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a b s t r a c t

This study describes the construction of two flavonoid biosensors, which can be applied for metabolic
engineering of Escherichia coli strains. The biosensors are based on transcriptional regulators combined
with autofluorescent proteins. The transcriptional activator FdeR from Herbaspirillum seropedicae SmR1
responds to naringenin, while the repressor QdoR from Bacillus subtilis is inactivated by quercetin and
kaempferol. Both biosensors showed over a 7-fold increase of the fluorescent signal after addition of
their specific effectors, and a linear correlation between the fluorescence intensity and externally added
flavonoid concentration. The QdoR-biosensor was successfully applied for detection of kaempferol
production in vivo at the single cell level by fluorescence-activated cell sorting. Furthermore, the amount
of kaempferol produced highly correlated with the specific fluorescence of E. coli cells containing a
flavonol synthase from Arabidopsis thaliana (fls1). We expect the designed biosensors to be applied for
isolation of genes involved in flavonoid biosynthetic pathways.

& 2013 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

1. Introduction

Plant secondary metabolites are an important source of new
drugs and nutraceuticals. Phenylpropanoids, especially flavonoids
and stilbenes, were shown to have antioxidant, antiviral, antibacter-
ial, anticancer and immunosuppressive activities (Clere et al., 2011;
Gresele et al., 2011; Pan et al., 2010). The commercial availability
of these compounds is mainly limited by two factors: (i) generally
present in low intracellular concentrations in the complex host cell
matrix and (ii) high chemical complexity, which render isolation
procedures inefficient and impair large scale chemical synthesis,
respectively. In the last decade, the utilization of microorganisms for
the efficient and sustainable production of specific plant metabolites
emerged as a promising alternative (Marienhagen and Bott, 2013;
Halls and Yu, 2008; Ververidis et al., 2007).

Escherichia coli has been shown in many studies to be highly
suitable as a host for the production of naringenin, a key inter-
mediate in the flavonoids pathway (Leonard et al., 2007; Santos
et al., 2011; Hwang et al., 2003; Kaneko et al., 2003). However,
identifying the optimal set of heterologous genes, the best way to

assemble them, and defining the best conditions for the produc-
tion of flavonoids, such as naringenin and quercetin, can be
laborious and highly time consuming. In order to faster find the
right heterologous genes and to secure a high flavonoid produc-
tion, novel high throughput screening approaches for flavonoid
production are warranted.

Quantification of intracellular metabolites in the produc-
tion host is often a challenge as the production of small molecules
is seldom associated with a specific and measurable phenotype.
In nature, various transcriptional and translational regulatory
mechanisms have evolved to serve as molecular reporters in the
presence of a specific ligand. Application of transcriptional reg-
ulators or RNA molecules as biosensors to correlate the detection
of small molecules to the read out of a reporter protein is an
upcoming method (van Sint Fiet et al., 2006; Gredell et al., 2012).
These biosensors make use of the natural regulatory repertoire
of the cells, as was shown for amino acids (Binder et al., 2012;
Mustafi et al., 2012) or of existing promoter systems altered in
their effector specificity, as in the case of mevalonate and triacetic
acid lactone (Tang and Cirino, 2011; Tang et al., 2013). One of the
major advantages of using fluorescent reporter proteins is the
ability to use fluorescence-activated cell sorting (FACS) for high
throughput screening, and thus drastically shorten the time for
analyzing millions of mutant cells (Binder et al., 2012, 2013). The
number of homologous transcriptional regulators is limited in
E. coli and modifying the substrate specificity of such regulators by
evolution can be time consuming. However, new biosensors can be
generated using heterologous regulatory mechanisms. An example
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of transcriptional regulators that recognize plant metabolites can
be found in plant symbiotic bacteria to activate nodulation gene
expression necessary for nitrogen fixation (Rossen et al., 1985).
Another set of transcriptional regulators in bacteria respond to
plant secondary metabolites by activation of several degradation
pathways for the usage as carbon sources or as a detoxification
mechanism (Rao and Cooper, 1994).

