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PREFACE

The research providing the foundation of this PhD dissertation has been carried out in the Biomedical En-
gineering section at the Department of Electrical Engineering, Technical University of Denmark (DTU)
in cooperation with the Department of Neurophysiology at the Danish Epilepsy Center, Dianalund, Den-
mark, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering.

The research work presented in this dissertation have been carried out over a period of three years, along
with other activities such as teaching biomedical signal processing, participating in conferences and su-
pervising students through bachelor and master projects.

The dissertation consists of a summary report and seven research papers written during the period 2009-
2012. Six of them are published, and the last one is submitted.

Isa Conradsen

Lyngby, March 2012
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ABSTRACT

The main focus of this dissertation lies within the area of epileptic seizure detection. Medically refractory
epileptic patients suffer from the unawareness of when the next seizure sets in, and what the consequences
will be. A wearable device based on uni- or multi-modalities able to detect and alarm whenever a seizure
starts is of great importance to these patients and their relatives, in the sense, that the alert of the seizure
will make them feel more safe. Thus the objective of the project is to investigate the movements of
convulsive epileptic seizures and design seizure detection algorithms for these based on uni- or multi-
modalities. Regarding seizure detection, the highest potential clinical relevance is for the generalized
tonic-clonic (GTC) seizures, as these are associated with an increased risk for sudden unexpected death
in epilepsy (SUDEP) in unsupervised patients.

Several methods have been applied in different studies in order to achieve the goal of reliable seizure
detection. In the first study we present a method where the support vector machine classifier is applied
on features based on wavelet bands. This was used on multi-modal data from control subjects, with the
result that the inclusion of more modalities provided a better performance. We succeeded in performing
a multi-modal recording of a GTC seizure from an epileptic patient, and a visual analysis of the data
showed that it was similar to the data from our control subjects, only more pronounced. Based on this we
expected the algorithm to perform better on the patient data as well if more modalities were used. The
presented algorithm proved to be able to detect epileptic tonic and GTC seizures based on one modality,
surface electromyography (sEMG), but it did not prove to be sufficient for the other convulsive seizures
tested.

Another study was performed, involving quantitative parameters in the time and frequency domain. The
study showed, that there are several differences between tonic seizures and the tonic phase of GTC
seizures and furthermore revealed differences of the epileptic (tonic and tonic phase of GTC) and simu-
lated seizures. This was valuable information concerning a seizure detection algorithm, and the findings
from this research provided evidence for a change in the definition of these seizures by the International
League Against Epilepsy (ILAE).

Our final study presents a novel seizure detection algorithm for GTC seizures based on sEMG from a
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single channel. The algorithm is simple, based on a high-pass filter and a count of zero-crossings, in
order to ease the implementation into a small wireless sEMG device. The algorithm proved to be reliable,
and was after minor changes implemented in a wireless sEMG device. A double-blind test on patients in
the clinic, showed 100 % reliability for three of four patients, whereas it failed for the last patient, who
had atypical GTC seizures.
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RESUMÉ

Denne afhandlings hovedfokus er detektion af epileptiske anfald. Medicinsk refraktære epileptiske pa-
tienter lider under uvisheden om, hvornår det næste anfald starter, og eventuelle konsekvenser heraf.
Disse patienter og deres pårørende vil derfor have stor gavn af et bærbart apparat, der ud fra et uni- eller
multimodalt system, er i stand til at detektere og alarmere, når der opstår et epileptisk anfald. Bevistheden
om at de pårørende vil blive advaret, når et anfald starter, vil bevirke, at såvel pårørende som patienter
kan føle sig mere trygge i hverdagen. Formålet med projektet har været, at udforske bevægelserne under
krampagtige epileptiske anfald og designe en algoritme til at detektere disse på baggrund af et uni- eller
multimodalt system. Inden for anfaldsdetektion er det de generaliserede tonisk-kloniske (GTC) anfald,
der har størst relevans, idet disse er forbundet med en øget risiko for sudden unexpected death in epilepsy

(SUDEP) hos uovervågede patienter.

Undervejs har vi udviklet flere metoder for at opnå en pålidelig algoritme til anfaldsdetektion. I vores
første studie præsenterer vi en algoritme, der anvender support vector machine (SVM) klassifikatoren på
features baseret på wavelet bånd. Test på multimodale data fra kontrolpersoner viste, at inddragelsen af
flere modaliteter gav bedre resultater. Vi havde succes med at optage et GTC anfald fra en epilepsipatient
monteret med alle vores modaliteter. En visuel analyse af data viste, at de simulerede epileptiske anfald
målt på vores kontrolpersoner var sammenlignelige med dette anfald. Den eneste forskel bestod i, at det
epileptiske anfald var mere udtalt. Ud fra disse observationer forventer vi, at algoritmen også vil virke
tilsvarende bedre på patient data, hvis der bliver inkluderet flere modaliteter. Den præsenterede algo-
ritme er i stand til at detektere toniske og GTC anfald baseret på én modalitet, overflade elektromyografi
(sEMG), men den er ikke tilstrækkelig i forhold til andre typer af krampagtige epileptiske anfald.

