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Smartphones as Pocketable Labs: Visions for Mobile
Brain Imaging and Neurofeedback
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Larsen, Camilla Falk Jensen, Marieta Georgieva Ivanova, Tobias S. Andersen,

Lars Kai Hansen

Technical University of Denmark, Department of Applied Mathematics and Computer
Science, Section for Cognitive Systems, Building 303B. DK-2800 Kgs. Lyngby, Denmark.

Abstract

Mobile brain imaging solutions, such as the Smartphone Brain Scanner, which
combines low cost wireless EEG sensors with open source software for real-time
neuroimaging, may transform neuroscience experimental paradigms. Normally
subject to the physical constraints in labs, neuroscience experimental paradigms
can be transformed into dynamic environments allowing for the capturing of
brain signals in everyday contexts. Using smartphones or tablets to access
text or images may enable experimental design capable of tracing emotional
responses when shopping or consuming media, incorporating sensorimotor re-
sponses reflecting our actions into brain machine interfaces, and facilitating
neurofeedback training over extended periods. Even though the quality of con-
sumer neuroheadsets is still lower than laboratory equipment and susceptible
to environmental noise, we show that mobile neuroimaging solutions, like the
Smartphone Brain Scanner, complemented by 3D reconstruction or source sep-
aration techniques may support a range of neuroimaging applications and thus
become a valuable addition to high-end neuroimaging solutions.

Keywords: Mobile sensor, real-time, EEG, neuroimaging, source
reconstruction, brain monitoring, brain-computer interface.

1. Introduction

Only recently have wireless neuroheadsets, capable of capturing changing
electrical potentials from brain activity through electrodes placed on the scalp
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using Electroencepahlography (EEG), made mobile brain imaging a reality. The
emergence of low-cost EEG sensors and the increasing computational power of
smartphones may transform neuroimaging from constrained laboratory settings
to experimental paradigms, allowing us to model mental state in an everyday
context. This presents a paradigm shift, making it possible to design new types
of experiments that characterize brain states during natural interaction over
extended periods of time. Until recently most neuroimaging experiments have
been performed with subjects who are at rest, under the assumption the brain
responses being measured will not be influenced by subjects sitting or laying
down. However, this may be inaccurate, as animal studies using mice indicate
that neurons in the visual cortex double their visually evoked firing rates if they
run on a treadmill rather than stand still [1]. Since the discovery of parietal-
frontal circuits of mirror neurones, which fire both when we grasp an object and
when we observe others doing the same [2] [3], the sensorimotor system can no
longer be considered as only involved with motion. Consequently, these mech-
anisms should rather be understood as forming an integral part of cognition,
allowing us to generalize the goals of actions based on motor representations in
the brain [4].

While there is already significant literature concerned with dynamic brain
states during natural complex stimuli in conventional laboratory experiments,
see e.g., [5, 6, 7], there has been a growing call to design studies that relax
the constraints of the lab and widen the focus to map out how we perceive
our surroundings under naturalistic conditions [8]. For example, natural mo-
tion has been incorporated into laboratory experiments using tools such as the
MoBI Lab Matlab plugin [9] in order to correlate motion capture data of moving
limbs with the brain responses being triggered [10]. Even adding a few degrees
of freedom may provide an understanding of how cortical responses differ by
simply changing posture [11], either by measuring how theta brainwave activ-
ity is attenuated in sleepy subjects once they stand up [12], or by analyzing
the modulation in spectral power within alpha and beta brainwaves appearing
when one foot hits the ground and the other foot is lifted, as subjects are no
longer transfixed on a chair in front of a computer screen [13]. This provides
a foundation for extending standard EEG paradigms, such as the P300 event-
related potential, to measure how we consciously perceive visual objects when
participants are no longer required to sit motionless but are able walk on a
belt during the experiment [14]. It also makes it possible to eventually move a
P300 experiment outside the lab, as has recently been demonstrated by Debener
and colleagues [15] by combining the wireless hardware from a consumer neu-
roheadset2 with standard EEG cap electrodes 3 and using a laptop to record
the cortical responses, thus providing a portable lab which can be stored in a
backpack and easily carried by the subjects participating in the experiment.

Taking the idea of bringing EEG into the wild one step further, the Smart-

2emotiv.com
3easycap.de/easycap
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Figure 1: SBS2 mobile EEG recording with real-time 3D source reconstruction,
on an Android smartphone connected wirelessly to an Easycap 16 electrode
setup based on Emotiv hardware.

phone Brain Scanner (SBS2) open-source software project (http://github.
com/SmartphoneBrainScanner) introduced in [16, 17], makes it possible to
build brain imaging applications for real-time 3D source reconstruction or neu-
rofeedback training. By combining a wireless EEG cap with an Android smart-
phone or tablet, the SBS2 allows for presenting time-locked audiovisual stimuli
such as text, images, or video, and it allows for capturing elicited neuroimaging
responses on the mobile device, thereby transforming low-cost consumer hard-
ware into a pocketable brain imaging lab. As the Smartphone Brain Scanner
project potentially allows for designing novel types of brain imaging paradigms,
we have initially validated the SBS2 framework in three experiments related to
BCI motor control, embodied semantics, and neurofeeedback interfaces in order
to illustrate the feasibility of capturing mental state in a mobile context. In the
following sections we briefly review existing mobile EEG sensors, outline the
architectural design of the Smartphone Brain Scanner system for real-time 3D
reconstruction, describe aspects of source separation and spatial filtering in re-
lation to mobile brain imaging, and give examples of applications built on top of
the open-source software framework for mobile Android devices related to imag-
ined finger tapping, emotional responses to text, and design of neurofeedback
interfaces.
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2. Mobile EEG acquisition

A wide range of prototype electrode designs, suitable for mobile neuroimag-
ing, are currently under development, based on MEMS microelectromechanical
systems utilizing spring-loaded dry contact pins or hard carbon nanotubes that
press against the scalp [18]. For long-term EEG measurement without gel,
another option is electrodes made from soft foam covered with conductive fab-
ric [19], or new types of non-contact high input impedance sensors capable of
capturing EEG signals on the basis of capacitive coupling [20], even when rest-
ing on top of several layers of hair. In contrast to gel-based EEG electrodes,
dry contacts need no skin preparation, and can therefore more easily be utilized
for neuroimaging as participants are able to put on a neuroheadset without any
assistance. However, even though pin or nanotube contacts easily penetrate
the hair and therefore offer more possibilities for placement than conductive
foam-based sensors attached to the skin of the forehead, a spring-like setup may
still be susceptible to noise when users move. Capacitive sensors provide an
alternative for unobtrusive physiological monitoring, but require an integrated
ultra-high impedance frontend for non-contact biopotential sensing [21]. So-
called Ear-EEG is a promising technology for long-term EEG data collection,
offering improved comfort and aesthetics [22]. Benchmarks of prototype capaci-
tive non-contact and mechanical sensors in an experiment related to decoding a
steady state visual evoked potential in the 8-13 Hz frequency band showed only
little signal degradation when compared to standard gel-based Ag/AgCl elec-
trodes [20], showing that these novel sensors may, in longer term, provide the
increased usability that may assure the transformation of neuroimaging from
fixed laboratory setups to an everyday mobile context.