This study aimed at developing biosensors for key intermedi-
ates of the flavonoid pathway. We identified two key metabolites:
(i) naringenin, the major branch point common intermediate for
various flavonoid derivatives (Marienhagen and Bott, 2013) and
(ii) quercetin, a flavonoid of commercial interest because of its
antioxidant and anti-inflammatory properties (Kumar et al., 2003;
Moreira et al., 2004). Recently the transcriptional regulator FdeR
from Herbaspirillum seropedicae SmR1 was reported to activate a
naringenin degradation pathway (Marin et al., 2013). We took
advantage of this transcriptional regulator to generate a biosensor
for naringenin detection. Another biosensor was constructed from
a transcriptional regulator which detects flavonoids, like quercetin,
in Bacillus subtilis (Hirooka and Fujita, 2011; Hirooka et al., 2007).
It regulates the transcription of qdoI, whose gene product is
responsible for quercetin degradation (Hirooka and Fujita, 2011).
Here the development of these two new biosensors, from design
to in vivo detection of metabolites on a single cell level, is
described. Our study contributes to the repertoire of transcription
factor based biosensors in E. coli.

2. Materials and methods

2.1. Bacterial strains, media and growth conditions

Bacterial strains and plasmids are listed in Table 1. E. coli strains
were transformed as previously described by Hanahan (1983) and
cultivated in LB medium (Miller, 1972), 2xYT medium (16 g l�1

tryptone, 10 g l�1 yeast extract, 5 g l�1 sodium chloride) or in M9
minimal medium (Sambrook and Russel, 2001) containing 10 g l�1

glucose. Liquid cultures were routinely incubated in10 ml test

tubes or 250-ml-baffled Erlenmeyer flasks overnight at 37 1C and
250 rpm. The E. coli cells transformed with each plasmid (Table 1)
were selected by adding antibiotics (spectinomycin and kana-
mycin) to the medium at a final concentration of 50 μg ml�1

according to the drug resistance. E. coli DH5α (Hanahan, 1983) was
used for cloning purposes and E. coli BL21 (DE3) (Invitrogen,
Karlsruhe, Germany) and derivatives for gene expression and
whole-cell biotransformation for sensor establishment. For stock
cultures, 1 ml of overnight LB culture was gently mixed with 1 ml
30% (v/v) glycerol and stored at �80 1C. For analysis of the
metabolite sensor response to different flavonoids the E. coli cells
containing either pG-FdeR or p441-QdoR were cultivated in 1 ml
2xYT to an optical density at 600 nm (OD600) of approximately 0.7.
Then various flavonoids (naringenin chalcone was dissolved in
ethanol and naringenin, dihydrokaempferol, kaempferol and quer-
cetin were dissolved in dimethylsulfoxide (DMSO)) were added to
a final concentration of 0.1 mM, unless otherwise stated, and the
cultures were incubated at 37 1C for 20 h and analyzed regarding
growth, fluorescence and population heterogeneity.

2.2. Recombinant DNA work

Standard methods including PCR, DNA restriction enzyme
digestion and ligation were carried out according to standard
protocols (Sambrook and Russel, 2001). The transcriptional reg-
ulator based biosensors were synthesized by GeneArt (Regens-
burg, Germany). For the construction of the biosensor the DNA
region containing the native promoter and open reading frame of
either QdoR or FdeR were used together with the native promoter
regions whereas green fluorescent protein (GFP) or cyan fluores-
cent protein (CFP) were used instead of the native target gene.
The qdoR synthetic gene was codon optimized for E. coli, while
the nucleotide sequence of fdeR synthetic gene was identical to the
native. The QdoR-GFP construct was sub-cloned into pSEVA441
using EcoRI and KpnI restriction sites to originate the p441-QdoR
sensor plasmid. The FdeR-CFP construct was used in the original
GeneArt plasmid containing kanamycin resistance.

Table 1
Strains and plasmids used in this work.

Strains, plasmids or oligonucleotides Relevant characteristics/sequence(5′–3′) Source or reference

Strains
BL21(DE3) F– ompT hsdSB(rB–, mB

–) gal dcm rne131 (DE3) Invitrogen
BL-QdoR BL21 (DE3) with p441-QdoR This study
BL-FdeR BL21 (DE3) with pG-FdeR This study
BL-QdoR-FdeR BL21 (DE3) with p441-QdoR and pG-FdeR This study
BL-QdoR-FLS1 BL21 (DE3) with p441-QdoR and pRSF-FLS1 This study
BL-QdoR-RSF BL21 (DE3) with p441-QdoR and pRSF-duet This study

