
ε←− p) | q′ ∈ Q}

)
v h(q

γ2←− qa)
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where qa is the added state (it will be equal to r in case of CPDS and to qp2,γ2
in WPDS one; we will discuss this difference briefly at the end of this section).
Whereas in case of WPDS we will compute (the constraint is not explicitly
generated but this value will be computed by the algorithm):(
f(r)⊗ h(q

γ1←− p)⊕
⊕
{f(r)⊗ h(q

γ1←− q′)⊗ h(q′
ε←− p) | q′ ∈ Q}

)
v h(q

γ2←− qa)

The two inequalities are equivalent only in case the ⊗ operator distributes over
⊕. Therefore, the result will be the same for most of the original examples.
However, it is known that the distributivity requirement can be relaxed to mono-
tonicity. In this situation the results in both cases are safe, as they compute an
over-approximation of the behavior of the program, but the actual result can
be different depending on whether we use the approach of WPDS or CPDS.

Apart from that there is also a slight difference in the formulation of the satu-
ration rule for push-rules. In the original formulation of CPDS [10, 11], as well
as in an earlier paper [26], when considering a rule

r = 〈p1, γ1〉
a
↪−→ 〈p2, γ2γ3〉

a state r is added (and an accompanying transition), whereas in the case of
WPDS the saturation procedure adds a state qp2,γ2 . Interestingly the latter
approach is also used in the work on pushdown systems by Schwoon [72]. The
main consequence of adding state qp2,γ2 is that the body of the procedure will
be analyzed once and its semiring value reused for different call sites (i.e., push-
rules with the same “entry point” — (p2, γ2)). By adding a new state r the
body of the procedure will be analyzed for each of the calls. Therefore, adding
the state qp2,γ2 should result in less states in the constructed automaton and in
computing the summarization of a procedure only once. This seems especially
important since one of the main advantage of using procedure summaries is to
reuse them for all call sites.

Example 4.6 Consider the following pushdown system.

r0 = 〈p,m0〉 ↪→ 〈p, f0m1〉
r1 = 〈p,m0〉 ↪→ 〈p, f0m2〉
r2 = 〈p, f0〉 ↪→ 〈p, f1〉
r3 = 〈p, f1〉 ↪→ 〈p, ε〉

The results of the two approaches are presented on Figures 4.1 and 4.2.
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p

r0

r1

q

m0
f0, f1, ε

f0, f1, ε
m1

m2

Figure 4.1: Apost∗ as in CPDS papers [10, 11].

p

qp,f0 q

m0
f0, f1, ε

m1,m2

Figure 4.2: Apost∗ as in WPDS papers [66, 67].
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4.6 Pushdown systems and flow algebras

In the previous sections we have discussed the WPDS and CPDS, which both use
semirings for the weights of pushdown rules. An interesting question is whether
there is any relation between pushdown systems using semirings and the concept
of flow algebras and their upper-approximations, as introduced in the Chap. 3
and [30]. One of the important developments behind CPDS is establishing the
Galois connection between the sets of traces of a pushdown system and some
abstraction that has computable notion of “intersection”. Let us remind here
its definition [10, 11]:

α : P(Act∗)→ D α(L) =
⊕

a1···an∈L
va1 ⊗ · · · ⊗ van

γ : D → P(Act∗) γ(d) = {a1 · · · an ∈ Act∗ | va1 ⊗ · · · ⊗ van v d}

where va is the abstract value for the language {a}. Note that the P(Act∗)
forms a semiring of formal languages [23] over Act. It is defined in the obvious
way:

• L1 ⊗L L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}

• ⊕L = ∪

• 0̄L = ∅

• 1̄L = {ε}

Of course, the above also defines a flow algebra.

In [30] and Definition 3.5 we have defined when a flow algebra is an upper-
approximation of another one. As a reminder, for a Galois connection (L,α, γ,M)
we say that the flow algebra (M,⊕D,⊗D, 0̄D, 1̄D) is an upper-approximation of
(L,⊕L,⊗L, 0̄L, 1̄L) if both of the below conditions are satisfied:

α(γ(m1)⊗L γ(m2)) vD m1 ⊗D m2

α(1̄L) vD 1̄D

Moreover, recall that if we have equalities (instead of less than or equal opera-
tors) in the above equations, then we say that the flow algebra M is induced by
the Galois connection.

Note that the second condition is immediately satisfied since CPDS expects the
1̄D to be the abstraction of the language {ε}, i.e., α({ε}) = 1̄D.
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Now let us consider the first condition in the context of the Galois connection
used for CPDS. It turns out that the generic definition of Galois connection does
imply that the abstraction D is an upper-approximation of P(Act∗) whenever
D is a complete flow algebra.

Lemma 4.7 Let (D,⊕D,⊗D, 0̄D, 1̄D) be a complete flow algebra and

(α : P(Act∗)→ D, γ : D → P(Act∗))

be a Galois connection as defined above (where in particular α(1̄L) = 1̄D), then
(D,⊕D,⊗D, 0̄D, 1̄D) is an upper-approximation of (P(Act∗),⊕L,⊗L, ∅, {ε}).

Proof. Since the we already have that α(1̄L) = 1̄D, the only remaining thing
to prove is that:

α(γ(d1)⊗L γ(d2)) v d1 ⊗D d2

The proof uses the definition of α and γ along with the monotonicity of ⊗D as
well as the fact that

⊕
D is a least upper bound operator.

α(γ(d1)⊗L γ(d2))

= [ definition of γ ]

α({a1 · · · an ∈ Act∗ | va1 ⊗D · · · ⊗D van v d1}
⊗L {a1 · · · an ∈ Act∗ | va1 ⊗D · · · ⊗D van v d2})

= [ definition of ⊗L ]

α

({
a1 · · · ama′1 · · · a′n ∈ Act∗

va1 ⊗D · · · ⊗D vam v d1
va′1 ⊗D · · · ⊗D va′n v d2

})
= [ definition of α ]⊕
D

{
va1 ⊗D · · · ⊗D vam ⊗D va′1 ⊗D · · · ⊗D va′n

va1 ⊗D · · · ⊗D vam v d1
va′1 ⊗D · · · ⊗D va′n v d2

}
v [ monotonicity of ⊕D ]⊕
D

{va1 ⊗D · · · ⊗D van | va1 ⊗D · · · ⊗D van v d1}

⊗L
⊕
D

{va′1 ⊗D · · · ⊗D va′n | va′1 ⊗D · · · ⊗D va′n v d2})

v [ D is a complete flow algebra and
⊕
D

is
⊔
D

]

d1 ⊗D d2
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Another interesting question is when (and if) the flow algebra D can be induced
by the Galois connection. It turns out that this indeed can happen if the domain
D and the Galois connection satisfy some additional properties.

One of them is that α is surjective:

∀d ∈ D : ∃L : α(L) = d (4.1)

It implies that for for all d ∈ D we have that:

⊕
D

{va1 ⊗D · · · ⊗D van | va1 ⊗D · · · ⊗D van v d} = d (4.2)

because of the definition of α and the fact that
⊕

D is a least upper bound
operator on D. Then by Lemma 2.14 we have that (P(Act∗), α, γ,D) is a Galois
insertion.

Moreover, if we additionally have that the abstract domain D is in fact a dis-
tributive flow algebra, then in the last steps of the proof of Lemma 4.7 we have
equalities (instead of inequalities).

Lemma 4.8 If (D,⊕D,⊗D, 0̄D, 1̄D) is a complete, strict and affine flow algebra
(i.e., it is completely distributive) and we have a Galois insertion

(α : P(Act∗)→ D, γ : D → P(Act∗))

defined as above, then the flow algebra D is induced by the Galois insertion from
P(Act∗).

Proof. As before we have that α(1̄L) = 1̄D. Now we want to prove that:

α(γ(d1)⊗L γ(d2)) = d1 ⊗D d2

If either d1 or d2 is equal to 0̄D then the result is immediate due to the fact that
γ(0̄D) = 0̄L and D is strict. Therefore, we can assume that both d1 and d2 are
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different than 0̄D, and we have:

α(γ(d1)⊗L γ(d2))

= [ as in Lemma 4.7 ]⊕
D

{
va1 ⊗D · · · ⊗D vam ⊗D va′1 ⊗D · · · ⊗D va′n

va1 ⊗D · · · ⊗D vam v d1
va′1 ⊗D · · · ⊗D va′n v d2

}
= [ D is affine ]⊕
D

{va1 ⊗D · · · ⊗D van | va1 ⊗D · · · ⊗D van v d1}

⊗D
⊕
D

{va′1 ⊗D · · · ⊗D va′n | va′1 ⊗D · · · ⊗D va′n v d2}

= [ (4.2) ]

d1 ⊗D d2

�

To sum up, the generic definition of Galois connection used for CPDS in [10,
11] is actually quite close to the notion of when a flow algebra is an upper-
approximation of the flow algebra corresponding to the language of actual traces.
Where upper-approximation is defined as in Definition 3.5, Chapter 3. Further-
more, in some of the abstractions we will often have that the Galois connection
in fact induces the other flow algebra. This again should make intuitive sense
— we have only relevant elements in the abstract domain and, in a way, pre-
serve its structure. Also note that the original formulation of CPDS used, as
one of the two main classes of abstractions, idempotent semirings satisfying the
ascending chain condition. Therefore, all the abstractions in this class will also
be a completely distributive flow algebras and so Lemma 4.8 applies to them.

Apart from that, note that there is also a relation to original formulation of
WPDS. It is not as pronounced as in the case of CPDS where the original
definition also specified the definition of the Galois connection. Nevertheless,
as already mentioned, the WPDS model is closely related to the functional
approach [73] to interprocedural analysis. In other words one can think of
computing summarizations of procedures and statements and composing them
together. This is very close to the idea behind the [30], therefore we do expect
that the concepts of upper-approximation and induced flow algebras are useful
also in this context.



Chapter 5

Pushdown systems for
monotone frameworks

As already mentioned, the weighted and communicating pushdown systems are
a powerful technique of modeling recursive programs. Furthermore, by using
semirings as the basic requirement for abstract domains, they allow a variety of
different analyses. However, due to the fact that semirings require the annihila-
tion property, they do not directly admit some of the classical analyses that are
not strict (e.g., analyses based on bit vector frameworks). In this chapter we
will show that it is possible to use flow algebras in the context of weighted/com-
municating pushdown systems and thus dispose of the annihilation requirement.

The structure of the chapter is as follows. First, we introduce and motivate
our work in Section 5.1. Then in Section 5.2 we recall and introduce the con-
cepts necessary for the remainder of the chapter (e.g., monotone frameworks).
Section 5.3 presents the basic definitions, while Section 5.4 describes our algo-
rithms and provides some intuition behind them. In Section 5.5 we present the
soundness result for both the forward and backward reachability. Similarly, Sec-
tion 5.6 describes the completeness results for both of them. Finally, we discuss
our approach and results in Section 5.7 and conclude in Section 5.8.

Acknowledgement: This chapter is based on [77].
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5.1 Introduction

5.1.1 Monotone frameworks

Monotone frameworks [45] is a unifying approach to static analysis of programs.
It creates a generic foundation for specifying various analyses and by imposing
very modest requirements it can accommodate a wide range of analyses, includ-
ing the bit vector frameworks as well as more complex ones such as constant
propagation. However, the original formulation was focused on the intraproce-
dural setting and did not discuss the interprocedural one.

As we have already discussed in Chapter 4, interprocedural analysis has always
been an interesting challenge for static analysis. Two of the main reasons for
that are the unbounded stack and recursive (or mutually recursive) procedures.
Moreover, only some paths in the interprocedural flow graph are valid — the
call and returns should always match. All of this opens up many possibilities
for various trade-offs, such as taking into account or ignoring the calling con-
text. Recall that in their seminal work Sharir and Pnueli [73] presented two
approaches allowing for precise interprocedural analysis. One of them, known
as the call-strings approach, is based on “tagging” the analysis information with
the current call stack. Obviously the length of call-strings should be limited to
some threshold in order to ensure the termination of the analysis. However, in
this chapter we will be more interested in the other presented approach. It is
called the functional approach and is based on the idea of computing the sum-
marizations of procedures, i.e., establishing the relationship between the inputs
and the outputs of the blocks of the program and procedures (composing the
results for the blocks). A similar idea, from the abstract interpretation perspec-
tive, was explored in [18], which considered predicate transformers as the basis
for the analysis and also involved constructing systems of functional equations.

5.1.2 Pushdown systems

Pushdown systems [9, 26, 72] (introduced in Chapter 4) are one of the more
recently proposed approaches to interprocedural analysis. One of the main
underlying ideas behind them is to use a construction similar to pushdown
automata in order to model the use of a stack by a program. It is also important
to emphasize that an interesting advantage of this approach is the ability to
compute the (possibly) infinite sets of predecessor and successor configurations
for a given program and some initial configurations. Since the pushdown systems
can only handle programs with finite abstractions, they have been extended
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with semiring weights/annotations in weighted pushdown systems [66, 67, 53]
and communicating pushdown systems [10, 11]. The extensions proposed in
both of these approaches are actually very close (cf. Chapter 4), although the
former focuses on dataflow analysis and generalizing the functional approach
to interprocedural analysis, while the latter on the abstractions of language
generated by synchronization actions in a concurrent setting. Pushdown systems
have been used for verification purposes in many different projects and contexts.
The examples include the Moped [72] and jMoped [75] model checkers that
extensively use pushdown systems or Codesurfer [4] that takes advantage of
weighted pushdown systems.

5.1.3 Motivation and contributions

Both the WPDS and CPDS use semirings for analysis purposes and thus exclude
many classical approaches, such as bit vector frameworks where the transfer
functions are not strict. In this chapter we are bringing the pushdown systems
based analysis closer to the monotone frameworks. To achieve that we use the
concept of flow algebra [30] (introduced in Chapter 3) that is a structure similar
a semiring, but with less requirements imposed on the ⊗ operator. In particular
recall that we do not impose the annihilation requirement, nor the distributivity.
This allows us to present examples of classical analyses that thanks to our
extensions are admitted by the framework, and did not directly fit into the
previous semiring-based approaches.1 Since the existing algorithms are based
on the assumption of working with semiring structure, we develop our slightly
different algorithms that allow us to relax the requirements. Then we go on to
establish the soundness result, i.e., the analysis result safely over-approximates
the join over all valid paths of the pushdown system. Furthermore, we also
prove the completeness of the analysis, that is, provided that the flow algebra
satisfies certain additional properties the result of the analysis will coincide with
the join over all valid paths.

5.2 Monotone frameworks, semirings and flow
algebras

In this section we will present the basic definitions that will be used throughout
the rest of the chapter. We will start with recalling the classical approach to

1Although it is possible to sidestep this problem by introducing an “artificial” annihilator
to the semiring.
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static analysis known as monotone frameworks [45, 59]. Here we present a
slightly more convenient (in the context of this chapter) definition of monotone
framework.

Definition 5.1 A complete monotone framework is a tuple

(L,
⊔
,F , ◦, id, (fl)l∈L)

where L is a complete lattice,
⊔

is its least upper bound operator. We use F
to denote a monotone function space on L, i.e., a set of monotone functions
that contains the identity function and is closed under function composition.
Finally, ◦ is function composition, id is the identity function and fl = λl′.l for
every l ∈ L.

We will also discuss bit vector frameworks, which are a special case of monotone
frameworks. The lattice used is L = P(D) for some finite set D, the ordering
is either ⊆ or ⊇ and the least upper bound is either ∪ or ∩ and the monotone
and distributive function space is defined as

{f : P(D)→ P(D) | ∃Y 1
f , Y

2
f ⊆ D : ∀Y ⊆ D : f(Y ) = (Y ∩ Y 1

f ) ∪ Y 2
f }

One of the main reasons for distinguishing them is the fact that they can be
implemented very efficiently using bit vectors and include common analyses such
as live variables, available expressions, reaching definitions, etc. [59].

As already mentioned we will use the notion of a flow algebra, which is similar
to idempotent semirings, but less restrictive. The main difference is that flow
algebras do not require the distributivity and annihilation properties. Instead
we replaced the first one with a monotonicity requirement and dispensed with
the second one. It was previously defined in Definition 3.1 (Section 3.2). For the
reader’s convenience we recall its basic properties. A flow algebra is a structure
of the form (F,⊕,⊗, 0̄, 1̄) such that:

• (F,⊕, 0̄) is an idempotent and commutative monoid

• (F,⊗, 1̄) is a monoid

• ⊗ is monotonic in both arguments, that is:

f1 v f2 ⇒ f1 ⊗ f v f2 ⊗ f
f1 v f2 ⇒ f ⊗ f1 v f ⊗ f2

where f1 v f2 if and only if f1 ⊕ f2 = f2. Similarly we have defined a dis-
tributive (⊗ distributes over ⊕) and strict flow algebra (0̄ is an annihilator for
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⊗) in Definition 3.2. Recall that every idempotent semiring is also a strict and
distributive flow algebra. Finally, we also introduced a complete flow algebra in
Definition 3.4.

One of the motivations of flow algebras is that the classical bit vector frame-
works [59] are not strict; hence they are not directly expressible using idempotent
semirings. Therefore, from this perspective the flow algebras are closer to Mono-
tone Frameworks, and other classical static analyses. Restricting our attention
to semirings rather than flow algebras would mean restricting our attention to
strict and distributive frameworks.

Let us emphasize the connection between the flow algebras and the monotone
frameworks. As defined above a complete monotone framework is

(L,
⊔
,F , ◦, id, (fl)l∈L)

Note that this immediately gives us a flow algebra by taking

(F,

◦⊔
, #, f⊥, id)

where
◦⊔
Y = λl.

⊔
f∈Y f(l) and f # g = g ◦ f .

5.3 Pushdown systems

As presented in Section 4.3 and 4.4 the weighted and communicating pushdown
systems use slightly different definitions of pushdown systems as well as use a
bit different notation. Therefore, to avoid any confusion, we will present below
the definitions that are applicable to this chapter. We will mostly follow the
notation used for WPDS (as already noted, even though CPDS approach is
slightly different, the basic ideas are almost the same in both cases).

Definition 5.2 A pushdown system is a tuple P = (P,Γ,∆) where P is a finite
set of control locations, Γ is a finite set of stack symbols and ∆ is a finite set of
pushdown rules of the form 〈p, γ〉 ↪→ 〈p′, w〉, where w ∈ Γ∗ and |w| ≤ 2.

The pushdown systems themselves require that the sets P and Γ are finite,
which makes it impossible to use infinite abstractions. Recall that in order to
allow using such abstractions with pushdown systems the papers [66, 67, 10, 11]
equipped every pushdown rule with a semiring value.
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Definition 5.3 A weighted pushdown system a tuple W = (P,S, f), where P
is a pushdown system, S = (S,⊕,⊗, 0̄, 1̄) is an idempotent flow algebra and
f : ∆→ S maps pushdown rules to the elements of S.

The main difference when compared to the original definition is that we require
a flow algebra instead of bounded and idempotent semiring.2

Recall that we define the weight of a sequence of pushdown rules as follows. Let
σ = [r1, . . . , rn] ∈ ∆∗ be such a sequence, then we define v(σ) = f(r1) ⊗ · · · ⊗
f(rn).

Since the pushdown rules are equipped with weights, the Pre∗ and Post∗ algo-
rithms need to be adapted to return a weighted NFAs. Thus, apart from making
it possible to answer reachability queries, they also provide additional dataflow
information for the given configuration. In other words, we can not only ask
whether a configuration is a successor or predecessor but also what is the flow
algebra value of getting from that configuration (Pre∗) or to that configuration
(Post∗). More formally, we additionally compute the following information:

• in case of predecessors of some regular set of configurations C (i.e., if c1
is a predecessor of some configuration in C)

δ(c1) =
⊕
{v(σ) | c1

σ
=⇒∗c2, c2 ∈ C}

is the flow algebra value of all the paths going from configuration c1 =
〈p, s〉 (s ∈ Γ∗) to any configuration in C. It can be obtained by simulating
Apre∗ from state p with input s multiplying the weights of the transitions
in the same order as they are taken.

• in case of successors of some regular set of configurations C (i.e., if c1 is a
successor of some configuration in C)

δ(c1) =
⊕
{v(σ) | c2

σ
=⇒∗c1, c2 ∈ C}

is the flow algebra value of all the paths going from any configuration in C
to c1 = 〈p, s〉 (s ∈ Γ∗). It can be obtained by simulating Apost∗ from state
p with input s multiplying the weights of the transitions in the reverse
order as they are taken.

Note that in both cases we only want to calculate the value for a predecessor or
successor, thus the sets of paths are never empty.3

2Bounded is used here to mean that it contains no infinite ascending chains [66, 67].
3This is one of the changes compared to the original formulations of WPDS and CPDS.
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5.4 Algorithms

As already mentioned, WPDS and CPDS are assuming that the abstract domain
forms a semiring structure. This immediately excludes standard analyses based
on monotone framework or bit vector framework. Fortunately we will show
that it is possible to formulate algorithms for Pre∗ and Post∗ that do not need
this assumption. We achieve that by generating the constraints during the
saturation procedures that create the Apre∗ and Apost∗ automata (in WPDS
no constraints are generated and the weights are calculated directly, in CPDS
constraints are generated independently of the Apre∗ and Apost∗ construction).
We will use ACpre∗ and ACpost∗ to denote the automata with the associated set
of constraints C. The rest of the section will introduce the algorithms and in
the subsequent sections we will discuss their soundness and completeness. In
this way we believe that we can present the minimum requirements that are
necessary for interprocedural analysis based on pushdown systems.

5.4.1 Algorithm for Pre∗

The procedure introduced in this section is quite similar to the one from [10, 11]
as it generates explicit constraints. However, it does it during the automaton
computation not separately. In this respect it is somewhat similar to the pro-
cedure from [66, 67] that computes both the weights and the automaton at
the same time. Also, note that there is no difference with respect to how the
new transitions are added to the automaton. Therefore, we are able to reuse
the standard results with respect to the automaton itself (i.e., excluding the
weights).

The algorithm is as follows. First, for every transition q
γ−→ q′ in A we add a

constraint
1̄ v l(q γ−→ q′)

(we use l(−) in the constraints to denote the weight of the given transition)
Then we perform the saturation procedure on A along with the generation of
constraints that are added to C. For every pushdown rule r in ∆:

• if r = 〈p, γ〉 ↪→ 〈p′, ε〉 we add a transition

p
γ−→ p′

along with the following constraint

f(r) v l(p γ−→ p′)
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• if r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a transition p′
γ′−→ q in the current

automaton, we add a transition

p
γ−→ q

along with the following constraint

f(r)⊗ l(p′ γ
′

−→ q) v l(p γ−→ q)

• if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there is a path p′
γ′−→ q′

γ′′−−→ q (for some q′)
in the current automaton, we add a transition

p
γ−→ q

along with the following constraint

f(r)⊗ l(p′ γ
′

−→ q′)⊗ l(q′ γ
′′

−−→ q) v l(p γ−→ q)

We stop once we cannot add any new constraints or transitions. And since
the number of possible transitions and constraints is finite, the procedure will
always terminate.

5.4.2 Algorithm for Post∗

As in the case of Pre∗ algorithm, we only change the way the constraints are
generated, and not how new transitions are added to the automaton. Recall
that we require the initial automaton A to have no transitions going into the
initial states nor any ε-transitions. We will use the reverse arrow notation for

the transitions of the automata as in the Chapter 4, i.e., we will write q
γ←− p for

the transition earlier denoted by p
γ−→ q. Furthermore, recall that ε-transitions

added by the algorithm always originate in an initial state and go only to some

non-initial state. Thus we use
γ
L99 to denote (

γ←− ◦ ε←−)∪ γ←− and define hε as

hε(ρ) =

{
h(q

γ←− p) if ρ = q
γ←− p

h(q
γ←− q′)⊗ h(q′

ε←− p) if ρ = q
γ←− q′ ε←− p

The algorithm is as follows. First, for every transition q′
γ←− q in A we add a

constraint
1̄ v h(q′

γ←− q)
Then for all pushdown rules of the form 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 we add a new state
qp′,γ′ to the automaton. Finally, for every pushdown rule r in ∆:
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• if r = 〈p, γ〉 ↪→ 〈p′, ε〉 and there is a path ρ = q
γ
L99 p then add a transition

q
ε←− p′

along with the following constraint

hε(q
γ
L99
ρ
p)⊗ f(r) v h(q

ε←− p′)

Note that this transition (and its weight) takes care of the return from a
procedure.

• if r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a path ρ = q
γ
L99 p then add a transition

q
γ′←− p′

along with the following constraint

hε(q
γ
L99
ρ
p)⊗ f(r) v h(q

γ′←− p′)

• if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there is a path ρ = q
γ
L99 p then add

transitions

q
γ′′←−− qp′,γ′ qp′,γ′

γ′←− p′

along with the following constraints

1̄ v h(qp′,γ′
γ′←− p′)

hε(q
γ
L99
ρ
p)⊗ f(r) v h(q

γ′′←−− qp′,γ′)

Note that this transition q
γ′′←−− qp′,γ′ (and its weight) takes care of the

procedure call.

Again, as in the case of Pre∗ we stop once we cannot add any new constraints
or transitions. And since the number of possible transitions and constraints is
finite, the procedure will always terminate (note that we add some new states
only at the beginning of the procedure and not in the saturation phase).

5.5 Soundness

In this section we will discuss and present the main results regarding the sound-
ness of our algorithms. Since one of the goals of our formulation of the algorithms
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is to make the requirements imposed on the abstract domain explicit and pre-
cise, we take a particular approach to the soundness proofs. We do not discuss
how the generated constraints can be solved (and if they can be solved at all).
Instead we assume that some solution to those constraints is available and show
that it is a safe over-approximation of the join over all valid paths.

Apart from that, separating the requirements necessary to solve the constraints
from the soundness result gives us the flexibility to easily accommodate different
techniques of solving the constraints. One can use the usual Kleene iteration as
well as, e.g., the Newton’s method that was recently generalized to ω-continuous
semirings [27] (we will describe an experimental solver implementing this tech-
nique in Chapter 9). Furthermore, it also makes it clear that techniques such
as widening can be used for domains that contain infinite ascending chains but
do not satisfy the requirements of Newton’s method.

5.5.1 Pre∗

We will start with some intuition about how the pushdown system P and the
automaton A fit together. Observe that if a configuration is backward reachable
from C, there exists a sequence of pushdown rules in ∆ such that the resulting
configuration is accepted by A. Therefore, we can intuitively think about this
system as a one big pushdown system PA = (P,Γ,∆pre), where

∆pre = ∆ ∪ {〈q, γ〉 ↪→ 〈q′, ε〉 | q γ−→ q′ ∈→}

With each added pushdown rule we associate the weight 1̄. This system works by
first acting like P and then, at some point, switching to simulating A (with the
added pushdown rules). Note that once PA starts using the added pushdown
rules, it cannot use the ones of P. This is because rules in P correspond to
the initial states of A and since it does not have any transitions going to initial
states, then the first used rule from ∆pre \∆ will go to some non-initial state.
Thus no pushdown rule of P will be applicable.

This is useful because it allows us to look at the problem of predecessors of C
from a slightly different angle. Let us consider the automaton Apre∗ , we say
that a configuration cp is a predecessor of some configuration c ∈ C if there

is a sequence σ ∈ ∆∗ of pushdown rules such that cp
σ

=⇒∗c. But since c is

recognized by A then there is a sequence σ′ ∈ ∆∗pre such that c
σ′

=⇒∗〈qf , ε〉 for
some final state qf . Therefore, an alternative way to define a predecessor is to
say that a configuration cp is a predecessor of some configuration c in C if there

is a sequence σp ∈ ∆∗pre of pushdown rules such that cp
σp

=⇒∗〈qf , ε〉 for some
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state qf ∈ F . Moreover, since we have that each of the added rules has weight
1̄ then v(σ) = v(σp).

