In Situ Study of High Voltage Performance of Li$_3$Fe$_2$(PO$_4$)$_3$ Cathodes for Li Ion batteries

Christiansen, Ane Sælland; Johnsen, Rune; Norby, Poul; Jensen, Søren Højgaard; Frandsen, Cathrine; Mørup, Steen; Kammer Hansen, Kent; Holtappels, Peter

Published in:
Electrochemical Society. Meeting Abstracts (Online)

Publication date:
2013

Citation (APA):
Christiansen, A. S., Johnsen, R., Norby, P., Jensen, S. H., Frandsen, C., Mørup, S., Kammer Hansen, K., & Holtappels, P. (2013). In Situ Study of High Voltage Performance of Li$_3$Fe$_2$(PO$_4$)$_3$ Cathodes for Li ion batteries. Electrochemical Society. Meeting Abstracts (Online), MA2013-02, 842-842.
In this study, we investigate whether Fe4+ can be formed and stabilized in thomboedral \(\beta\)-Li\textsubscript{2}Fe\textsubscript{2}(PO\textsubscript{4})\textsubscript{3}, which is based on the highly stable NASICON framework \(^{(1)}\). Intercalation of Li ions into the structure involving the Fe3+/4+ transition is well known \(^{(2), (3)}\), but this work is focused on the possible extraction of Li ions involving the Fe3+/4+ transition. The work is based on an \textit{in situ} synchrotron X-ray powder diffraction (XRPD) study of the structural changes, that occur during charging of \(\beta\)-Li\textsubscript{2}Fe\textsubscript{2}(PO\textsubscript{4})\textsubscript{3} up to 5.2 V vs. Li/Li+. A novel capillary-based micro battery cell for \textit{in situ} synchrotron XRPD has been designed for this (figure 1). The advantage of this cell is that it allows diffractions from the individual electrode layers, and also facilitates time-resolved studies of chemical gradients within the electrode layers.

A small contraction in volume was observed during charge to 5.2 V, indicating Li ion extraction (figure 2). The volume change is anisotropic, with a decrease in the \(a\) parameter and an increase in the \(c\) parameter during the extraction of 0.2 Li ions per Li\textsubscript{2}Fe\textsubscript{2}(PO\textsubscript{4})\textsubscript{3}. The charging is performed at potentials above the stability window of the organic electrolyte and some electrolyte oxidation reaction cannot be avoided. However, the observed volume changes show that Li+ extraction has occurred probably associated with Fe3+ formation. The change of oxidation state of iron was investigated by Mössbauer spectroscopy using an \textit{in situ} setup in order to fully subtract all background absorption, however no evidence of Fe3+ formation was observed. Instability of the Fe4+ towards the organic electrolyte could possibly explain this. Li+ extraction occurs at a plateau above 4.5 V but no discharge plateau above 3 V was observed. This is also the case for intercalation into FeSiO\textsubscript{4} \(^{(2)}\). This indicates that the intercalation of Li ions into these materials is not followed by a simple Fe3+/4+ reduction. Future work will be addressed to understand this lack of plateau.

References