Plasmids
pSEVA441 SpcR, mcs, default, pRO1600/ColE1 origin Silva-Rocha et al. (2013)
p441-QdoR pSEVA441 derivative containing QdoR-GFP regulator,

promoter construct
This study

pG-FdeR KanR, pMK-RQ, derived from GeneArt This study; GeneArt
pRSF-duet KanR, Double T7 promoters; RSF ori Novagen
pRSF-FLS1 pRSF-duet derivative containing the flavonol synthase

gene (fls1) from Arabidopsis thaliana
Malla et al. in press

Oligonucleotides
H132X_for GGGTCGATNNKCTCTTCCATCG
H132X_rev GGAAGAGMNNATCGACCCAAGC
F134X_for GATCATCTCNNKCATCGAATCTGG
F134X_rev GATTCGATGMNNGAGATGATCGAC
M201X_for GCGGAGTATATGNNKAAGATTAACTATTATCCGCCG
M201X_rev GGCGGATAATAGTTAATCTTMNNCATATACTCCGC
E295X_for GGTTTTCTTGNNKCCTCCCCGTG
E295X_rev CGGGGAGGMNNCAAGAAAACCGG
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Oligonucleotides were synthesized by Integrated DNA Technolo-
gies, Inc (Leuven, Belgium) and are listed in Table 1. For saturation
individual mutagenesis of codons His132, Phe134, Met201 and
Glu295 within the intact fls1 gene, the oligonucleotide pairs
His132X_for/His132X_rev, Phe134X_for/Phe134_revX, Met201X_
for/Met201X_rev and Glu295X_for/Glu295X_rev were used accord-
ing to the Stratagene site-directed mutagenesis kit with the following
modifications. DpnI (Fermentas) and phusion polymerase (New
England Biolabs) were used.

2.3. Determination of fluorescence

The fluorescence and OD600 were determined in a Synergy Mx
plate reader (Biotek, United States). GFP fluorescence was mea-
sured with excitation at 485 nm and emission at 515 nm with a
gain set to 80. CFP emission was measured at 475 nm with an
excitation wavelength of 433 nm and a gain of 70. The specific
fluorescence was defined as the fluorescence per OD600 value
(given in a.u.).

2.4. Flow cytometry

Flow cytometric measurements were performed on a FACS Aria
(Becton Dickinson, SanJose, USA) with 488 nm excitation from
a blue solid-state laser. Forward-scatter characteristics and side-
scatter characteristics were detected as small-and large-angle
scatters of the 488 nm laser, respectively. GFP and CFP fluores-
cence was detected using a 488-nm long-pass and a 530/30-nm
band-pass filter set or a 445-nm long-pass and a 510/80-nm band-
pass filter set, respectively. Data were analyzed using BD DIVA
7.0 software. The sheath fluid was sterile filtered phosphate
buffered saline.

2.5. Whole-cell biotransformation and flavonoid extraction

Flaovonoid production was conducted as described previously
with slight modifications (Malla et al., in press). E. coli strains
harboring the sensor plasmid p441-QdoR and either pRSF-duet
vector (BL-QdoR-RSF) or pRSF-FLS1 expression plasmid (BL-QdoR-
FLS1) were pre-cultivated in 3 ml of 2xYT liquid medium with the
appropriate antibiotics and incubated at 37 1C and 250 rpm over-
night. The culture was then transferred to 4 ml fresh 2xYT medium
at 30 1C and grown until OD600 of approximately 0.6. At this stage,

isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final
concentration of 0.5 mM to induce FLS1 expression, and the
culture incubated at 30 1C for 5 h. These cells were harvested
and re-suspended in M9 minimal medium supplemented with
0.5 mM IPTG in the presence of 0.25 mM dihydrokaempferol. After
cultivation for 24 h at 30 1C the culture was divided and the cells
were either analyzed by FACS or quenched and metabolites
extracted with 1 equiv. volume of methanol for 30 min at room
temperature. The total extract was centrifuged for 5 min at
16,000� g and the supernatant was sterile filtered and analyzed
by high performance liquid chromatography (HPLC).