In the following sections the solution to the constraints will be denoted as λ (i.e.,
maps each transition to its weight). Its generalization to paths λ∗ is inductively
defined as follows:

λ∗(ρ) =


λ(q

γ−→ q′) if ρ = q
γ−→ q′

λ(q
γ−→ q′′)⊗ λ∗(ρ′) if ρ = q

γ−→

ρ′︷ ︸︸ ︷
q′′

s′−→∗ q′

Now we are ready to prove that a solution to the constraints generated by our
saturation procedure is sound.

Theorem 5.4 Consider an automaton A and its corresponding ACpre∗ generated
by the saturation procedure. Let us assume that we have a solution λ to the set
of constraints C. Then for each pair (p, s) such that 〈p, s〉 σ

=⇒∗〈qf , ε〉 (where

σ ∈ ∆∗pre and qf ∈ F ), we have v(σ) v λ∗(ρ) where ρ = p
s−→∗ qf is in Apre∗ .

Proof. The proof is available in App. B.1.1.

5.5.2 Post∗

As previously we can think about this system as a one big pushdown system.
However, this time such a system would first simulate the reverse of A, i.e.,
instead of accepting some configuration, it generates one; and only then continue
by running the pushdown system itself. Let us denote such a system as ARP =
(P,Γ,∆post), where ∆post is defined as follows.

• For every q′
γ←− q in A we have a rule r = 〈q′, ε〉 ↪→ 〈q, γ〉 in ∆post such

that f(r) = 1̄.

• All other rules of ∆ are included in ∆post.

Let us consider the automaton Apost∗ . We say that a configuration c′ is a suc-
cessor of some configuration c in C if there is a sequence σ ∈ ∆∗ of pushdown
rules such that c

σ
=⇒∗c′. But since c is recognized by A then there is a sequence

σ′ ∈ ∆∗post such that 〈qf , ε〉
σ′

=⇒∗c for some final state qf . Therefore, an alter-
native way to define a successor is to say that a configuration c′ is a successor
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of some configuration c ∈ C if there is a sequence σp ∈ ∆∗post of pushdown rules

such that 〈qf , ε〉
σp

=⇒∗c′ for some state qf ∈ F . Moreover, since we have that
each of the added rules has weight 1̄ then v(σ) = v(σp).

Similarly as in the case of Pre∗, we define λ∗R in the following way:

λ∗R(ρ) =


λ(q

γ←− q′) if ρ = q′
γ←− q

λ∗R(ρ′)⊗ λ(q
γ←− q′′) if ρ =

ρ′︷ ︸︸ ︷
q′ ∗

s′←− q′′ γ←− q

As already mentioned we multiply the weight in the reverse order compared to
the order of transitions in the given path.

Theorem 5.5 Consider an automaton A and its corresponding ACpost∗ gener-
ated by the saturation procedure. Let us assume that we have a solution λ to the
set of constraints C. Then for each pair (p, s) such that 〈qf , ε〉

σ
=⇒∗〈p, s〉 (where

σ ∈ ∆∗post and qf ∈ F ), we have v(σ) v λ∗R(ρ) where ρ = qf
∗ s←− p is in ACpost∗ .

Proof. The proof is available in App. B.1.2.

5.6 Completeness

In this section we will prove the completeness of our procedure, i.e., we will show
that provided the abstract domain satisfies certain conditions, the solution to
the generated constraints will coincide with the join over all valid paths. The
presentation of the results (and their proofs) is quite different than in the case of
soundness. This is mainly due to the additional complexity of the proofs as well
as some additional restrictions that must be imposed. Throughout the whole
section we assume that the flow algebra is both complete and affine. In other
words we have least upper bounds of arbitrary sets and ⊗ distributes over sums
of all non-empty sets.

Before we present the main results for each of the two algorithms, let us first
establish that the solution to the generated constraints can be obtained by
Kleene iteration. To achieve that we will define a function that represents the
constraints and show that it is continuous. Let us recall that all generated
constraints are of similar form: the right-hand side is a variable and the left-
hand side is a finite expression mentioning at most two variables. The finite
expressions are constructed using ⊕ and ⊗ which are themselves affine and
hence continuous.
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For clarity let Ct ⊆ C denote the finite set of the constraints that have the
variable t on the right-hand side. Recall that each variable corresponds to a
transition in an automaton. Similarly we will use lhsm(c) (c ∈ C) to denote the
interpretation of the left-hand side of the constraint c under the assignment m.

What we want to compute is a mapping m that is a fixed point of:

F : (δ → D)→ (δ → D)

F (m)t =
⊕
c∈Ct

lhsm(c)

where δ is the set of all transitions.

Lemma 5.6 F is continuous, i.e., for any non-empty chain Y :

F (
⊔
Y ) =

⊔
m∈Y

F (m)

Proof. The proof is available in App. B.2.

It follows that
⊔
{Fn(⊥) | n ∈ N} is the least solution to our constraint system.

5.6.1 Pre∗

We will first establish a lemma showing that every transition in the Apre∗ au-
tomaton has at least one corresponding path in the PA. This will be useful in
subsequent proofs where we need the fact that certain sets of PA paths are not
empty.

Lemma 5.7 For every transition q
γ−→ q′ in Apre∗ there exists a sequence σ ∈

∆pre such that 〈q, γ〉 σ
=⇒∗〈q′, ε〉.

Proof. The proof is available in App. B.3.1.

First we will establish the essential result for a single transition of the created
automaton.

Lemma 5.8 Consider a weighted pushdown system W = (P,F , f), where F is
affine, and an automaton ACpre∗ created by the saturation procedure. Moreover,
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let λ be the least solution to the set of constraints C. For every transition q
γ−→ q′

in this automaton we have that

λ(q
γ−→ q′) v

⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆∗pre}

Proof. The proof is available in App. B.3.2.

This is also the place that we have used the fact that the solution is equal to
the least upper bound of the ascending Kleene sequence.

And now we can generalize the above to the case of a path in the automaton.

Lemma 5.9 Consider a weighted pushdown system W = (P,F , f), where F is
affine, and a ACpre∗ automaton created by the saturation procedure. Moreover,

let λ be the least solution to the set of constraints C. For every path ρ = q
s−→∗ q′

in this automaton we have that

λ∗(q
s−→
ρ

∗ q′) v
⊕
{v(σ) | 〈q, s〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆∗pre}

Proof. The proof is available in App. B.3.3.

And finally, using both the Theorem 5.4 and the above lemma, we can formulate
the main result.

Theorem 5.10 Consider an automaton ACpre∗ constructed by the saturation
procedure and let λ be the least solution to the set of its constraints C. If the
flow algebra is affine then for every path ρ = p

s−→∗ qf where qf ∈ F we have
that

λ∗(p
s−→
ρ

∗ qf ) =
⊕
{v(σ) | 〈p, s〉 σ

=⇒∗〈qf , ε〉, σ ∈ ∆∗pre}

Proof. The proof is available in App. B.3.4.

5.6.2 Post∗

Consider a pushdown system P with pushdown rules ∆ and a regular set of
configurations C with an automaton A that accepts C. First let us define a
small modification of the pushdown rules ∆. Each rule r of the form

〈p, γ〉 ↪→ 〈p′, γ1γ2〉
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can be “split” into two rules r1 and r2:

r1 = 〈p, γ〉 ↪→ 〈qp′,γ1 , γ2〉
r2 = 〈qp′,γ1 , ε〉 ↪→ 〈p′, γ1〉

with weights f(r1) = f(r) and f(r2) = 1̄. Note that the second rule is not really
a pushdown rule as defined earlier. Fortunately, all we need to do, is to redefine
=⇒ in the following way:

if r = 〈q, γ〉 ↪→ 〈q′, w〉 then ∀w′ ∈ Γ∗ : 〈q, γs〉 =⇒ 〈q′, ws〉
if r = 〈q, ε〉 ↪→ 〈q′, γ〉 then ∀w′ ∈ Γ∗ : 〈q, s〉 =⇒ 〈q′, γs〉

This does not change the pushdown system in any way. Since we add a fresh
state, there is no danger of changing any paths except for the ones we intend
to. Moreover, the weight remains the same (1̄ is neutral element for ⊗, so
f(r1)⊗ f(r2) = f(r)).

Therefore, in place of ∆post we will use ∆post-2, which is defined as follows:

• For every q′
γ←− q in A we have a rule r = 〈q′, ε〉 ↪→ 〈q, γ〉 in ∆post-2 such

that f(r) = 1̄.

• For every r ∈ ∆ of the form r = 〈p, γ〉 ↪→ 〈p′, γ1γ2〉 there are r1 and r2 in
∆post-2 as described above.

• All other rules of ∆ are included in ∆post-2 without any modification.

So compared to ∆post the only difference is that we split the push-rules into two
separate rules. At the same time we do not change the behavior of the system
in any way.

This allows us to prove the following lemma, which is used in subsequent proofs.

Lemma 5.11 For every transition q′
γε←− q (γε ∈ Γ∪{ε}) in Apost∗ there exists

a sequence σ of pushdown rules in ∆post-2 such that 〈q′, ε〉 σ
=⇒∗〈q, γε〉.

Proof. The proof is available in App. B.3.5.

Again, as in the case of Pre∗ we first establish the result for a single transition
in the automaton.

Lemma 5.12 Consider a weighted pushdown systemW = (P,F , f), where F is
affine, and an automaton ACpost∗ created by the saturation procedure. Moreover,
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let λ be the least solution to the set of constraints C. For every transition q′
γε←− q

(γε ∈ Γ ∪ {ε}) in this automaton we have that

λ(q′
γε←− q) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q, γε〉, σ ∈ ∆∗post-2}

Proof. The proof is available in App. B.3.6.

And again, as in the case of Pre∗, this is the place that we have used the fact
that the solution is equal to the least upper bound of the ascending Kleene
sequence.

Now we can generalize the obtained result for the paths in the automaton.

Lemma 5.13 Consider a weighted pushdown system W = (P,F , f), where F
is affine, and a ACpost∗ automaton created by the saturation procedure. Moreover,

let λ be the least solution to the set of constraints C. For every path ρ = q′
s←− q

(s ∈ Γ∗) in this automaton we have that

λ∗R(q′ ∗
s←−
ρ
q) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q, s〉, σ ∈ ∆∗post-2}

Proof. The proof is available in App. B.3.7.

And finally using both the soundness Theorem 5.5 and the above lemma, we
can establish the main result.

Theorem 5.14 Consider an automaton ACpost∗ constructed by the saturation
procedure and let λ be the least solution to the set of its constraints C. If the
flow algebra is affine then for every path ρ = qf

∗ s←− p where qf ∈ F we have
that

λ∗R(qf
∗ s←−
ρ
p) =

⊕
{v(σ) | 〈qf , ε〉

σ
=⇒∗〈p, s〉, σ ∈ ∆∗post-2}

Proof. The proof is available in App. B.3.8.

5.7 Discussion

In this section we would like to discuss the relation of our development to the
area of interprocedural analysis, as well as the challenges and advantages of the
approach.
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To put our approach into perspective, it is useful to emphasize that it is a gen-
eralization of the functional approach to interprocedural analysis by Sharir and
Pnueli [73]. In both of these approaches the underlying idea is to compute the
summarizations of actions and by composing them obtain the summarizations
of procedures. The generality of weighted pushdown systems stems from the
fact that they make it possible to obtain the analysis information for a specific
calling context or even families of calling contexts. In other words one can per-
form queries of weighted Apre∗ and Apost∗ automata, to get the summarization
of all the paths between the initial set of configurations and a given stack or
even a regular set of stacks. Applying the summarization to some initial analysis
information, we can obtain the desired result. This is possible due to the way
the algorithms for pushdown systems construct the Apre∗ and Apost∗ automata
and generate the constraints whose solution provides us with the weights of all
the transitions in those automata.

One of the most significant advantages of using summarizations is the fact that
each procedure can be analyzed only once and the result can be used at all the
call sites. In other words the summarization of a procedure is independent of
the calling context, which is the key to reusing the information. However, there
is also a downside to this approach, namely the fact that the analysis has to
work on the dataflow transformers and not directly on some dataflow facts (i.e.,
we compute how the dataflow facts can change). This often makes it more dif-
ficult to formulate analyses whose results we can actually compute. The main
challenge is that if some domain D satisfies, e.g., the ascending chain condition,
when lifted to transformers D → D it might not satisfy this condition anymore.
Fortunately we can still express many analyses. Even for cases like constant
propagation where D is usually a mapping from variables to integers/reals, it
is possible to define computable variants, i.e., copy- and linear-constant prop-
agation [66, 67]. Obviously whenever D is finite then D → D will be finite as
well. This might seem a bit restrictive, but there are many analyses that satisfy
this requirement. In fact, the interprocedural analysis based on graph reacha-
bility [64] works on distributive functions P(D) → P(D) where D is required
to be some finite set.

Finally, by using flow algebras instead of semirings we achieve the same advan-
tages as presented in Chapter 3, i.e., many analyses that do not form a semiring
fit directly in the approach based flow algebras. Recall an example from that
chapter (Subsection 3.2.2) about analyses based on bit vector frameworks, where
we work with functions P(D)→ P(D). A kill-gen analysis where transfer func-
tions are of the form fi(l) = (l \ ki) ∪ gi can be represented by a pair (ki, gi).
We additionally have that 0̄ = (D, ∅) and the ⊗ operator is defined as:

(k1, g1)⊗ (k2, g2) = (k1 ∪ k2, (g1 \ k2) ∪ g2)

It is quite easy to see that 0̄ does not annihilate from both sides, which intuitively
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should be unsurprising — the kill-gen analyses are in general not strict.

5.8 Conclusions

Weighted/communicating pushdown systems have been used in many contexts
and are a popular approach to interprocedural analysis. However, their require-
ments with respect to the abstract domain were quite restrictive and did not
admit some of the classical analyses directly. In this chapter we have shown that
some of the restrictions are not necessary. We have achieved that by reformulat-
ing the algorithms for backward and forward reachability. Furthermore, we have
proved that they are sound — they always provide a safe over-approximation
of the join over all valid paths solution. Provided some additional properties of
the abstract domain, we have also shown that those solutions coincide, i.e., the
algorithms are complete.

We believe that our results strengthen the connection between the monotone
frameworks and the pushdown systems by making it possible to directly ex-
press more analyses based on monotone frameworks in the setting of pushdown
systems. Moreover, the development does provide some additional flexibility
when both designing and implementing analyses using pushdown systems. For
instance, the annihilation property might be useful for certain analyses, but now
this is the choice of the designer of the analysis and not a strict requirement
of the framework. Last but not least, we believe that the chapter improves the
understanding of using weighted pushdown systems for interprocedural program
analysis.



Chapter 6

Analysis of an aspect-oriented
calculus

This chapter presents a novel application of communicating pushdown systems
to the analysis of process calculi with aspect-oriented features. The problem of
analyzing such a process calculi has been encountered in [36, 80] that introduced
aspect orientation to coordination languages. It turns out that introducing
aspects makes analyzing such languages far more difficult due to the fact that
aspects can be recursive — advice from an aspect must itself be analyzed by
aspects. Therefore, the problem of reachability of various states of a system
becomes much more demanding. In this chapter we show how to solve these
challenges by using communicating pushdown systems. Even though they have
been used mainly for analysis of recursive programs, we show how they can be
adapted and used to model aspect-oriented process calculus.

The chapter is organized as follows. First in Section 6.1 we briefly introduce the
basic ideas behind aspect-oriented programming and the challenges it introduces
in the context of coordination languages. Then in Section 6.2 we introduce
the language that will be used throughout the chapter, both for examples and
analysis. In Section 6.3 we present how pushdown systems can be used in this
new context and demonstrate that they can faithfully model the processes in
our language. Furthermore, in Section 6.4 we illustrate our approach on an
example. Finally, we conclude in Section 6.5.
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6.1 Introduction

6.1.1 Aspects

Aspect-oriented programming [47] is a successful programming paradigm that
is used in many environments and supported by all major programming lan-
guages. This includes Java with AspectJ [46] as well as C and C++ [15, 74].
Aspect-oriented programming is often praised for the ability to create modular
software and separate cross-cutting concerns. This makes it possible not only
to create very modular software but also to add some additional functional-
ity to an existing code base in a non-intrusive fashion. The classical example
is of course logging — in order to be useful it should be performed in many
different and unrelated parts of the code. Aspects allow to separate the code
for logging from the code implementing the program logic. Furthermore, an
existing program does not need to be modified in order to add or change the
logging mechanism. Recently aspects have been also considered in the context
of coordination languages [36, 80], offering similar advantages.

Usually an aspect consists of a pointcut and an advice. A pointcut is basically
a pattern that specifies when some join point (e.g., location in a program, some
action, etc.) matches the aspect. An advice consists of some additional code or
actions that should be executed if the pointcut matches. Often an advice might
specify actions that should be performed after, before or instead of the matched
one. All of this allows one to easily separate the code for the actual functionality
from the code for e.g., logging, which could be specified using aspects.

As already mentioned, aspects have also been used in the context of process
calculi — [36] introduced a language called AspectK, which is an extension of
the coordination language KLAIM with aspect-oriented features. One of the
main motivations behind that work was to use aspects for access control and
in doing so separate the access control policy from program logic. However,
somewhat surprisingly, the introduction of aspects makes the analysis of such
languages much more challenging. This is due to the fact that the advice from
an aspect should also be analyzed by all aspects. Therefore, if one allows the
advice to contain before and/or after actions, the aspects introduce an additional
recursive structure to a program. One of the consequences is that a process can
grow arbitrarily large due to advice (we will see an example of this in one of the
subsequent sections).



6.1 Introduction 79

In the following part of this chapter we focus on solving these challenges. For
that purpose we define a process calculi allowing concurrent threads to com-
municate via message-passing. The definition of aspects is quite similar to the
one in [36] and allows both before and after actions. Our main contribution
is the novel application of communicating pushdown systems in the context of
a coordination language with aspect-oriented features. We show that they can
be adapted to our context and give us the ability to model arbitrarily large
processes as well as to summarize the actions they execute. Furthermore, we
present how to go a step further and reason about concurrent systems with
aspects. We focus on proving unreachability of certain global states of such
systems. The problem of reachability is often of high importance in the con-
text of software verification, because many desired properties of various systems
(not only concurrent) can be reduced to the question of reachability of the error
states.

6.1.2 Related work

In [80] static analysis techniques have been used to analyze AspectKE (and
a programming language AspectKE∗), which are based on AspectK. However,
these languages do not allow the advice to contain before or after actions, which
practically avoids the above mentioned challenges. In this paper we focus on
techniques that allow lifting this restriction. In [10, 11] the authors use com-
municating pushdown systems to analyze concurrent programs with recursive
procedures and synchronization-based communication. This approach has been
also applied to C programs in [14]. Our approach is based on this work, it does
however, have some crucial differences. Clearly the context is quite different as
we do not deal with procedural programming languages but process calculi. In
particular the source of recursion are the aspects and not the procedures. Con-
sequently we shall use the stack in a completely different way. In [10, 11, 14]
the stack is used for storing locations of the programs, whereas we do not even
have the concept of location and use the stack to represent the actual process
itself (i.e., the action to be executed). In [54] pushdown systems are used to
analyze concurrent software, but in a setting of shared memory concurrency.
Moreover, this approach is under-approximating with respect to control flow,
since it performs the analysis under a context bound. That is, it limits the
number of possible context switches that the threads can make.



80 Analysis of an aspect-oriented calculus

6.2 Language

Now we will introduce the language that will be used in this chapter. Note
that since our focus is on the analysis technique, some of the design decisions
have been directed by the ease of presentation. It could be easily extended but
that would unnecessarily complicate the analysis. Moreover, we believe that
our approach can be adapted to various process calculi with aspect-oriented
features.

6.2.1 Syntax and semantics

The language allows for multiple threads running concurrently and communi-
cating via synchronous message passing. The communication is performed in
CSP style [39] where the send and receive actions specify the recipient and
sender respectively.

nets N ::= N1 || N2 | c :: P | c :: RecX .P

processes P ::=
∑
i ai.Qi

Q ::= P | X

actions a ::= receive(p̄)@c | send(t̄)@c |
if(e) a | break | skip

tests e ::= t1 = t2 | t1 6= t2 | true

terms t ::= c | x
patterns p ::= t | !x

In the above rules we use c to denote constants and we will write 0 for a nullary
sum. For readability we will write them with an uppercase first letter and
variables with a lowercase one.

One, worth mentioning, subtlety about receive is that the two actions:

receive(!x)@N and receive(x)@N

are quite different — the former will evaluate to itself when ready to execute
and will accept any value from the process N and bind it to x. Whereas in the
latter case x is an already bound variable and thus the process only accepts this
value from N. In other words, if x is bound to C the action will evaluate to
receive(C)@N and thus only accept C from N.

When talking about the aspects and some other features of our language we will
mostly follow [36], which is one of the main motivations for our development.
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Thus, before we present the semantics of the language, we will first introduce
the well-formedness conditions of the processes. For that purpose we will use
functions bv and fv that return the bound and free variables respectively. They
are defined in a standard way, e.g.,

bv(receive(C, u, !v)@P) = {v}

and
fv(receive(C, u, !v)@P) = {u}

Now consider a pattern ~t = t1 · · · tk that is specified in a receive action. We
require that:

∀i, j : i 6= j =⇒ bv(ti) ∩ bv(tj) = ∅
and

bv(~t) ∩ fv(~t) = ∅
The two rules amount to disallowing bounding the same variable multiple times
in one action (first rule) and using the same variable both for pattern match-
ing and bounding new value to it at the same time. In other words both
receive(!u, !u)@Q and receive(!u, u)@Q are not allowed.

The semantics of our language is not surprising and can be expressed in just a
few rules.

c :: (send(ts)@d+ · · · ) .P || d :: (receive(tr)@c+ · · · ) .Q

−→ c :: P || d :: Qθ if match(tr, ts) = θ

c :: (if(b) a+ · · · ) .P −→ c :: a .P if JbK = tt

c :: (if(b) a+ · · · ) .P −→ c :: P if JbK = ff

c :: (skip + · · · ) .P −→ c :: P

c :: (break + · · · ) .P −→ c :: 0

We also allow a recursive process, i.e., RecX .P , to execute P , thus we have:
c :: RecX .P −→ c ::P P . The additional annotation has no influence on the
above rules and is carried around so that we can “recreate” the process when
the X symbol is reached: c ::P X −→ c :: RecX .P .

In the above rules we have used the function match, which as the name suggests
matches the tuples and creates a substitution for the receiving process:

match(〈〉, 〈〉) = id

match(〈t1 · · · tk〉, 〈t′1 · · · t′k〉) = θ ◦match(〈t2 · · · tk〉, 〈t′2 · · · t′k〉)

where θ =


id if t1 is a constant (t1 = c) and c = t′1
[t′1/x] if t1 is bounding a variable (t1 =!x)

undef otherwise
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Finally, the nets can evaluate according to the following simple rule:

N1 −→ N ′1
N1 || N2 −→ N ′1 || N2

and we obviously assume that || is associative and commutative.

Note that we also require the nets to be closed, i.e., all variables must be in
scope of their defining occurrence.

6.2.2 Aspects

As already mentioned, one of the main features of our language is the presence
of aspects. We define them as follows (almost the same as in [36]):

aspects asp ::= A[cut; e] , adv

advice adv ::= as break | as proceed as

action sequence as ::= a . as | ε
pointcut cut ::= c :: a

We will often call actions before and after proceed as before- and after-actions
respectively. Informally, the semantics of the aspects says that before execut-
ing an action we need to check what aspects apply to it and then combine
the advice from them. Checking if an aspect applies to an action amounts to
pattern matching against the cut and evaluating the applicability condition e
associated with the aspect. Note that in case of receive action with input, e.g.
receive(!x)@N we require that the condition does not refer to x. The reason
for this is simple — we want to evaluate the condition before the action is exe-
cuted, so that we can, for instance, disallow it. However, the value of x would
be available only after executing the action.

Adding the aspects amounts mostly to following [36] with some minor adjust-
ments to our language. Therefore, we will not repeat that development and only
recall the main ideas behind it:

• Every action must be checked by the list of aspects (order matters) and
an action might be trapped by multiple aspects.

• If an action matches the pattern of some aspect and the applicability
condition evaluates to true, we “inject” the advice into the process.
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• The proceed in the advice is substituted with the original action, but
must be treated carefully and only analyzed by the remaining aspects.

• All actions except for proceed and break appearing in an advice must
also be checked by all the aspects.

• Once an action has been checked by all the aspects (and potentially
trapped by some of them) it can be executed.

It is important to emphasize that the checking and trapping by aspects is in-
ternal to every process (i.e., not visible from other processes). However, the
advice that is offered by aspects can of course change the observable behavior
of a process.

The main challenge in allowing the before- and after-actions in advice is that
they should be analyzed by all aspects as usual. Otherwise, using aspects for,
e.g., access control would not be very useful since the advice would be cir-
cumventing the access control policy. The following example shows one of the
potential problems that this might pose.

Example 6.1 Consider the following process with an aspect (for simplicity we
skip here the processes Q and Log and assume that sending anything to them
will always succeed).

P :: send(Test)@Q

A1[P :: send(a)@q; true] , send(a)@Log . proceed

The aspect will trap any send action of P. However, since the advice will also
be analyzed by the aspect, it will trap the send action directed to Log. So this
example actually demonstrates the possibility of non-termination and a process
that can grow infinitely large. Clearly the aspect as defined above is not providing
the desired behavior. A better way to specify it is to restrict what actions should
be trapped.

A1[P :: send(a)@q; q 6= Log] , send(a)@Log . proceed

With this small refinement the aspect will only trap the send actions that are
not sent to the Log. Thus the system will successfully terminate.

Because our formulation of aspects allows both the before- and after-actions and
they need to be analyzed by all aspects themselves, the processes can exhibit
a recursive structure. Before we present our solution to this problem, we will
introduce the running example of this chapter that will help us illustrate the
approach.
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6.2.3 Example

We will now present a more involved example that will be used throughout the
chapter in demonstrating our approach. Imagine an ATM1 session — it first
receives some credentials from the user and checks the credentials against the
information stored on the card. If everything matches it dispenses the cash and
informs the bank to deduct the given amount from the account. The following
definition models this behavior

ATM :: receive(!credentials, !amount)@User .

check(credentials) .

send(amount)@User .

send(credentials, amount)@Bank

where check is an internal action that does not involve any communication or
synchronization and either executes successfully if the credentials are valid or
otherwise terminates the session. This process seems reasonable but we can
imagine that in order to increase the security of this solution one could add
aspects that actually confirmed the credentials with the bank.

A1[ATM :: check(c); true] , proceed . send(c)@Bank .

receive(!a)@Bank

A2[ATM :: receive(!a)@Bank; true] , proceed .

if(a = Abort) send(ErrorMessage)@User .

if(a = Abort) break

The above two aspects make the additional check of credentials with the bank
(after checking locally) to improve the security. Obviously we want the ATM
session to terminate (with an error message) when this check fails.

Apart from that we need to define the process modelling the Bank

Bank :: (receive(!credentials)@ATM . send(Ok)@ATM .

receive(credentials, !amount)@ATM)

+(receive(!credentials)@ATM . send(Abort)@ATM)

We do not define the process for User since it does not actually bring anything
interesting to the example.

Now having such a system, one of the things that we would like to guarantee
is that whenever the bank aborts a transaction, the ATM will not dispense the

1Automated Teller Machine
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cash. In other words we want to ensure that both the bank and the ATM have a
consistent view on the transaction. To achieve that we will use communicating
pushdown systems.