Among existing commercial solutions, the ThinkGear module manufactured
by NeuroSky4 provides the foundation for several EEG consumer products which
integrate a single dry electrode along with a reference and a ground attached to
a headband. It provides A/D conversion and amplification of one EEG channel,
is capable of capturing brain wave patterns in the 3-100 Hz frequency range,
and records at 512Hz sampling rate. Even a single-channel EEG setup, us-
ing a passive dry electrode, such as the NeuroSky, positioned at the forehead
and a reference (typically an earlobe), may allow for measuring mental con-
centration and drowsiness by assessing the relative distribution of brainwave
frequencies [23]. More comfortable neuroheadsets using conductive Ni/Cu cov-
ered polymer foam, such as Mindo5, measure brain activity from the forehead
on three EEG electrodes plus a reference channel attached to the earlobe. Inte-
grating analog to digital conversion at 256 Hz sampling rate for acquisition of
bandpass filtered signals in the 0.5-50 Hz range, the neuroheadset offers 23 hours
of battery life and wireless Bluetooth communication, and has been demon-
strated in BCI brain machine interfaces used in games based on controlling the

4http://www.neurosky.com/Products/ThinkGearAM.aspx
5http://www.mindo.com.tw/en/index.php
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power of alpha brainwave activity [24]. Other consumer neuroheadsets such
as the Emotiv EEG6, provide both wireless communication via a USB dongle
and analog to digital conversion of 16 EEG channels (including reference and
ground) at 128Hz sampling rate while using moist felt-tipped sensors which
press against the scalp with a simple spring-like design. Originally designed as
a mental game controller capable of tracing emotional responses and facial ex-
pressions, the majority of electrodes are placed over the frontal cortex and have
no midline positions (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
AF4 with P3/P4 used as reference and ground). However, as mentioned earlier,
Debener and colleagues [15] recently demonstrated that it is possible to merge
the wireless hardware from the Emotiv neuroheadset with high quality, conduc-
tive, gel-based electrodes in a standard EEG cap7. Repackaging the electronics
and battery into a small box (49mm× 44mm× 25mm) which can be attached
to the EEG cap and rewired through a connector plug to 16 sintered Ag/AgCl
ring electrodes can occur, thus providing a fully customizable montage which
allows the electrodes to be freely placed in the EEG cap according to the 10-20
international system (in the present experiment Fpz, F3, Fz, F4, C3, Cz, C4,
TP9, TP10, P3, Pz, P4, O1, O2 with AFz/FCz used as reference and ground).

We have tested both the original Emotiv neuroheadset as well as the modified
EEG cap setup in connection with the Smartphone Brain Scanner open-source
software project in the experimental designs outlined below.

3. Software Framework: Smartphone Brain Scanner

The Smartphone Brain Scanner (SBS2) is a software platform for building
research and end-user oriented multi-platform EEG applications. The focus of
the framework is on mobile devices (smartphones, tablets) and on consumer-
grade (low-density and low-cost) mobile neurosystems. SBS2 is freely available
under an MIT License at https://github.com/SmartphoneBrainScanner. Ad-
ditional technical details about the framework can be found in [25].

The framework is divided into three layers: low-level data acquisition, data
processing, and applications. The first two layers constitute the core of the
system and include common elements used by various applications. The archi-
tecture is outlined in Figure 2.

3.1. Key Features

With focus on the mobile devices, SBS2 is a multi-platform framework. The
underlying technology – Qt – is an extension of C++ programming language
and is currently supported on the main desktop operating systems (Linux, OSX,
Windows) as well as mobile devices (Android, BB10, partially iOS) (see http:

//qt.digia.com/Product/Supported-Platforms/).

6http://www.emotiv.com
7http://easycap.de/easycap
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Figure 2: Layered architecture of the SBS2 framework. Data from connected
EEG hardware is extracted by specific adapters, processed, and used by the
applications.

The additional acquisition and processing modules can be created as C++
classes and integrated directly with the core of the framework. The framework
supports building real-time applications; data can be recorded for subsequent
offline analysis, most of the implemented data processing blocks aim to provide
real-time functionality for working with the EEG signal. The applications de-
veloped with SBS2 are applications in the full sense, as they can be installed on
desktop and mobile devices, can be started by the user in the usual way, and can
be distributed via regular channels, such as repositories and application stores.

The most demanding data processing block is the real-time source recon-
struction aimed at producing 3D images as demonstrated in Figure 4. Source
reconstruction is carried out using Bayesian formulation of either the widely
used Minimum-norm method (MN) [26] or the low resolution electromagnetic
tomography (LORETA) [27]. Further description about the inverse methods
implemented in the Smartphone Brain Scanner will be given later.

4. Methods

4.1. Brain Computer Interface Based on Imagined Finger Tapping

One of the arguably most widely used paradigms of the brain computer
interface literature is a task in which a subject is instructed to select between
two or more different imagined movements [28, 29, 30, 31]. Mental imagery is the
basis of many BCI systems, originally conceived to assist patients with severe
disabilities to communicate by ’thought’. The rationale is that the patient, while
having problems carrying out the actual movements, may still be able to plan the
movement and thereby produce a stable motor-related brain activity, which can

6



Figure 3: SBS2 mobile neuroimaging apps for neurofeedback training, presen-
tation of experimental stimuli, and real-time 3D source reconstruction, running
on Android mobile devices via a wireless connection to an Emotiv or Easycap
EEG setup.

be used as an input to the computer/machine. In this contribution we replicate
a classical experiment with imagined finger tapping (left vs. right) inspired
by [31]. The setup consisted of a set of three different images with instructions,
Relax, Left, and Right. In order to minimize the effect of eye movements, the
subject was instructed to focus on the center of the screen, where the instructions
also appeared (3.5” display size, 800 x 480 pixels resolution, at a distance of 0.5
m).