2.6. HPLC analysis

The production of kaempferol in E. coli recombinant strains was
analyzed and quantified using a high-performance liquid chroma-
tography equipped with a Discoverys HS F5-5 column (4.6 mm by
150 mm; 5.0-mm particle size; Sigma–Aldrich) connected to a UV
detector (290, 360 nm). A flow rate of 1 ml/min was used with a
linear gradient of 10 mM ammonium formate pH 3.0 buffer (phase
A) and acetonitrile (phase B) by the following method: 0–2 min
(5% B), 2–10 min (5 to 50% B), 10–13 min (50% B), 13–16 min (50–
5% B), and 16–20 min (5% B). Under these conditions, the dihy-
drokaempferol and kaempferol were detected at 10.7 min and
12.5 min of retention time, respectively. A calibration curve of pure
kaempferol was used for quantification.

2.7. Analyzing biosensor response to altered kaempferol production

For screening of altered FLS1 activity, E. coli BL21(DE3) was
transformed with p441-QdoR and the pRSF-FLS derivatives
subjected to site-directed mutagenesis and plated on LB agar plates
containing 50 mg ml�1 kanamycin and 50 mg ml�1 spectinomycin.
Single colonies were inoculated into 200 ml of 2xYT medium in a 96-
well plate and grown overnight at 30 1C and 350 rpm. For the main
culture 5 ml of the preculture was inoculated into 145 ml 2xYT
medium in a 96-well plate. After 3 h of cultivation at 30 1C fls1
expression was induced by the addition of IPTG to a final concentra-
tion of 0.5 mM. The cells were cultivated another 4 h at 30 1C, and
subsequently biotransformation was started by adding 200 mM of
dihydrokaempferol. The OD600, specific fluorescence and kaempferol
production were measured after 16 h.

Fig. 1. Schematic views of QdoR or FdeR regulatory systems (adapted from Hirooka and Fujita, 2011). The genes, promoters, and hairpin structures probably functioning as
transcriptional terminators are indicated by thick arrows, bent arrows, and stem loops, respectively. (A) Organization of the biosensor construct based on the qdoR-qdoI gene
region. The DNA fragment covering the qdoR promoter, a codon optimized qdoR gene and the qdoI promoter was fused to the gfp gene. QdoR proteins form dimers (two
ovals), and bind to QdoR boxes (dark gray boxes) located in the promoter regions repressing qdoR and gfp expression. The binding of QdoR to the QdoR boxes is inhibited by
certain flavonoids (small circles), which leads to derepression of the regulon members. (B) Gene organization and proposed mechanism for the naringenin biosensor based
on the fdeR-fdeA gene region. The DNA fragment contains the fdeR promoter together with the native fdeR gene and the fdeA promoter fused to the cfp gene. FdeR proteins
presumably form dimers (two ovals), and are inactive in the absence of the effector. In the presence of naringenin (small circles) FdeR probably binds to a box located
upstream of the fdeA promoter and activates cfp expression.
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3. Results

3.1. Biosensor design and construction

A literature survey was conducted for the identification of
potential transcriptional regulators to be used as biosensors for
plant secondary metabolites. Our main assumption is that tran-
scriptional regulators responding to plant secondary metabolites
would be present in bacteria that are directly exposed to these
compounds in nature, such as soil bacteria and plant symbionts.
In order to compare the performance of different types of
transcriptional regulators in a heterologous host, two interesting
candidates were chosen based on: (i) their ability to regulate gene
expression in the presence of specific effectors (flavonoids) in the
native organism and (ii) their different mechanisms for regulating
gene expression as either an activator or a repressor.

QdoR from B. subtilis acts as a repressor that can be inactivated
upon binding to its effector. It regulates, together with its para-
logous transcriptional regulator LmrA, the expression of the lmrAB
operon, the qdoR itself and the qdoI-yxaH operon. QdoI was shown
to have quercetin 2,3-dioxygenase activity, which is the first step
in a potential quercetin degradation pathway for detoxification
(Hirooka and Fujita, 2011; Hirooka et al., 2007). We have taken
advantage of this regulatory system by setting the expression of
the green fluorescent protein (GFP) under the control of QdoR by
placing the qdoI promoter upstream of gfp (Fig. 1A). Hereby, we
constructed a biosensor for quercetin and other flavonols.

FdeR from H. seropedicae belongs to the LysR family of tran-
scriptional regulators and acts most likely as an activator in the
presence of its effector molecule naringenin. In H. seropedicae FdeR
activates the transcription of the fdeABCDEFGHIJ gene cluster,
wherein fdeA encodes for a protein necessary for naringenin
degradation (Marin et al., 2013). Construction of a naringenin
biosensor was carried out by replacing fdeA by cfp encoding a cyan
fluorescent protein (CFP) (Fig. 1B).