6.3 Pushdown systems

6.3.1 Modelling processes with aspects

6.3.1.1 Basic idea

Pushdown systems are commonly used in the context of recursive programs.
They provide a very natural way to model such systems since the unbounded
stack can be used to store the return addresses of the called procedures. How-
ever, in our scenario there are neither procedures nor any notions of addresses
or program locations. Nevertheless, as we have already mentioned, the main
difficulty of analysis of our process calculus lies in the recursive structure that
can be introduced by aspects. And in some ways the behavior of aspects does
resemble that of a stack. Consider, for instance, a process A .B, if the first
action A is trapped by an aspect that gives advice C .D . proceed then we
suddenly have a process C .D .A .B (where A should not be considered by this
aspect again). But this can be thought of as a stack — we push two additional
actions on it and then want to continue the execution starting from the top.
So after executing C we are left with a process that looks like D .A .B — this
clearly corresponds to popping C from the stack. Therefore, the main twist
of our approach is to use the stack to characterize the process itself (i.e., the
actions that are to be executed).

There are a number of considerations that need to be taken into account to
faithfully model the behavior introduced by aspects. One of the problems is
ensuring that an aspect will not trap the same action multiple times. As pre-
sented in the previous section, the proceed represents the trapped action but
it should only be checked by aspects after the current one. Our solution to this
problem is to embed some additional information in the stack to indicate what
aspect should consider the given action next. Therefore, each action will also
contain the information about the aspects that can potentially trap it next.

Since we already use the stack for storing the process along with the information
about aspects, we can often improve the precision of our analyses by embedding
in the stack some information about the communication that takes place. The
most natural choices are the sender and receiver as well as the contents of the
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tuples that are sent or received. However, at this point we encounter here a
limitation of the original formulation of CPDS — they were defined to handle
synchronization actions. This is a bit problematic since we want to work with
message passing and the contents of messages that are being sent is essential for
determining whether certain configurations are reachable. This is simply due
to the fact that the control flow of the processes is often based on the received
values. Our current solution is to instantiate all the tuples and generate rules for
all possibilities. We usually do not want to consider all possible constants and
all possible tuples that can arise at runtime, since often just a subset of them
along with some abstraction of the remaining ones can be enough to prove the
property of interest. We will call them abstract constants and abstract tuples —
since they abstract away from some of the possible runtime values. For instance,
in our example of an ATM and bank we are probably interested in whether Ok
and Abort are sent and received. On the other hand, information such as the
amount of money to be withdrawn, is not that important due to the fact that
it does not influence the control flow of the processes.

Let us first denote the set of all constants as Const and the set of abstract
constants as Ĉonst. Similarly we will denote the set of all possible tuples as

T̂uples (note that this is also a finite set — any program will have a maximum
arity of tuples that it sends/receives). With all of the above considerations, we
define the stack alphabet Γ in the following way:

Γ = ((Proc× Proc× T̂uples) ∪ Internal)× (Asp ∪ {X})

where Asp is the set of aspects and X is a special symbol indicating that all
aspects have already analyzed the given action, whereas the first component
represents either a communication action or an internal one — Proc is the set

of processes, T̂uples is the set of all possible abstract tuples that are sent over
the channels in the given system and Internal are internal actions of the process.
This last set will usually only include the break and skip actions and exclude
the if one — we will represent the possibility of executing an action implicitly
using the pushdown rules. The definition of pushdown systems requires that all
these sets are finite but obviously concrete processes are always finite and so
will be the pushdown system we generate.

Furthermore, we need to define the set of abstract actions. In our case this is
actually quite similar to the stack elements. We define them as follows:

Âct = (Proc× Proc× T̂uples) ∪ {τ}

The intuition here is that we do want to know the sender (first component
of the tuple), the receiver (the second component) and what is communicated
(the third component). This information will be essential in the subsequent
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section on communicating pushdown systems. Apart from that we also need to
accommodate internal actions that are not important from the point of view
of synchronization with other processes — thus the inclusion of τ that has the
property that aτ = τa = a.

Notice that in some cases we do not actually know what is sent/received in a
given action (e.g. in receive(!x)@N we do not know what x might be). In such
cases we can simply generate rules for all the possibilities. However, there are
many ways of improving this, for instance, it should be possible to generate
such possibilities lazily, i.e., if some action is never pushed on a stack, we do
not really need to add rules to pop it. Another example would be if we can
determine that some constant is sent only between two processes, then we do
not have to consider it when generating rules for actions of other processes.

Now let us get back to our example. Since we are only interested in Ok and
Abort constants and the maximum arity of a tuple send by any process is equal
to two, our set of abstract tuples will be:

T̂uples = {(c) | c ∈ C} ∪ {(c1, c2) | c1 ∈ C, c2 ∈ C}

where C = {Ok,Abort, *} and * stands for any constant other than Ok or Abort.

6.3.1.2 Rules for creating processes.

To create a process the first thing that we do is to push all its actions on the
stack. So if we have a process P :: a1 . a2 . a3 then we create a rule

〈P, 2〉 τ
↪−→ 〈P, a1 a2 a3〉

where 2 is a “start” symbol that can be used for creating the initial set of
configurations (we will explain that later on). We will use this symbol for, e.g.,
the Post∗ query (such as: what are all the successors of 〈P,2〉). Furthermore,
this gives us a very nice way to handle the recursion of the processes. We can
use X symbol as the start symbol and whenever X is at the top of the stack,
the recursion will be handled automatically. Consider the following process:
Q :: RecX . a1 . a2 . X and the initial rule that we create:

〈Q, X〉 τ
↪−→ 〈Q, a1 a2 X〉

The moment a1 and a2 are popped from the stack (i.e., executed) the initial
rule will apply again and the process will be “recreated”.

Apart from that we need to be able to handle choice. We do not have any
abstract actions that would express choice since the control flow is handled by



88 Analysis of an aspect-oriented calculus

the pushdown rules themselves. Therefore, we create all possible linear shapes
of the process. For instance when generating the initial rules for process P ::
a1 . (a2 + a3) we would create:

〈P, 2〉 τ
↪−→ 〈P, a1 a2〉 〈P, 2〉 τ

↪−→ 〈P, a1 a3〉

For the ATM in our example we can generate a set of rules for all choices of
x ∈ C and y ∈ C:

〈ATM, 2〉 τ
↪−→ 〈ATM, (User,ATM, (x, y),X)

(check(x),A1)

(ATM,User, (y),X)

(ATM,Bank, (x, y),X))〉

∣∣∣∣∣∣∣∣∣∣
x ∈ C

y ∈ C


As already mentioned, we can often be much smarter about generating the rules
and create only a subset of the above (for instance Abort is never sent between
User and Bank).

6.3.1.3 Rules for aspects

When generating the rules for the aspects we often have sufficient information in
the stack element of the pointcut to be able to decide whether the aspect traps it
or not. In the example above we could easily tell that some of the actions could
never be trapped by any of our aspects (the aspects in the example trap only
actions of the ATM). However, if we do not know whether the aspect will trap
the action, we simply over-approximate and generate rules for both possibilities.
One of the essential parts of generating the rules is to update the component
of the stack that tracks what aspect should analyze the action next. In other
words, if an action a is trapped by aspect A1 then the proceed of the aspect
should be the same action a but annotated with the next aspect. To make that
clear, let us consider the internal check action of our ATM:

〈ATM, (check, (x),A1)〉 τ
↪−→ 〈ATM, (check, (x),X)

(ATM,Bank, (x),X)

(Bank,ATM, (y),A2)〉

∣∣∣∣∣∣∣∣
x ∈ C

y ∈ C


As can be seen above, we have the internal action check with aspect A1 on the
left-hand side of the pushdown rule, but on the right-hand side we annotate it
with X as there are no more aspects that can match. This ensures that check
will not be trapped by this aspect again.
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Moreover, we must also handle the if conditions. Since we generate rules for
various combinations of constants, we can often determine whether a condition
is true at the stage of generating the rules. And if so, we can generate rules
just for the right branch. However, in general this is not always possible. In
such situations we do the same as in the case of aspects, i.e., generate the rules
for both cases — one if the condition is true and one if it is false. This again
corresponds to over-approximating the control flow. Therefore, from the point
of view of precision, it might be beneficial to include in the set of abstract
constants the ones that are used for comparisons.

6.3.1.4 Rules for executing actions

All of the above rules do not model the execution of any actions (and thus are
considered as internal actions and labeled with τ). Execution in our context is
nothing else than simply popping a stack element. So in general we simply create

rules of the form 〈p, a〉 l
↪−→ 〈p, ε〉 for all possible actions a that are annotated

with X, where l is equal to either τ if a is an internal action or a otherwise. An
example from ATM is as follows:{

〈ATM, (User,ATM, (x, y),X)〉
(User,ATM,(x,y))
↪−−−−−−−−−−→ 〈ATM, ε〉

∣∣∣∣ x ∈ C y ∈ C

}
which corresponds to execution of all actions where ATM receives a two-tuple
from the user. Note that we require that the actions are annotated with X,
which ensures that the action cannot be executed before all aspects have been
considered.

6.3.1.5 What are Apre∗ and Apost∗?

Once we have all the pushdown rules, we can ask for all successor/predecessor
configurations. However, the notion of a configuration in our setting is slightly
different than usual — it is actually the process itself (the stack contains all the
actions to be executed). Therefore, the Apost∗ and Apre∗ automata will corre-
spond to all possible shapes of the process itself. Let us consider an example:
we want to compute all the possible “futures” of a process. So the initial au-
tomaton A should represent just a singleton language, in case of ATM we would
have just one transition ATM

2−→ qf (where ATM is an initial state and qf is a
final one). Now running the Post∗ algorithm on it will use the rule to construct
the process and then execute the actions and “calling” the aspects. The result-
ing Apost∗ automaton will represent all those configurations, so it will describe
what the process can look like in the future (i.e., grow due to advice, shrink
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due to executing the actions, etc.). The weights of the transitions of Apost∗ will
capture the abstraction of the communication the process has performed to get
to the given configuration. This can be used to, e.g., ask for the summarization
of the communication of the process when there is nothing on the stack (i.e.,
corresponding to the termination of the process).

6.3.2 Communicating pushdown systems

For now we have considered only a single pushdown system, which corresponds
to a single process. Since we are interested in the behavior of the whole concur-
rent system, we will use the communicating pushdown systems. However, CPDS
in the original formulation do not differentiate between send and receive actions
and focus on synchronization actions only (no message passing). Therefore, we
slightly change the definition of the transition system created by a CPDS. A
global configuration of CPDS is, as before, a tuple g = (c1, . . . , cn) of configura-

tions of P1, . . . ,Pn. But the relation
a

=⇒ is generalized to global configurations
in a slightly different way:

• g τ
=⇒ g′ if there is 1 ≤ i ≤ n such that ci

τ
=⇒ c′i and c′j = cj for all j 6= i

• g (s,r,t)
=⇒ g′ if there are i 6= j such that ci

(s,r,t)
=⇒ c′i and cj

(s,r,t)
=⇒ c′j (“s” stands

for sender, “r” for receiver and “t” for tuple). Finally, for all k 6= i∧k 6= j
we have that c′k = ck.

This ensures that the processes agree on the direction of the communication.
Also note that in our formulation the processes specify the sender or receiver,
which corresponds to requiring that there is a unique uni-directional channel
between every two processes. But that could be generalized to allow arbitrary
channels and, as noted in [10, 11], one would have to transform the program
into one where every channel is used by exactly two processes (this is due to the
shuffle operator).

Of course, since the languages generated by each of the processes can be context-
free, we still want to perform some abstraction. In our situation we have decided
to use the ith-prefix abstraction from [14] that, as the name suggests, considers
the prefixes of communication traces.
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6.4 Analysis

6.4.1 The non-recursive example

We have implemented this abstraction and used the WALi (Weighted Automata
Library) [48] for computing the Post∗ weighted automaton. Currently our im-
plementation can be seen as a small library on top of WALi that offers higher
level API capable of generating the required pushdown rules. This includes
generating all possible tuples of for a given set of abstract constants as well as
reducing the push rules using more than two stack elements on their right hand
side.

Let us consider the analysis for our example of Bank and ATM. With that in

mind we use Ĉonst = {Ok,Abort, *} and set i = 3.

Since the resulting graphs are simply too large to include here, we have simplified
the rules by avoiding generating the rules for all possible abstract constants (i.e.,
we assume that the user always sends *, therefore this does not compromise
the results). The results of Post∗ algorithm are presented in Figure 6.1 and
Figure 6.2.

The annotations on the edges are pairs of stack element (first component; *

denotes an ε transition) and the weight of the transition (second component).
Moreover, EA stands for X and LabelAbort() is an additional internal action
that we inserted just after the action sending Abort to make it easier to see in
the summarization of bank’s actions at this point, which is:

{ ATMBank(*)BankATM(Abort) }

Note that for clarity of presentation we have not used the shuffle operator on the
above set.2 In general we should include there all words (with up to three ac-
tions) created from the above and interspersed with the possible communication
actions between the ATM and the User.

Turning to the ATM, we can see that the process successfully dispenses the
money and is about to inform the bank about the withdrawal with the following
summarization of its communication:

{ UserATM(**)ATMBank(*)BankATM(Ok) }

Now it should be clear that the intersection of the communication of the bank
when it sends the abort message and the ATM when it dispenses the cash is

2Recall that in [10, 11] it is used to account for communication that does not involve the
given process.
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Figure 6.1: Result of a simplified analysis of the ATM.
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Figure 6.2: Result of a simplified analysis of the bank.
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empty — BankATM(Ok) and BankATM(Abort) do not match. This means that
it is impossible for the bank and the ATM to reach this error configuration.
In other words the cash will never be dispensed in a situation where the bank
aborts the transaction.

6.4.2 The recursive example

Now let us consider the same example, but modified such that both the bank
and the ATM are recursive processes. In other words we want to model not
just one session, but many subsequent ones. The modifications are quite simple
and amount to just adding the recursive annotations in the right places. The
updated ATM is:

ATM :: RecX .

receive(!credentials, !amount)@User .

check(credentials) .

send(amount)@User .

send(credentials, amount)@Bank . X

The aspects do not need to be modified and are repeated below for the reader’s
convenience:

A1[ATM :: check(c); true] , proceed . send(c)@Bank .

receive(!a)@Bank

A2[ATM :: receive(!a)@Bank; true] , proceed .

if(a = Abort) send(ErrorMessage)@User .

if(a = Abort) break

Finally, the bank should restart communication once it has handled an ATM
request.

Bank :: RecX .

(receive(!credentials)@ATM .

send(Ok)@ATM .

receive(credentials, !amount)@ATM . X

+receive(!credentials)@ATM .

send(Abort)@ATM . X)
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The analysis is similar to the one before, except for the fact that we generate
some additional rules to handle the recursion. However, the ith-prefix abstrac-
tion is not capable of verifying the example due to the fact that there will be
traces of previous successful sessions that will be i communication actions long,
and thus the last session (the one that we are asking about) will have the Abort
message truncated. Fortunately, the ith-suffix abstraction works due to the same
reasons why ith-prefix fails — in this case the most important part of the trace
is that of the last Abort which is never truncated. The results of the analysis
are depicted on Figure 6.3 and Figure 6.4. We can read the weights of the tran-
sitions, but this time we will have to look at two transitions (the X symbol, on
the graphs denoted as Box, is always at the bottom of the stack). The results
for the ATM:

{τ, BankATM(Ok) ATMUser(*) ATMBank(**)}
⊗

{ATMBank(*) BankATM(Ok) ATMUser(*)}
=

{ATMBank(*) BankATM(Ok) ATMUser(*)}

And the results for the bank:


τ, ATMBank(*)BankATM(Abort),

ATMBank(*)BankATM(Ok)ATMBank(**),

ATMBank(**)ATMBank(*)BankATM(Abort),

BankATM(Abort)ATMBank(*)BankATM(Abort)


⊗{

ATMBank(*)BankATM(Abort)

}
=

ATMBank(*)BankATM(Abort),

BankATM(Abort)ATMBank(*)BankATM(Abort),

ATMBank(**)ATMBank(*)BankATM(Abort),

BankATM(*)ATMBank(*)BankATM(Abort)


Note that, in general, we should use the shuffle operator that in the case of bank
would account for the communication between the ATM and the user. However,
we skip that for the clarity of the presentation.
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Figure 6.3: Result of a simplified analysis of recursive ATM.



6.4 Analysis 97

Figure 6.4: Result of a simplified analysis of recursive Bank.
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6.4.3 Discussion

There are a few interesting details of our analysis that we will review in this
section. First of all, note that when generating the rules for creating the process
or “calling” an aspect we introduce some fresh states in a way that allows us
to maintain the relationship of the variables used in different actions (i.e., if we
receive a value and bind it to x and then send x, we want to maintain that the
same value is first received and then sent). Consider the following example:

P :: receive(!x)@Q . send(B)@Q . send(x)@Q

and assume that Ĉonst = {A,B}. Since we want to push more than two elements
on the stack, we will introduce some fresh states and generate the following
rules:3

〈P,2〉 τ
↪−→ 〈P1, (P,Q, (B))(P,Q, (A))〉

〈P1, (P,Q, (B))〉 τ
↪−→ 〈P, (Q,P, (A))(P,Q, (B))〉

〈P,2〉 τ
↪−→ 〈P2, (P,Q, (B))(P,Q, (B))〉

〈P2, (P,Q, (B))〉 τ
↪−→ 〈P, (Q,P, (B))(P,Q, (B))〉

It is important to note that we introduce two different states P1 and P2 in order
to capture that whatever value the process receives in the first action, it sends
it in the last one (i.e., the value of x after the first action is the same as its
value in the last one). However, it is possible to add fewer new states at the
expense of precision, i.e., we could simply ignore the relation between the rules
and merge the P1 and P2 states. The resulting system would allow for traces like
receiving A and then sending B twice, which is clearly a behavior not exhibited
by the original system. We believe that in many situations this lack of precision
might be too significant, nevertheless, it does have a cost as the complexity of
the Pre∗ and Post∗ algorithms depends on the number of control locations as
well as the number of pushdown rules. Thus, the ability to decrease it (at least
in certain parts of the programs) gives some additional flexibility in modelling
the processes.

Apart from that, it is important to emphasize that, even though we have demon-
strated the approach on the ith-prefix/suffix abstractions, it works for any ab-
stractions allowed by the CPDS. This includes, e.g., all the abstractions defined

3This only shows the rules when the process receives A, we do not show the ones for B
since they would be almost the same.
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in [10, 11]. Furthermore, we have only focused here on the communicating push-
down systems, but our approach of modelling the processes is applicable to any
pushdown systems, including the weighted pushdown systems (WPDS) [66, 67].
The exact choice depends on the details of the process calculus in question as
well as the properties one wants to verify.

Finally, we should also mention that there are a number of remaining challenges
of our approach with scalability being one of the main concerns, especially when
large sets of abstract constants are involved. This is not really a problem with
our adaptation of CPDS for aspect-oriented calculus, but more with the design
of CPDS. Since the Pre∗ or Post∗ analysis of each thread is performed inde-
pendently, there is no information of what can be sent between the processes.
Our solution to that problem is to generate all the possibilities (using the set of
abstract constants) thus reducing the problem to the one considered in [10, 11].
It should be clear that we have a combinatorial explosion of the number of
rules with respect to the arity of the tuples. Of course, some preliminary anal-
ysis could make it possible for us to avoid generating some of the rules. To
make matters worse, a larger set of abstract constants also increases the space
complexity of abstract domains involved, thus making the ⊗ and ⊕ operations
more expensive. Solving it is one of our motivations behind the work described
in Chapter 7, where we present a symbolic abstract domain that is capable of
capturing the constraints imposed on the values being communicated.

6.5 Conclusions

In this chapter we have considered a process calculus with aspect-oriented fea-
tures, which is equipped with message-passing primitives. We believe that
aspect-orientation has a lot to offer not only in the area of programming lan-
guages but also in the context of coordination languages. In particular it gives us
the ability to create very modular systems and separate unrelated functionality,
which should make it easier to model complex systems.

However, the addition of aspects with advice allowing before and/or after actions
leads to some interesting challenges. Those additional actions make it possible
for a process to “grow” — one action trapped by an aspect can result in advice
consisting of two or more actions. And since the advice itself is analyzed by
aspects, the processes can exhibit a recursive structure and become arbitrarily
large. Obviously this makes it much more difficult to analyze such systems. Our
main contribution is to present an approach that is capable of solving analysis
problems is such a context. To achieve this we used a technique from software
model checking, namely communicating pushdown systems. Even though it is



100 Analysis of an aspect-oriented calculus

used mainly for analysis of recursive programs, we managed to adapt it to our
setting. It proved to be a very useful and quite a flexible tool, able to provide
us with descriptions of processes that can be arbitrarily large. Moreover, with
the right abstraction, we can compute the summarization of its communication
actions, allowing us to reason about the reachability in systems of concurrent
threads. Since many safety problems can be reduced to reachability of error
states, our approach can be used for verification purposes of such systems.

We believe that this approach can be adapted to various process calculi that
use aspect-oriented paradigm. Moreover, our approach to modelling of such
processes using pushdown systems makes it possible to build analyses using
both communicating and weighted pushdown systems.

There are also some interesting future challenges. For instance, the question
of how far can we extend the language and still be able to model it using
pushdown systems. Moreover, from the point of view of efficiency we would
prefer to generate only a small number of rules. On the other hand, to achieve
better precision we would like to include as much information in the rules as
possible. There is clearly a lot of room for experiments with various approaches
and trade-offs depending on the situation.

Finally, in this chapter we have encountered an interesting problem with the use
of the communicating pushdown systems for the analysis of message passing. It
arises due to the fact that the control flow often depends on the actual values
being sent between processes and achieving good precision while using abstract
domains such as ith-prefix/suffix might require generating a much larger number
of pushdown rules. We will explore this in the Chapter 7 where we will try to
capture the constraints imposed by the control flow in the abstract domain
itself.



Chapter 7

Symbolic prefix/suffix
abstractions

In this chapter, we focus on some of the challenges mentioned in Chapter 6.
We have noted that ith-prefix/suffix abstractions [14] do not fit very well in the
context of message passing (to achieve good precision one often has to generate
many more pushdown rules). In this chapter we present an abstract domain
based on the ith-prefix/suffix abstractions that symbolically encodes the con-
tents of the message as well as constraints that refer to them. Furthermore,
it forms a semiring and thus can be used with, e.g., communicating pushdown
systems. We develop a data structure optimized for low memory usage, as
well as efficient algorithms for the ⊕ and ⊗ semiring operations. To handle
the constraints and feasibility of communication traces, it leverages modern
SMT solvers. Furthermore, it allows to easily adjust the amount of information
considered and thus offers flexibility with respect to the performance-precision
compromise. Finally, our implementation can be easily used with the Weighted
Automata Library (WALi) [48].

The structure of the chapter is as follows. We first motivate the development in
Section 7.1. Then we discuss the new domain in Section 7.2. In Section 7.3 we
turn to the design of the data structure. We discuss the slightly more challenging
analysis of reachability in Section 7.4. Finally, we present some experiments
using the domain in Section 7.5 and conclude in Section 7.6.
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7.1 Introduction

7.1.1 Motivation

Concurrency is increasingly important not only in programming but also in
the modelling of various systems. However, it is also known to be extremely
difficult, especially in the context of shared-memory. Therefore, in many situa-
tions concurrency based on message passing is preferred and advertised as more
maintainable, e.g. in Erlang [24], Go [34] or Haskell [37]. Moreover, it is often
used in various process calculi that are commonly used for modeling purposes.
Even though it is commonly considered easier for programmers to understand,
it may prove harder to perform analysis and verification of systems based on
message passing. Especially when the processes have some recursive structure,
which ideally should be handled by performing context-sensitive analysis. Un-
fortunately, as shown in [63], an exact analysis that is both context-sensitive
and synchronization-sensitive is undecidable. In [10, 11] a generic approach to
the analysis of concurrent and recursive processes with synchronization was pro-
posed (we have discussed it in Chapter 4). The problem of undecidability was
sidestepped by employing various abstractions of the communication between
processes. Later the approach has been successfully used in [14] to analyze C
programs and introduced for that purpose the ith-prefix abstraction, which con-
siders the prefixes of synchronization actions. However, neither of the papers
consider the problem of message passing where the contents of communication
might be essential to verify the reachability of certain states of the system. In
the case when the domain of messages is finite, one can reduce the problem
of message passing to synchronization by considering all possible values that
can be sent. But this näıve approach leads to a blowup that might be quite
severe when the domain has many elements. Therefore, we propose a more
sophisticated way of solving this problem using symbolic representations.

7.1.2 Contributions

We introduce a new abstract domain building on the already mentioned ith-
prefix/suffix abstractions. The new domain symbolically represents the mes-
sages that can be sent between the processes. Moreover, it includes various con-
straints that can be imposed on them by the processes due to the control flow
or pattern matching. Since our abstract domain is parametrized by a bounding
parameter i, it allows to easily adjust the precision of the analysis for the given
problem or even do that dynamically — start with low values of i and try to
increase them if needed. By combining it with the ideas presented in [10, 11] we
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have the ability to deal with recursive processes, pose queries about the analysis
results for various stack contents and then prove unreachability of error states
in systems of concurrent processes. We also consider the problem of efficient
implementation of our abstract domain, including the representation of the lan-
guage and the basic operations on it. This is essential since we often have to
represent an exponential number of traces. Finally, due to our extensions we
need to create a new and somewhat more complex, procedure for proving un-
reachability in our concurrent system. This must obviously include a way to
handle the constraints that are imposed on the contents of messages. We have
decided to take advantage of modern SAT and SMT solvers, which nicely fit into
our approach and provide the flexibility to deal with various kinds of constraints
and messages.

7.1.3 Related work

The papers [10, 11] introduced the approach of computing abstractions of com-
munication of recursive processes and then checking their “intersection” to prove
unreachability of error states. The approach has been subsequently used in [14],
where the authors proposed their own abstract domains: ith-prefix and ith-suffix
abstractions. Both of them, combined with CEGAR (Counter-Example Guided
Abstraction Refinement), turned out to be practical for analysis of C programs
and allowed the authors to discover a previously unknown bug in a driver for
the Windows operating system. In [76] we have used the ith-prefix/suffix ab-
stractions for analysis of process calculi equipped with aspect-oriented features,
where we encountered the problem of insufficient information about the contents
of the communication. Apart from that, in recent years a lot of attention has also
been directed towards methods that perform some under-approximation during
the analysis. The basic idea is to avoid the issue of undecidability by bound-
ing, e.g., the number of context-switches [61, 55], where the authors focused on
the problem of shared memory concurrency and not message passing. A dif-
ferent approach bounds the number of phases in the communication [8], which
allows to transform a concurrent system into a sequential one. Another recent
work imposes the requirement that the communication network is acyclic [2].
Both of these approaches are based on under-approximation, consider recursive
programs with asynchronous message passing, and require that the domain of
messages is finite. We are also considering recursive programs, but our ap-
proach performs only over-approximation, does not impose the restriction on
the finiteness of the domain of messages and allows various constraints on the
communication contents. The price to pay is the fact that we consider only
finite prefixes or suffixes of the communication of the processes. Moreover, we
focus mainly on synchronous communication, although some adjustments should
allow for the analysis of asynchronous channels as well.
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7.2 Domain

7.2.1 Challenges

Let us first recall the definition of the ith-prefix abstraction [14] (the ith-suffix
is analogous). It is defined as a set Di of words with length less than or equal
to i. The neutral elements, ⊕ and the ordering are quite obvious:

• 0̄ = ∅

• 1̄ = {ε}

• ⊕ = ∪

• v=⊆

The more interesting case is ⊗ which is defined

U ⊗ V = {(uv)i | u ∈ U, v ∈ V }

where (w)i is the prefix of w of length i. The already mentioned Galois con-
nection is created by taking va = {a} for every synchronization action a. It is
important to emphasize here that the bound i refers to the number of commu-
nication actions of the whole system.