The instructions Left and Right appeared in random order with an equal
probability. A total of 200 trials were conducted for a single subject. We
selected 3.5 sec duration for the ’active’ instruction (Left or Right) and 1.75-2.25
sec randomly selected for the Relax task, similar to [31]. The main motivation
for random duration of the Relax task was to minimize the effect of the subject
anticipating and starting the task prior to the instruction. The experiment
was conducted with an Emotiv EEG neuroheadset transmitting wirelessly to
a Nokia N900 smartphone. To illustrate the potential for performing such a
study in a completely mobile context, all stimulus delivery and data recording
were carried out using the SBS2. Analysis and post-processing and decoding
were conducted off-line using standard analysis tools. In particular, we applied
a common spatial pattern (CSP) approach [28] to extract spatial filters which
would maximize the variance for one class, while minimizing the variance of
the other class and vice versa. A quadratic Bayesian classifier for decoding was
applied on features transformed as in [28].
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4.2. Source Reconstruction and Source Separation

Compared to standard EEG laboratory setups, mobile neuroimaging is ex-
tremely susceptible to noise, as the ability to move around simultaneously in-
troduces artifacts into the neuroimaging data induced by the EEG sensors, as
well as originating from motion-related muscle activity. Likewise, mobile neu-
roimaging is much more exposed to environmental noise than experiments taking
place under controlled conditions in a shielded laboratory. Combining sensor
and source features, however, has been shown to improve classification in brain
computer interaction BCI [32], even though these paradigms often involve acti-
vation of sensorimotor circuits where the location of sources is already quite well
known. There might be an even larger potential by integrating source informa-
tion for decoding complex brain states involving a range of different cognitive
tasks. In particular, spectral analysis of changes in power may offer additional
information on activity within specific brainwave bands, which, based on the
frequency, determines whether it reflects local or more distributed cortical field
potentials. We therefore suggest that incorporating prior knowledge on what
constitutes brain-generated signals may overall enhance the feasibility of per-
forming experiments using mobile neuroimaging solutions, see also [33].

One approach to localize the actual brain activity in EEG is to tackle the
inverse problem of retrieving the distribution of underlying sources from a scalp
map by using a forward head model to estimate the projection weights which
are captured by the electrodes. The problem is, however, severely ill-posed, as
typically tens of EEG electrodes will capture volume conducted brain activities
which may have been generated by tens of thousands of equivalent dipoles rep-
resenting post-synaptic activity within macrocolumns of the cortex [26, 27, 34].
A regularization that reduces the number of solutions is therefore applied, using
methods such as low resolution electromagnetic tomography (LORETA), which
assumes both the activity of neighboring neurons is synchronized and their ori-
entation and strength can be modeled as point sources in a 3D grid reflecting
‘blurred-localized’ images of maximal activity [27]. With F ∈ <Nc×Nv repre-
senting the forward model relating the Nv cortical current sources, V ∈ <Nv×Nt ,
to the Nc measured scalp electrodes, X ∈ <Nc×Nt , the forward problem for a
set of time points (Nt) is given by, X = FV + E, when the noise contribution
E is assumed additive. The Minimum-norm method (MN) [26] and LORETA
methods can be represented as a single method, with MN as a special case of
LORETA, namely, when no spatial coherence of neighboring sources is assumed
as prior. From a Bayesian perspective the LORETA method is formulated as

p (X |V ) =

Nt∏
t=1

N
(
xt

∣∣Fvt, β
−1INc

)
(1)

p (V) =

Nt∏
t=1

N
(
vt

∣∣0, α−1LTL
)

(2)

in which β denotes the precision of the noise (inverse variance), α the precision
parameter of the sources, and L the spatial coherence between the sources V.
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As the MN method assumes no spatial coherence between neighboring sources,
the spatial coherence matrix becomes an identity matrix, L = I. In contrast,
for LORETA this spatial coherence matrix typically takes the form of a graph
Laplacian, implementing geometrical neighborhood driven smoothness. Given
the likelihood,p (X |V ), and prior distribution, p (V), of the current sources,
the most likely source distribution can be obtained by maximizing the posterior
distribution over the sources as

p (V |X ) =

Nt∏
t=1

N (vt |µt,Σv )

Σv = α−1INv
− α−1FTΣxFα−1

Σ−1
x = α−1FLTLFT + β−1INc

(3)

v̄t = α−1FTΣxxt. (4)

The hyper-parameters α and β are optimized on-line using a standard Expectation-
Maximization (EM) approach [35].

Rather than aiming to solve the inverse problem of determining the ‘what’
from ‘where’ of brain activity, an alternative approach is to apply methods based
on higher-order statistics such as independent component analysis (ICA) [36].
This allows to separate individual processes (‘what’) when they stand out as
temporally independent in the native, spatially overlapping scalp representa-
tion [37].

The ability of ICA to identify temporally independent events also allows for
enhanced detection and automatic removal of artifacts [38]. Eye blinks manifest
themselves as low 1− 3Hz as well as higher frequency activity, which translates
into stereotypical ICA scalp maps consisting of a single frontal dipole [39]. When
comparing this method against a regression approach using an electrooculogram
(EOG) eye movement correction procedure (EMCP) to remove eye blink arti-
facts, ICA turns out to yield almost perfect correction [40]. Also, other kinds
of muscle activity stand out distinctly in the corresponding scalp maps. Over-
all, applying ICA as a preprocessing step improves artifact detection compared
to analysis based on the raw EEG data [39]. With particular relevance to mo-
bile neuroimaging, it has been demonstrated that independent component-based
gait-artifact removal makes it possible to capture neural correlates in standard
EEG experiments, even when walking or running [41].