3.2. Effector range and response of the biosensors in vivo

To investigate the effector range of the constructed biosensors, E.
coli cells harboring the respective sensor plasmid (pG-FdeR
or p441-QdoR) were grown overnight in the presence of 0.1 mM
of various flavonoids (naringenin chalcone, naringenin, dihydro-
kaempferol, kaempferol and quercetin). The specific fluorescence of
the cells was measured in vivo, 24 h after the addition of the
flavonoid (Fig. 2A). The two sensor plasmids, pG-FdeR and p441-

QdoR, were active in E. coli and showed high expression of the
fluorescent proteins CFP and GFP after addition of their respective
effectors. E. coli cells containing the sensor plasmid pG-FdeR showed
a high increase in specific fluorescence in the presence of naringenin
and naringenin chalcone. These two molecules are the metabolic
intermediates of the initial steps in the biosynthesis of kaempferol
and quercetin (Fig. 2B). The latter molecules are recognized by QdoR
resulting in gfp expression and therefore high specific fluorescence.
For the useful application of biosensors in pathway optimization and
strain screening it is essential to determine the biosensor detection
range and to verify that the concentration of the effector significantly
correlates with the fluorescence emitted by the reporter. These two
aspects were investigated by measuring fluorescence in living cells
exposed to a range of effector (Fig. 3). The minimal concentration of
naringenin required to activate FdeR was 0.005 mM; moreover, a
tight correlation was observed between fluorescence intensity and
naringenin concentration of up to 0.3 mM (Fig. 3A). Kaempferol and
quercetin activated QdoR to the same extent with a fluorescence
maximum after addition of 0.1 mM. The minimal concentration of
kaempferol required to activate QdoR was 0.005 mMwhile quercetin
was detected after addition of 0.01 mM (Fig. 3B).

3.3. Measurements at the single cell level

To investigate the heterogeneity of the cell population and the
potential to use this technology to screen at the single cell level, E. coli
cultures carrying the biosensor plasmids were analyzed by FACS after
24 h of cultivation in the presence of 0.1 mM of the specified
flavonoids. Cells containing the naringenin biosensor pG-FdeR (BL-
FdeR) showed low fluorescent cells after incubation with kaempferol,
while addition of naringenin resulted in a shift of the fluorescence of
the cells towards higher blue fluorescence (Fig. 4A). The opposite
behavior was observed when using cells harboring the plasmid p441-
QdoR (BL-QdoR). These cells showed low green fluorescence after
addition of naringenin in a well-defined histogram and a high number
of fluorescent cells after addition of kaempferol (Fig. 4B). This result
demonstrates the potential of using the biosensors for screening at the
single cell level, because cells carrying either pG-FdeR or p411-QdoR
incubated in the presence of kaempferol could clearly be distinguished
from cells grown in the presence of naringenin.

3.4. Biosensor response to the in vivo production of kaempferol

The aim of a biosensor is to enable high throughput screening
of strains producing a compound of interest. Thus, we set out to test

Fig. 2. (A) Effector spectrum of the constructed biosensors. The specific fluorescence of E. coli cells harboring a biosensor plasmid after cultivation in the presence of 0.1 mM
of various flavonoids. DMSO and EtOH were used as controls since flavonoids were dissolved in either one or the other solvent. BL-QdoR (gray bars), BL-FdeR (white bars).
Mean values and standard deviations from three independent experiments are shown. (B) Schematic representation of the flavonoid synthetic pathway from naringenin
chalcone to quercetin; the biosensors constructed in this work and their cognate metabolites are highlighted. Abbreviations: DMSO, dimethylsulfoxide; EtOH, ethanol, α-KG,
α-ketoglutarate; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; FLS, flavonol synthase; FMO, Flavonoid 3′-monooxygenase; CPR, NADPH-cytochrome P450
reductase.
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biosensor applicability for detection of flavonoid formation in designed
E. coli strains. For this purpose the QdoR sensor plasmid was
introduced in E. coli cells expressing a flavonol synthase (FLS1) from
Arabidopsis thaliana (Prescott et al., 2002). FLS1 catalyzes the conver-
sion of dihydrokaempferol to kaempferol. While QdoR responds to
kaempferol but not to dihydrokaempferol (Fig. 2), its production was
expected to be monitored in vivo using the biosensor. The E. coli cells
containing the p441-QdoR plasmid together with either the pRSF-FLS1
plasmid (BL-QdoR-FLS1) or with the pRSF-duet vector (BL-QdoR-RSF)
were analyzed at the single cell level by FACS, at 24 h after the
addition of dihydrokaempferol. In BL-QdoR-FLS1 the addition of