When we consider the problem of message passing, there are a few problems with
the idea of using communicating pushdown systems and the ith-prefix/suffix
abstractions. This is because the verification is done in two separate steps.
First we use pushdown systems to analyze every process one at a time. And only
then we use those results to reason about the whole system of communicating
concurrent processes. However, this means that during the first step we have
no information about the actual values being sent between the processes.

Since the values sent often influence the control flow, ignoring them leads to
considerable imprecision. If the domain of those values is finite, we can generate
a separate pushdown rule for each of the possibilities, reducing the problem
to the approach from the previous section (as we have done in Chapter 6).
However, this causes a blowup in the number of rules and is not always possible
(e.g., in case of infinite domains). Furthermore, it can be often less precise, if the
generated pushdown system does not maintain information about the contents
of messages that have been sent in the past. Therefore, our solution to this
problem is based on the idea of deferring reasoning about the contents of the
communication to the second phase of analysis.
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There is also another challenge — the ith-prefix/suffix abstractions are expo-
nential in i and representing them efficiently is essential. However, in many
programs the communication traces will have the same or similar prefixes and
suffixes — this is due to conditional control flow, various loops, etc. Therefore,
we introduce a data structure based on minimized DFAs to combat the explosion
of the number of traces as well as allow efficient ⊕, ⊗ operators and equivalence
checking.

7.2.2 Introducing constraints

In order to reason lazily about the values being sent between the processes
we extend the domain of actions to include the variables from the program of
interest. Moreover, since the control flow of a process is often based on the
contents of messages, we also include constraints on the values of the variables.
We define the set of possible actions Act as follows.

action ::= a | b
a ::= (sr, ch,~e)

sr ::= send | receive

e ::= x | c
b ::= e1 = e2 | e1 6= e2 | true | false

where ch is a channel name, x is a variable name and c is a constant. Note
that this is a basic variant of the language and more advanced constraints are
certainly possible, such as arithmetic relations ≤ and <. We will expand on this
point in one of the subsequent sections.

In the previous section we considered an abstract domain of the ith-prefix ab-
straction to be the powerset of traces with up to i communication actions.
However, with the addition of conditions, the bound i on the number of com-
munication actions is no longer enough to guarantee that our domain satisfies
the ascending chain condition [59]. This is due to the addition of conditions
— we can always continue adding new words that differ only in the order of
conditions or in the number of repetitions of some conditions. But since the set
of all possible conditions in a program is finite, it should be clear that at some
point adding or reordering them does not bring any additional information. This
motivates the following development, where we will make precise what traces
provide some new information and which ones can be safely ignored.

We first introduce the notion of satisfiability of traces. Since the receive action
can bind new values to existing variables, we cannot directly use the constraints
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— consider for instance a trace:

(receive, ch, (x))(x = Foo)(receive, ch, (x))(x = Bar)

It should be satisfiable (x is bound to two potentially different values), even
though when taking directly the conjunction of the conditions is obviously not.
The solution is to introduce a fresh name every time a variable is bound to
a potentially new value. This would correspond in our example to have two
conditions: x0 = Foo and x1 = Bar. We will discuss this approach in more
detail in Section 7.4. For now we assume that we have a function Rename that
performs the renaming of the variables whenever they are bound to new values.

Definition 7.1 A trace w of a PDS is satisfiable if and only if all the constraints
of Rename(w) are jointly satisfiable.

Note that we are not taking into account the constraints due to communication
and just focus on the problem of satisfiability of internal conditions of a given
trace1. Now we are ready to define when traces are equivalent in terms of both
the communication and satisfiability. For this, we introduce a morphism hc
defined as

hc(a) =

{
a if a is a communication action

ε otherwise

Definition 7.2 We say that two traces t1 and t2 are equivalent if and only if
they are equal under hc (i.e., hc(t1) = hc(t2)) and are equisatisfiable (i.e., t1 is
satisfiable if and only if t2 is).

Examples of equivalent traces would include traces that differ only in the order
of conditions (in some consecutive series of conditions) or that repeat conditions
(again without any communication action in between).

We will use the above to limit the number of traces that need to be consid-
ered. Let us first denote ActC ⊆ Act as the set of communication actions and
ActB ⊆ Act as the set of condition actions, where Act = ActC ∪ ActB. With
that it is simple to define a function that takes a word of our language of traces
and collapses all subsequences consisting only of conditions into sets, which
correspond to their conjunction:

Collapse : Act∗ → (ActC ∪ P(ActB))∗

1However, the communication actions are still important since they can bind new values
to the variables and thus are taken into account when renaming.
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Lemma 7.3 For every word w of Act∗ we have that w and Collapse(w) are
equivalent.

Proof. The function Collapse does not change the communication actions
or their order, so hc(w) = hc(Collapse(w)). The only difference between w
and Collapse(w) is that in place of a sequence of conditions it creates a set
of those conditions. The result then follows from the fact that conjunction is
commutative and idempotent (i.e., the order of condition actions in a sequence
of such actions is not important and ∀a : a ∧ a ⇐⇒ a).

The immediate consequence here is that if we have two different but equivalent
traces, we only need to consider one of them. Therefore, we refine our abstract
domain to be D̄i = Collapse(Di).

Lemma 7.4 For any program (and any i) under consideration the abstract do-
main D̄i is finite.

Proof. In the result of Collapse there cannot be two sets of conditions one
after another — they would have been collapsed. Moreover, the number of
communication actions is finite and any trace contains at most i such actions;
similarly the set of all conditions is finite (and so is its powerset). So there is
only a finite number of possible words in the language.

This immediately gives us that our domain satisfies the ascending chain con-
dition and hence the Kleene iteration over constraints due to Post∗ and Pre∗

algorithms, will terminate with the least solution. Furthermore, by considering
equivalent traces, we do not lose any information with respect to global traces —
there are no changes to the possible communication actions (ensured by equality
under hc) or conditions (ensured by equisatisfiability of conditions).

Finally, since we are extending the language of actions we also modify the defini-
tion of transition relation for CPDS. Since this development is quite simple we
only mention the main differences compared to the original formulation. First
of all, we require matching of “send” and “receive” actions. Furthermore, we
want to only consider the global traces that satisfy all the constraints, which can
be achieved by extending the notion of satisfiability to global traces. The only
necessary addition is to generate the additional constraints due to the communi-
cation — if we have corresponding (receive, ch, ~e1) and (send, ch, ~e2) we require
that ~e1 matches ~e2, which should give rise to simple equality constraints.
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7.3 Data structure

7.3.1 Overview

Before we go into the details of the data structure that we use for representing
the languages of traces, let us first describe the requirements that it must satisfy.
In the following we will denote an instance of our data structure as d and the
language it represents as L(d). For the ⊕ operator as well as the 0̄ and 1̄ elements
the requirements are unchanged from the original ith-prefix abstraction [14].
However, ⊗ must be slightly adjusted, namely we require that:

L(d1 ⊗ d2) = {(w1w2)i | w1 ∈ L(d1), w2 ∈ L(d2)}

where

(w)i =

w if w has less than i communication actions

u otherwise, where u is the shortest prefix of w that con-
tains i communication actions

This is essential since otherwise we could have traces which are not precise up
to i communication actions and our analysis would be unsound. Also note that
instead of shortest prefix it is also possible to use the longest one.

One of the main challenges in using the ith-prefix abstraction is that in general
the languages will be exponentially large in the i parameter. This is easy to
see — if there are |Act| possible actions then there are |Act|i possible words of
length i using this alphabet. However, as already mentioned, we can hope that
those languages will have a considerable amounts of repetition.

Therefore, we use a minimized DFAs which can often represent exponential
number of traces quite compactly. Apart from the memory savings, there are
some other advantages such as the fact that by the Myhill-Nerode theorem [41]
a minimized DFA is unique (thus equivalence checking of two minimized DFAs
is trivial). Furthermore, since Post∗ and Pre∗ algorithms compute a weighted
automaton, it is possible that there will be some redundancies across different
weights (i.e., copies of the same languages). Our representation allows us to
share the same structure in memory in those cases. Moreover, since we only
deal with finite languages, all the DFAs will be acyclic. Therefore, we go a
step further and use only one multi-DFA, where every state represents some
language and a weight would simply refer to such state. We avoid the overhead
of a separate minimization step by maintaining the invariant that there are
no two different states whose corresponding languages are the same. This is
inspired by multi-DFAs for fixed-length languages [25] and ROBDDs [12].
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We will refer to our data structure as RDFA, which stands for Reduced DFA.

There is a body of existing work on minimized acyclic DFAs [13, 78, 79], however,
most of it focuses on creating them from large and already existing dictionaries.
Our situation is quite different since we construct the DFAs using two operators
⊕ and ⊗. The main challenge is the efficient implementation of the latter,
in particular, the truncation of the language to the given length. We have
considered two different ways of implementing the data structure:

• As a single pointer to a node in a multi-DFA that represents the language
of interest. This is the most compact representation, but it does complicate
the algorithm for ⊗— a given node can be at different depths2 depending
on the path from the root. The difficulty stems from the fact we should
not try to explore all the paths in the automaton as there might be an
exponential number of them. A possible solution is to cache what nodes
have been extended along with the depth of the current path.

• As an array of i pointers to the nodes in multi-DFA, where each node
represents a fixed-length language [25]. This representation might need
some more memory than the previous one (we can not be able to share
common sub-words due to the different number of communication actions).
However, this representation does offer more information than the previous
one and allows us to simplify the algorithm for ⊗. Furthermore, we believe
that it offers more opportunities to further optimize the performance of
the operations.

Because of the code simplicity and potential for optimization we have decided
to use the second option.

Finally, we will review the problem of collapsing the transitions labeled with
conditions. The reason for the introduction of this mechanism was to satisfy
the ascending chain condition and thus ensure the termination of the Pre∗ and
Post∗ algorithms. Performing the collapsing for every two subsequent transitions
labeled with conditions (i.e., where the target state of the first transition is
the source for the second one) might seem excessive and sometimes leads to
larger DFAs. As an example compare the two DFAs below, they represent the
same language but the rightmost one corresponds to our rule of collapsing all
subsequent conditions (a, b are conditions and c is a communication action):

2We use the word “depth” to describe the number of communication actions on the path
from the root to the current node.
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start

a c

b c

start

a ∧ b
a c

c b
c

Therefore, it might be tempting to relax this requirement. However, even just
limiting to collapsing states that have all in- and out-transitions labeled with
conditions (instead of collapsing conditions themselves), make it possible for our
DFAs to grow arbitrarily (b is a condition and c is a communication action):

start . . .b b b

c c c

Therefore, we have decided to impose the following invariant.

Definition 7.5 We say that an RDFA satisfies the condition simplification in-
variant if it does not contain a path with two subsequent transitions labeled
with conditions.

Lemma 7.6 For any given set of actions and value of i an RDFA satisfying
the condition simplification invariant cannot grow arbitrarily.

Proof. Since the condition simplification invariant amounts to collapsing ev-
ery two subsequent conditions, then the language of the resulting automaton
will directly correspond to an element from D̄i. Thus the result follows from
Lemma 7.4.

It is worth mentioning that the collapsing is only necessary when performing
the ⊗ operation. For the ⊕ if both sides already satisfy the invariant, then the
result will satisfy it as well.

7.3.2 Details and algorithms

Recall that every state in a multi-DFA can be considered as representing some
language, thus the mapping from languages to identifiers can be achieved in
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a quite simple manner using a state signature (cf. [13]). We define a state
signature as a pair consisting of a boolean value (indicating whether the state
is final) and a set of out-transitions (i.e. pairs of labels and identifiers of the
target state). It should be easy to see that if each state represents a different
language, then the signature uniquely identifies it. Therefore, we use the idea of
hash-consing [31] (another intuition behind this is that it is basically the same
approach as taken in ROBDDs [12]). Thus, the main data structure is a hash
table mapping the state signature (i.e., identifying a language represented by
the state) to the state itself. We maintain the invariant that we never have two
different states representing the same language — when creating a new node we
always perform a lookup if a node with the same signature already exists and
if so we use it instead of creating a new one. An important advantage of this
approach is that equivalence checking is nothing more than testing the state
identifiers for equality.

Apart from that, since our DFA is really a DAG (directed acyclic graph) and
the nodes might be shared, all the operations use a copy-on-write approach
(i.e., the nodes themselves are immutable). It is also important to be careful
about implementing algorithms traversing the graph — we should always use
memoization/dynamic programming to avoid traversing all the paths, since that
would immediately make the algorithm exponential.

In the following we will often call the transitions labeled with a communication
action as a-transition and one with conditions as b-transition. We keep them
separate to simplify the implementation (and the presentation). Apart from
that, we assume the existence of the following procedure:

NewNode : Bool× ATransitions× BTransitions→ Node

that looks up (in a global hash table) if there is already an existing node with
the same signature, if not it creates the new node and adds it to the hash table.
The first argument specifies whether the resulting node should be final, the other
two define its outgoing transitions. Since this is the only way of creating new
nodes, we are guaranteed that no two nodes are identical. Finally, we will also
assume the existence of a hash table with standard functionality.

7.3.3 Algorithm for ⊕

The algorithm for ⊕ amounts to creating a new node with the union of the
out-transitions of the two arguments (calling itself recursively if there are two
transitions with the same label). Since we maintain a cache with the results
of all the recursive calls to ⊕ the worst case complexity of the procedure is
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O(|d1||d2|) where |d1| and |d2| are the sizes of the DFAs, i.e., the number of
states and transitions.

input : pointers lhs and rhs, combine-cache
output: pointer to the node representing lhs⊕ rhs

if lhs = nil then
return rhs;

end
if rhs = nil then

return lhs;
end
if Find(combine-cache, (lhs, rhs)) 6= nil then

return Find(combine-cache, (lhs, rhs));
end
map-a← CombineTrans(OutTransA(lhs ), OutTransA(rhs ), combine-cache);
map-b← CombineTrans(OutTransB(lhs ), OutTransB(rhs ), combine-cache);
return NewNode(IsFinal(lhs ) ∨ IsFinal(rhs ),map-a,map-b)

Procedure CombineNodes

input : maps lhs and rhs, combine-cache
output: map representing union of lhs and rhs

result← lhs;
foreach (a, node) ∈ rhs do

if there exists a pair (a, node′) in result then
Erase(result, a);
Insert(result, a, CombineNodes(node, node′, combine-cache));

else
Insert(result, a, node);

end

end
return result

Procedure CombineTrans

Note that the algorithm works in the same way, no matter whether we consider
the variant that includes the conditions or not. Additionally, we also should
mark a node as final whenever one of the arguments is.

The structure of the algorithm is quite simple — we use two mutually recursive
procedures to combine the nodes and combine the maps/sets of out-transitions.
Since our RDFA representation is actually a sequence of pointers to the nodes,
it calls the CombineNodes with the corresponding nodes (i.e., we combine nodes
representing languages of k communication actions together for every 0 ≤ k ≤ i).
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input : arrays of pointers lhs and rhs, cache combine-cache
output: pointer to the node representing lhs⊕ rhs

Initialize result array with nil (its size the same as lhs and rhs);
foreach index i do

result[i]← CombineNodes(lhs[i], rhs[i], combine-cache);
end
return result

Procedure CombineRdfa

7.3.4 Algorithm for ⊗

The procedure for ⊗ is somewhat more complex. In the following we consider
the computation of d1 ⊗ d2. One of the main difficulties is, surprisingly, the
fact that we need to perform truncation. Without it, we could simply insert the
right transitions to each final state reachable from d1. However, in our situation
we need to be careful in order not to exceed the allowed bound. Also note that
due to hash-consing the operation d1 ⊗ d2 most often will create a “copy” of d1
(since we are extending the language, the signature of most the nodes coming
from d1 will be different, thus we use a copy-on-write approach and create create
new nodes for the resulting RDFA).

This has lead us into considering two different possibilities of interpreting the
RDFAs and handling ⊗:

• Think about the RDFA nodes as representing a language of prefixes and
thus d1 ⊗ d2 should truncate nodes from the end of d2 when creating the
result of the operation. That would often require to create new nodes that
represent truncated sub-languages of d2 as well as a copy of d1.

• Think about the RDFA nodes as representing a language of suffixes and
thus d1⊗d2 should truncate nodes from the beginning of d1 when creating
the result of the operation.

The additional benefit of the latter option is that this leads to increased sharing
of the d2 subgraph. And since d1 should be rebuilt anyway, we decided to
use the second option. Note that it is still possible to get the language of
prefixes — all one needs to do is to reverse ⊗ operator and then reverse the final
RDFA. This may sound very expensive — in general reversing a DFA might
lead to exponential blowup in the number of states (i.e., reversing the transitions
gives rise to an NFA and determinization is in general exponential). However,
our situation is somewhat special: we always work on minimized DFAs that
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represent finite languages (i.e., the DFAs are acyclic) and we have not observed
such a blowup. A similar situation with minimized, acyclic DFAs was considered
in [79], where the author conjectures that in such special cases the reversal can
be done in linear time.

The algorithm for ⊗ additionally uses a procedure to get a set of nodes reachable
from the given one and representing the language truncated to the given length.

Suffixes : Node→ Set Node

Thus the main structure of the algorithm is to call the ExtendNode for each pair
of nodes d1[k] and d2[l] for 0 ≤ k ≤ i and 0 ≤ l ≤ i. Whenever k+ l > i we will
have to extend the nodes from d1 of height i− l (in other words, we “drop” (k+
l)− i communication transitions). Each of the ExtendNode calls will visit each
node of d1[k] at most once, since we memoize the results. Furthermore, at each
such node we might have to perform CombineNodes. Finally, ExtendNode can
potentially create an RDFA that violates the invariant of having two subsequent
transitions labeled with conditions. Thus, we perform the collapsing of those
conditions whenever necessary, which in the worst case might correspond to
creating O(2|ActB|) transitions. This all amounts to the following worst-case
complexity:

O(
∑

0≤k≤i

∑
0≤l≤i

2|ActB||d1[k]|2|d2[l]|)

which can be simplified to:

O(i22|ActB||d1|2|d2|)

However, note that this is somewhat pessimistic bound, e.g., it would be sur-
prising to create a system where at each node we need to call CombineNodes and
where it exhibits the worst case complexity. Furthermore, quite often we will
have the condition and communication actions interspersed (e.g., the control
flow will be based on the results of communication), thus the collapsing might
be less frequent. Finally, the bound does not take into account the fact that a
final state can only be either a state without any out-transitions, or a state that
has only transitions labeled with conditions that go to this last state.

For now our data structure and the corresponding algorithms build an ith-suffix
abstraction (we are truncating the words from the left). Creating an ith-prefix
abstraction is quite simple since our data structure forms a semiring. In a
formal language semiring a ⊗ b = (aR ⊗R bR)R, where (−)R corresponds to
reversing the word and a ⊗R b = b ⊗ a. This is not quite the case in our ith-
suffix abstraction since we are truncating the strings from the left hand side.
However, this suggests that we can reuse the ExtendNode algorithm and our
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input : pointers lhs and rhs, combine-cache, extend-cache
output: pointer to the node representing lhs⊕ rhs

if lhs = nil ∨ rhs = nil then
return nil;

end
if Find(extend-cache, (lhs, rhs)) 6= nil then

return Find(extend-cache, (lhs, rhs));
end
map-a← ∅;
map-b← ∅;
foreach (a, node) ∈ OutTransA(lhs ) do

node′ ← ExtendNode(node, rhs, combine-cache, extend-cache);
Insert(map-a, a, node′);

end
foreach (b, node) ∈ OutTransB(lhs ) do

if IsFinal(node) then
foreach (b′, node′) ∈ OutTransB(rhs ) do

InsertWith(CombineNodes,map-b, b ∪ b′, node′);
end
if OutTransA(rhs ) 6= ∅ then

node′′ ← NewNode(false, OutTransA(rhs ), []);
InsertWith(CombineNodes,map-b, b, node′′);

end

else
node′ ← ExtendNode(node, rhs, combine-cache, extend-cache);
InsertWith(CombineNodes,map-b, b, node′);

end

end
result← NewNode(false,map-a,map-b);
if IsFinal(lhs) then

result← CombineNodesNotFinal(result, rhs, combine-cache);
/* Same as CombineNodes but the resulting state is never

final. */

end
Insert(extend-cache, (lhs, rhs), result) ;
return result ;

Procedure ExtendNode
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input : arrays of pointers lhs and rhs, and two caches combine-cache,
extend-cache

output: pointer to the node representing lhs⊕ rhs

foreach index i of lhs do
foreach index j of rhs do

if i + j < N then
lhs[i + j] = CombineNodes(lhs[i], ExtendNode(lhs[i], rhs[j]));

else
tmp← Suffix(lhs[i],N− j− 1);
foreach node in tmp do

lhs[N− 1]←
CombineNodes(lhs[N− 1], ExtendNode(node, rhs[j]));

end

end

end

end

Procedure ExtendRdfa

data structure to achieve ith-prefix behavior. It is a simple matter of changing
ExtendNode(a, b) to ExtendNode(b′, a′) where a′ and b′ are reversals of a and b
respectively (this will drop elements from the front of reversed b, i.e., from the
end of b).3 But since a and b must have been created by modified ExtendNode

then we do not actually need to perform the reversal. The only remaining thing
to do is to reverse the final result before using it (e.g., presenting to the user).

Another interesting observation is that we expect the size of d1 to be far more
important for the efficiency of the algorithm than the size of d2 (which hope-
fully in many cases will be shared). This has a quite interesting consequence
with respect to Pre∗ and Post∗ computations. The former generates mostly
constraints of the form: a⊗ x ≤ y where x and y are variables and a is usually
a single character word (corresponding to an abstraction of a single action). In
other words, our abstract domain for ith-suffix should perform quite well when
solving such constraints. Similarly, in Post∗ computation we usually generate
a lot of constraints of the form: x ⊗ a v y, i.e., exactly what we would expect
to be less efficient. However, the discussion becomes more complex due to the
fact that push-rules result in the constraints of the form: x⊗ y ⊗ a v z (Post∗)
or a⊗ x⊗ y (Pre∗), which means that the actual performance will depend very
much on the specific program (and the number of constraints of either type).
Furthermore, the situation looks quite different once we use our data struc-
ture for ith-prefix computations, since the order of arguments for ExtendNode

3We are ignoring here the additional arguments necessary for memoization.
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is swapped. In Section 7.5 we will present some benchmarks that show the dif-
ferences in performance depending on whether we use Pre∗, Post∗ and ith-suffix
or ith-prefix.

7.4 Reachability

Once we have the Apost∗ (or Apre∗) weighted automata for all processes (an-
notated with the state identifiers of the global RDFA), we can start reasoning
about reachability of global configurations in our system. Since we use DFAs,
one of the intuitive ways of checking their intersection could be the product
construction of DFAs (done in a way that enforces synchronization on the right
actions). However, in our case it is not clear how we could handle constraints
due to message passing. What is more, we are not actually interested in the
whole automaton resulting from the product construction — we only want to
check whether there is at least one feasible trace. Therefore, we have decided
to create a specialized search procedure that tries to find a trace exploring the
DFAs in a depth-first manner. An additional advantage of this approach is that
we can often terminate before exploring the whole state space.

Let us consider n DFAs (from n processes and the corresponding Post∗ or Pre∗

computations). For the following we assume, without loss of generality, that the
sets of variables used in each of the summarizations are disjoint. Now we can
define the global state of the system of n processes as 〈q1 · · · qn, σ〉, where σ is
the set of constraints. Moreover, when exploring possible transitions, we use σ
to check whether the current trace is feasible and update it with new constraints
as we traverse the conditions or perform pattern matching of communication.
We define our search in terms of two inference rules (for synchronization and
condition actions respectively).

qi
a−→ q′i qj

b−→ q′j (c, σ′) = match(a, b)σ
if sat(σ ∪ σ′)

〈q1 · · · qi · · · qj · · · qn, σ〉
c−→ 〈q1 · · · q′i · · · q′j · · · qn, σ ∪ σ′〉

qi
a−→ q′i if sat(σ ∪ {a})

〈q1 · · · qi · · · qn, σ〉
a−→ 〈q1 · · · q′i · · · qn, σ ∪ {a}〉

Whenever we perform matching or try to evaluate a condition we need to take
into account the constraints. Note that when talking about the constraints we
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are only interested in whether the trace is feasible, which in this case amounts
to checking whether the constraints might have a solution.

Using those two rules we can explore the possible executions of the system
and since our languages are finite, this process always terminates. We can
terminate the search before exploring all possible states, if either of the two
following conditions holds. The first one is finding a final global state, i.e., a
state 〈q1 . . . qn, σ〉 where qi ∈ Fi for all 0 < i ≤ n and σ is satisfiable. The
second one is performing i communication actions using the above rules. The
latter one may be surprising, but it follows from the fact that we are only precise
up to i communication actions. In both of these cases we have to conclude that
the intersection might not be empty. Otherwise, we can conclude that the
configurations of interest are unreachable.

It is interesting to note that having a specialized search procedure makes it
possible to avoid the use of the shuffle operator and thus lifts the restriction
that a channel is used by exactly two processes.

A natural choice for checking the satisfiability of the constraints during the
search is to use a SAT or SMT (Satisfiability Modulo Theories) solver. However,
before we can use such a solver for our purposes we need to solve the already
mentioned problem of variable assignment (due to the receive action). This
is not a new problem and has been encountered before [32, 38]. The solution
employed there was to use the SSA (Static Single Assignment) [21] form for the
trace or the program itself. Our situation is somewhat similar — even though
the summarizations for all the processes represent sets of traces, at any time
during the search we are considering only a single trace of the whole system.
This makes it possible to perform the transformation on-the-fly during the search
procedure and since any given trace is linear we can avoid using joining functions
(often denoted as φ functions).

The same problem could also be caused by assignment to a variable other than
through the receive action. Currently we simply disallow such a situation. A
possible solution would be to extend the language of actions, however, since it
would not count to the limit i, one must be careful to ensure the termination.
Another possibility would be to avoid using such a variable in the constraints
captured by the abstract domain.
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7.5 Experiments

We have implemented our abstract domain in C++ and integrated it with our
pushdown systems library (we will talk about it more in Chapter 8). In this sec-
tion we will have a quick look at a few interesting benchmarks and performance
comparisons. We will mainly look at constraints corresponding to computing
the Post∗ of the entry of the main procedure or the Pre∗ of its exit point.

First, we will consider a simple program that nicely presents the exponential
nature of the problem:

proc main
i f

: : true => a ?( x )
: : true => b?( x )
: : true => c ?( x )

f i ;
i f

: : x < 0 => c a l l main
: : ! ( x < 0) => skip

f i ;
d ! ( )

end

When looking just at the synchronization actions the program corresponds to
the words of the form (a|b|c)ndn where n ∈ N. In our case it is slightly more
complex since we also capture the conditions.

In the Table 7.1 we use Post∗ to generate a set of constraints and present
some statistics about the part of RDFA representing the weight summarizing
the whole program (i.e., going from the entry to the exit point of the main

procedure).4 This should clearly present that explicit representation of all the
traces is not really a feasible approach.

For comparison the Figure 7.1 presents the time of solving the constraints aris-
ing from running the Post∗ and Pre∗ algorithm. Note that the time is not
linear in the size of the i parameter (which is to be expected from our complex-
ity analysis). However, it is growing far slower than the number of traces we
represent.