I vores andet studie sammenholdt vi kvantitative parametre fra både tids- og frekvensdomænet, og fandt
flere forskelle imellem toniske anfald og den toniske fase af et GTC anfald. Desuden opdagede vi forskelle
imellem epileptiske anfald (tonisk og den toniske fase af et GTC anfald) og simulerede anfald, der kan
være værdifuld information i forhold til en algoritme til anfaldsdetektion. De opnåede resultater præsen-
terer ny viden, der opfordrer til en ændring i definitionen af de to typer epileptiske anfald af International

League Against Epilepsy (ILAE).
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Vores sidste studie præsenterer en ny algoritme til detektion af GTC anfald baseret alene på sEMG fra
en enkelt kanal. Algoritmen er holdt enkelt og baseret på et højpas filter, samt en optælling af signalets
nulgennemgange, for at muliggøre implementeringen af algoritmen i et lille trådløst sEMG device. En
dobbelt blindtest udført på patienter i klinikken demonstrerede 100 % pålidelighed for tre af fire patienter.
Devicet fejlede for den sidste patient, der havde atypiske GTC anfald og dermed må ses som en outlier.
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NOMENCLATURE

A is the approximation signal

C is a trade-off factor

D is the detail signal

G is the cross-spectrum

L is the number of samples in u(l)

R is a reconstructed signal

S is the coherence

U is the discrete frequency spectrum

a is the feature vector for ACM

b is the feature vector for ANG

b is a shifting constant

c is the feature vector for EMG

f is the frequencies

fMF is the median frequency

fs is the sampling frequency

g is a low-pass filter

h is a high-pass filter

j is a resolution or scale parameter

k is the translation parameter

m is the window number

xiii



n is a time index

u(l) is one window of the signal of a single channel (modality: EMG, ACM, ANG)

w is a weight vector

x is the combined feature vector

x is a single input in the feature vector

y is the target vector

z is the coherence after introducing Fisher’s transform

zMA is the coherence after introducing a moving average filter

ξ is a positive slack variable

ϕ is the scaling function

ψ is the wavelet function
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ABBREVIATIONS

3D 3 dimensional

ACM ACceleroMeter

ANG ANGular velocity

ANN Artificial Neural Network

CNS Central Nervous System

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

EEG ElectroEncephaloGraphy

ECG ElectroCardioGraphy

EMG ElectroMyoGraphy

EMU Epilepsy Monitoring Unit

FDR False Detection Rate

FFT Fast Fourier Transform

FIR Finite Impulse Response

FP False Positive

GTC Generalized Tonic-Clonic

ILAE International League Against Epilepsy

LAT LATency

MA Moving Average

MF Median Frequency

MU Motor Unit
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MUAP Motor Unit Action Potential

REC Regional Ethics Committee

RMS Root Mean Square

RP Relative Power

SD Standard Deviation

sEMG surface EMG

SEN SENsitivity

STFT Short Time Fourier Transformation

SUDEP Sudden Unexpected Death in EPilepsy

SVM Support Vector Machine

WPT Wavelet Packet Transformation
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CHAPTER

ONE

INTRODUCTION

Epilepsy is a neurological disorder, with a world-wide prevalence of 0.5-1% [24]. It is a serious and com-
prehensive disorder, and several aspects of it is still not fully described or understood. The gold standard
used for analysis and diagnosis is the electroencephalography (EEG) combined with simultaneous video
surveillance. Many seizures consist of motor manifestations, but most of these are only vaguely described.
More information on the exact activity in the implicated muscles might improve the understanding of the
seizures, and furthermore ease the way to discriminate the seizures from normal activities.

About one third of epilepsy patients is medically refractory [29, 44, 70], meaning that they have to live
with seizures in their everyday lives. For these patients and their relatives the development of a reliable
epilepsy seizure detection device is of great importance. EEG is known to be reliable for seizure detec-
tion, but this is only an advantage in a hospitalized situation, where the patient is equipped with either
intracranial electrodes or several scalp electrodes. In a home situation other devices for measurements
of the pathological signals are more appropriate, such as the novel (with respect to epilepsy) methods
measuring signals describing the movements of the patients.

Thus the goal of the project is to explore the potentials of automatic seizure classification based on one or
multiple modalities, recording the movements of the patients, as stated in the thesis objective below. The
process of designing the perfect algorithm for seizure detection is complex. Some of the possible ways
to choose from are outlined in Fig. 1.1. This dissertation presents both a multi-modal and a uni-modal
solution. Our multi-modal approach is marked by the blue boxes, whereas the uni-modal approach is
marked by the orange boxes in Fig. 1.1.

Objective - to investigate the movements of convulsive epileptic seizures

and design seizure detection algorithms for these based on

uni- or multi-modalities.
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Figure 1.1: This figure presents a stepwise process toward seizure detection. We have engaged the
process of seizure detection by dividing it into four steps. The four steps chosen are: data recording,
feature extraction, classifier training and test of classifier (seizure detection). Within the first three steps
different choices are available. Between the third and the last step it is possible to add an extra step
called classifier fusion, where several classifiers, may be included to make the final decision (seizure
versus non-seizure).

1.1 Thesis outline and contributions

This thesis is structured in three parts to illustrate the progress of the research that has been conducted.
Besides this it contains an introduction, preliminaries and a conclusion. The accepted and submitted
publications are found in the appendix.