EEG experiments have traditionally focused on analysis of event-related
time-domain waveform deflections and frequency-domain perturbations in power,
but neither of these approaches fully captures the underlying brain dynamics
when averaging data over multiple trials, or ignoring phase resetting that con-
tributes to the ERP [42]. When first applying ICA to the EEG data, the
event-related time series waveforms come to represent independent components
generated by temporally independent, physiologically decoupled local field po-
tentials, and their corresponding scalp maps that resemble dipolar projections
of the underlying sources [43]. This indicates that ICA may be used for more
than denoising, e.g., it can be used to find the modes of event-related changes
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in power, as the independent components framed by the dimensions of fre-
quency, power, and phase consistency across trials. Even when electrodes are
accurately placed, the recorded potentials may still vary due to individual dif-
ferences in cortical surface and volume conduction. ICA may also here provide
a common framework for comparison of the underlying brain activity in EEG
data, regardless of the actual electrode positions. We thus compared ICA of
the EEG data retrieved from both the Emotiv neuroheadset containing no cen-
tral electrodes and the Easycap EEG montage including midline electrodes. In
particular, we used the retrieved scalp maps and activation time series, as well
as event-related changes in power spectra, to perform a statistical group com-
parison across experimental conditions and trials. As a preprocessing step, we
reduced dimensionality based on principal component analysis (PCA) and sub-
sequently applied K-means clustering to the independent components, in order
to identify common patterns of brain activity across the two different mobile
EEG setups [44].

4.3. Visual Stimulus to Investigate Emotional Responses

Over the past decades, neuroimaging studies have established that language
is grounded in sensorimotor areas of the brain; highly related neuronal circuits
seem involved whether we literally pick up a ball or in a phrase refer to grasping
an idea [45]. Exploring whether such brain activation can be detected using
a mobile EEG setup, the SBS2 framework was used to display the stimulus
consisting of a subset of action verbs related to emotional expressions, face, and
hand motion as used in a recent fMRI experiment [46]. The framework was also
used to record the EEG signal for subsequent offline data analysis.

Two mobile 16 channel EEG setups were compared; the low cost Emotiv
neuroheadset using saline sensors positioned laterally at AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 (P3/P4 used as Common
Mode Sense (CMS) reference / Driven Right Leg (DRL) feedback) - versus a
standard electrolyte gel-based EEG cap (Easycap, Germany) similar to what
has previously been used for mobile P300 experiments [15] enabling an EEG
setup including central and midline Ag/AcCl ring electrodes positioned at Fpz,
F3, Fz, F4, C3, Cz, C4, TP9, TP10, P3, Pz, P4, O1 and O2 (AFz / FCz used
as CMS reference / DRL feedback) according to the international 10-20 system.

A single subject pilot study was performed to compare the Emotiv and Easy-
cap EEG setups based on 2 × 10 trials, each consisting of 3 × 20 action verbs
presented in a randomized sequence on the smartphone display (Nokia N900).
Each verb was exposed for 1000ms in a large white font on black background
(3.5” display size, 800×480 pixels resolution) at a distance of 0.5m, preceded by
a fixation cross 500ms pre stimuli, and followed by 1000ms post stimuli black
screen. Using the EEGLAB plug-in for MATLAB (MathWorks, USA), epoched
EEG data was extracted offline (-500 ms to 1000 ms) and baseline corrected
(-500 ms to 0 ms). As some of the recorded potentials are induced by mus-
cle activity, we rejected abnormal data epochs by specifying that the spectrum
should not deviate from baseline by +/- 50dB at 0-2Hz and manually removed
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Figure 4: SBS2 app for presentation of visual stimuli and mobile EEG recording,
using an Android tablet connected wirelessly to an Easycap 16 electrode setup
based on Emotiv hardware.

eye blinks [44]. To facilitate a comparison between the different electrode place-
ments used in the two experiments, we applied the extended Infomax algorithm
to linearly project the EEG data recorded from individual electrodes onto a
space of basis vectors, which were temporally independent from each other, us-
ing independent component analysis ICA to estimate the scalp maps and time
courses of individual neural sources [39].

To assess the degree to which the Emotiv neuroheadset and the Easycap
EEG setups capture common patterns in brain activity despite their differences
in electrode montage, rather than simply measuring event-related responses
from the 14 electrodes, we applied ICA in a single-subject study to retrieve 14
independent components from each of the 2 × 10 trials, related to the Emotiv
and Easycap experiments, respectively: we analyzed 2 × 10 × 14 independent
components generated from the time-locked responses to reading 3×20 emotion,
face, and hand-related action verbs in each trial. Retrieving the ICA compo-
nents enabled us to initially compare the event related responses across the 3
action verb conditions, which in turn enabled us to identify similar independent
sources within trials using the EEGLAB studyset functionality. Secondly, to
identify common patterns of brain activity both within and across the Emotiv
and Easycap experiments, the EEGLAB studyset functionality and MATLAB
Statistical Toolbox were used to cluster the 2×10×14, in total 280 ICs based on
scalp maps, power spectra, and amplitude times series. After initially applying
ICA for artifact rejection in each trial, the 280 ICA weights were recomputed
as a basis for a statistical analysis using the EEGlab studyset functionality [44],
where the dimensionality of the feature space was reduced to N = 10 by apply-
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Figure 5: Electrode locations for two mobile 16 channel EEG setups; the Emotiv
neuroheadset using saline sensors positioned laterally (left), versus a standard
gel-based Easycap EEG montage including central and midline positions (right).

ing PCA principal component analysis [47]. The pre-clustering function PCA
compresses the multivariate EEG features into a smaller number of mutually
uncorrelated scalp projections, and computes a vector for each component to
define normalized distances in a subspace representing the largest covariances in
the ICA-weighted data. This means that the vectors contain the 10 highest PCA
components for the ICA-weighted time series responses, scalp maps, and power,
related to the three conditions. Next, the K-means algorithm (K = 10) was ap-
plied to cluster common ICA components within the 10 trials (σ = 3), related to
the Emotiv neuroheadset (Figure 13) and the Easycap EEG setup (Figure 14),
respectively. Comparing functionally equivalent groups of ICs makes it possible
to assess whether they resemble recurring neural sources retrieved from multi-
ple sessions, and to determine if the clustered ICs remain shared across the two
different experimental EEG setups.