Now let us also consider examples illustrating the difference in performance of

4We are presenting the result in form of a table instead of a graph due to the fact that the
blowup in the number of traces is so significant that a graph would be simply unreadable.
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Nodes A-Transitions B-Transitions Traces

5 15 18 6 17

10 53 62 19 242

15 110 138 41 4373

20 183 227 64 59048

25 280 358 101 1062881

30 388 492 134 14348906

Table 7.1: Statistics for the summarization of the first example.

Figure 7.1: Performance of the domain for the first example.
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Figure 7.2: Performance of the domain for the second example.

Post∗ and Pre∗ depending on whether we use the ith-prefix or ith-suffix abstrac-
tion. In the first one, we have a loop that is the source of almost all traces:

proc main
a ?( x ) ;
do

: : x < 0 => a ! ( )
: : 0 < x => b ! ( )

od
end

The graph in Figure 7.2 presents the solving time against the length of i pa-
rameter. As we expected in the previous section, the shape of the constraints
makes the ith-suffix for Pre∗ and ith-prefix for Post∗ much faster than their
counterparts.

However, the picture looks slightly different if we consider a program close
to the first example (we simply remove the final send action over channel d).
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Figure 7.3: Performance of the domain for the third example.

proc main
i f

: : true => a ?( x )
: : true => b?( x )
: : true => c ?( x )

f i ;
i f

: : x < 0 => c a l l main
: : ! ( x < 0) => skip

f i
end

The time required to solve the equation system is presented in the Figure 7.3. In
this situation there is almost no difference between the ith-prefix and ith-suffix
for Post∗ and the constraints arising from Pre∗ require more time to solve.

Our conjecture is that whenever a program has a very high number of procedure
calls compared to ordinary statements, then the ith-prefix for Post∗ might in
fact be very close to the ith-suffix (or maybe even better). However, one should
note that situation is usually not very common — most programs have far more
ordinary statements than procedure calls, and in those cases ith-prefix should
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perform better in Post∗ computation than ith-suffix. Interestingly the results
for Pre∗ are quite similar to the previous example. Our conjecture is that
the constraints corresponding to push-rules are slightly different than in case of
Post∗ — there are two variables on the left-hand side that correspond to “large”
RDFAs, whereas in the Post∗ one of them often corresponds to some smaller
language. Thus reordering the operations might result in a more significant
difference in this case.

There are still a number of optimizations that may be performed. For instance,
introducing caching between calls to ExtendNode or CombineNodes might be
beneficial. Furthermore, finding the suffixes in ExtendRdfa could be cached
as well. Apart from that, there is a number of micro-optimizations that could
improve the performance of the domain (more specialized data structures, less
allocation in the inner loops, etc.). We also note that our algorithm for fixed-
point computation could be significantly improved — it would not change most
of the above comparisons, but should be able to offer some speedup. Some of
those opportunities include iterating over the reverse post-order of the constraint
graph, or computing the strongly-connected components of the graph, etc. [59].

7.6 Conclusions

Message passing (with all its variants) is one of the main approaches used for
concurrency. Therefore, the ability to analyze and verify systems using message
passing is increasingly important. This chapter continues the line of work on
using communicating pushdown systems for verification of recursive processes.
We have extended the ith-prefix/suffix abstraction with symbolic encoding of
messages along with various constraints imposed on them. This makes it more
efficient than the straightforward adaptation to message passing and allows to
handle systems where the domain of messages is infinite. Furthermore, the inclu-
sion of constraints enables us to express that some communication can happen
only if certain conditions (e.g., referring to earlier communication) are satisfied.
The domain also admits a very flexible way of adjusting the precision and the
performance of the analysis. Using a SAT/SMT solver to handle the constraints
means that we can use various combinations of theories, which gives some flexi-
bility with respect to the domain of messages as well as the possible constraints.
By combining the domain with the communicating pushdown systems we gain
the ability to analyze recursive programs and easily obtain analysis results for
various queries based on the stack contents of the given process.

In the future we would like to perform more experiments and invest more time
into evaluating the scalability of our implementation. Moreover, the current
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approach, even though it admits variables over infinite domains, is still con-
sidering only finite languages of communication actions. Thus, another line of
work could be focused on trying to encode some constraints over the contents
of the messages while considering more than finite languages.



Chapter 8

Library for pushdown systems

In this chapter we will present a new approach to the implementation of Pre∗

and Post∗ algorithms as well as a new C++ library for algebraic analysis based
on weighted pushdown systems. The new algorithms allow for computation of
Apre∗ and Apost∗ automata without transforming the program representation
to pushdown rules — instead they are adapted to work on a graph similar to
the ordinary program graphs often used for static analysis. The library itself
includes a number of improvements over other similar projects including the
ability to create symbolic constraint systems and thus allowing the use of various
constraint solvers (e.g., the ones based on Kleene iteration or Newton’s method).

The structure of the chapter is as follows. First of all, in Section 8.1 we will
show the motivation behind the need for a new library and discuss the its main
objectives. Then, Section 8.2 will present the architecture of the library as well
as some of its design decisions. In Section 8.3 we will focus on describing and
discussing the main ideas behind the graph-based algorithms for Pre∗ and Post∗.
We evaluate our library in Section 8.4 discussing its main advantages as well
as comparing its performance to a well-known library for WPDS. Finally, we
conclude in Section 8.5.



126 Library for pushdown systems

8.1 Introduction

Pushdown systems and weighted pushdown systems have been already imple-
mented and used in various tools. For this reason starting a new implementation
for pushdown systems might seem unnecessary. Initially we shared that view
and used a well-known Weighted Automata Library (WALi) [48]. However, it
turned out that it was simply not flexible enough for our purposes. First of all,
WALi is built around the algorithms presented in [66, 67] which combine the
saturation procedure for constructing the Apre∗ and Apost∗ automata with the
least fixed-point computation of the weights corresponding to the transitions of
the automata. Thus it requires that the abstract domain satisfies the ascend-
ing chain condition.1 This design decision has some profound consequences, for
instance, it makes it difficult to use different constraint solvers, e.g., based on
the Newton’s method [27]. Furthermore, it makes it necessary to equip every
pushdown rule with a concrete weight from the abstract domain. This makes it
difficult to share the structure of the pushdown system between analyses over
different abstract domains. Finally, the WALi library is not thread-safe — it
is not safe to perform multiple Pre∗ or Post∗ computations at the same time.
In many cases this is not a significant limitation, but in case of CPDS, which
are quite natural to parallelize, it seems wasteful to not be able to fully utilize
today’s multi-core systems.

Based on those main issues we have decided to create a new library that would
lift all of the above limitations and provide us with more flexibility to experi-
ment. The main goals of our implementation are characterized below.

Modular: To be able to lift the above described restrictions and allow the user
more flexibility in how he/she uses the library, it should be very modular.
For instance, we want to allow using different types of constraint systems
as well as various constraint solvers. Furthermore, it should be possible
to use one pushdown system (i.e., one model of a program) and use it for
performing different Pre∗ and Post∗ computations.

Thread-safe: Most of modern computers have at least dual-core CPUs with
quad-cores becoming more and more popular. Our library should be safe
to use in a multi-threaded environment. This is especially interesting for
CPDS since the analysis stage performs the Pre∗/Post∗ computations and
constraint solving independently for each process.

Efficient: Performance of the library is an important consideration since push-
down systems are often used for whole program analysis. Thus the size of

1Or at least that the Kleene iteration terminates — it should be possible to use some form
of a widening operator in place of ⊕.
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the problems might be quite large and good scalability is essential.

We believe that our implementation accomplishes all the above goals. In the
next section we will present more details about the architecture and design
choices of the library as well as the algorithms it is based on.

8.2 Architecture

The library consists of three main components:

Pushdown system: The class representing a pushdown system contains some
representation of all the pushdown rules. It provides the ability to add
new pushdown rules, as well as perform the Pre∗ and Post∗ computations
that produce a constraint system and a Apre∗ or Apost∗ automaton.

Constraint system: Represents the constraints generated by Pre∗ or Post∗

computations. Since we might have various kinds of constraints (e.g.,
commutative, non-idempotent, etc.) we allow the user to supply the spe-
cialized data structure for constraint system.

Constraint solver: Since we want to allow various constraint solvers (includ-
ing ones where the standard Kleene iteration does not terminate in a finite
number of steps), the user is free to supply the constraint solver to be used.

Let us discuss the first component, namely the pushdown systems. One of
the main factors that influenced its design was the internal representation of
pushdown rules/pushdown system. Most libraries for pushdown systems operate
on the pushdown rules and thus require the user to supply a set of such rules.
However, in many situations the program is already represented available as,
e.g., program graph. So converting it to a set of pushdown rules amounts to
duplicating the information about its structure.

We wanted to avoid this problem and one of the main design decisions is that
all the pushdown rules are stored as a graph. The library is polymorphic in
the type of the graph and so the user is able to supply his/her own graph
type (as long as it satisfies a few requirements). This makes it possible to use
existing program graphs/flow graphs with the library. We believe that this is an
important contribution. By making it possible to use a program graph directly
to represent the pushdown system, we are able to not only save space due to
avoiding the duplication, but we also save time that would be spent on creating
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the pushdown system (since the graph is already available). Furthermore, this
makes it easier for existing projects to experiment and use the library.

Of course, this graph representation would not be very useful if the Pre∗ and
Post∗ algorithms could not efficiently use it for computation. Fortunately it is
not only possible but also quite efficient to do so. In Section 8.3 we present a
new approach to the Pre∗ and Post∗ algorithms that make it possible to perform
the computations directly on the pushdown graph. They are worklist-based
algorithms that intuitively can be thought of as backward (in case of Pre∗) or
forward (in case of Post∗) graph traversals.

Another important consideration is that we want to be able to use the same
pushdown system for different analyses. Therefore, Pre∗ and Post∗ computa-
tions do not modify anything in the data structures representing the pushdown
system (i.e., they only have “read-access” to it). This immediately makes it pos-
sible to run multiple concurrent Pre∗ and Post∗ computations using the same
pushdown system. Apart from that, both the Pre∗ and Post∗ procedures create
a symbolic constraint system. Instead of using concrete weights we use symbolic
identifiers of the corresponding pushdown edge or a special constant such as 1̄.
The advantage of this solution is that it is possible to run Pre∗ or Post∗ to cre-
ate the constraint system without deciding what analyses to actually run. The
user is then able to reuse the already computed constraint system over various
abstract domains. It is possible, for instance, to compute first a result of a less
precise analysis and only resort to a more precise one if the first was not enough
to prove the property of interest. In existing libraries like WALi, it would be
necessary to either compute both of them in the first place, or run Pre∗ or Post∗

twice.

This brings us to the constraint solvers. Since the constraint system can be
concurrently used by different solvers, they all must treat it as immutable. This
again allows to utilize multiple threads, without any overhead of synchroniza-
tion. We provide a standard least fixed-point solver based on Kleene iteration.
But it is also possible to use solvers such as the one presented in the Chapter 9
that is based on the Newton’s method [27].

Finally, it is important to note that there is a cost to be paid for the modularity
and thread-safety. In a few places, the fact that both Pre∗ and Post∗ treat the
pushdown system in a “read-only” manner means that some of the information
that could be stored directly in the pushdown graph, must be stored in some
separate data structures (we use mainly hash tables for that purpose). Sim-
ilarly since the constraint systems should support different abstract domains
and solvers, they represent the constants symbolically and cannot include the
concrete values from the domain. However, we believe that this is a small price
to pay for the additional flexibility and the ability to take advantage of mod-
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ern hardware. Fortunately, as we will see in Section 8.4 the performance hit is
acceptable and we believe well worth the additional benefits of the library.

8.3 Graph-based algorithms

When software verification first started using techniques based on pushdown sys-
tems, they were mainly applied to boolean programs. The control locations are
used to model the valuation of global variables and stack alphabet to model the
program location (and return addresses of procedures), as well as the valuation
of local variables. In this setting it is often impractical to use explicit represen-
tation of pushdown rules and thus symbolic techniques (based on BDDs [12])
were developed in [72]. However, the approach is not really suitable when one
wants to go outside of finite abstractions (recall control locations and stack al-
phabet must be always finite). This is one of the main reasons for the weighted
pushdown systems, which annotate each rule with a semiring value. This al-
lows for using a wide variety of abstract domains including the ones that are
not finite. One of the interesting consequences is that when using WPDS it is
quite common to have only one control location and express all the dataflow
information in the abstract domain. More importantly, this makes the two rep-
resentations of the program, namely as a program graph or a set of pushdown
rules, very similar to each other. This realization is one of the motivations for
our new approach to the Pre∗ and Post∗ algorithms.

Let us first consider an example of the above observation using the following
example:2

proc main
a ?( x ) ;
c a l l f ;
b ! ( x )

end

proc f
i f

: : x < 0 => c a l l main
: : ! ( x < 0) => skip

f i
end

2We have created a simple front-end for a variant of NanoPromela [3] extended with pro-
cedure calls.
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Figure 8.1: Program graph corresponding to the example.

We have depicted its corresponding program graph on Figure 8.1.

In order to use WPDS techniques, we could create the following pushdown rules.

〈p, 1〉 x < 0
↪−−−→ 〈p, 2〉

〈p, 1〉 !(x < 0)
↪−−−−−→ 〈p, 3〉

〈p, 2〉 call main
↪−−−−−−→ 〈p, 5, 4〉

〈p, 3〉
skip
↪−−→ 〈p, 4〉

〈p, 4〉 ↪−→ 〈p, ε〉

〈p, 5〉 a?(x)
↪−−−→ 〈p, 6〉

〈p, 6〉 call f
↪−−−−→ 〈p, 1, 7〉

〈p, 7〉 b!(x)
↪−−−→ 〈p, 8〉

〈p, 8〉 ↪−→ 〈p, ε〉
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Figure 8.2: Pushdown graph corresponding to the example.

Note that these are really nothing else than the set of edges of the above pro-
gram graph (with some additional information, such as return addresses). This
motivated us to try and reformulate the Pre∗ and Post∗ algorithms in terms
of graph traversal, in order to reuse the existing program representation. As
we will see below, it is not only possible to do that but also makes efficient
implementation much more straightforward.

First of all, let us introduce the notion of a pushdown graph that represents all
the pushdown rules. In general a node in this graph is identified by an element
from P × (Γ ∪ {ε}). Since we also need to handle the push rules (which have
two stack elements on the right-hand side), we additionally have that an edge
in the graph can be labeled with a stack element (e.g., the return address). For
instance, if there is a push rule 〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉 then we will have an edge
from (p1, γ1) to (p2, γ2) that is labeled with γ3. Clearly with this “encoding”
into a graph form we do not lose any information. We present the pushdown
graph for the example in Figure 8.2. Of course, it is essential to create Pre∗

and Post∗ algorithms that are able to use this representation directly (otherwise
there would be little benefit from it).

Furthermore, note that most existing flow graphs can be interpreted in this
manner without any modifications. In other words, it is often possible to use
the original program graph and simply interpret it in a slightly different way.
The main difference is in the handling of call-edges, which in a program graph
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go to the return point (and are labeled with the call to the right procedure),
whereas in a pushdown graph, to the entry point of the corresponding procedure
(and are labeled with the return point). Therefore, all the information is already
available in the program graph and in treating the call-edges in a special way,
we obtain a pushdown graph. This obviously makes it possible to reuse the
existing representation of the program and use it efficiently for analysis using
techniques based on pushdown systems.

Below we will describe our Pre∗ and Post∗ algorithms that are capable of work-
ing directly on the pushdown graphs. For clarity of presentation, for now we
will ignore the problem of generating the constraint system. This is a straight-
forward extension (we simply add a corresponding constraint when trying to
add a transition) and is not really different from the usual approach taken by
CPDS or WPDS.

8.3.1 Pre∗

Let us first consider the case of Pre∗. Recall that the saturation procedure can
be characterized by the following rule:

If 〈p1, γ〉 ↪→ 〈p2, w〉 ∈ ∆ and p2
w−→∗ q in the current automaton (for

some q ∈ Q) then add a transition p1
γ−→ q.

It should be clear from the above that adding one transition will often make it
possible to apply the above rule with other pushdown rules and thus add some

more transitions. For instance, if we have p3
γ3−→ q in the automaton and:

〈p1, γ1〉 ↪→ 〈p2, γ2〉 ↪→ 〈p3, γ3〉

then we will first add a transition p2
γ2−→ q. This in turn will make it possible

to add p1
γ1−→ q. If we think about the pushdown system as a graph, we simply

perform a backwards traversal and add transitions at each visited node. The
only challenge are the push-rules, which need a bit special handling — this is
the only situation where we need to check for existence of a path instead of
a single transition. Since it is easier to present the problem with an example,
consider the following rule:

〈p1, γ1〉 ↪→ 〈p2, γ2γ3〉

which will be represented as a following edge in the pushdown graph:

(p1, γ1)
γ3−→ (p2, γ2)
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If the traversal is at the right node, i.e., (p2, γ2) a natural thing to do would be to

insert the transition p1
γ1−→ q2 for every q2 such that there exists: p2

γ2−→ q1
γ3−→ q2

and continue with the traversal from (p1, γ1) with q2 being the new target.

However, this can cause us to miss some transitions. If the transition q1
γ3−→ q

(for some q) is added after visiting (p2, γ2) we might miss adding p1
γ1−→ q. At

the same time, for performance reasons we would prefer to avoid traversing the
graph multiple times. To solve the problem, we simply add some additional
information to the intermediate node (in this case q1), namely that there is a
“suspended traversal” that should be resumed once a transition with the given
alphabet element (in this case γ3) is added to the intermediate state. Once we
add such a transition, we should examine all such suspended traversals. This
leads to a worklist-based algorithm where we keep track of the current edge in
the pushdown graph as well as the current target state in the automaton (i.e.,
the target state of the transitions that we are adding). Finally, it is nice to note
that if the transition we are about to add has already been added, then we can
simply stop the traversal and continue with the next worklist element (i.e., since
we already added the transition before, we must have also added the relevant
worklist elements as well).

Having the high-level description, let us have a look at some of the details of
the algorithm. It works in three stages:

1. Populating the worklist based on the initial automaton.

2. Handling the pop-rules.

3. The main worklist-based graph-traversal loop.

The first stage examines transitions of the initial automaton and based on that
initializes the worklist. We only need to consider the outgoing transitions of
the initial states, lookup the corresponding node in the pushdown graph and
push all the in-edges3 along with the target state of the automaton transition
into the worklist. If any of the edges in the pushdown graph represents a push
rule, we additionally need to check if the automaton contains another transition
matching the return location and only then add it to the worklist.

Handling of pop-rules is quite straightforward. We need to find all the vertices
in the pushdown graph that correspond to a pair in P × {ε} and examine all
their predecessors adding the corresponding self-loops on every initial state. Of
course after each addition of a new transition, we should update the worklist as
above.

3Since in Pre∗ we perform backwards traversal.
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The third stage is the most interesting and complex — it expresses the main
saturation procedure. We proceed as long as the worklist is not empty and at
each step:

1. We pop a worklist element consisting of an edge e in the pushdown graph
and a target state s (of the automaton).

2. We look at source node of the edge e with the corresponding control loca-

tion p and stack alphabet γ and try to add p
γ−→ s to the automaton.

3. If the transition already exists we continue with the next worklist element.
Otherwise, we check if the current source of the added transition has some
suspended worklist elements and if so we add them to the worklist (of
course checking if the alphabet element matches).

4. Finally, we look for all the predecessors of the source node of the current
edge.

• If the predecessor’s edge is not a push rule we simply add it to the
worklist with the same target state.

• If it is a push rule, then we add it to the suspended list of the current
target state. If additionally there is a corresponding path in the
automaton, we can add the relevant elements to the worklist.

The pseudocode for the algorithm is available in Appendix C.1.

8.3.2 Post∗

Some of the main ideas behind the graph-based algorithm for Pre∗ are also
applicable to the case of Post∗ computation. First, let us recall the saturation
procedure for Post∗.

For every pushdown rule r in ∆:

• if r = 〈p, γ〉 ↪→ 〈p′, ε〉 and there is a path ρ = q
γ
L99 p then add a transition

q
ε←− p′

• if r = 〈p, γ〉 ↪→ 〈p′, γ′〉 and there is a path ρ = q
γ
L99 p then add a transition

q
γ′←− p′
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• if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉 and there is a path ρ = q
γ
L99 p then add

transitions

q
γ′′←−− qp′,γ′ qp′,γ′

γ′←− p′

The most fundamental difference compared to Pre∗ is that, in terms of push-
down graph, we are doing a forward traversal. Another quite obvious difference
is the fact that we have ε-transitions in the automaton (not in the initial one, but
we add them during the saturation procedure and must take them into account
while checking for existence of paths). However, the basic structure of the algo-
rithm remains the same — we make use of a worklist of the current pushdown
edge (that corresponds to a pushdown rule) and a state in the automaton that
will be a target for the added transition(s). Since we only check for existence
of the left-hand side of pushdown edges and they always have just one stack
element, we do not need any notion of suspended traversals that were necessary
in Pre∗ case for matching paths of two transitions in case of push rules. On the
other hand, to efficiently handle the ε-transitions (i.e., we do not want to check
and follow ε-transitions all the time) for each state we keep a set of states that
are its ε-predecessors (i.e., states from where one can make an ε-transition to
the state in question).

The first stage of the algorithm is almost the same as in the case of Pre∗ — we
initialize the worklist based on the transitions existing in the initial automaton.
Then we go on to the main main saturation loop — we pop a pushdown edge e
and the corresponding target state s from the worklist and have two choices on
how to proceed.

The first case is when the edge e is not labeled with a return address (i.e., the
corresponding rule is not a push-rule and has either zero or one stack element
on the right-hand side). We then proceed as follows:

• We examine the target node of the edge e and its corresponding control
location p and an element of the stack alphabet γε and try to add the

transition p
γε−→ s.

• If it has already been added, we continue with the next worklist element.

• Otherwise, if the added transition is not an ε-transition we simply update
the worklist with all the pushdown edges originating at node corresponding
to the (p, γε) pair. If we have added an ε-transition, we also add the source
state of the newly added transition to the set of ε-predecessors of target
state. Furthermore, we add to the worklist all edges/rules that might
fire due to the out-transitions of the target state (of our newly added
transition).
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The second case is when the edge e is labeled with a return stack element (i.e.,
it corresponds to a push-rule). This situation is slightly more complex because
we are adding two transitions (neither is an ε-transition) and potentially a new
state to the automaton. Let the target of the edge e correspond to some control
locations p and stack element γ1, while e itself is labeled with γ2. We try to add

the state qp,γ1 and two transitions p
γ1−→ qp,γ1 and qp,γ1

γ2−→ s. Therefore, when
updating the worklist we need to look at transitions outgoing from both the
state p and the intermediate state qp,γ1 . This is essential, because there might
be an ε-transition into the latter state and the worklist must be populated with
all edges/rules that might applicable due to that (at this place we use the set
of ε-predecessors stored for each intermediate state).

The algorithm stops once the worklist is empty — which is inevitable since
there is only a finite number of transitions that can be added and we detect the
situation of already existing transition.

The pseudocode for the algorithm is available in Appendix C.1.

8.4 Discussion

In this section we will briefly discuss the main advantages and contributions
of our graph-based saturation algorithms as well as its implementation. We
believe that one of the most important advantages is the ability to reuse the
representation of a program. Most other implementations of the saturation
procedures, require the user to convert the program into a set of pushdown
rules. In real applications this might be wasteful — all the information about the
program might have to be duplicated. Our graph-based approach is capable of
using some of the possible representations of a program directly. Of course, there
are some restrictions, but most program graphs will have enough information
to be used in this setting without any modifications. The significance of that is
more pronounced if we consider that for good results one often wants to perform
whole-program analysis when using pushdown systems, which results in quite
large systems. Furthermore, a pushdown graph should be quite efficient, since
the main saturation procedure is actually very close to a graph traversal. Some
of the other approaches store this information in additional data structures, such
as a hash table4. This results in higher constant factors due to cache locality
as well as additional overhead of maintaining a hash table (or two if we want
to run both Pre∗ and Post∗ algorithms) with an entry for each pushdown rule.
Thus, we believe that even though the approach does not provide an asymptotic

4WALi [48] takes this approach.
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improvement, it is an important contribution that makes implementation of the
technique in real world software more likely and more efficient.

Other important contributions include the details of our implementation. We
believe that the most important ones are:

• Modularity — building an automaton is separated from the constraint
generation. This might seem at first to be a minor advantage, however,
it makes it possible to use separate constraint solvers such as the one
presented in Chapter 9. This is simply not possible with the approach
taken by WPDS [66, 67] and WALi library [48]. Therefore, this small
improvement results in our ability to use some abstract domains that
simply cannot be handled otherwise.

• Symbolic constraint systems. This allows to create a constraint system
for the given pushdown graph once and calculate the solutions for various
analyses (using different constraint solvers) without repeating the satura-
tion procedure. Combined with thread safety it allows one to perform the
analyses in parallel.

• Thread-safety — we believe that it is an important advantage when dis-
cussing analyses based on CPDS, since at first the analysis problems of
different threads are completely independent and thus can be performed
at the same time.

• Polymorphism allows the library to be used by other software tools more
easily. One of the examples is that the library will work with any type of
graphs, as long as it satisfies some basic requirements. Similarly it allows
the user to specify the types of the data structures used to identify the
control locations, stack alphabet, etc.

One of the more important questions to ask is how much the additional flexi-
bility will hurt the actual performance of the algorithms. To test that we have
created a synthetic benchmarks and generated pushdown graphs using both our
implementation of graph-based algorithms and WALi [48]. For that we have
generated a few programs of various sizes that would allow us to perform some
preliminary assessment of the performance and scalability of our library (in Ap-
pendix C we give a short description on the generated programs). Our library
separates the constraint solver from the automata construction thus measur-
ing only the time spent on the latter is quite straightforward. However, we
do include the time to create the constraint system in the benchmark. In case
of WALi (which combines the two) we have created a trivial abstract domain
that should not have any influence on the benchmarks. We have created two
scenarios far WALi benchmark — one that measures just the Pre∗ and Post∗
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Figure 8.3: Performance of Post∗.

Figure 8.4: Performance of Pre∗.
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computations and a second one that additionally includes the time to create the
pushdown system. Note that the second scenario includes our code to traverse
the program and add the rules, thus it should not be considered as a benchmark
of WALi itself. However, we do believe that it gives an additional insight into
the cost of recreating the program in the form of a set of pushdown rules.

The results are presented in Figure 8.3 for Post∗ and in Figure 8.4 for Pre∗.
As we can see WALi slightly outperforms our implementation in the pure Pre∗

and Post∗ computations. But once we also factor in the cost of creating the
pushdown system, our library performs better — as we could expect in situations
when the program graph is already available the ability to use it directly is
quite beneficial. Furthermore, we believe that there is still a number of possible
optimizations that we could perform to make our library more efficient (e.g.,
using specialized data structures, avoiding some of the allocation, various other
micro-optimizations, etc.)

8.5 Conclusions

In this chapter we have presented a new approach to thinking about and imple-
menting Pre∗ and Post∗ algorithms. Some of the ideas (e.g., using hash tables
to match a pair of control location and stack element to match rules that have
it on right-hand side or left-hand side) have been already present in [48]. How-
ever, we are advocating a different way of approaching the whole problem that
is based on reusing the internal representation of a program and making the
algorithms work directly on the program graphs, without the need to convert
them to sets of pushdown rules. We believe that this contributes to making the
technique easier to use and integrate into existing tools. Moreover, separating
the constraint solving from computing the Apre∗ and Apost∗ automata opens up
possibilities of performing new analyses based on, for instance, the generalized
Newton’s method [27] (we discuss an experimental solver for it in Chapter 9).
Finally, this additional flexibility does not necessarily need to come at a high
cost. Our preliminary benchmarks show that the performance of Pre∗ and Post∗

is quite competitive when compared to an established library such as WALi [48].
Furthermore, the performance of larger tools taking advantage of this approach
should also be improved by the ability to avoid creating a copy of the program
in the form of pushdown rules, as well as the ability to reuse the symbolic con-
straint system to perform various different analyses without recomputing the
Pre∗ and Post∗.