dihydrokaempferol resulted in a high number of fluorescent cells
and a nearly symmetric distribution of the fluorescence signal whereas
the negative control BL-QdoR-RSF showed lower fluorescence, indicat-
ing that sensor activity strictly requires a functional FLS1 (Fig. 5).
To validate our biosensor results, production of kaempferol from cell
extracts of cells grown in the presence of 0.25 mM dihydrokaempferol
was analyzed by HPLC. Cultures of E. coli strain BL-QdoR-FLS1 were
confirmed to produce 0.1 mM kaempferol after 24 h, while the latter
metabolite was not detected in extracts of BL-QdoR-RSF. These results
confirm the output of the QdoR based biosensor for kaempferol in vivo
detection.

3.5. Analyzing biosensor response to altered kaempferol production

To validate the applicability of the biosensors for high throughput
screening a correlation between the ability of the cells to produced
kaempferol and the biosensor output was established. The fluores-
cence signal in response to a range of produced kaempferol concen-
trations was evaluated using a FLS1 mutant library generated by site
directed mutagenesis of amino acids involved in substrate binding
(Chua et al., 2008). This library was transformed together with the
sensor plasmid p441-QdoR into BL21(DE3) and the resulting strains
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Fig. 3. Fluorescence intensity as a function of effector concentration. The specific
fluorescence was measured after 18 h of cultivation in the presence of selected
flavonoids (A) The BL-FdeR cells were analyzed regarding their response to
naringenin. (B) The BL-QdoR cells were analyzed regarding their response to
kaempferol (white squares) or quercetin (black dots). Mean values and standard
deviations from three independent experiments are shown.

Fig. 4. FACS-generated histograms displaying the fluorescence signals. The cells of BL-FdeR and BL-QdoR were incubated 24 h with 0.1 mM of the respective flavonoid and
analyzed by flow cytometry. (A) Blue fluorescence of BL-FdeR after incubation with naringenin (light gray) or kaempferol (dark gray). (B) Green fluorescence of BL-QdoR after
addition of naringenin (light gray) or kaempferol (dark gray). Representative histograms of three independent experiments are shown.

Fig. 5. FACS-generated histogram showing GFP fluorescence. The cells of BL-QdoR-
FLS1 (dark gray) and BL-QdoR-RSF (light gray) were examined. The fluorescence
was measured 24 h after the addition of 0.25 mM dihydrokaempferol. Representa-
tive histogram of three independent experiments is shown.
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were analyzed regarding their specific fluorescence in 96-well plates
and kaempferol amounts after 16 h of biotransformation. Under these
experimental settings, a tight correlation between the specific fluor-
escence emitted and the concentration of kaempferol produced by the
cells was observed. These results show that the specific fluorescence is
dependent on the activity of the FLS1 enzyme and the kaempferol
produced (Fig. 6). The highest specific fluorescence with 12,967
arbitrary units and the highest product formation with 56 mM of
kaempferol produced per OD600 weremeasured for cells harboring the
wild type FLS1 enzyme.

4. Discussion

In this study, we showed the potential of using heterologous
transcriptional regulators to design biosensors for the detection of
plant secondary metabolites. We have constructed two biosensors:
one for the key flavonoid pathway intermediate naringenin and
another one for kaempferol and quercetin.

QdoR belongs to the TetR family of transcriptional regulators,
whereas FdeR belongs to the LysR family. In previous studies, three
biosensors were evolved from LysR type regulators, but also two of
different types, the ROK (Binder et al., 2012) and the Lrp type (Mustafi
et al., 2012). This diversity shows the ability to use different transcrip-
tional regulators as biosensors. More than 230 transcriptional regulators
have been reported in E. coli, many of them detecting small molecules
(Binder et al., 2012). The availability of endogenous transcriptional
regulators is limited compared to a vast number of chemical structures
that can potentially be produced in E. coli. In nature, transcriptional
regulators evolved to recognize enormous numbers of substrates,
including aromatic compounds, like catechol or 2-nitrotoluene (Tropel
and van der Meer, 2004) or flavonoids secreted by legumes (Kape et al.,
1992; Rossen et al., 1985; Zaat et al., 1987). Tapping nature’s transcrip-
tional regulators potential to design new biosensors is expected to
accelerate screening procedures and thereby considerably shorten strain
development for the production of high-value compounds.