Chapter 2 provide the theoretic basis of epilepsy and the used modalities, and presents the basics for the
uni- and multi-modality recordings.

Chapter 3 presents the results of our algorithm for seizure detection based on multiple motion modalities.
It compares the results for a uni- and multi-modal method. This work is presented in Paper I-III and is
designed from the idea of following the blue path in Fig. 1.1.

Chapter 4 presents the results of Paper IV, which brings new knowledge of the muscle activation of the
involved seizure types and furthermore the opportunities for use of the knowledge in a seizure detection
algorithm.

2 Chapter 1. Introduction



Chapter 5 presents a uni-modal detection algorithm, which is developed based on the knowledge gained
from Chapter 4. The design of the algorithm have at this point changed to the orange path in Fig. 1.1.
Furthermore the results from the implementation of this algorithm into a wireless device is presented.
This work is presented in Paper V-VII.

Chapter 6 encompasses the final conclusion on the results of the project and the ideas of where to
proceed.

The contribution to the field of knowledge on epileptic seizures with motor manifestations and the devsign
of seizure detection algorithms during this PhD project covers three published journal articles, three
published conference papers, and one submitted conference paper, as well as two published co-authored
conference papers. These are listed as follows:

Journal papers

• I. Conradsen, S. Beniczky, P. Wolf, T.W. Kjaer, T. Sams, and H.B.D. Sorensen, ”Automatic multi-

modal intelligent seizure acquisition (MISA) system for detection of motor seizures from elec-

tromyographic data and motion data”, Computer Methods and Programs in Biomedicine, published
online, July 2011.

• I. Conradsen, P. Wolf, T. Sams, H.B.D. Sorensen, and S. Beniczky, ”Patterns of muscle activation

during generalized tonic and tonic-clonic epileptic seizures”, Epilepsia, 52(11):2125-2132, 2011.

• I. Conradsen, S. Beniczky, K. Hoppe, P. Wolf, and H.B.D. Sorensen, ”Automated Algorithm for

Generalised Tonic-Clonic Epileptic Seizure Onset Detection based on sEMG Zero-Crossing Rate”,
IEEE Transaction on Biomedical Engineering, 59(2):579-585, 2012.

Conference papers

• I. Conradsen, S. Beniczky, P. Wolf, D. Terney, T. Sams, and H.B.D. Sorensen, ”Multi-modal In-

telligent Seizure Acquisition (MISA) system - A new approach towards seizure detection based on

full body motion measures”, Engineering in Medicine and Biology Society (EMBC), 2009 Annual
International Conference of the IEEE, 1:2591-2595, 2009.

• I. Conradsen, S. Beniczky, P. Wolf, J. Henriksen, T. Sams, and H.B.D. Sorensen, ”Seizure Onset

Detection based on a Uni-or Multi-modal Intelligent Seizure Acquisition (UISA/MISA) system”,
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, 1:3269-3272, 2010.

• I. Conradsen, S. Beniczky, K. Hoppe, P. Wolf, T. Sams, and H.B.D. Sorensen, ”Seizure Onset

Detection based on one sEMG channel”, Engineering in Medicine and Biology Society (EMBC),
2011 Annual International Conference of the IEEE, 1:7715-7718, 2011.

1.1. Thesis outline and contributions 3



• I. Conradsen, S. Beniczky, P. Wolf, P. Jennum, and H.B.D. Sorensen, ”Evaluation of novel algo-

rithm embedded in a wearable sEMG device for seizure detection”, Submitted to Engineering in
Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE.

Co-authered papers

• T.L. Sorensen, U.L. Olsen, I. Conradsen, J. Henriksen, T.W. Kjaer, C.E. Thomsen, and H.B.D.
Sorensen, ”Automatic epileptic seizure onset detection using Matching Pursuit: A case study”,
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, 1:3277-3280, 2010.

• J. Henriksen, L.S. Remvig, R.E. Madsen, I. Conradsen, T.W. Kjaer, C.E. Thomsen, and H.B.D.
Sorensen, ”Automatic seizure detection: going from sEEG to iEEG”, Engineering in Medicine and
Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 1:2431-2434, 2010.
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CHAPTER

TWO

PRELIMINARIES

Objective Epilepsy is a neurological disorder defined as a property of the central nervous system

(CNS) to produce seizures. There are many different kinds of epileptic seizures, where both the cause,

the origin and the symptoms may be very different. Though EEG recordings and video surveillance is the

gold standard, other modalities have been used to gain more information about these seizures. However,

there are still parts of the seizures, which are not fully understood, and which may be more clear if more

information is provided from novel modalities. This may furthermore lead to promising features for a

seizure detection system. Thus, this chapter will present the basic knowledge on epilepsy together with

the modalities used in this project and the basic setup of the data acquisitions.

2.1 Epilepsy

Epilepsy is the second most common acute neurological disorder, where the severeness of epilepsy spans
from trivial to life-threatening [61]. The diagnosis of epilepsy is very strict, and requires a least two
seizures in the patients history, which cannot reasonably well be explained by other diseases. Epileptic
seizures are caused by an abnormal excessive or synchronous neural activity in the brain [28]. This
may produce impaired consciousness, abnormalities of sensation or mental functioning, or convulsive
movements.