140 Library for pushdown systems



Chapter 9

Implementation of Newton’s
method

In this chapter we will describe an experimental solver based on Newton’s
method generalized for ω-continuous semirings [27, 28, 57]. One of the main
advantages is that this technique makes it possible to compute the least fixed-
points of non-linear equations whenever one is able to solve linear systems. For
instance, it is possible to compute the least-fixed point of equation systems over,
so called, counting abstractions, which do not necessarily satisfy the ascending
chain condition but are commutative (i.e., the ⊗ operator is commutative). Note
that this is quite different than techniques such as widening, which ensure the
termination by over-approximating the least solution.

We will first recall some of the basic concepts behind the Newton’s method
in Section 9.1. Then, in Section 9.2, we describe the algorithms that we use
for solving the equation systems. We focus on commutative semirings and also
show that if they are additionally idempotent, the algorithms can be consid-
erably simplified. Then in Section 9.3 we present an implementation of the
counting semiring using semilinear sets. We discuss both the data structure
and algorithms for the abstract domain as well as some of the challenges we en-
countered. Furthermore, we introduce some possible abstractions of semilinear
sets that are significantly faster in practice. Finally, in Section 9.4, we present
some benchmarks of our solver, again focusing mainly on semilinear sets and
their abstractions. We conclude the chapter in Section 9.5.
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9.1 Introduction and preliminaries

In this section we provide a brief introduction to the Newton’s method, follow-
ing [27] (which we also recommend for further details about the technique). We
will also discuss the basic approaches to computing the Newton’s sequence for
the cases when the semiring is:

• not necessarily commutative or idempotent,

• commutative but not necessarily idempotent,

• both commutative and idempotent.

But first let us introduce some basic concepts that we will use throughout the
chapter.

9.1.1 Semirings and polynomial equations

We have introduced the notion of a semiring in Definition 2.16 (Chapter 2). In
this chapter, for clarity of the presentation, we will often write ab for a ⊗ b.
Recall that a semiring is ω-continuous if additionally:

• The relation v:= {(a, b) ∈ S × S | ∃d ∈ S : a⊕ d = b} is a partial order.

• Every ω-chain (ai)i∈N has a supremum wrt. v denoted as supi∈Nai.

• Given arbitrary sequence (bi)i∈N and defining∑
i∈N

bi := sup{b0 ⊕ · · · ⊕ bi | i ∈ N}

for every sequence (ai)i∈N, every c ∈ S and every partition (Ij)j∈J of N:

c

(∑
i∈N

ai

)
=
∑
i∈N

(cai),

(∑
i∈N

ai

)
c =

∑
i∈N

(aic),
∑
j∈J

∑
i∈Ij

ai

 =
∑
i∈N

ai
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In an ω-continuous semiring we define the Kleene-star (−)∗ : S → S as

a∗ =
∑
k∈N

ak = sup{1̄⊕ a⊕ a2 ⊕ · · · ⊕ ak | k ∈ N} for a ∈ S

In the following brief definitions, we use S to denote an ω-continuous semiring
and X as a finite set of variables:

• An monomial is a finite expression of the form a1X1 · · ·Xkak+1, where
k ∈ N, a1, . . . , ak+1 ∈ S and X1, . . . , Xk ∈ X .

• A polynomial is a finite sum of monomials.

• A power series is an expression of the form
∑
i∈I mi, where I is a countable

set and mi is a monomial for every i ∈ I.

9.1.2 General case

From the point of view of an implementer, a useful way of thinking about
the Newton’s method is based on the idea of considering an equation system
as a context-free grammar and the computation of Newton’s sequence as an
unfolding of that grammar [27, 58]. The i-th element of the Newton’s sequence
corresponds to the sum of yields of derivation trees of dimension up to i. We
will use X〈i〉 and X [i] to denote a derivation tree of dimension exactly i and up
to i respectively. This is best explained by an example — consider the following
equation X = aXXX + b, its corresponding unfolding is as follows (with the
base case being X〈1〉 = b):

X〈i〉 = aX〈i〉X [i−1]X [i−1] ⊕ aX [i−1]X〈i〉X [i−1] ⊕ aX [i−1]X [i−1]X〈i〉

⊕ aX〈i−1〉X〈i−1〉X [i−2] ⊕ aX〈i−1〉X [i−2]X〈i−1〉 ⊕ aX [i−2]X〈i−1〉X〈i−1〉

⊕ aX〈i−1〉X〈i−1〉X〈i−1〉

and we also have that X [i] = X [i−1] ⊕X〈i〉. First note that the unfolding gives
rise to a linear equation system, so every iteration of Newton’s method requires
solving a such a system. Using the idea of grammar unfolding immediately gives
us a basic formulation of a recursive algorithm Newton’s sequence, provided that
we are able to solve a linear equation system.



144 Implementation of Newton’s method

9.1.3 Commutative semirings

As observed in [27] when a semiring is commutative, the approach to computing
the Newton’s sequence can be expressed more succinctly. The observation made
in the paper is that the least solution for: Df |u(X)⊕v = X (where Df |u stands

for the differential of f at u) is equal to Df |∗u(v) = ∂f
∂X
∣∣∗
u

v where ∂f
∂X
∣∣
u

is
the Jacobian of the vector of the power series f evaluated at u. This allows
simplifying the Newton sequence to:

v(0) = f(0̄) v(i+1) = v(i) ⊕Df |∗v(i)(δ
(i)) = v(i) ⊕ ∂f

∂X

∣∣∣∣∗
v(i)

δ(i)

Note that we take the Kleene star of the Jacobian, which together with multi-
plying it by δ(i) corresponds to solving the linear equation system. This is based
on the idea that in the commutative case, the grammar unfolding can be seen as
a right-linear equation system. Thus the example from the previous subsection
can be seen as:

X〈i〉 = 3aX [i−1]X [i−1]︸ ︷︷ ︸
a

X〈i〉 ⊕ 3aX [i−2]X〈i−1〉X〈i−1〉 ⊕ aX〈i−1〉X〈i−1〉X〈i−1〉︸ ︷︷ ︸
b

And as known from Arden’s Lemma the least solution for an equation system
X = aX⊕b is a∗b. Note that this directly corresponds to the Newton’s sequence
presented above, where we take the Kleene star of the Jacobian matrix and
multiply it by δ(i). This correspondence to grammar unfolding also provides us
with means to compute the δ(i).

9.1.4 Commutative and idempotent semirings

When a semiring is not only commutative but also idempotent the Newton iter-
ation becomes far more straightforward. Again, following [27], the computation
of a Newton sequence can be accomplished using the following formula:

v(i+1) = Df |∗v(i)(f(0̄)) =
∂f

∂X

∣∣∣∣∗
v(i)

f(0̄)

which immediately gives us a simple iterative method to compute the Newton
sequence.
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9.2 Algorithms

In this section we will discuss how the Newton iteration can be implemented
and what is the complexity of the algorithms. As already mentioned, we will
break down the computation into two main parts — the computation of δ and
solving the linear equation system arising at each Newton iteration. Thus, the
general structure of the algorithm remains the same and we only change the
linear solver and the delta generator in order to handle the cases of different
kinds of semirings. After presenting the generic algorithm, we will focus on the
commutative cases and in a subsequent section on an interesting commutative
abstraction — semilinear sets. We will start with discussing the generic algo-
rithm and then go on to describe the linear solvers and δ computations for the
two cases.

9.2.1 Generic algorithm for Newton’s sequence

input : number of iterations N , column vector F of polynomials, column
vector of variables variables

output: column vector of semiring values values

InitLinearSolver(F, variables);

delta← InitDeltaGenerator(F, variables ) ; /* Computes δ(1) */

values ← Map (λx→ 0̄) variables ; /* Computes v(0) */

for i ∈ 1 . . . N do
update← SolveLinear(values, delta ) ; /* Computes u(i) */

delta← GenerateDelta(values, update ) ; /* Computes δ(i+1) */

values← UpdateNewton(values, update ) ; /* Computes v(i) */

end
return values

Algorithm 1: Generic algorithm for computing the Newton sequence.

The structure of the generic algorithm (Algorithm 1) is quite simple — it first
initializes the linear solver (InitLinearSolver()) and what we call the delta
generator (InitDeltaGenerator()), then it performs a given number of Newton
iterations. At each of them it solves a linear equation system (SolveLinear()),
computes a new δ (ComputeDelta()) and updates the current Newton approx-
imation (UpdateNewton()).
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9.2.2 Commutative cases

There is a lot of similarity in our approach to the two cases when the semiring
is commutative, thus this section applies to both of them.

As mentioned in the preliminaries, at each of the Newton steps one needs to
solve a system of linear equations. If the semiring satisfies the ascending chain
condition, this can be done using standard Kleene iteration. However, many in-
teresting domains do not satisfy this requirement (e.g., semilinear sets described
in Section 9.3). In those cases we compute the Kleene star of the Jacobian matrix

of the polynomials, which when multiplied by δ(i) (for the current i) constitutes
the solution to the linear equation system.

We have decided to implement the Kleene star computation in a symbolic way,
i.e., substitute a fresh variable for each constant and run the algorithm on the
resulting matrix (this can be viewed as computation over the free semiring).
This allows us to avoid computing it in every iteration — we simply substitute
the values for variables and evaluate the resulting expressions (remembering
about the constants corresponding to the fresh variables). The main advantage
of this approach is not only the ability to avoid recomputing the star of Jacobian
matrix, but it also opens a possibility of detecting common subexpressions and
avoiding recomputing them. This can be significant for domains with expensive
semiring operations.

However, computing the Kleene star over the free semiring is exponential in the
amount of space used1. We solve the problem using hash-consing [31] (one can
also think about it in terms of value numbering [16] as used in compilers or the
main idea behind Reduced Ordered BDDs [12]). Our data structure for the free
semiring is implemented as a expression tree (i.e., an AST) with the additional
invariant that we never create two identical nodes. This allows detecting when
some expressions have identical values simply by pointer equality and at the
same time reduces the memory usage since we can share the subexpressions
(and avoid copying them that causes the exponential behavior).2

We have implemented the Kleene star computation using three different algo-
rithms — the generalized Floyd-Warshall algorithm and two recursive divide-
and-conquer ones. All of them are Θ(n3); we discuss one of the recursive algo-
rithms and its running time in Appendix D.1. It is interesting to note that the
semiring expressions that arise in each of the algorithms are different, which can
have a significant impact on the performance of the solver for certain semirings.

1There is a linear number of updates of each cell, but at each such update we can more
than double the size of the expressions involved

2Obviously for this to work we require that the nodes in the AST are immutable.
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9.2.3 Non-idempotent and commutative case

In this section we will discuss the implementation of the linear solver and delta
generator for commutative (but not necessarily idempotent) semirings. When
discussing the linear solver we will focus on the variant using the Kleene star
computation. As already mentioned, it is also possible to use other techniques
such as Kleene iteration, but that requires additional properties such as the
ascending chain condition.

Since we have decided to compute a symbolic Kleene star of the Jacobian ma-
trix in order to detect some of the common subexpressions, the computation is
performed during the initialization of the linear solver and on subsequent calls
to SolveLinear() we simply evaluate the symbolic matrix using the supplied
values.

input : column vector F of polynomials, column vector variables
output: compute and store J∗ and mapR and variables for subsequent use

(JF ,mapR)← MakeFree(ComputeJacobian(F)) ;

J∗ ← ComputeStar(JF ) ;

Procedure InitLinearSolver

input : current values of variables values and current delta
output: Newton update

map← UpdateMap(MakeMap(variables, values), mapR ) ;
return Evaluate(J∗, map )× delta

Procedure SolveLinear

Following the results from [27] that were briefly presented in Section 9.1, the
procedure for updating the current Newton approximation is simply the ⊕ of
values and update vectors.

input : current values and update
output: new values

return values⊕ update

Procedure UpdateNewton

The initialization of the delta generator (Procedure InitDeltaGenerator) follows
directly from [27] (again presented in Section 9.1).
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input : column vectors: F with polynomials, variables
output: return the initial value of delta

return Evaluate(F,variables, 0̄)

Procedure InitDeltaGenerator

input : column vectors: values with the current values and update with the
current Newton update

output: column vector of semiring values corresponding to the new δ

foreach polynomial F at index i in F do
foreach subset S of the multiset of variables where each variable v appears
at most Degree(F, v) times do

delta[i]← 0̄;
foreach monomial M in F do

valueM ← Coefficient(M );
foreach variable v in M do

s ← Multiplicity(S, v);
m ← Multiplicity(M v);
if s < m then

valueM ← valueM ⊗
(
m
s

)
⊗ (Lookup(values map, v ))m−s

⊗ (Lookup(update map, v ))s;

else
valueM ← 0̄;
continue with the next monomial

end

end
delta[i]← delta[i]⊕ valueM ;

end

end

end
return delta

Procedure GenerateDelta
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The computation of δ (Algorithm GenerateDelta) is not entirely trivial — for
each polynomial we consider all possible ways of selecting two or more variables
to be evaluated at the last Newton update (with the rest being evaluated at
the current Newton values). One way of looking at the problem is to consider
a multiset of variables that appear in a monomial M . We want to create all
possible k-multicombinations S where 2 ≤ k and where k is smaller or equal to
the degree of the monomial. Let us denote by Sv the multiplicity of variable
v in S and define Mv similarly. Then for each variable v, if its Mv is greater
than or equal to Sv we can say that there are

(
Mv

Sv

)
unfoldings with exactly Sv

instances of v evaluated at the last Newton update. Since we need to examine
each monomial, then find the multicombinations and examine each variable, the
complexity of the procedure is:

O

(
|M| ∗ |X | ∗

D∑
k=2

(
|X |+ k − 1

k

))

whereM is a set of all monomials, X is the set of all variables and D is a highest
degree of a monomial. As an example, for a quadratic equation system3 (i.e.,
D = 2), the above simplifies to O(|M| ∗ |X |3).

Finally, putting everything together we have that computing N iterations of the
above procedure is (assuming that we use symbolic Kleene star computation):

O

(
N

(
|X |3 + |M| ∗ |X | ∗

D∑
k=2

(
|X |+ k − 1

k

)))

9.2.4 Idempotent and commutative case

In this section we discuss the idempotent case — it is not only the simplest one
but also has the lowest complexity. We have N iterations and at each we need
to solve the linear system of equations, in the general case this corresponds to
evaluating a matrix constructed by the Kleene star computation. As already
discussed the cost of computing and evaluating the matrix is cubic in the number
of variables. Thus the total complexity of the procedure is simply O(N ∗ |X |3).

The procedures InitLinearSolver() and SolveLinear() are the same when-
ever the semiring is commutative (i.e., no matter whether it is also idempotent
or not). However, the InitDeltaGenerator() and GenerateDelta() can be

3Such systems arise when using weighted [66, 67] or communicating [10, 11] pushdown
systems.



150 Implementation of Newton’s method

significantly simplified. Since δ for this case does not differ between itera-
tions, we pre-compute it in InitDeltaGenerator() and then reuse it at each
GenerateDelta().

input : column vectors with n elements: F with polynomials, variables with
variables

output: compute and store idelta for subsequent use

idelta← Evaluate(F,variables, 0̄) ;
return idelta

Procedure InitDeltaGenerator

input : column vectors with n elements: values with the current values and
update with the current Newton update

output: the already computed idelta

return idelta

Procedure GenerateDelta

input : current values and update
output: new values

return update

Procedure UpdateNewton

9.3 Semilinear sets and their abstractions

9.3.1 Definition

Let us start with some preliminary definitions of linear and semilinear sets [33].
First of all, we say that a nonempty set L ⊆ Nn is linear if it can be expressed
as:

v0 + Nv1 + · · ·+ Nvm

where v0, . . . ,vm ∈ Nn for some m ∈ N. We will say that v0 is the offset and
v1, . . . ,vm are the generators. Furthermore, we will often denote such sets as
a pair (v, G) consisting of the offset v and set of generators G ⊆ Nn. We can
define an addition operator ⊕L for linear sets:

(v1, G1)⊕L (v2, G2) = (v1 + v2, G1 ∪G2)
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A semilinear set is a finite union of linear sets. Let us also define the interpre-
tation of this representation of semilinear sets, i.e., the (potentially infinite) set
of actual vectors corresponding to it.

IJSK = {v + k1g1 + · · ·+ kngn | n ∈ N, (v, G) ∈ S,
k1, . . . , kn ∈ N, g1, . . . ,gn ∈ G}

Having that, we will also define an ordering on vector representation of semilin-
ear sets (it will be useful later on):

S1 v S2 ⇐⇒ IJS1K ⊆ IJS2K

Semilinear sets also form a semiring (S,⊕S ,⊗S , 0̄S , 1̄S) in the following way:

• Operator ⊕S is simply a union of the semilinear sets S1 ⊕S S2 = S1 ∪ S2

and thus can be implemented in O(|S1|+ |S2|).

• Operator ⊗S corresponds to adding all pairs of linear sets

S1 ⊗S S2 = {L1 ⊕L L2 | L1 ∈ S1, L2 ∈ S2}

which is quite expensive — O(|S1||S2|).

• the 0̄S element is simply the empty set, 0̄S = ∅

• the 1̄S element is a singleton set where the only element is a linear set
with the offset equal to 0 and no generators, i.e., 1̄S = {(0, ∅)}

It is quite easy to see that all the semiring properties are satisfied. More im-
portantly, it should be clear that the ⊗S operator is commutative (since ⊕L
is). The only remaining thing is the definition of Kleene star (−)

∗
: S → S

operator. In order to define it, we first introduce a similar operator for linear
sets, (−)

∗
: L → S:

(v, G)∗ = 1̄S ⊕S (v, {v} ∪G)

With that we can inductively define the star operator for semilinear sets in the
following way:

S∗ =

{
1̄S if S = ∅
L∗ ⊗S (S \ {L})∗ otherwise; where L ∈ S

The intuition behind this is that for every linear set we can either include it
any number of times (including 0, thus the 1̄S) and then multiply with the star
of the remaining linear sets. Note that this definition relies on the fact that
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⊗S is commutative. Finally, it should be clear that this is the most expensive
operation, in fact it is exponential — in the worst case, at each step of the
recursion we double the number of linear sets.

It should be clear that the domain does not satisfy the ascending chain condition
and thus using Kleene iteration (in general) would not allow us to reach the least
fixed point of a system of equations in a finite number of steps. However, we
can compute it using the algorithms presented in the previous section.

9.3.2 Challenges

The above representation of semilinear sets can be directly implemented. How-
ever, due to the complexity of the ⊗S and (−)

∗
operations making it practical

is much more challenging. One of the optimizations that we have implemented
is that we share common vectors and linear sets that appear in different linear
sets and semilinear sets respectively (using the idea of hash-consing again). But
the main challenge is the space complexity of ⊗S and (−)

∗
, e.g., ⊗ is used ex-

tensively and S1⊗S S2 has space complexity O(|S1||S2|). As already mentioned,
an important part of computing the Newton’s approximations is the evaluation
of a Kleene star of Jacobian matrix. This corresponds (in the worst case) to
computing a symbolic expression of height equal to the number of variables with
⊗S and (−)

∗
at each level. Unfortunately this results in an exponential space

complexity.

Fortunately, during our experiments we have observed that most of the gen-
erated vectors and linear sets are not necessary, i.e., they duplicate already
existing information. Consider, for example, the following linear set:

(〈0, 0〉, {〈1, 1〉, 〈2, 2〉})

Clearly the first generator makes the second one redundant. Of course, we can
also have a situation where a few different generators make some other one un-
necessary. Similarly we can have redundancy between linear sets themselves.
This leads us to experiment with various ways of “simplifying” away generators
or linear sets that we can prove are unnecessary. For a generator g we check
whether there exists a multiset consisting of other generators that sum to g. If
that is the case, then we can safely remove g. We use similar ideas with respect
to linear sets. Unfortunately, this approach amounts to solving a problem sim-
ilar to the, so called, subset-sum problem which itself is a variant of knapsack
problem [17]. It is known to be NP-complete, however, using memoization we
are able to reuse many already computed results and the whole procedure is
in most cases fast enough to enable us to solve some equation systems that we



9.3 Semilinear sets and their abstractions 153

would not be able to solve without the simplification (due to the blowup in the
size of linear and semilinear sets). We will discuss this topic a bit more in the
Section 9.4.

9.3.3 Abstractions

We have also developed two ways of improving the performance of semilinear
sets at the cost of their precision. In other words, we have developed some
abstractions of semilinear sets.

The first one is based on the idea of dividing every generator of every linear set
by the greatest common divisor of its elements. Let us consider an example —
if we have a linear set (〈0, 0〉, {〈2, 2〉}) then we can consider another linear set
(〈0, 0〉, {〈1, 1〉}) to be its over-approximation. It will include all the vectors of the
first one (e.g., 〈2, 2〉, 〈4, 4〉, etc.), but it will also contain 〈1, 1〉 or 〈3, 3〉. At this
point it might seem that we have not improved anything, but when combined
with the idea of simplification from the previous section, it often allows for
more compact representation. For instance, the linear set (〈0, 0〉, {〈2, 2〉, 〈5, 5〉})
would be abstracted to (〈0, 0〉, {〈1, 1〉}). It should be quite easy to see that this
approach provides a safe over-approximation. For additional insight one might
consider the graphic representation of the two-dimensional case — a generator
gives rise to a set of points laying on some line. Our abstraction corresponds
to including all the points on that line, i.e., “forgetting” what points are not
included.

The second abstraction is more complex and focused around the idea of “col-
lapsing” a set of linear sets (i.e., a semilinear set) into a pair of two sets — one of
offsets and the other one of generators. We will call this structure a multilinear
set. The intuition behind it is that we can choose any of the offsets and then use
the generators as in the case of linear sets. As expected multilinear sets form a
semiring (M,⊕M ,⊗M , 0̄M , 1̄M ), where:

• The set M is defined as M = {(V,G) | V ⊆ Nn, G ⊆ Nn, V 6= ∅} ∪ {⊥}.

• The ⊕M operator is defined as:

(V1, G1)⊕M (V2, G2) = (V1 ∪ V2, G1 ∪G2)

and additionally (if one of the arguments is ⊥) for all M ∈ M we have
M ⊕M ⊥ = ⊥⊕MM = M . The complexity is O(|V1|+ |V2|+ |G1|+ |G2|).

• The ⊗M operator is defined as:

(V1, G1)⊗M (V2, G2) = ({v1 + v2 | v1 ∈ V1, v2 ∈ V2}, G1 ∪G2)
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and additionally (if one of the arguments is ⊥) for all M ∈ M we have
M ⊗M ⊥ = ⊥ ⊗M M = ⊥. The complexity of this computation is
O(|V1||V2|+ |G1|+ |G2|).

• The 0̄M element is ⊥.

• The 1̄M element is ({0}, ∅).

Note that we require that the set of offsets is never empty — an empty set
of offsets would correspond to an empty interpretation, no matter what are
the contents of the set of generators, i.e., we would have an infinite number of
elements with an empty interpretation. Thus we disallow empty set of offsets and
introduce a special ⊥ element that corresponds to empty interpretation. The
definition of the star operator is not difficult and is quite different compared to
the semilinear sets:

(V,G)∗ = ({0}, V ∪G)

Its complexity is O(|V | + |G|), which is much faster than what we can achieve
with the semilinear sets and, we conjecture, is one of the big factors why this
abstraction performs much better in practice.

Of course, we can also define the interpretation of a multilinear set:

IJ(V,G)K = {v + k1g1 + · · ·+ kngn | n ∈ N, v ∈ V,
k1, . . . , kn ∈ N, g1, . . . ,gn ∈ G}

The definition of ordering for multilinear sets is analogous to the one for semi-
linear sets.

Having the interpretation and ordering, we are able to clarify the relationship
between semilinear and multlinear by establishing a Galois connection between
them. In the case that neither argument is 0̄:

α(S) =
(
{v | (v, G) ∈ S},

⋃
{G | (v, G) ∈ S}

)
γ((V,G)) = {(v, G) | v ∈ V }

and otherwise: α(∅) = ⊥ and γ(⊥) = ∅. As we will see below, this actually
defines a Galois insertion (however, this property is not essential for our pur-
poses).

Lemma 9.1 The tuple (S, α, γ,M) forms a Galois insertion.

Proof. It is easy to see that α and γ are monotone, so we need to only prove
that α ◦ γ = λx.x and λx.x v γ ◦α. Since the cases when arguments are ∅ or ⊥
are simple, below we consider the other possibilities.
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Let us prove the first claim:

(α ◦ γ)(V,G)

= [definition of γ]

α ({(v, G) | v ∈ V })
= [definition of α](
{v′ | (v′, G′) ∈ {(v, G) | v ∈ V }},

⋃
{G′ | (v′, G′) ∈ {(v, G) | v ∈ V }}

)
= [simplification]

(V,G)

The second case is only slightly more involved.

(γ ◦ α)S

= [definition of α]

γ
(
{v | (v, G) ∈ S},

⋃
{G | (v, G) ∈ S}

)
= [definition of γ]{

(v,
⋃
{G | (v′, G) ∈ S}) | v ∈ {v′′ | (v′′, G) ∈ S}

}
= [simplification]{

(v,
⋃
{G | (v′, G) ∈ S}) | (v, G′) ∈ S

}
At this point it is not difficult to see that for every linear set (v, G) ∈ S we
will have a linear (v′, G′) ∈ (α ◦ γ)S such that v = v′ and G ⊆ G′. In other
words, for every vector that can be generated from S, it will also be possible to
generate it using the (γ ◦ α)S. Thus S v (γ ◦ α)S, i.e., λx.x v γ ◦ α. �

9.4 Examples and experiments

In this section we will present some simple but interesting examples of how the
domain can be useful for program analysis. We will briefly discuss two potential
areas of application of semilinear sets.

One of possible applications of semilinear sets is to count the number of com-
munication/synchronization actions (as suggested in [10, 11]) over each channel.
Consider the following program:
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proc main
a ?( x ) ;
i f

: : x = 0 => skip
: : ! ( x = 0) => c a l l main

f i ;
b ! ( )

end

and let us focus only on the channels used. The corresponding language is
{akbk | k ∈ N, 0 < k}. However, using Kleene iteration we would not be able
to reach the least solution of the corresponding equation system due to the fact
that we could always add a new longer word. Running our tool on such a system
(generated with the Post∗ using our pushdown library presented in Chapter 8),
the least solution to describing the point when the program terminates is:

{ <[(a, 1)(b, 1)] : >,

<[(a, 2)(b, 2)] : [(a, 1)(b, 1)]> }

which corresponds to two linear sets — one representing the vector 〈1, 1〉 and
the second describing the set {akbk | k ∈ N, 2 ≤ k}. Note that the set could also
be represented using just one linear set (〈1, 1〉, {〈1, 1〉}), which corresponds to
the same set of vectors. Currently we do not perform this kind of simplification,
but it might be an interesting idea for future work.