4.4. Mobile Interfaces for Neurofeedback

In contrast to personal informatics apps, neurofeedback interfaces require
the user to interact in real time with audiovisual representations of EEG data
in an attempt to control the ongoing brain activity. Neurofeedback experiments
aiming to increase power in the upper alpha range have been shown to improve
cognitive performance in several studies [48, 49]. While there is often a peak in
individual alpha brainwave power around 10 Hz, neurofeedback training makes
it possible to control and shift the activity towards the upper alpha range of
12 Hz. In relation to neurofeedback, an ability to consciously control alpha
brainwave oscillations, which as a gating mechanism appears to be involved
in selective attention [50], might thus potentially help explain the previously
reported training effects on cognitive performance. Likewise, an association
between higher alpha frequency and good memory performance has previously
been shown [51].

However, designs for neurofeedback interfaces are often conceptualized with
little attention to how the actual feedback of audiovisual elements might affect
the user’s ability to control brain activity. Normally, User Experience (UX)
design of graphical interfaces involves initial modeling of user needs and selec-
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Figure 6: SBS2 neurofeedback training app running on an Android tablet, where
a blue to orange shift in color horizontally over time represents an increase in
upper alpha power.

tion of design patterns for organizing content and navigational layout reflect-
ing gestalt principles. This may subsequently be translated into frameworks
for interaction ranging from scrollable timeline lists to multilayered contextual
map metaphors [52]. Neurofeedback applications on the other hand have typ-
ically concentrated on mapping EGG amplitude values directly onto audiovi-
sual components. For example, sounds of ocean waves or high- or low-pitched
gongs [53, 54] would map to visual designs based on vertical scales and squares
of changing colors [55, 56, 49]. When targeted towards children, these elements
have been incorporated into more complex scenarios built around airplanes, a
3D car racing environment, or a pole-vaulting cartoon mouse [57, 58]. In sum-
mary, these designs may be understood as based on contrasting combinations
of the following audiovisual components [59]:

• pitch (low, high)
• volume (soft, loud)
• timbre (dark, light)
• duration (short, long)
• rhythm (temporal distribution)

• geometric primitives (connected segments)
• color (discrete, gradients)
• size (proximity, scalability)
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• movement (horizontal, vertical)
• composition (spatial distribution)

To explore the influence such components might have on the efficacy of neu-
rofeedback training, we tested two different interfaces developed for the SBS2.
We conducted an experiment with 25 subjects aiming at increasing their upper
alpha frequency band [60]. The neurofeedback experiment consisted of two it-
erations, testing the two different interfaces. In the first iteration, 12 healthy
subjects (7 males and 5 females) with an average age of 23.6 ± 1.9 did neuro-
feedback training on a replication of an existing interface [49]. This interface
indicated brain activity based on only two components (color gradients framed
by a square primitive). In the second iteration another 13 healthy subjects (7
male and 6 female) with an average age of 26.6± 5.5 performed neurofeedback
training using an interface developed on basis of the common features extracted
from the first group of subjects. The second interface combined four components
(scaled down color gradients framed by square primitives spatially distributed
horizontally and vertically).

The EEG signal from all of Emotiv’s 16 electrodes was recorded and the
real-time feedback was constructed from O1 and O2. Additionally, an offline
re-referencing of P3 and P4 with the frontal electrodes AF3, AF4, F3 and F4
allowed for P3 and P4 to be included in the later data processing, thus covering
a larger area of the relevant cortical area. The power of the brain activity was
calculated using Fast Fourier Transformation.

Both iterations consisted of five sessions during one week from Monday to
Friday. Each session started and ended with a 5-minute baseline recording
measuring the average brain activity during a simple task. In between the
baseline recordings five 5-minute training sessions were conducted. After each
session, we gathered qualitative data on the subjects thought patterns leading
to an increase of alpha brain activity based on informal interviews. Each subject
received a total of 25 training recordings and 10 baseline recordings.

The interface used in the first iteration was similar to the one used in a
study by Zoefel et al. [49], where the feedback consisted of a square of changing
colors gradually from blue, gray to red. Respectively each color represented
real-time amplitudes below, equal to baseline, or above baseline, respectively,
see Figure 7a. The subjects were instructed to make the square turn red. For
the baseline recording a similar interface setup was used but with random color
changes, making the visual stimuli similar to those of the training recordings
and therefore more compatible. The subjects were asked to count the number
of times the square turned red. This would ensure a similar cognitive task
across the subjects while recording the baseline, thereby making these recordings
comparable.

The feedback interface used in the second iteration consisted of small squares
being generated once a second, if the alpha amplitudes exceeded the baseline.
Over a 15 second interval the squares (maximum 15 squares) were assembled
into a column, after which a new column of squares was incrementally generated
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(a)

(b)

Figure 7: (a) In the interface from the first version of the neurofeedback appli-
cation, the current brain activity is visualized by the square changing colors;
blue indicating activity below, gray - equal to, and red - above baseline. (b) The
interface of the neurofeedback application from the second iteration is shown
with additional illustrations describing how it is constructed: The 5-minute
timeline shown in the bottom illustrates how the training session is divided into
columns of 15 seconds. Within a column squares would appear first (0-3s) in
a window in the lower part of the screen, then (4-7 s) in windows above and
below the first window and lastly (8-11 s and 12-15 s) in windows above the
first two windows. The windows are shown in the rightmost column which was
not shown during the experiments. The encircled column illustrates how the
user can easily compare the ability to increase brain activity in different time
intervals. 15



along a horizontal axis. At the end of the 5 minute training recording, the inter-
face would consist of 20 columns of squares, see Figure 7b. Thus the interface
not only showed the current amplitudes, but also the previous, allowing the user
to easily compare methods for increasing the amplitudes. The squares not only
indicated when the amplitudes exceed baseline, but also the degree of increase
by a change in color, ranging from dark blue to orange (see Figure 8). The
degree of increase was calculated from a running mean creating a smooth color
flow. The subjects were instructed to create as many squares as possible and
preferably with yellow and orange colors. For the baseline recording a similar
interface was used, although with squares appearing randomly in the columns
and with random color. The subjects were asked to count the yellow and orange
squares.

All subjects of both iterations were asked to keep their eyes open for as
long as possible, and avoid muscle movements, jaw movements, and swallowing
during all recordings to limit artifacts.

Figure 8: The colors of the squares indicate the intensity of the brain activity.

5. Results and Discussion

In this section we present the results of the experiments, validating the
performance of the software, platforms used, and EEG hardware.