Epileptic seizures are grouped in two major types: partial and generalized seizures. Partial seizures are
characterized by an abnormal discharge from a relatively limited area of the brain structure. Thus, they
are also known as focal or local seizures. These seizures only have limited behavioral, mental, sensory
or motor expressions. Contrary to this, generalized seizures involves more widespread parts of the brain
and both hemispheres simultaneously. Furthermore, they are characterized by a loss of consciousness.
The partial seizures can be divided into simple and complex partial seizures, depending on whether the
consciousness of the patient is retained or affected. Furthermore, partial seizures may lead to generalized
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seizures, which is referred to as a secondary generalization.

Generalized seizures are divided in six general types:

Absences are seizures where the patients become absent. It may be visualized by a blank stare or other
facial signs, indicating the impaired consciousness. The intentional behavior or memory is disrupted, but
the posture and muscle tone is usually unaffected [61].

Myoclonia are twitches of one or more body parts which last shorter than 100 milliseconds. These are
caused by a synchronous activity of the motor units. Myoclonia can occur alone or in sequences, where
the consciousness is usually preserved. Often the sequences end up in generalized cramps [1].

Tonic seizures are characterized by a universal increase of tonus in the body and the extremities lasting
about 5-10 seconds [1].

Clonic seizures are repeated rhythmically muscle contractions. Normally they repeat themselves about
0.2 to 5 times per second [1].

Tonic-Clonic (GTC) seizures have two sequential phases: the tonic phase (10-20 seconds) followed by
a clonic phase (1/2-2 minutes) [61].

Astatic/atonic seizures are extremely short loss of axial tonus [1].

All epileptic seizures are sketched and grouped in Fig. 2.1. For this project the topic was to detect
epileptic seizures based on data from movement modalities. Based on this, only the convulsive seizures
(see Fig. 2.1) has been taken into account, when selecting criteria for the inclusion of patients for our
recordings. In cases were a patient has more than one type of seizures, only the convulsive seizures are
assessed.

2.2 The modalities

Several modalities have been examined during the years when investigating epilepsy. Where EEG and
video surveillance are the gold standard, also electrocardiography (ECG) is recorded in most surveillance
sessions of epilepsy patients. The more novel modalities in the field of epilepsy are surface electromyog-
raphy (sEMG), accelerometers and gyroscopes, which all represent part of the patients movements during
and between seizures.

The focus of this project has been to design algorithms for detection of epileptic seizures with motor
manifestations based on these three novel modalities (sEMG, accelerometers and gyroscopes) outlining
the movements of the patients. sEMG data were easy to obtain since this modality was already included
as part of the recording on patients in the epilepsy monitoring unit (EMU) in Dianalund, in cases were

6 Chapter 2. Preliminaries



Epileptic Seizures

Partial

One 
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Generalized

Both 
hemispheres
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ComplexSimple MyoclonicAbsence

Tonic

Clonic

Atonic

Tonic-Clonic

Clonic

Convulsive

Figure 2.1: The division of epileptic seizures into partial and generalized seizures. Furthermore the
group of convulsive seizures, which we focus on, is displayed.

it was expected to add valuable information (patients with seizures with motor manifestations). For
the other two modalities Assoc. Professor H.B.D. Sørensen advised to acquire the Moven system from
Xsens Technologies B.V., which we did early in the project period. This section briefly describes these
modalities.

2.2.1 Electromyography

Electromyography (EMG) is a technique for measuring the electrical potential generated by the muscle
cells during contractions. The amplitude of the signal is related to the force developed in the muscle.
The size of this force is dependent on the amount of motor units (MU)s recruited in the muscle and the
number of muscle fibers in each MU. An MU consists of a motor nerve and the corresponding muscle
fibers it innervates [75].

The motor nerve provides a signal, which at the innervation point of each muscle fiber can trigger the
release of an action potential. The sum of these action potentials for an MU is called motor unit action
potential (MUAP). The sEMG signal, which we are measuring in this project is then a sum of all MUAPs
in the muscle [75].

2.2. The modalities 7



Figure 2.2: Illustration of the components involved in the generation of the EMG signal. The figure is
from [50].

The force development in a muscle is controlled by the nervous system by three mechanisms:

• Change in the number of active MUs (recruitment), where the smallest MUs are recruited first.

• Change in the firing rate (the time between the release of MUAPs).

• Synchronizing the MUs. This makes the contraction stronger. Normally, the MUs are desynchro-
nized to make the movement more smooth.

The components involved in the generation of the EMG signal are illustrated in Fig. 2.2.

Before the signal is registered by the sEMG electrode it has been dampened by the connective tissue in
the muscle, fat and skin, which it has been traveling through. Furthermore, the biological tissue functions
as a low-pass filter, which means that the higher frequencies have been dampened more than the lower
frequencies in the signal [75].

The sEMG signals are measured by 9 mm silver/silver chloride (Ag+/AgCl) surface electrodes from
Ambu (Ambu R©Neuroline 720 15-K). An example is shown in Fig. 2.3. The electrodes have stan-
dard sockets, making it possible to measure the sEMG signals along with the EEG signals in the EEG-
amplifier, which we have done for the recordings in this project.
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Figure 2.3: The 9 mm silver/silver chloride surface electrode, Ambu R©Neuroline 720 15-K, used to
measure sEMG signals in our project [4].