Another potential application of this domain is counting the number of times
some resource is acquired and released. For instance, consider a recursive pro-
gram performing locking and unlocking of a reentrant lock:

proc foo
Lock ! ( ) ;
i f

: : true => c a l l f oo
: : true => skip

f i ;
c a l l bar

end

proc bar
i f

: : true => Unlock ! ( )
: : true => c a l l bar

f i
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end

proc main
c a l l f oo

end

The number of locks and unlocks is the same (even though it might be arbi-
trarily large) and our analysis is capable of proving that. The semilinear set
corresponding to the point when the program terminates is:

{ <[(Lock, 1)(Unlock, 1)] : [(Lock, 1)(Unlock, 1)]> }

Of course, since the domain is commutative it does not differentiate between
different locking orders. Thus, it is not possible to detect data races in this
situation.

Finally, it is also possible to use semilinear sets for points-to analysis as discussed
in [27].

Now we will briefly discuss the performance of our abstract domain. For that
we will run a few benchmarks based on the Post∗ constraints of some simple
programs and compare the solving time for semilinear sets (with and without
simplification) as well as its abstractions. The example programs used in the
tests are available in the Appendix D.2. We present the results of solving the
equation systems in Table 9.1.

One of the things that should be clear from those results is that the simplification
step is essential. Even though its asymptotic complexity is very high, it often
allows to avoid the blowup in the size of semilinear and linear sets. We can also
conclude from those results that most of the elements of semilinear sets (and
linear sets) that arise during the computation are in fact redundant and can be
removed. Furthermore, as one could expect, the abstraction to multilinear sets
is much faster in practice. Finally, abstraction based on a “divider” (where we
divide the elements of the vectors by their GCD) does not always improve the
performance and in some cases it actually makes it noticeably worse. We believe
that this is due to the fact that in some cases the vectors do not have a GCD
other than 1, which means that all the effort of trying to find one is wasted
and the divider has no effect (this is the case in examples 1 and 3). On the
other hand, example 2 is similar to the first one but it does create vectors that
can be abstracted using a divider and consequently the solving time is reduced
considerably. The same effect can be observed in case of multilinear sets, but
on a smaller scale.
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9.5 Conclusions

In this chapter we have discussed an experimental implementation of the New-
ton’s method [57, 27]. It allows to solve non-linear systems of equations, pro-
vided that one is able to solve the linear ones. Since interprocedural analysis
is in general a source of non-linear equation systems, this is an important ad-
vantage in the context of this thesis. In case of commutative abstractions, such
as semilinear sets, the Newton’s method provides a way of computing the least
fixed point solution whereas the usual Kleene iteration would not reach it in a
finite number of steps. This is also the reason for our focus on semilinear sets.
Unfortunately they are very expensive in terms of computational complexity.
However, we managed to limit the space blowup with some simplification tech-
niques, as well as by developing abstractions, which trade some of the precision
for performance.

We believe our results are quite encouraging and show that it is already possible
to perform interesting analyses on smaller programs. At the same time there is
still a lot of potential for improvements and future work in terms of the solver
itself, new abstract domains as well as the semilinear sets, their abstractions and
applications. Finally, it is interesting to note how well the Newton’s method
fits into existing techniques such as weighted and communicating pushdown
systems, allowing us to use new abstract domains in existing approaches and
tools.
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Chapter 10

Conclusions

We believe that automated or semi-automated analysis techniques will be in-
creasingly important in building modern software. From bug finding tools to
verification tools capable of proving lack of certain classes of errors, their main
building block will probably be some combination of static analysis, model
checking and abstract interpretation. Furthermore, those areas will most likely
see even more research activity in the next decades.

We have explored the algebraic approach to static analysis and model checking
and reformulated some of the concepts of abstract interpretation in this setting
in Chapter 3. It turns out that expressing many analyses in terms of flow
algebras or semirings fits quite well into the abstract interpretation framework.
Moreover, we introduced and proved some basic properties and concepts that
later turned out to be also useful in the setting of communicating pushdown
systems (e.g., over-approximation and inducing flow algebras).

Apart from that, we have looked at the communicating and weighted push-
down systems, first contrasting them in Chapter 4 and then investigating the
requirements they impose on the used algebraic structure. We have shown in
Chapter 5 that some of the requirements imposed by the original formulations
using semirings can be in fact relaxed. By introducing a new variant of Pre∗

and Post∗ algorithms we have shown that it is possible to use flow algebras in
place of semirings, which corresponds more closely to many classical analyses.



162 Conclusions

We believe that this contributes both to a better understanding of weighted
pushdown systems as well as bringing them closer to the monotone frameworks
and providing some additional flexibility for designers of abstract domains.

In Chapter 6 we revisited an analysis problem encountered in [36] where the
addition of aspect-oriented features to a process calculus resulted in a potential
recursive structure of the processes. The original work disallowed this situation,
but we have shown how to analyze such a process calculus when this restric-
tion is lifted. One of the main ideas behind our approach is to use the stack
of the pushdown system to represent a process itself. Thus the Pre∗ and Post∗

computations correspond to all possible shapes of a process in the future. Using
communicating pushdown systems in this way allowed us to reason about reach-
ability of configurations in a concurrent setting. Furthermore, the technique is
also useful in a sequential setting when using the weighted pushdown systems.

The analysis of the aspect-oriented process calculus motivated us to improve the
ith-prefix and ith-suffix abstractions of [14]. From the theoretical perspective we
developed an approach of encoding symbolic constraints in the prefix/suffix lan-
guage that allows handling of message passing in a more efficient manner. At the
same time we described an compact data structure to represent such languages,
i.e., Reduced DFA. We additionally provided efficient algorithms for the ⊕ and
⊗ operations and performed a preliminary evaluation of our implementation.

In some of our work we have relied on a well-known Weighted Automata Library
(WALi) [48]. However, some of its design choices made it difficult to experiment
with techniques such as the ones based on Newton’s method [27]. Therefore,
we have decided to create a library that would provide some more flexibility
in this regard and described it in Chapter 8. Using this opportunity we have
also developed a slightly different approach to the Pre∗ and Post∗ algorithms.
Instead of considering the pushdown system as a set of pushdown rules, we
have created algorithms that can work on, what we call, pushdown graphs. We
believe that this is an important practical contribution, since the representation
is very close to the program graphs and thus allows to use them directly, i.e.,
without converting the program to pushdown rules. Furthermore, the library
provides additional benefits of thread-safety as well as the possibility of using
custom constraint solvers.

Finally, in Chapter 9 we described an experimental equation solver based on
Newton’s method [27]. It enables computing the least fixed-points of non-linear
equation systems over ω-continuous semirings, whenever one is able to solve
such linear systems. This has some exciting consequences, e.g., we are able to
compute least fixed-points of equation systems for abstract domains such as
semilinear sets. Despite high complexity of this domain, our initial experiments
are quite encouraging. Moreover, we developed abstractions of semilinear sets
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that are much faster in practice.

We believe that this thesis contributes to the efforts of not only improving the
techniques from static analysis, model checking and abstract interpretation but
also to making them easier to use in practice. Our work is quite diverse and on
one hand includes quite theoretical developments in Chapters 3 where we intro-
duced flow algebras and explored their use in the abstract interpretation frame-
work. Furthermore, in Chapter 5 we considered their application to weighted
and communicating pushdown systems, thus showing that some of the previous
requirements of WPDS and CPDS are not necessary. Moreover, we presented
a novel application of communicating pushdown systems to an aspect-oriented
process calculus in Chapter 6. Not only that, but we have also contributed to
the development of better implementations by describing new algorithms and
data structures. In Chapter 7 we introduced the concept of RDFA for efficient
representation of finite languages with symbolic encoding of constraints. And
in Chapter 8 we presented graph-based algorithms for the variants of Pre∗ and
Post∗ algorithms described in Chapter 5. Finally, we also developed an exper-
imental solver based on Newton’s method in Chapter 9, which can be applied
to the constraint systems arising in Pre∗ and Post∗ computations. As such it
constitutes an interesting advantage of using an algebraic approach to static
analysis.

Finally, we think that there is still a lot of room for future work. One of the main
potential projects that would be worth pursuing is the development of a larger
tool based on CPDS, flow algebras and Newton’s method that is capable of
dealing with the complexity of mainstream programming languages. We believe
the thesis does provide good foundations for that work, yet we also expect that
implementing such a tool would lead to many new and interesting challenges.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.7

For two flow algebras (L,⊕L,⊗L, 0̄L, 1̄L), (M,⊕M ,⊗M , 0̄M , 1̄M ) and a Galois
insertion (L,α, γ,M), the following are equivalent:

1. 1̄L = γ(1̄M )

2. α(1̄L) = 1̄M and 1̄L ∈ γ(M)

Proof. We will show that the above statements imply each other.

1. First we show that the first one implies the second one

1̄L = γ(1̄M )

α(1̄L) = α(γ(1̄M ))

α(1̄L) = 1̄M
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2. And now in the opposite direction

α(1̄L) = 1̄M

α(γ(m′)) = 1̄M for some m′

m′ = 1̄M

γ(m′) = γ(1̄M )

1̄L = γ(1̄M )

�

A.2 Proof of Lemma 3.8

For two flow algebras (L,⊕L,⊗L, 0̄L, 1̄L), (M,⊕M ,⊗M , 0̄M , 1̄M ) and a Galois
insertion (L,α, γ,M), the following are equivalent:

1. ∀m1,m2 : γ(m1)⊗L γ(m2) = γ(m1 ⊗M m2)

2. ∀m1,m2 : α(γ(m1) ⊗L γ(m2)) = m1 ⊗M m2 and ⊗L : γ(M) × γ(M) →
γ(M)

Proof. We will show that the above statements imply each other.

1. First we show that the first one implies the second one

γ(m1)⊗L γ(m2) = γ(m1 ⊗M m2)

α(γ(m1)⊗L γ(m2)) = α(γ(m1 ⊗M m2))

α(γ(m1)⊗L γ(m2)) = m1 ⊗M m2

2. And now in the opposite direction

α(

=γ(m′)︷ ︸︸ ︷
γ(m1)⊗L γ(m2)) = m1 ⊗M m2

α(γ(m′)) = m1 ⊗M m2

m′ = m1 ⊗M m2

γ(m′) = γ(m1 ⊗M m2)

γ(m1)⊗L γ(m2) = γ(m1 ⊗M m2)
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�

A.3 Proof for Lemma 3.14

The set of solutions to the constraint system from Definition 3.13 is a Moore
family (i.e., it is closed under

d
), which implies the existence of the least solu-

tion.

Proof. Consider a subset Y Q◦ of all the solutions of a constraint system
AnalysisF for set Q◦ of extremal nodes. Every solution AnQ◦F ∈ Y must satisfy
that:

AnQ◦F (q) w
⊕
{AnQ◦F (q′)⊗F AJaK | q′ a−→ q ∈→}

Therefore, for every q′ → q ∈→ a solution in AnQ◦F ∈ Y Q◦ must satisfy:

AnQ◦F (q) w AnQ◦F (q′)⊗F AJaK

Going on, we have:

AnQ◦F (q) w (
l
Y )(q′)⊗F AJaK

So the right hand side is a lower bound of the set {AnQ◦F (q)|AnQ◦F ∈ Y Q◦},
therefore:

(
l
Y )(q) w (

l
Y )(q′)⊗F AJaK

But this means that we have:

(
l
Y )(q) w

⊕
{(

l
Y )(q′)⊗F AJaK | q′ a−→ q ∈→}

Thus the greatest lower bound of a set of solutions is also a solution to the
constraint system. Thus the set of all solutions is closed under greatest lower
bound. �

A.4 Proof of Proposition 3.16

Consider the MOP and MFP solutions for an abstract program graph (Q,Σ,→,
QI ,QF ,A, F ) over a complete flow algebra (F,⊕,⊗, 0̄, 1̄), then:

MOPF (Q◦,Q•) v
⊕
q∈Q•

MFPQ◦
F (q)
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If the flow algebra is affine and either: ∀q ∈ Q : Path(Q◦, {q}) 6= ∅ or the flow
algebra is strict then:

MOPF (Q◦,Q•) =
⊕
q∈Q•

MFPQ◦
F (q)

Proof. First let us consider the first case. It is easy to notice that all we need
to prove is that for all q ∈ Q the following holds:

MOPF (Q◦, {q}) v MFPQ◦
F (q)

Let us define:

MOPnF (Q◦, {q}) =
⊕
{AJπK | π ∈ Path(Q◦, {q}), |π| < n}

Clearly we can use MOPnF to express MOP:

MOPF (Q◦, {q}) =
⊕
n∈N

MOPnF (Q◦, {q})

Now we can proceed by the induction on n and prove that:

MOPnF (Q◦, {q}) v MFPQ◦
F (q)

The base case is as follows:

MOP0
F (Q◦, {q}) =

{
1̄ if q ∈ Q◦

0̄ otherwise

Which in both cases is smaller or equal to the MFPQ◦
F (q). Now we can go on to

the inductive step and assume that:

MOPnF (Q◦, {q}) v MFPQ◦
F (q)
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holds and prove it in case of n+ 1. We consider only one part of the definition
where q ∈ Q, the other one is analogous.

MFPQ◦
F (q)

=
⊕{

MFPQ◦
F (q′)⊗AJaK | q′ a−→ q ∈→

}
⊕ 1̄F

w
⊕{

MOPnF (Q◦, {q′})⊗AJaK | q′ a−→ q ∈→
}
⊕ 1̄F

=
⊕{

(
⊕
{AJπK | π ∈ Path(Q◦, {q′}), |π| < n})⊗AJaK | q′ a−→ q →

}
⊕ 1̄F

w
⊕{

(
⊕
{AJπK⊗AJaK | π ∈ Path(Q◦, {q′}), |π| < n}) | q′ a−→ q ∈→

}
⊕ 1̄F

=
⊕{

AJπK⊗AJaK | π ∈ Path(Q◦, {q′}), |π| < n, q′
a−→ q ∈→

}
⊕ 1̄F

=
⊕
{AJπ′K | π′ ∈ Path(Q◦, {q}), |π′| < n+ 1} ⊕ 1̄F

w MOPn+1
F (Q◦, {q})

Now we can go on for the second part of the proof, namely the MOP - MFP coin-
cidence in the case of affine flow algebra. We also assume that Path(Q◦, {q}) 6=
∅. Note that complete distributivity of the flow algebra is a stronger requirement
and can thus be used in place of the above. Then we proceed as follows

MOPF (Q◦, {q}) =
⊕
{AJπK | π ∈ Path(Q◦, {q}}

=
⊕{

AJπ′K⊗AJaK | π′ ∈ Path(Q◦, {q′}), q′
a−→ q ∈→

}
⊕
⊕
{1̄ | ε ∈ Path(Q◦, {q})}

=
⊕{

(
⊕
{AJπ′K | π′ ∈ Path(Q◦, {q′})})⊗AJaK | q′ a−→ q ∈→

}
⊕
⊕
{1̄ | ε ∈ Path(Q◦, {q})}

=
⊕{

MOPF (Q◦, {q′})⊗AJaK | q′ a−→ q →∈→
}

⊕
⊕
{1̄ | ε ∈ Path(Q◦, {q})}

Which is clearly a solution to the constraints that we defined in the section on
the MFP solution. But since the MFP solution is the least solution for those
constraints, therefore we have that:

MOPF (Q◦, {q}) w MFPQ◦
F (q)

But from the previous paragraph we know that:

MOPF (Q◦, {q}) v MFPQ◦
F (q)
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Therefore:
MOPF (Q◦, {q}) = MFPQ◦

F (q)

�

A.5 Proof of Lemma 3.18

If a program graph (Q,Σ,→,QI ,QF ,B,M) is an upper-approximation of (Q,Σ,→,
QI ,QF ,A, L) by (L,α, γ,M), then for every path π we have that:

AJπK vL γ(BJπK)

Proof. First recall that A and B are extended to paths in the following way:

AJa1, . . . , anK = AJa1K⊗L . . .⊗L AJanK

BJa1, . . . , anK = BJa1K⊗M . . .⊗M BJanK

Now let us consider a path π = a1, . . . , an. From Definition 3.17 we know that
for each ai (1 ≤ i ≤ n) we have:

AJaiK vL γ(BJaiK)

Therefore, from the monotonicity of ⊗L we have that:

AJπK vL γ(BJa1K)⊗L . . .⊗L γ(BJanK)

From Definition 3.5 we get the desired result:

AJπK vL γ(BJπK)

�



Appendix B

Proofs for Chapter 5

B.1 Soundness proofs

B.1.1 Proof of Theorem 5.4

Consider an automaton A and its corresponding ACpre∗ generated by the satu-
ration procedure. Let us assume that we have the least solution λ to the set
of constraints C. Then for each pair (p, s) such that 〈p, s〉 σ

=⇒∗〈qf , ε〉 (where

σ ∈ ∆∗pre and qf ∈ F ), we have v(σ) v λ∗(ρ) where ρ = p
s−→∗ qf is in Apre∗ .

Proof. Note that we do not need to prove the existence of the paths in the
Apre∗ — it is a previously known result [72, 66]. We can use it because our
algorithm differs only in the constraint generation, and not in the way new
transitions are added. Moreover, as explained above, the additional rules in
∆pre do not change that result.

The proof will proceed by induction on |σ| (note that since P and F are disjoint,
it is not possible to have |σ| = 0).

|σ| = 1 We know that the path in the pushdown system is 〈p, γ〉 r
=⇒ 〈qf , ε〉. But

this means that r ∈ ∆pre\∆. Existence of p
γ−→ qf follows directly from the



172 Proofs for Chapter 5

definition of ∆pre. We also have that f(r) = 1̄. Finally, according to the

saturation procedure there exists a constraint: 1̄ v l(p
γ−→ qf ). Therefore,

clearly v([r]) v λ(p
γ−→ q).

|σ| > 1 In this case we know that the path in the pushdown system is:

〈p, γs0〉
r

=⇒ 〈q′, ws0〉
σ′

=⇒∗〈qf , ε〉

for some q′, γ, and w. Moreover, r = 〈p, γ〉 ↪→ 〈q′, w〉 where s = γs0.

If q′ 6∈ P then r ∈ ∆pre \ ∆ and f(r) = 1̄ (r is one of the added rules
to ∆pre). Furthermore, all the rules of σ′ must also be in ∆pre \ ∆ and

thus there must be a path ρ = p
s−→∗ qf in Apre∗ (since it must also be

in A). Therefore, v(σ) = 1̄ and for each transition t on the path ρ we
have a constraint of the form 1̄ v l(t), thus by monotonicity we have
v(σ) v λ∗(ρ).

Otherwise q′ ∈ P and r ∈ ∆, so we can use the induction hypothesis to
get that:

v(σ′) v λ∗(q′ ws0−−→
ρ′

∗ qf )

where:
ρ′1︷ ︸︸ ︷

ρ′ = q′
w−→∗ q′′

s0−→∗ qf︸ ︷︷ ︸
ρ′2

Now the saturation procedure must have added the transition p
γ−→ q′′. So

we have a path ρ = p
γ−→ q′′

s0−→∗ qf along with a constraint:

1. if w = ε (so q′ = q′′) the added constraint is

f(r) v l(p γ−→ q′)

2. if w = γ′ the added constraint is

f(r)⊗ l(q′ γ
′

−→ q′′) v l(p γ−→ q′′)

3. if w = γ′1γ
′
2 the added constraint is

f(r)⊗ l(q′ γ
′
1−→ qx)⊗ l(qx

γ′2−→ q′′) v l(p γ−→ q′′)
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For case 1 we have:

v(σ) = f(r)⊗ v(σ′)

v f(r)⊗ λ∗(q′′ s0−→
ρ′2

∗ qf )

v λ(p
γ−→ q′)⊗ λ∗(q′′ s0−→

ρ′2

∗ qf )

= λ∗(p
s−→
ρ

∗ qf )

And for both 2 and 3:

v(σ) = f(r)⊗ v(σ′)

v f(r)⊗ λ∗(q′ w−→
ρ′1

∗ q′′)⊗ λ∗(q′′ s0−→
ρ′2

∗ qf )

v λ∗(p γ−→
q′
∗ ⊗)λ∗(q′

w−→
ρ′1

∗ q′′)⊗ λ∗(q′′ s0−→
ρ′2

∗ qf )

= λ∗(p
s−→
ρ

∗ qf )

Thus in all possible cases we have that:

v(σ) v λ∗(p s−→
ρ

∗ qf )

�

B.1.2 Proof of Theorem 5.5

Consider an automaton A and its corresponding ACpost∗ generated by the sat-
uration procedure. Let us assume that we have the least solution λ to the set
of constraints C. Then for each pair (p, s) such that 〈qf , ε〉

σ
=⇒∗〈p, s〉 (where

σ ∈ ∆∗post and qf ∈ F ), we have v(σ) v λ∗R(ρ) where ρ = qf
∗ s←− p is in ACpost∗ .

Proof. Note that, as in the case of Pre∗, we do not need to prove the existence
of the paths in the Apre∗ — it is a previously known result [72, 66]. Again this
is due to the fact that our algorithm differs only in the constraint generation,
and not in the way new transitions are added. Moreover, as explained above,
the additional rules in ∆post do not change that result.
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The proof will proceed by induction on |σ| (note that since P and F are disjoint,
it is not possible to have |σ| = 0).

|σ| = 1 So s = γ and we have 〈qf , ε〉
r

=⇒ 〈p, s〉. We know that r ∈ ∆post\∆, and

so from the definition of ∆post we have that there is transition qf
γ←− p and

v([r]) = 1̄. Moreover, from the saturation procedure we have a constraint

1̄ v h(qf
γ←− p). Therefore, v([r]) v λ(qf

γ←− p).

|σ| > 1 So we have:

〈qf , ε〉
σ′

=⇒∗〈q′, s′〉 r
=⇒ 〈p, s〉

where σ = σ′r.

If q′ 6∈ P then r ∈ ∆post \ ∆ and it must be of the form r = 〈q′, ε〉 ↪→
〈p, γ〉 where s = γs′ (r is one of the additional rules to the ∆post). But
that means that all the remaining rules in σ′ must also be one of those
additional rules (∆post \∆). Thus the weight of every transition t on the

path qf
∗ s←− p is λ(t) = 1̄ (its existence follows directly from the definition

of ∆post). Moreover, all of them must have a corresponding constraint of

the form 1̄ v h(t). Therefore, by monotonicity we have 1̄ v λ∗R(qf
∗ s←−
ρ
p)

and so v(σ) v λ∗R(qf
∗ s←−
ρ
p).

Otherwise q′ ∈ P and r ∈ ∆, r = 〈q′, γ′〉 ↪→ 〈p, w〉 and s = ws0, s′ = γ′s0.
Since |σ′| < |σ| we can use the induction hypothesis to get that:

v(σ′) v λ∗R(qf
∗ s′←−
ρ′
q′)

where:
ρ′2︷ ︸︸ ︷

ρ′ = qf
∗ s
′

←− q′ = qf
∗ s0←− q′′

γ′

L99 q′

︸ ︷︷ ︸
ρ′1

for some q′′. And so we have three possibilities, depending on w:

1. if w = ε, the transition q′′
ε←− p along with the following constraint:

hε(q′′
γ′

L99
ρ′1

q′)⊗ f(r) v h(q′′
ε←− p)

Therefore, the solution will have to satisfy:

λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r) v λ(q′′
ε←− p)
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and so:

v(σ) = v(σ′)⊗ f(r)

v λ∗R(qf
∗ s′←−
ρ′
q′)⊗ f(r)

= λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r)

v λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ(q′′
ε←− p)

= λ∗R(qf
∗ s←−
ρ
p)

2. if w = γ, the transition q′′
γ←− p along with the following constraint:

hε(q′′
γ′

L99
ρ′1

q′)⊗ f(r) v h(q′′
γ←− p)

Therefore, the solution will have to satisfy:

λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r) v λ(q′′
γ←− p)

and so:

v(σ) = v(σ′)⊗ f(r)

v λ∗R(qf
∗ s′←−
ρ′
q′)⊗ f(r)

= λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r)

v λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ(q′′
γ←− p)

= λ∗R(qf
∗ s←−
ρ
p)

3. if w = γ1γ2, the transitions qp,γ1
γ1←− q′ and q′′

γ2←− qp,γ1 along with
the following constraints:

1̄ v h(qp,γ1
γ1←− q)

and:

hε(q′′
γ′

L99
ρ′1

q′)⊗ f(r) v h(q′′
γ2←− qp,γ1)

Therefore, the solution will have to satisfy:

1̄ v λ(qp,γ1
γ1←− q′)
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λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r) v λ(q′′
γ2←− qp,γ1)

and so:

v(σ) = v(σ′)⊗ f(r)

v λ∗R(qf
∗ s′←−
ρ′
q′)⊗ f(r)

= λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ∗R(q′′ ∗
γ′←−
ρ′1

q′)⊗ f(r)

v λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ(q′′
γ←− p)

= λ∗R(qf
∗ s0←−
ρ′2

q′′)⊗ λ(q′′
γ2←− qp,γ1)⊗ λ(qp,γ1

γ1←− q′)

= λ∗R(qf
∗ s←−
ρ
p)

�

B.2 Continuity proof (Lemma 5.6)

The function F , defined as:

F : (δ → D)→ (δ → D)

F (m)t =
⊕
c∈Ct

lhsm(c)

is continuous, i.e, for any non-empty chain Y :

F (
⊔
Y ) =

⊔
m∈Y

F (m)

Proof. Since we are assuming that D is a complete lattice and m is a total
function, then δ → D defines a complete lattice as well. Furthermore, we have
that for any Y ⊆ δ → D:

(
⊔
Y )t =

⊕
m∈Y

m(t) (B.1)

Therefore, we have:
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F (
⊔
Y )t

= [ definition of F ]⊕
{lhs⊔Y (c) | c ∈ Ct}

= [ equation (B.1) ]⊕
{lhsλt′.⊕m∈Y m(t′)(c) | c ∈ Ct}

= [ D is affine, Y is not empty and the constraints are finite ]⊕
{
⊕
m∈Y

lhsm(c) | c ∈ Ct}

= [ D is a complete lattice ]⊕
m∈Y

(
⊕
{lhsm(c) | c ∈ Ct})

= [ definition of F ]⊕
m∈Y

F (m)t

= [ equation (B.1) ]

(
⊔
m∈Y

F (m))t

�

B.3 Completeness proofs

B.3.1 Proof of Lemma 5.7

For every transition q
γ−→ q′ in Apre∗ there exists a sequence σ ∈ ∆pre such that

〈q, γ〉 σ
=⇒∗〈q′, ε〉.

Proof. Proof will proceed by induction on Ai, where Ai corresponds to the
initial automaton after i steps of the saturation procedure.

i = 0 Follows from the definition of ∆pre.
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i > 0 We assume the property holds for Ai and prove it for Ai+1. Consider

that the saturation procedure adds a transition ps
γ−→ qd (note that the

saturation procedure works on ∆) because of:

• A pushdown rule r = 〈ps, γ〉 ↪→ 〈qd, ε〉. The result is immediate from
the rule.