5.1. Brain Computer Interface Based on Imagined Finger Tapping

In order to validate the applicability of the platform in decoding imagined
left and right finger tapping, the EEG data was bandpass filtered (8 − 32Hz)
and we used the data in the interval 0.75− 2.00s after stimuli onset as input to
the common spatial pattern (CSP) algorithm [28]. One important parameter
in the CSP algorithm to be controlled is the number of spatial filters. To
determine the number of spatial filters we applied cross-validation and examined
the performance (accuracy of classifier) as a function of the training size (number
of trials used for training), see Figure 9. The classifier was trained on a balanced
set of trials (i.e. equal number of left and right trials), which was carried out
200 times for each training set size.

Figure 9 indicates that we need more than a single spatial filter (m > 1).
When m = 2, for example, two spatial filters are used to maximize the variance
for class 1 while minimizing the variance for class 2 and an additional two
spatial filters are used to minimize the variance for class 1 while maximizing the
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Figure 9: Mean accuracy of left and right imagined finger tapping classification
for a single subject. Mean accuracy is based on 200 splits in training and test
data. Classification is based on CSP and a quadratic Bayes classifier focusing
on bandpass filtered data 8− 32Hz in interval 0.75− 2.00s after onset.

variance for class 2. It is interesting that only a few spatial filters are required to
obtain an accuracy close to 60%. We also note that performance is increasing as
a function of samples, hence, even better performance can be expected if more
samples are collected.

5.1.1. Source Reconstruction and Source Separation

For further validation we applied standard statistical evaluation for signif-
icance and correction for multiple comparisons. Thus, we performed a Monte
Carlo permutation test [61] to check for significant electrode differences between
left and right finger tapping. Figure 10 demonstrates a scalp map of the effect
of the averaged response based on left finger tapping minus averaged response
based on right finger tapping. The significant channels at given time intervals
are highlighted in accordance with the Monte Carlo permutation test conducted
using Fieldtrip [62]. Both positive and negative effects are detected as signifi-
cant with Monte Carlo p-values of 0.012 and 0.001, respectively. A set of 1,000
random permutations were performed. Inspecting Figure 10 reveals significant
differences over the left and right hemisphere and more importantly the elec-
trodes contributing to the significant difference between left and right imagined
finger tapping are electrodes located close to the premotor area. Thus, it seems
that these electrodes are taking over the often reported electrodes C3 and C4
as the main drivers, as C3 and C4 are not present in the Emotiv EEG sensor
configuration.
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Figure 10: Monte Carlo permutation test for significant difference between aver-
aged left imagined finger tapping response and averaged right imagined tapping.
Electrodes located close to the premotor region are detected as significant in the
time interval 0.9− 2.1s after stimuli.

To examine the ability to perform reliable 3D EEG imaging based on the
data acquired using a Emotiv neuroheadset, source reconstruction was carried
out on the bandpass-filtered imagined finger tapping data (8− 32Hz) also used
for the classification task and in the non-parametric statistical test. Figure 11 il-
lustrates the mean power of the difference between left and right imagined finger
tapping in the interval 0.75 − 2.00s post-stimuli. Premotor areas are typically
involved in executing the task and in differentiating a left from right imagined
movement. This is also the case here to some extent with minor discrimina-
tion in the premotor areas and more pronounced discrimination in the more
frontally located areas. Note the polarity of the power difference map, with
left hemisphere indicating a positive difference and right hemisphere indicating
a negative contribution. During the imagined finger tapping part, the contra
lateral premotor/motor regions desynchronize (resulting in a decrease in power
within the specific frequency range) while the ipsilateral premotor/motor re-
gions first desynchronize shortly and right after synchronize (meaning increased
power within the frequency range). The main explanation for the displacement
more frontally found in Figure 11, is the uneven distribution of sensors for the
Emotiv EPOC system, with most of the sensors positioned frontally. However,
large proportions of the occipital and temporal areas are also found to be active
by the reconstruction. These apparent visual and temporal source activation
differences may, however, be explained by the fact that re-referencing to an
average channel is performed prior to source estimation. Since the distribu-
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Figure 11: Source reconstruction of mean difference power map between left
and right imagined fingertapping.

tion of the sensor locations is highly unevenly distributed, with the majority
placed frontally, re-referencing data with a strong frontal activation (e.g. eye
blink/movement) to an average reference channel will map part of the frontal
activity to the temporal and occipital electrodes. To further test this hypothesis,
we investigated the influence of artifacts caused by eye motion on the source re-
construction estimates by removing an eye-related ICA component. Indeed, the
removal of the eye movement component seems to improve the source estimates
significantly, as demonstrated in Figure 13. The operating regions (frontal areas
and slightly pre-motor regions) are more highly visible in this power difference
map between the averaged left minus right imagined finger tapping conditions.
Similarly, as in Figure 11, the sources are displaced more frontally than typi-
cally, and this can be explained by the sensor positioning offered by the Emotiv
EPOC system. The source reconstruction was performed offline to ensure a
fair comparison with and without removal of the ICA component related to eye
movement. The ICA decomposition was performed using the extended informax
algorithm supported by EEGLAB.

5.2. Visual Stimulus to Investigate Emotional Responses

Within the Emotiv data, 2 × 18 ICs have been clustered in 10 out of 10
trials, indicating that these independent components are consistently activated
across all trials (Figure 13). Similarly, in the Easycap data, 23 ICs have been
clustered within 3 standard deviations of the K-means centroids in 10 out of
10 trials, while 9 ICs have been grouped in 7 out of 10 trials, confirming that
temporally independent activations are also grouped across trials in this study
(Figure 14). Taking the relative polarity of ICs into account when comparing the
two studies, the clustered scalp maps in both experiments suggest left lateralized
prefrontal as well as parietal activations in language areas, which integrate motor
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Figure 12: Source reconstruction of mean difference power map between left
and right imagined fingertapping. Emotiv EEG data corrected by removal of
ICA component associated with eye movement.
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Figure 13: Single-subject EEG neuroimaging study with Emotiv 16 channel
neuroheadset: PCA dimensionality reduction and K-means clustering (K = 10,
σ = 3) of 140 IC scalp maps, activation time series and event-related changes
in power spectra based on 10 trials, each consisting of reading 3 × 20 emotion
(blue), face (green) and hand (pink) related action verbs.
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Figure 14: Single-subject EEG neuroimaging study with Easycap 16 channel
EEG setup: PCA dimensionality reduction and K-means clustering (K = 10,
σ = 3) of 140 IC scalp maps, activation time series and event-related changes
in power spectra based on 10 trials, each consisting of reading 3 × 20 emotion
(blue), face (green) and hand (pink) related action verbs.