1
2 Deltoid

Sternocleidomastoid

T i b hii

3
4

Biceps brachii

Triceps brachii

5
6Quadriceps femoris Biceps femoris

7
Tibialis anterior

Figure 2.4: The placements of sEMG electrodes used in recordings associated with this project. Modi-
fied from [50].

Depending on the patients capability to cooperate on wearing the electrodes, we used more or less sEMG
electrodes. The included muscles were chosen by a physician based on the knowledge on which parts
of the body are most active during seizures, and to ensure full body coverage. The placements of the
electrodes are visualized in Fig. 2.4. If possible, electrodes were placed on the 7 places marked on both
the left and right side of the body (14 placements in total). If this was not possible, only placement 2 and
7 were used on both sides of the body (4 placements in total).

The sEMG electrodes were placed on the muscles in a monopolar setting (the active electrode was placed

2.2. The modalities 9



Figure 2.5: The Moven suit, with all sensors placed in the associated small pockets [89].

on the midpoint of the muscle belly, whereas the reference electrode was placed on bone as close to the
muscle as possible. We opted for this setting to circumvent the effects of phase-cancellation that occur in
the bipolar setting, when both electrodes are placed on the muscle [8, 51, 79].

2.2.2 Acceleration and angular velocity using the Moven system

The Moven system (MOVEN Full-Body, MVN1, SN:00900077) is a suit (see Fig. 2.5) containing 16
sensors, each containing both 3D accelerometer (ACM), 3D magnetometer and 3D rate of turn sensors
(gyroscopes), able to measure full-body movements. The 3D acceleration is measured in the x, y and z
direction as showed in Fig. 2.6, whereas the angular velocity (ANG) is measured as the rotation around
the three axes as indicated in Fig. 2.6 by the curved arrows. Advanced sensor fusion is applied using the
magnetometer data to orientate the acceleration and angular velocity data to a global coordinate system
(magnetic north) instead of the ones of each sensor. This makes the x-axis point in the north-south
direction, the y-axis in the east-west direction and the z-axis points toward the center of the earth. An
advanced articulated body model is used in the Moven system software, which implements constraints
of the joints, and lengths of the limbs to estimate 7 extra placements (shown as position 2, 3, 4, 5, 6, 19
and 23 in Fig. 2.7). This gives a total of 23 sensor placements, see Fig. 2.7, and thus the possibility of a
full body description of the movement of the subject. This is however not the focus in this project. From
each placement we are able to extract 6 channels of data, since each of the two modalities are in three
dimensions.

We focus on the raw transformed (into the coordinate system with magnetic north) signals (3D ACM
data and 3D ANG), which we could extract. This provided 138 (2x3x23) channels, which is a lot when
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z

xy

Figure 2.6: A Moven sensor and the original axes x, y and z, of the sensor. The curved arrows illustrates
the rotation, which is measured by the 3D rate of turn sensors. Modified from [89].

considering the computational load in a detection algorithm. To decrease this number and thereby the
computational load regarding the feature extraction, we used the length of the direction vector both for
ACM and ANG instead of the three dimensional (3D) coordinates, x, y and z (e.g. for ACM):

ACM =
√

ACM2
x + ACM2

y + ACM2
z (2.1)

This process will induce some loss of information, but in order to decrease the computational load, we
decided to apply this procedure instead of lowering the number of sensors (amount of placements on
the body). Since we are more interested in the strength and frequency of the movements and not the
orientation, the loss is not considered further. From this preprocessing of data we were left with 46
channels of data in total from these two modalities.

The signals are sampled with a frequency of 120 Hz, which was the highest possible, when we received
the system in 2008. The maximum limits of the two modalities are specified to 21 rad/s for the rate of
turn sensors, and 50 m/s2 for the accelerometer. Since the system is made for human movements it is
expected to be enough for both the physiological and the pathological activities of the patients.

The sensors are connected through wires and the signals are collected in two boxes, which are syn-
chronized and sends the signals via blue-tooth to a computer. The data files are recorded and saved as
.mvn-files by the appurtenant Moven program. These files can only be read by this specific program,
but a conversion into an .mvnx-file is possible, using HTML code. This makes it possible to read it into
MATLAB, which is the main programming tool used in this research project. Further information on the
system may be found in the corresponding manuals or at the company’s web-page [89].

The system only came with one suit (size: L), and only adult sizes were available. Thus we designed
four extra suits (size: 3-6 years(y), 6-9 y, 9-16 y, and XL). Values for the normal height ranges for the
different ages were found, and the placement of the pockets were calculated, with respect to the length of
the suit, with help from anthropometric data [75]. We were forced to adjust some of the settings during
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Figure 2.7: The placement of the sensor positions from the Moven system, see the Manual for Moven,
revision D, June, 2008 [89].

the project, due to complications when using the suit on patients.

From the basis of manuals that came with the Moven system, we composed a manual (see appendix
A), to instruct the user, when using the system in a hospital setting. With all the equipment achieved
and the manual ready, we applied the Regional Ethics Committee (REC) for approval of recording with
the Moven system on patients/control subjects along with the standard equipment in an EMU [14]. The
approval was granted on April 15, 2009, enabling us to initiate our measurements in May, 2009.