• A pushdown rule r = 〈ps, γ〉 ↪→ 〈p′, γ′〉 and a transition p′
γ′−→ qd in

Ai. We use the induction hypothesis on p′
γ′−→ qd and get that there

exists σ such that 〈p′, γ′〉 σ
=⇒∗〈qd, ε〉. But then we also have that:

〈ps, γ〉
r

=⇒ 〈p′, γ′〉 σ
=⇒∗〈qd, ε〉

• A pushdown rule r = 〈ps, γ〉 ↪→ 〈p′, γ′γ′′〉 and a path p′
γ′−→ q′′

γ′′−−→ qd

in Ai. We use the induction hypothesis on p′
γ′−→ q′′ and q′′

γ′′−−→ qd

to get that there exists σ′ and σ′′ such that 〈p′, γ′〉 σ′
=⇒∗〈q′′, ε〉 and

〈q′′, γ′〉 σ′′
=⇒∗〈qd, ε〉. And again we have that:

〈ps, γ〉
r

=⇒ 〈q′, γ′γ′′〉 σ
′σ′′

=⇒∗〈qd, ε〉

�

B.3.2 Proof of Lemma 5.8

Consider a weighted pushdown system W = (P,F , f) where F is affine and
an automaton ACpre∗ created by the saturation procedure. For every transition

q
γ−→ q′ in this automaton we have that:

λ(q
γ−→ q′) v

⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆∗pre}

Proof. Let us also denote byACi the automatonA after i steps of the saturation
procedure. Also let us denote the least solution for ACi by λi. We will prove by

induction on i that for every transition q
γ−→ q′ in ACi we have that:

λi(q
γ−→ q′) v

⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆∗pre}

i = 0 AC0 is just the initial automaton A with the set C containing one constraint
for every transition of A. The property clearly holds.
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i > 0 We assume the property holds for ACi and prove it for ACi+1, i.e., prove
that adding a constraint (and maybe a transition as well) preserves the
property of interest.

Let t be the transition that the added constraint refers to. Observe that if t
was already in the automaton ACi , then it is possible that λ(t) might be on
the left-hand side of some other constraint. Therefore, the least solution
for the new set of constraints might be different for other transitions as
well; in other words the value/information from the new constraint might
have to be propagated throughout other constraints to get λi+1. Now let
λji denote the solution after j steps of fixed point computation with the
new constraint, starting with:

λ0i (t) =

{
0̄ if t was added

λi(t) otherwise (t was in ACi )

Using induction on j we will prove that the property of interest is main-
tained by the computation.

Note that we can use here Kleene iteration due to Lemma 5.6.

j = 0 Immediate from outer induction hypothesis.

j > 0 In the following we will use the fact that the flow algebra is affine;
it is enough for our purposes because from Lemma 5.7 it follows that
the sets (of pushdown paths) on the right-hand sides are not empty.
Let us consider each form of the possible constraints:

• f(r) v λ(q
γ−→ q′) where r = 〈q, γ〉 ↪→ 〈q′, ε〉. We know that:

λj+1
i (q

γ−→ q′) = λji (q
γ−→ q′)⊕ f(r)

Moreover, from the rule r it immediately follows that:

f(r) v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

Using this and the induction hypothesis on λji (q
γ−→ q′):

λj+1
i (q

γ−→ q′) v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

• f(r)⊗λ(q′′
γ′′−−→ q′) v λ(q

γ−→ q′) where r = 〈q, γ〉 ↪→ 〈q′′, γ′′〉 and

q′′
γ′′−−→ q′. We have that:

λj+1
i (q

γ−→ q′) = λji (q
γ−→ q′)⊕ (f(r)⊗ λji (q

′′ γ
′′

−−→ q′))

Now let us use the induction hypothesis:

λji (q
′′ γ

′′

−−→ q′) v
⊕
{v(σ) | 〈q′′, γ′′〉 σ

=⇒∗〈q′, ε〉}
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Multiplying both sides by f(r) and using that ⊗ is affine:

f(r)⊗ λji (q
′′ γ

′′

−−→ q′) v
⊕
{f(r)⊗ v(σ) | 〈q′′, γ′′〉 σ

=⇒∗〈q′, ε〉}

v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

Thus:

λj+1
i (q

γ−→ q′) v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

• f(r) ⊗ λ(q′′
γ′′1−−→ q′1) ⊗ λ(q′1

γ′′2−−→ q′) v λ(q
γ−→ q′) where r =

〈q, γ〉 ↪→ 〈q′′, γ′′1 γ′′2 〉 and q′′
γ′′1−−→ q′1

γ′′2−−→ q′. We have that:

λj+1
i (q

γ−→ q′) = λji (q
γ−→ q′)

⊕ (f(r)⊗ λji (q
′′ γ

′′
1−−→ q′1)⊗ λji (q

′
1

γ′′2−−→ q′))

We use the induction hypothesis twice to get:

λji (q
′′ γ

′′
1−−→ q′1) v

⊕
{v(σ) | 〈q′′, γ′′1 〉

σ
=⇒∗〈q′1, ε〉}

λji (q
′
1

γ′′2−−→ q′) v
⊕
{v(σ) | 〈q′1, γ′′2 〉

σ
=⇒∗〈q′, ε〉}

From monotonicity and the fact that ⊗ is affine we get that:

f(r)⊗ λji (q
′′ γ

′′
1−−→ q′1)⊗ λji (q

′
1

γ′′2−−→ q′)

v
⊕
{f(r)⊗ v(σ1)⊗ v(σ2) | 〈q′′, γ′′1 〉

σ1=⇒∗〈q′1, ε〉, 〈q′1, γ′′2 〉
σ2=⇒∗〈q′, ε〉}

v
⊕
{f(r)⊗ v(σ) | 〈q′′, γ′′1 γ′′2 〉

σ
=⇒∗〈q′, ε〉}

v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

Thus:

λj+1
i (q

γ−→ q′) v
⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′, ε〉}

�
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B.3.3 Proof of Lemma 5.9

Consider a weighted pushdown system W = (P,F , f) where F is affine and a

ACpre∗ automaton created by the saturation procedure. For every path ρ = q
s−→

∗ q′ in this automaton we have that:

λ∗(q
s−→
ρ

∗ q′) v
⊕
{v(σ) | 〈q, s〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆∗pre}

Proof. The proof will proceed with the induction on the number of transitions
|ρ| (we will use the inductive definition of λ∗).

|ρ| = 1 So ρ is just a single transition, therefore according to the definition of λ
we have:

λ∗(q
s−→
ρ

∗ q′) = λ(q
s−→ q′)

The result follows from Lemma 5.8.

1 < |ρ| Again using the definition of λ we have:

λ∗(q
s−→
ρ

∗ q′) = λ(q
γ−→ q′′)⊗ λ∗(q′′ s

′

−→
ρ′
∗ q′)

where s = γs′, q′′ ∈ Q, and:

ρ = q
γ−→ q′′

s′−→∗ q′︸ ︷︷ ︸
ρ′

Now we can use Lemma 5.8 again and the induction hypothesis (since
|ρ|′ < |ρ|) to get:

λ(q
γ−→ q′′) v

⊕
{v(σ) | 〈q, γ〉 σ

=⇒∗〈q′′, ε〉, σ ∈ ∆pre}

λ∗(q′′
s′−→
ρ′
∗ q′) v

⊕
{v(σ) | 〈q′′, s′〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆pre}

Finally, we use the fact that the flow algebra is affine:

λ∗(q
s−→
ρ

∗ q′)

v
⊕
{v(σ)⊗ v(σ′) | 〈q, γ〉 σ

=⇒∗〈q′′, ε〉, 〈q′′, s′〉 σ′
=⇒∗〈q′, ε〉, σ, σ′ ∈ ∆pre}

v
⊕
{v(σ) | 〈q, s〉 σ

=⇒∗〈q′, ε〉, σ ∈ ∆pre}

�
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B.3.4 Proof of Theorem 5.10

Consider an automaton ACpre∗ constructed by the saturation procedure and the
least solution λ to the set of its constraints C. If the flow algebra is affine then
for every path ρ = p

s−→∗ qf where qf ∈ F we have that:

λ∗(p
s−→
ρ

∗ qf ) =
⊕
{v(σ) | 〈p, s〉 σ

=⇒∗〈qf , ε〉, σ ∈ ∆∗pre}

Proof. The result follows directly from Theorem 5.4 and Lemma 5.9. �

B.3.5 Proof of Lemma 5.11

For every transition q′
γε←− q (γε ∈ Γ ∪ {ε}) in Apost∗ there exists a sequence σ

of pushdown rules in ∆post-2 such that 〈q′, ε〉 σ
=⇒∗〈q, γε〉.

Proof. Let us denote by Ai the automaton A after i steps of the saturation
procedure. Proof will proceed by induction on i.

i = 0 Follows from the definition of ∆post-2.

i > 0 We assume the property holds for Ai and prove it for Ai+1. Consider that
the saturation procedure1

• Adds a transition qd
ε←− ps because of a pushdown rule r = 〈p′, γ′〉 ↪→

〈ps, ε〉 and a path qd
γ′

L99 p′. We can use the induction hypothesis to

get that there exists σ such that 〈qd, ε〉
σ

=⇒∗〈p′, γ′〉. But then clearly

〈qd, ε〉
σ

=⇒∗〈p′, γ′〉 r
=⇒ 〈p, ε〉.

• Adds a transition qd
γ←− ps because of a pushdown rule r = 〈p′, γ′〉 ↪→

〈ps, ε〉 and a path qd
γ′

L99 p′. We can use the induction hypothesis to

get that there exists σ such that 〈qd, ε〉
σ

=⇒∗〈p′, γ′〉. Again it is clear

that 〈qd, ε〉
σ

=⇒∗〈p′, γ′〉 r
=⇒ 〈p, ε〉.

• Adds transitions qps,γ1
γ1←− ps and qd

γ2←− qps,γ1 because of a push-

down rule r = 〈p′, γ′〉 ↪→ 〈ps, γ1γ2〉 and a path qd
γ′

L99 p′. According
to the definition of ∆post-2 we know that there are r1 = 〈p′, γ′〉 ↪→

1Note that the saturation procedure works on ∆.
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〈qps,γ1 , γ2〉 and r2 = 〈qps,γ1 , ε〉 ↪→ 〈ps, γ1〉. So we immediately have
the path for the first transition:

〈qps,γ1 , ε〉
r2=⇒ 〈ps, γ1〉

Moreover, we can use the induction hypothesis to get that there exists
σ such that 〈qd, ε〉

σ
=⇒∗〈p′, γ′〉 and so we also have that:

〈qd, ε〉
σ

=⇒∗〈p′, γ′〉 r1=⇒ 〈qps,γ1 , γ2〉

�

B.3.6 Proof of Lemma 5.12

Consider a weighted pushdown system W = (P,F , f) where F is affine and
an automaton ACpost∗ created by the saturation procedure. For every transition

q′
γε←− q (γε ∈ Γ ∪ {ε}) in this automaton we have that:

λ(q′
γε←− q) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q, γε〉, σ ∈ ∆∗post-2}

Proof. Let us denote by ACi the automaton AC after i steps of saturation
procedure and similarly the least solution for it by λi. We will prove by induction

on i that for every transition q′
γε←− q we have that:

λi(q
′ γε←− q) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q, γε〉, σ ∈ ∆∗post-2}

i = 0 The only constraints are of the form 1̄ v l(t) where t is a transition in A.
Therefore, the least solution for each t is λi(t) = 1̄. We also know that for
every r ∈ ∆post-2 \∆, f(r) = 1̄. So the right hand side is at least 1̄. Thus
our property holds.

i > 0 We assume the property holds for ACi and prove it for ACi+1, i.e., prove
that adding a constraint (and maybe a transition as well) preserves the
property of interest.

Let t bi the transition that the added constraint refers to. Observe that if t
was already in the automaton ACi , then it is possible that h(t) might be on
the left-hand side of some other constraint. Therefore, the least solution
for the new set of constraints might be different for other transitions as
well; in other words the value/information from the new constraint might
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have to be propagated throughout other constraints to get λi+1. Now let
λji denote the solution after j steps of fixed point computation with the
new constraint, starting with:

λ0i (t) =

{
0̄ if t was added

λi(t) otherwise (t was in ACi )

Using induction on j we will prove that the property is maintained by the
computation.

Note that we can use here Kleene iteration due to Lemma 5.6.

j = 0 Immediate from outer induction hypothesis.

j > 0 We assume the property hold for λji and prove that it also holds

for λj+1
i . In the following we use the fact that the flow algebra is

affine, this is enough since from Lemma 5.11 it follows that the sets
(of pushdown paths) on the right hand sides are not empty. Let us
consider three possibilities of constraints:

• if the constraint is:

h(q
γ′←− p′)⊗ f(r) v h(q

ε←− p)

or:

h(q
γ′←− q′′)⊗ h(q′′

ε←− p′)⊗ f(r) v h(q
ε←− p)

where r = 〈p′, γ′〉 ↪→ 〈p, ε〉 ∈ ∆. Let us only consider the more
complex case with additional ε transition (the one without is

similar). We need to calculate the value of λj+1
i (q

ε←− p) — it
should be its old value combined with the new one:

λj+1
i (q

ε←− p) = λji (q
ε←− p)⊕

(
λji (q

γ′←− q′′)⊗ λji (q
′′ ε←− p′)⊗ f(r)

)
Let us use the induction hypothesis (inner induction) three times
to get:

λji (q
ε←− p) v

⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈p, ε〉, σ ∈ ∆∗post-2}

λji (q
γ′←− q′′) v

⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈q′′, γ′〉, σ ∈ ∆∗post-2}

λji (q
′′ ε←− p′) v

⊕
{v(σ) | 〈q′′, ε〉 σ

=⇒∗〈p′, ε〉, σ ∈ ∆∗post-2}
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Using the above and the fact that our flow algebra is affine, we
get:

λji (q
γ′←− q′′)⊗ λji (q

′′ ε←− p′)⊗ f(r)

v
⊕
{v(σ1)⊗ v(σ2)⊗ f(r) | 〈q, ε〉 σ1=⇒∗〈q′′, γ′〉,

〈q′′, ε〉 σ2=⇒∗〈p′, ε〉,

〈p′, γ′〉 r
=⇒ 〈p, ε〉,

σ ∈ ∆∗post-2}

v
⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈p, ε〉, σ ∈ ∆∗post-2}

Now since
⊕

gives the least upper bound, we have that:

λj+1
i (q

ε←− p) v
⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈p, ε〉, σ ∈ ∆∗post-2}

• if the constraint is:

h(q
γ′←− p′)⊗ f(r) v h(q

γ←− p)

or:

h(q
γ′←− q′′)⊗ h(q′′

ε←− p′)⊗ f(r) v h(q
γ←− p)

where r must be r = 〈p′, γ′〉 ↪→ 〈p, γ〉 ∈ ∆. The case is analogous
to the previous one (we just have γ instead of ε).

• if the constraint is one of:

1̄ v h(qp,γ1
γ1←− p)

or:

h(q
γ′←− q′′)⊗ h(q′′

ε←− p′)⊗ f(r) v h(q
γ2←− qp,γ1)

(alternatively without the ε-transition:

h(q
γ′←− p′)⊗ f(r) v h(q

γ2←− qp,γ1)

but we will only consider the former, since it is a bit more com-
plex and the proof for the latter is almost the same).
We know that r = 〈p′, γ′〉 ↪→ 〈p, γ1γ2〉 ∈ ∆ and so that we
have r1, r2 ∈ ∆post-2 such that r1 = 〈p′, γ′〉 ↪→ 〈qp,γ1 , γ2〉 and
r2 = 〈qp,γ1 , ε〉 ↪→ 〈p, γ1〉 with f(r1) = f(r) and f(r2) = 1̄.
For the first trivial inequality the property is clearly preserved.
Let us focus on the second one. We know that:

λj+1
i (q

γ2←− qp,γ2) = λji (q
γ2←− qp,γ2)

⊕
(
λji (q

γ′←− q′)⊗ λji (q
′ ε←− p′)⊗ f(r)

)
(B.2)
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for some q′ ∈ Q. Using induction hypothesis we have that:

λji (q
γ2←− qp,γ1) v

⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈qp,γ1 , γ2〉} (B.3)

λji (q
γ′←− q′) v

⊕
{v(σ) | 〈q, ε〉 σ

=⇒∗〈q′, γ′〉}

λji (q
′ ε←− p′) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈p′, ε〉}

Using the last two and the fact that the flow algebra is affine, we
get the following:

λji (q
γ′←− q′)⊗ λji (q

′ ε←− p′)⊗ f(r)

v {v(σ1)⊗ v(σ2)⊗ f(r) | 〈q, ε〉 σ
=⇒∗〈q′, γ′〉, 〈q′, ε〉 σ

=⇒∗〈p′, ε〉}

v {v(σ)⊗ f(r1)⊗ f(r2) | 〈q, ε〉 σ
=⇒∗〈p′, γ′〉 r1=⇒ 〈qp,γ1 , γ2〉

r2=⇒ 〈p, γ1γ2〉}

v {v(σ) | 〈q, ε〉 σ
=⇒∗〈p, γ1γ2〉}

So from this and (B.2) and (B.3) we have the desired result.

�

B.3.7 Proof of Lemma 5.13

Consider a weighted pushdown system W = (P,F , f) where F is affine and
a ACpost∗ automaton created by the saturation procedure. For every path ρ =

q′
s←− q (s ∈ Γ∗) in this automaton we have that:

λ∗R(q′ ∗
s←−
ρ
q) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q, s〉, σ ∈ ∆∗post-2}

Proof. The proof will proceed with the induction on the number of transitions
in ρ (we will use the inductive definition of λ).

|ρ| = 1 According to the definition of λ we have:

λ∗R(q′ ∗
s←−
ρ
q) = λ(q′

γε←− q)

The result follows from Lemma 5.12.
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|ρ| > 1 Again using the definition of λ∗R we have:

λ∗R(q′ ∗
s←−
ρ
q) = λ∗R(q′ ∗

s′←−
ρ′
q′′)⊗ λ(q′′

γε←− q)

where s = γεs
′, q′′ ∈ Q, and:

ρ = q′ ∗
s′←− q′′︸ ︷︷ ︸
ρ′

γε←− q

Now we can use the Lemma 5.12 along with the induction hypothesis
(since |ρ| > |ρ′|) to get:

λ(q′′
γε←− q) v

⊕
{v(σ) | 〈q′′, ε〉 σ

=⇒∗〈q, γε〉, σ ∈ ∆post-2}

λ∗R(q′ ∗
s′←−
ρ′
q′′) v

⊕
{v(σ) | 〈q′, ε〉 σ

=⇒∗〈q′′, s′〉, σ ∈ ∆post-2}

Finally, we use the fact that the flow algebra is affine:

λ∗R(q′ ∗
s←−
ρ
q)

v
⊕
{v(σ)⊗ v(σ′) | 〈q′, ε〉 σ′

=⇒∗〈q′′, s′〉, 〈q′′, ε〉 σ
=⇒∗〈q, γε〉, σ, σ′ ∈ ∆post-2}

v
⊕
{v(σ)⊗ v(σ′) | 〈q′, ε〉 σ

=⇒∗〈q, s〉, σ ∈ ∆post-2}

�

B.3.8 Proof of Theorem 5.14

Consider an automaton ACpost∗ constructed by the saturation procedure and the
least solution λ to the set of its constraints C. If the flow algebra is affine then
for every path ρ = qf

∗ s←− p where qf ∈ F we have that:

λ∗R(qf
∗ s←−
ρ
p) =

⊕
{v(σ) | 〈qf , ε〉

σ
=⇒∗〈p, s〉, σ ∈ ∆∗post-2}

Proof. Follows directly from Theorem 5.5 and Lemma 5.13. �
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Appendix C

Algorithms and examples
from Chapter 8

C.1 Algorithms

Algorithms 2 and 3 present the graph-based algorithms for Pre∗ and Post∗

computations. We skip the initialization phase (and handling of pop-rules in
case of Pre∗), since it is quite simple and would only unnecessarily complicate
the already non trivial code. Thus, both algorithms assume that the worklist
has been initialized and present just the saturation stage of each procedure.
Again, we do not consider constraint generation as it is quite simple and does
not influence how the algorithms actually work.
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input : worklist, pds, wfa
output: final wfa representing Apre∗

while worklist is not empty do
(pds-edge, target-state)← Pop(worklist );
(control-loc, stack-elem)← Source(pds-edge );
if ¬AddTransition(wfa, control-loc, stack-elem, target-state ) then

continue with the next element;
end
foreach pds-edge2 ∈ Suspended(control-loc, stack-elem ) do

Push(worklist, pds-edge2, target-state);
end
foreach pds-edge2 ∈ PdsInEdges(Source(pds-edge)) do

stack-label← Label(pds-edge2 );
if stack-label = ε then

Push(worklist, pds-edge2, target-state);
else

foreach target-state2 ∈ GetStates(target-state, stack-label ) do
Push(worklist, pds-edge2, target-state2);

end
if IsInitial(target-state) then

Insert(Suspended(target-state, stack-label), pds-edge2);
end

end

end

end

Algorithm 2: Saturation stage of graph-based Pre∗ algorithm.
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input : worklist, pds, wfa
output: final wfa representing Apost∗

while worklist is not empty do
(pds-edge, target-state)← Pop(worklist );
(control-loc, stack-elem)← Target(pds-edge );
stack-label← Label(pds-edge );
if stack-label = ε then

if ¬AddTransition(wfa, control-loc, stack-elem, target-state ) then
continue with the next worklist element;

end
if stack-elem = ε then

if ¬IsInitial(target-state ) then
Insert(EpsilonCache(target-state), control-loc);

end
foreach trans ∈ OutTrans(target-state ) and pds-edge2 ∈
PdsOutEdges(( control-loc, Label(trans))) do

Push(worklist, pds-edge2, Target(trans));
end

end
foreach pds-edge2 ∈ PdsOutEdges(Target(pds-edge)) do

Push(worklist, pds-edge2, target-state);
end

else
intermediate← GetIntermediate(control-loc, stack-elem );
if ¬AddTransition(wfa, control-loc, stack-elem, intermediate ) ∧
¬AddTransition(wfa, intermediate, stack-label, target-state ) then

continue with the next worklist element;
end
foreach predecessor ∈ EpsilonCache(intermediate ) and pds-edge2 ∈
PdsOutEdges(( predecessor, stack-label)) do

Push(worklist, pds-edge2, target-state);
end
foreach pds-edge2 ∈ PdsOutEdges(Target(pds-edge)) do

Push(worklist, pds-edge2, intermediate);
end

end

end

Algorithm 3: Saturation stage of graph-based Post∗ algorithm.
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C.2 Benchmark

We developed a simple generator of programs of various sizes for benchmarking
purposes. Since we want to measure the performance of the Pre∗ and Post∗

algorithms, we do not perform any actual analysis. Thus, to imitate an ordinary
statement (i.e., not a procedure call) we simply use skip with the restriction
that we do not optimize it away when constructing the pushdown graph. By
passing an additional parameter to the generator we increase both the number
of foo procedures and the size of the main procedure. The general shape of a
generated program is as follows:

proc foo0
skip ;
skip ;
a ?( x ) ;
do

: : x < 0 => c a l l main
: : 0 < x => c a l l main

od ;
skip ;
skip ;
skip

end
proc foo1

skip ;
skip ;
a ?( x ) ;
do

: : x < 0 => c a l l foo0
: : 0 < x => c a l l main

od ;
skip ;
skip ;
skip

end
proc main

skip ;
skip ;
skip ;
skip ;
skip ;
skip ;
a ?( x ) ;



C.2 Benchmark 193

do
: : x < 0 => c a l l foo0
: : 0 < x => c a l l foo1

od ;
skip
end
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Appendix D

Algorithms and examples for
Chapter 9

D.1 Kleene star

D.1.1 Description

The algorithm for commutative case might require computing a Kleene star of a
matrix and we have implemented two different algorithms to compute that. The
first one is the well-known generalization of the Floyd-Warshall algorithm. For
a given matrix A it computes its transitive closure, i.e., A+. By adding identity
matrix 1 we get the A∗. The complexity of the computation is immediate from
the structure of the algorithm: Θ(n3) [17].

The second one is a recursive divide-and-conquer algorithm [52, 51]. Since it
is somewhat less known we will present it here briefly and show that it is also
Θ(n3) in the worst case. Let M be a square m ×m matrix. We can divide it,
for some k ∈ N, into four submatrices as follows:

M =

[
A B

C D

]
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where A and D are square submatrices of dimensions k×k and (m−k)×(m−k)
respectively. Let us introduce some intermediate matrices:

F = A + BD∗C

G = D + CA∗B

Then the M∗ can be computed recursively as follows:

M∗ =

[
F∗ F∗BD∗

G∗CA∗ G∗

]

As we show below the procedure is also Θ(n3) (the main factor here is the matrix
multiplications performed at each step of the recursion).

Since both procedures have the same asymptotic complexity one might ask
whether it is useful to implement both of them. However, the semiring expres-
sions that arise in both computations are often quite different and we have found
that for some abstractions (e.g., semilinear sets discussed in Section 9.3) they
can significantly influence the performance. However, we have not found one of
the algorithms to always provide better performance across different semirings.

D.1.2 Runtime analysis

Here we will consider in a bit more detail the runtime analysis of the divide-
and-conquer algorithm. We will use the master theorem [17], which allows to
solve some of the recurrences of the form:

R(n) = aR
(n
b

)
+ f(n)

In our case we try to minimize the number of recursive calls by splitting the
matrix roughly in half, i.e., k = bn2 c. We have four recursive calls, each on the
matrix of the dimension bn2 c as well as eight matrix multiplications. However,
with some common subexpression elimination it is easy to have just six matrix
multiplications and so our recurrence relation is:

R(n) = 4R
(n

2

)
+ 6

(n
2

)3
In order to apply one of the cases of the master theorem we need to show
that there exists an ε such that f(n) ∈ Ω(nlogb a+ε). Now we clearly have that

log2 4 = 2 and 6
(
n
2

)3 ∈ Θ(n3). We also need to show that af
(
n
b

)
≤ cf(n) for

some constant c < 1. It is easy to see that there exists such c:

4
(n

4

)3
=

1

16
n3 < c ∗ 6

(n
2

)3
=

3

4
cn3
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thus, it follows from the master theorem that the whole procedure is Θ(n3).

Finally, it is useful to consider the cost of evaluating such a matrix. Since
the procedure can create expressions that (due to sharing of subexpressions)
are linear in the number of variables |X | and there are |X |2 number of such
expressions in the matrix, we have that the cost of evaluating it is O(|X |3).
However, this bound is quite pessimistic, e.g., equation systems arising from
program analysis problems are rarely very dense and many of the cells of the
adjacency matrix will have value 0̄. Also note that it is essential that we take
advantage of the sharing of nodes and cache already evaluated subexpressions
(thus avoiding the exponential complexity). Finally, we also assume that the
insertion and lookup in a hash table is O(1).

D.2 Benchmarks

The first example is presented below.

proc main
a ?( x ) ;
do

: : x = 1 => b ! ( ) ; c ! ( )
: : x = 2 => c ! ( ) ; d ! ( )
: : x = 3 => d ! ( ) ; b ! ( )

od ;
a ?( x ) ;
i f

: : x < 0 => c a l l main ; c a l l main
: : ! ( x < 0) => skip

f i ;
a ! ( )

end

The second example’s main difference with the first one is the fact that during
constraint solving there will be some constraints that can be abstracted by
dividing the elements by their GCD.

proc main
a ?( x ) ;
do

: : x = 1 => b ! ( ) ; b ! ( ) ; b ! ( )
: : x = 2 => b ! ( ) ; b ! ( ) ; b ! ( ) ; b ! ( )
: : x = 3 => d ! ( ) ; d ! ( ) ; d ! ( )
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od ;
a ?( x ) ;
i f

: : x < 0 => c a l l main ; c a l l main
: : ! ( x < 0) => skip

f i ;
a ! ( )

end

Finally, in the third example we add an additional call to main that increases
the degree of the equation system.

proc main
a ?( x ) ;
do

: : x = 1 => b ! ( ) ; c ! ( )
: : x = 2 => c ! ( ) ; d ! ( )
: : x = 3 => d ! ( ) ; b ! ( )

od ;
a ?( x ) ;
i f

: : x < 0 => c a l l main ; c a l l main ; c a l l main
: : ! ( x < 0) => skip

f i ;
a ! ( )

end
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