Screening and analysis of bacterial cells tailored for metabolite
production using a biosensor requires that the relationship between
the effector molecule input and reporter output is well understood. The
transcriptional regulator FdeR was shown to induce fdeA transcription
after addition of 0.2 mM naringenin in H. seropedicae SmR1, but the
minimal concentration for activation was not investigated (Marin et al.,
2013). In E. coli, the linear detection range was between 0.005 and
0.1mM of naringenin and saturation occurred between 0.1 and 0.3mM.
Efforts to engineer the production of the plant flavonoid naringenin in E.
coli has previously been reported, while the first generation strain
produced 0.3 mM of naringenin, an improved mutant had a 5.5-fold
higher titer (Xu et al., 2011). These concentrations are above the

saturation limit of the FdeR biosensor, impairing its utilization to further
improve naringenin titers and yields. However, naringenin is a key
intermediate in the synthesis of numerous flavonoids at high demand
for the food and pharmaceutical industry (Bland,1996). Importantly, the
naringenin biosensor can be used to screen novel enzymes for activity
or for optimization of production of molecules downstream in the
biosynthesis pathway, where the accumulation of the intermediate,
naringenin, can be monitored.

The in vivo assays of QdoR in E. coli showed a detection limit of 0.005
and 0.01mM of kaempferol or quercetin, respectively. Our results were
comparable to those reported using an in vitro assay, in which the
repressor was found to have a Kd of 1nM for the intergenic region of
qdoI and a inhibition constant (Ki) of 0.47mMquercetin. However, some
dissociation of the protein DNA complex was detected after addition of
0.06mM quercetin in vitro (Hirooka et al., 2007). This concentration
range makes the system suitable for the analysis and screening of
strains engineered for the production of quercetin and/or kaempferol,
such as those described (Malla et al., in press; Leonard et al., 2006). The
specific fluorescence showed an optimum after addition of 0.1mM of
the effector, while addition of a higher flavonoid concentration led to a
decrease in specific fluorescence. This is probably due to the low water
solubility of kaempferol and quercetin.

Notably, the biosensor technology enables the use of fluores-
cence activated cell sorting to identify cells producing an expected
compound in a high throughput manner. We showed that cell
populations incubated with inducing and non-inducing flavonoids
could be distinguished from each other. Hence, we were able
to, for the first time, use biosensors to detect fluorescence coupled
to flavonoid production in vivo. An E. coli strain, BL-QdoR-FLS1,
expressing a plant-derived flavonol synthase (FLS1) and the QdoR-
sensor, produced 0.1 mM of kaempferol after 24 h of cultivation.
The cells carrying FLS1 showed high fluorescence levels in contrast
to cells harboring pRSF-duet vector.

Furthermore, the QdoR sensor was successfully utilized for char-
acterizing a small library of FLS1 mutants with altered kaempferol
production in 96-well plates in vivo. The significant correlation observed
between the fluorescence of the cells and the kaempferol they produced
clearly indicate that this technology can be applied for in vivo high
throughput screening. The power of in vivo selection of enzymes for
metabolic rerouting has been evidenced in a number of recent reports
(Tang et al., 2013; Binder et al., 2012, 2013) and strengthened by the
observations that in vitro kinetics and in vivo product formation do not
always correlate (Schendzielorz et al., in press).

Overall, our results show that the flavonoid biosensor based on the
transcriptional regulator QdoR can be used to isolate gene products
and optimize pathways involved in flavonoid synthesis. Furthermore,
coupling of these novel biosensors to FACS can be exploited to screen
larger libraries of up to 109 cells. This enabling technology is expected
to facilitate studies aiming at identifying novel enzymes catalyzing the
formation of kaempferol, or at optimizing the production of narin-
genin and quercetin and thereby shorten the time to develop next
generation cell factories for flavonoid production.

5. Conclusion

The ability to use heterologous transcriptional regulators for the
detection of small molecules, and in particular of the biosensors
herein designed will expedite and facilitate the development of novel
strain as efficient cell factories for production of flavonoids.
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