2.3 Data acquisition

The recording of data is divided into two possibilities; multi-modal or uni-modal, where the terms only
refer to the movement modalities. In all data acquisition the gold standard and ECG are recorded.
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Multi-modal Acquisition

Where the patient was able to wear all our equipment, sEMG was measured from 14 placements on the
body and furthermore the Moven system was mounted. In these measurement we were responsible for
the mounting of all this equipment and furthermore for regular check up on the recording of these data.
The collection of data was a major time-consumer within the project.

Uni-modal Acquisition

Besides from the multi-modal recordings, the staff at the Danish Epilepsy Center, mounted the patients in
the EMU with sEMG electrodes (4-14 placements depending on the patient), where convulsive seizures
were expected and the patient was able to cooperate to wear the electrodes.

2.3. Data acquisition 13
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CHAPTER

THREE

DETECTION OF EPILEPTIC SEIZURES
WITH MULTI-MODAL SIGNAL

PROCESSING

Objective Many different approaches have been followed to develop the optimal seizure detection

algorithm for on-line use. It has turned out to be a challenging task. The reason for this is probably the

high expectations associated with the results. For a detection algorithm to be useful it is essential that

it achieves a sensitivity as close to 100% and at the same time as close to 0 false positives as possible.

Thus many different attempts have been made to develop such an algorithm, where most have been based

on a single modality, EEG, ECG or ACM, and only few have combined more modalities to strengthen the

algorithm. This chapter is composed upon Paper I-III and serves to show the advantage of building a

seizure detection algorithm on more than one modality.

3.1 Background

The majority of previous studies has used single-modality detection [22, 23, 38, 40, 43, 45, 55, 58, 71].
To our knowledge only few other groups have combined more modalities in an attempt to detect seizures
[7, 9, 47, 66] with respect to movement modalities. Though we did expect that a combination of more
modalities would improve the results. The first goal was to show whether an algorithm would gain on
including more modalities. To make this possible a second goal was to develop a database containing
all modalities and with as many positions (channels) as possible. Thus it would be optimal if the motion
sensors would be able to measure from the entire body. From such a large database it would then be
possible to find the optimal combination of the three modalities and their placement on the body, in order
to minimize the number of sensors needed.
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Based on our first 3 control subjects recorded with all the equipment, we made a preliminary study (Paper
I) based on a simple root mean square (RMS) feature [19]. This showed that the idea of gaining from the
inclusion of more modalities seemed promising. To test this further we needed features to discriminate
between seizure and non-seizure and a detection algorithm to classify based on this. In this setup the
choice of feature is of highest importance [52], whereas one classifier might be as good as another,
so we chose to work with the one being the most popular within biomedicine at the moment, Support
Vector Machine (SVM) [78]. This was partly motivated by the fact that SVM had proven to perform
better than e.g. artificial neural network (ANN) in other studies on biomedical signals [46, 64, 76]. The
issue was then to identify the most promising features and furthermore the most appropriate classifier
parameters to automatically differentiate between the two classes. Nijsen et al. [60] showed through a
visual analysis that the continuous wavelet transformation (CWT) seemed to be a better feature than short
time Fourier transformation (STFT) for ACM data. Seizure detection from sEMG signals was an even
more unexplored field, but from a visual inspection of the data it seemed that both the amplitude and
the frequencies of the signal during seizures were different from normal activities. The discrete wavelet
transformation (DWT) seemed to be a good choice as a feature extraction method, since it provides a
good frequency resolution at low frequencies and furthermore a good time resolution at high frequencies.
Based on this we chose to focus our features around the wavelet theory, which is presented in Paper II-III
[17, 18].

3.1.1 Research hypotheses

The main hypothesis is that a combination of modalities will have better performance than a uni-modal
approach. To verify this we need multi-modal data and an appropriate algorithm for the detection of
seizures.

Our hypotheses are:

• to be able to record multi-modal data from a full-body approach.

• to generate an algorithm able to discriminate seizures/simulated seizures from all other activities.

• to find a difference in the outcome, when including features from one or more modalities.

3.2 Recordings

For all recordings, EEG and video were recorded as the gold standard. This was required for the physi-
cians to manually score the onsets and offsets of the epileptic seizures. Besides from the gold standard
we also measured ECG, ACM, ANG and sEMG. The recruitment of patients for these measurements was
quite difficult, since the patients had to be mentally well functioning and at the same time have many
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Figure 3.1: A control subject mounted with EEG, sEMG and the Moven system equipment, simulating a
GTC seizure at the Danish Epilepsy Center in Dianalund. The Moven program is running on the laptop,
showing the 3D movements of the control subject.

seizures within few days. So, to get started on the signal processing we chose to simulate a normal
measurement situation in the EMU on control subjects (healthy volunteers) including simulated seizures
specified by a physician as well as normal activities, which are available to the patients during their ad-
mission. On Fig. 3.1 one of the control subjects is shown simulating a seizure, while mounted with all
the equipment.