and semantic aspects connected through the dorsal and ventral streams in the
brain [63, 64].
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This is in line with results obtained in a recent MRI experiment [46] using
the same verbs as in the present EEG study, indicating that premotor neural
circuits are activated when passively reading verbs related to face and hand
motion and when seeing emotional expressions. Mobile neuroimaging could po-
tentially extend our ability to explore such action-based links between actual
motion and emotion in an everyday context, which might in turn reflect imi-
tation of gestures or facial expressions involving mirror neuron circuits in the
brain, possibly providing a foundation for higher level feelings of empathy and
theory of mind.

5.3. Mobile Interfaces for Neurofeedback

All signal processing of the data for the Neurofeedback experiment was done
off-line using the EEGLAB [65] plug-in for MATLAB.

Since the alpha frequency band has shown to vary depending on age, possible
neurological diseases, and memory performance [51], the upper alpha frequency
band had to be determined for each individual. By identifying the peak in the
power spectrum, the individual alpha peak (IAF), the upper alpha frequency
band was set as a band of 2 Hz above IAF (from IAF to IAF+2Hz). Thus
the individuals’ upper alpha frequency band were determined from the first
baseline recording of every session, and the mean amplitude was calculated for
all baseline and training recordings. Two subjects (1 male and 1 female) from
the first iteration of the experiment did not complete all training sessions, and
were therefore excluded from further analysis.

In addition, it has repeatedly been reported that some subjects, usually
called non-responders, are unable to change amplitudes of the brain frequencies
significantly [66, 57, 67, 49]. Subjects who did not show a significant increase in
the upper alpha frequencies when comparing the very first baseline (baseline 1
in session 1) with the training recordings from Friday (session 5) were considered
non-responders. As a result, 3 subjects (2 female, 1 male) from the first itera-
tion and another 3 subjects (2 male, 1 female) from the second iteration were
considered non-responders. This left 7 subjects in the first iteration (5 male, 2
female) and 10 subjects in the second iteration (5 male, 5 female) remain for
statistical analysis.

The individuals’ EEG results from the baseline- and training recordings were
normalized in respect to the first baseline Monday (session 1), thereby showing
the ability to increase upper alpha (UA) amplitudes in relation to the first
baseline in percentage. The results obtained over the week (Monday to Friday)
have been plotted in Figure 15. Each line represents a subject’s ability to
increase UA amplitudes: The red lines represent subjects from the first iteration,
the black lines represent subjects from the second iteration and the bold lines
represent the non-responders. From the graph it is clear some subjects are more
capable of increasing their UA amplitudes and increase above 400%, whereas
others experience a decrease (usually the non-responders). In addition, the
subjects who get the highest increase are mainly those who use the second
iteration interface. However, the variance in the subject ability to increase their
UA is also greater. These results suggest the ability to control neural activity is
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Figure 15: The individuals’ upper alpha (UA) amplitude in percentage of the UA
amplitude from the fist baseline recording on the first day (Monday). Subjects
from first and second iteration as well as the non-responders from both iterations
are plotted in red, black and gray, respectively. The average of these groups
is marked by bold lines in corresponding colors. All baseline- and training
recordings have been plotted in sequence across the week, e.g. Monday will
show results from the first baseline, then the 5 training recording, ending with
the second baseline, giving a total of 7 points of each day. The results illustrate
a large variance in the individual subjects ability to increase UA amplitudes,
where subjects from the second iteration were capable of reaching a greater
increase, although some subjects were unable to achieve any increase at all
(referred to as non-responders).

very individual and that the interface should be supportive of the individual’s
strategies.

Following the approach of Zoefel et al. [49], we fitted regression lines to
the individual UA amplitudes as a function of session number (1-35) and used a
one-sample, one-sided t-test to test whether they were significantly greater than
zero, which they were in both iterations (p < 0.05 and p < 0.03 for the first and
second iteration respectively). We also compared the regression lines between
the iterations using a two-sample, two-sided t-test and found no significant
difference (p > 0.70). This result, in itself, could indicate that the two types of
feedback are equally effective.

This approach does not, however, separate the effect of training (a lasting
increase in UA amplitude) from the feedback effect (an immediate increase in
UA amplitude during feedback). To isolate the training effect, we again follow
the approach of Zoefel et al. who quantified the training effect as the difference
between UA amplitude during the first baseline recording in the first session and
the first baseline recording in the last session and tested for an increase with a
one-sample one-sided t-test. Using this approach we found a significant effect
in the first iteration (p < 0.002) but not in the second iteration (p > 0.14). This
result indicates that the interface used in the first iteration was more effective
for neurofeedback training.
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In addition to this, we are also interested in isolating the feedback effect,
which we quantify as the difference between the mean UA amplitude across
feedback recordings and the mean UA amplitude across the first and last base-
line recording for each session. We compare the feedback effect from the two
iterations using a repeated-measures ANOVA with session number as within
subject factor and iteration as between groups factor. We found a significant
effect of iteration (F (1, 15) = 11.85, p < 0.005) but no significant effect of ses-
sion number or the interaction between session and iteration. Based on the lack
of effect of the session number, we averaged the feedback effect across session
number and subjects within an iteration and found that the mean feedback ef-
fect was 0.17 for the first iteration and 0.67 for the second iteration. This result
indicates that the interface used in the second iteration was more effective for
inducing an immediate increase in UA amplitude.

That the feedback effect was higher in the second group without a cor-
responding increase in the training effect suggests that the magnitude of UA
amplitude during feedback does not completely determine the training effect.
This could be due to a ceiling effect, so that UA amplitude during training has
no effect above a certain level. Alternatively, it could also mean that the two
groups used different strategies for increasing UA amplitude during training and
that although the second group’s strategy was more efficient for increasing UA
amplitude during feedback, it did not increase the training effect. Such strategic
differences could be facilitated by the difference in the visual feedback stimulus.
In the first group participants needed to constantly look at the feedback stimulus
to get feedback, whereas the second group could look elsewhere intermittently
and return their gaze to the feedback stimulus only when they wished to learn
about their performance. This could change the UA amplitude during feedback
without increasing the training effect as could the mere physical differences in
the feedback signals.