3.2.1 Multi-modal recordings on control subjects

Ten control subjects were monitored with all modalities and instructed to simulate seizures. During the
recordings, a physician was present to check that the simulated seizures were visually similar to real ones.
If they were not, the control subject was corrected and asked to simulate a new seizure. The recordings on
control subjects were made at the Danish Epilepsy Center in Dianalund, Denmark. The control subjects
had a median age of 25.5 years (range: 23-30), and included three females and seven males. It is assumed
that there is no effect of gender. The measurements lasted 1.5-3 hours for each control subject, where
all of the control subjects were asked to simulate three types of seizures and some normal activities. The
control subjects were orally instructed about how to simulate the seizures and shown a video to give a
visual illustration of an actual seizure. Prior to the recording the control subjects rehearsed the simulation
of the seizures while assisted by a physician. The normal activities included were biking, use of a mobile
phone, use of a computer, changing channels on a TV, eating and playing with dices. The last activity was
chosen because of the similarity of the movement to clonic seizures or the clonic phase of GTC seizures.
All were activities which the patients are allowed to perform during a normal admission in the EMU at
the Danish Epilepsy center in Dianalund, Denmark. Each of the seizures was simulated five times for
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each control subject. The times for the simulated seizures were annotated as during a normal admission.
The three types of simulated seizures are as follows:

• Myoclonic, which is a very short lasting twitch in a single muscle. The control subject is asked to
make a contraction of the right biceps brachii as short as possible, which will cause a very short
lasting movement of the right lower arm.

• Versive-asymmetric tonic seizure, which is characterized by a turn of the head to an almost un-
comfortable angle, where the control subject is looking upwards and to the side. This is followed
by an isometric contraction in an asymmetric posture, where the arm, on the same side toward
which the head is turned, will be placed above the head.

• GTC seizure, which starts as an isometric contraction of all the muscles. After a while it changes
to rhythmically repetitive jerks made by alternating contraction and relaxation of the muscles.

Where the ACM and ANG data were sampled at a frequency of 120 Hz, the sEMG data were sampled
at a frequency of 1024 Hz. The sEMG was applied using all 14 placements (see Fig. 2.4). Each of the
surface electrodes were accompanied with its own reference electrode, placed on nearby bone or tendon,
as described in section 2.2.1. The sEMG electrodes are connected to the EEG amplifier. The recordings
were performed by starting all conventional measurements in the EMU (i.e. all modalities except for
the Moven system). When this was up and running, the Moven system was started and the time in the
sEMG sampling system was annotated by the neurophysiological assistant, as precisely as possible. All
data types were then used from this point and on, whereby they were synchronized. Unfortunately, the
sEMG data from the EMU at the Danish Epilepsy Center were filtered before exportation, so to avoid
differences, we only analyzed the data with frequencies below 70 Hz.

3.2.2 Multi-modal recordings on patients

We started recruiting patients as soon as we had received the approval from the REC [14] in May 2009.
However, the candidates admitted to the EMU in Dianalund generally proved not to be well enough func-
tioning for our equipment or not to have the right type of seizures. In 2010 we moved the Moven system
to Rigshospitalet (Copenhagen University Hospital) instead. There we succeeded in recording data from
14 epileptic patients in total, but unfortunately only one of them had seizures of the type with motor
manifestations, which we focused on (myoclonic, tonic, GTC), during the recordings. As stipulated by
the REC, all the epileptic patients were admitted to the EMU at Rigshospitalet for a diagnostic indication.
The admissions lasted 1-3 days. The one patient with seizure, a 29 years old male, had only one seizure
of the GTC seizure type. The onset and offset for the seizure was clinically annotated by the neurophysi-
ology technicians and later checked by a physician. For this measurement the sEMG data were sampled
at a frequency of 1000 Hz. The reason for the use of different sampling frequencies for the sEMG data is
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that the two participating departments use different recording programs with different setup possibilities
for the sampling frequencies. Furthermore, due to the use of caps for the EEG recordings on the patients
at Rigshospitalet we were not able to use the head sensor (position 7 in Fig. 2.7), hence, due to the
biomechanical calculations in the software, data are unfit for use for three positions (position 5, 6 and 7
in Fig. 2.7).

3.2.3 Uni-modal recordings on patients

At the Danish Epilepsy Center in Dianalund we measured sEMG data (along with the gold standard) from
at least 4 sEMG electrodes (placement 2 and 7 on Fig. 2.4) on all the patients who where admitted with
expectations on having epileptic seizures with motor manifestations. Five of these patients had seizures
with motor manifestations and were included in this study, to verify the ability of the algorithm to detect
actual seizures. The number and type of seizures along with the gender and age of the patients are listed
in Table 3.1. Furthermore, the length of the signals for the testing phase of the classification is listed.

Table 3.1: The patients gender, age and the amount and type of seizures along with the length of the test
file. Pt 2-5 are also presented in appendix C as: Pt2: TC9, Pt3: T1, Pt4: T5 and Pt5: T6.