In summary, our neurofeedback study confirms the findings of Zoefel et
al. [49], provides new insights into the effects of the type of feedback provided,
and confirms that neurofeedback training is possible with a mobile setup based
on the Smartphone Brain Scanner.

6. Further perspectives

6.1. Hardware

Current consumer-grade and research-oriented mobile EEG systems are only
the first iteration of the hardware. We predict two major directions of the
development.

On one hand, the high-density systems will become mobile, pushing for the
best possible quality of the acquired signal in naturalistic conditions. The de-
velopment of these systems will not be primarily focused on making them unob-
trusive, fashionable, or consumer-operated. From the spectrum of the features
offered by the new EEG hardware, these systems will focus on mobility, porta-
bility, and low-cost. They will be used in the more or less classical experiments,
controlled and initiated by the researchers.
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On the other hand, more consumer-oriented devices will emerge. They will
be fitted for particular use-cases, which will allow to make them smaller, con-
cealed, and user-friendly. Such sensors will not necessarily be seen as EEG
devices, but rather as cognitive state monitoring devices, and in addition to the
EEG signal, they may include other electro-physiological signals, such as EMG,
ECG, skin conductance etc. Still, the data available from a large number of such
systems bought and worn by the consumers for their particular function, may
offer an unparalleled opportunity for understanding human brain and cognitive
states. Gaining privacy-preserving access to, and analyzing noisy, not-at-all or
poorly annotated data originating from brain state, from hundreds or thousands
of subjects and collected over days, weeks, or months can become one of the
grand challenges for cognitive neuroscience in the next few years.

The development of neuroheadsets and sensors accompanies the develop-
ment of mobile devices, smartphones and tablets, allowing for personal hubs
for interconnected, wearable devices. The increasing processing power and low-
energy protocols (e.g., Bluetooth 4.0, NFC) turn our personal space into a busy
network of devices (phones, Bluetooth headsets, smart watches, glasses, hearing
aids etc.). EEG sensors, even if equipped with a single electrode, can fit natu-
rally in such systems, as long as they can provide certain well-defined value for
the user.

6.2. Software

The evolution of the software will be closely coupled with the use-cases of
the hardware solutions. For the research-focused high-density mobile hardware,
the minimal requirement of data collection and possibly transmission on mobile
devices can be easily satisfied with simple software. In such cases, the already
existing frameworks, such as EEGLab, can utilize significant processing power
of desktop or even server systems, and can even be used for data processing and
transmitting the extracted features back to the user.

For more consumer-oriented sensors, real-time applications, possibly operat-
ing directly on mobile devices without server connection, need to be developed.
The Smartphone Brain Scanner is the first framework that enables such de-
velopment; pushing the limits of what can be done in terms of creating user
value by enabling novel EEG applications. As the mobile devices performing
the processing grow more powerful, more complex algorithms can be enabled to
compensate for noise and low density of the systems.

6.3. Experiments

The vast majority of studies of neural and cognitive functions have so far
been set in the laboratory, where the subject is severely restrained in movement,
isolated from the surrounding world, and is required to carry out the same
limited task repeatedly. This is an impoverished environment we normally live
in and are optimized to function in; it totally ignores human agency.

Taking EEG out of the laboratory and into the natural world will allow
us to move beyond these constraints. Measuring the EEG of a freely moving
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subject will allow us to characterize the neural activity of many important
functions. With wearable EEG we can study natural motion such as walking and
complex composite motion. We can also study the many cognitive tasks that we
constantly perform in their full complexity. Examples include preference-based
choice as we select given consumer goods over others, the constant updating of
working memory throughout our daily work, and the use of speech in natural
social interactions. Measuring the EEG of subjects in rich natural environments
will allow us to characterize the neural function of the perceptual systems when
they are met with rich multimodal stimuli in which attention is constantly
needed to select the relevant stimuli and filter out irrelevant stimuli.

The complexity and variability of data collected in the natural environment
will be tremendous compared to the data collected in the laboratory. In order to
derive anything meaningful from it, the amount of necessary data will be equally
tremendous. Wearable EEG offers an immediate solution as hours, days, even
weeks of data can be collected outside of the laboratory; something which is
completely unrealistic in lab-based experimentation.

7. Conclusions

Mobile brain imaging, here realized as an EEG system, offers huge promise
for many research areas. Here we show our initial work with the Smartphone
Brain Scanner framework, which can record, analyze, and 3D real-time visu-
alize EEG signals directly on a mobile device, using low-cost, consumer-grade
neuroheadsets. The signal obtained in the studies, although of low dimension-
ality (14 channels) and noisy, can still be successfully used for multiple classical
neuroscience applications, including Brain-Computer Interfaces (BCI), analysis
of high-level brain activity, and neurofeedback. The features of the presented
system make it possible to use in domains such as cognitive psychology, medical
applications, social science research, as well as for ”self monitoring” as promoted
by the Quantified Self community 8.

As the presented framework runs on mobile devices, including tablets and
smartphones, it can be coupled with other embedded sensors in a natural way.
In this sense, EEG serves as an extension of the sensing capabilities of the
already existing devices, and can be used in an integrated way with the other
collected data (e.g. location, social interactions, activity level).

We argue that the presented framework enables a wide variety of experi-
ments, and the initial set of these presented in this paper serves as a validation
and showcase of the versatility of the framework and general approach. It is
now clear that we are at the stage where hardware is powerful and inexpensive
enough to be used for mobile brain imaging, while at the same time available
algorithms can handle noisy data, allowing us to recover significant information.

The approach to user-oriented and mobile EEG does not end with the notion
of researchers using the mobile devices and consumer-grade neuroheadsets to

8http://quantifiedself.com/
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collect the data from the subjects. We can easily imagine the systems will
eventually be able to deliver interesting data to the public, giving them incentive
to invest in their own hardware. In this shift, the data would be collected and
uploaded by the participants themselves, distributing the cost and difficulty of
running experiments. This presents yet more challenges, such as data quality
control and privacy. On the other hand, it does give a promise of extremely
large datasets created for large populations and over long periods of time, for
only little costs.
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