Gender Age
# of

Seizure Type
Length of

Seizures Test File [h]

Pt 1 F 2 13 Tonic, Myoclonic 12

Pt 2 F 30 4 GTC 27

Pt 3 M 6 14 Tonic, Spasm 31

Pt 4 M 48 10 Tonic 0.75

Pt 5 M 30 11 Tonic 8

3.3 Data presentation

To assess the reliability of using simulated seizure data from control subjects instead of epileptic patients,
the raw data from the simulated seizures were compared visually to actual epileptic seizure data for all
modalities. Since we only succeeded in recording seizure data from one patient (with motor manifes-
tations), a statistical comparison of the quantitative data/parameters was not possible. A representative
simulated GTC seizure was chosen for comparison with the real seizure.

Fig. 3.2 shows the time plots and spectrograms of a seizure/simulated seizure and the surrounding normal
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Figure 3.2: The sEMG data for a real seizure and a representative simulated seizure are shown in a and
b, respectively. The matching spectrograms (for a normalization of the signals) are shown in c and d,
where the red color means high power, blue color means low. The data is from the right biceps. The
seizure and the simulated seizure are both surrounded by normal activity data. The black vertical lines
represent onsets and offsets of seizures and simulated seizures.

activity for the patient and the control subject, respectively. The data is sEMG from the right biceps
brachii, data from the other muscles recorded are shown in appendix B. The onset and offset of the
seizure/simulated seizure are marked by the black vertical lines. For the patient it is seen that the seizure
starts prior to the muscle activity, so the first signs of the seizure are only visible in the EEG or other
muscles and not until a bit later was the GTC part of the seizure started in the biceps brachii. The starting
point for the simulated seizure is defined as where the muscle activity starts. For some patients the start
of a seizure might as well be when the muscle activities are started (visible in the sEMG), so this will
not be seen as a difference. A clear difference is the amplitude of the signals, but it should be noted that
this characteristic depends on the strength of the subject and the thickness of the skin/fat layer between
electrode and muscle among others. The spectrograms are made based on normalized (with respect to
the maximum value of the signal) signals to make sure the amplitude differences are not influencing our
interpretation. From the spectrograms it is revealed that for both the seizure and the simulated seizure
the power contained in the signal is increased for all frequencies through a longer period compared to
the normal activities. It is clearly visible that the higher frequencies (above 70 Hz) are not unimportant,
so in our later studies, we have made sure that no filtering is performed during the exportation of data.
We cannot reject that besides the difference in amplitude there are other differences between the sEMG
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Figure 3.3: The ACM data for a real seizure and a representative simulated seizure are shown in a and
b, respectively. The matching spectrograms (for a normalization of the signals) are shown in c and d,
where the red color means high power, blue color means low. The data is from the sensor at the right
lower arm. The seizure and the simulated seizure are both surrounded by normal activity data. The black
vertical lines represent onsets and offsets of seizures and simulated seizures. In b and d the beginning
of a second simulated seizure is seen in the right side of the plots.

signals from the epileptic seizure and the simulated seizures. Fig. 3.3 and 3.4, which show the ACM
and ANG data, respectively, from the right forearm (all other places are shown in appendix B) for both
the patient and a representative control subject, are visually similar. The amplitude, however, is also a
problem for these modalities. The movements during the real seizure seem to have larger acceleration
and angular velocity than during the simulated seizures and for both data types the movement seems to
be more confounded for the real seizure, whereas most of the control subjects have lower accelerations
and especially angular velocities.

There are also differences among patients with epilepsy and the patient we measured may have had faster
movements than the average patient. We will have to trust that the acceleration of the simulated seizures
is visually similar to real ones, when looking at the control subjects, since this is what the physician
concluded during the simulations.

The spectrograms show that the real seizure has a larger power in the higher end of the frequencies, com-
pared to the simulated seizures. The simulated seizures show a higher power in some frequencies (above
15 Hz) than the normal activities. These spectrograms are, as well as for the sEMG, generated based on
normalized signals to avoid power differences based on the amplitude of the signals. There are smaller
differences in the frequencies between ACM and ANG that seems to give some useful complementary
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Figure 3.4: The ANG data for a real seizure and a representative simulated seizure are shown in a and
b, respectively. The matching spectrograms (for a normalization of the signals) are shown in c and d,
where the red color means high power, blue color means low and the color scale is the same. The data
is from the sensor at the right lower arm. The seizure and the simulated seizure are both surrounded
by normal activity data. The black vertical lines represent onsets and offsets of seizures and simulated
seizures. In b and d the beginning of a second simulated seizure is seen in the right side of the plots.

features to our algorithm. Based on the visual inspection, the movements simulated by the control sub-
jects closely resemble those occurring during the seizures, making it a reasonable assumption that the
signals recorded by the motion sensors are similar to what we would have recorded from patients with
epilepsy. This is also what we have observed when comparing the data from the simulated seizures to the
real one, though with some differences in the strength of the seizures. However, these differences make
the real seizure stand out even more from the normal background activity, suggesting that the algorithm
might work even better on the real seizure data than on the simulated ones.

3.4 Methods

The description of the methods for detection of seizures based on uni- or multi-modal data is split into
several steps as outlined in Fig. 3.5. The first step is to extract appropriate features and the second is to
classify the data based on these features. Prior to these steps it is, however, necessary to take a look at the
data and how it may be divided into training and test sets for the classification.
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Figure 3.5: Method for detection of simulated seizures based on uni-/multi-modal data. Three types of
data are used, from which features are extracted. The feature vector is sent through a classifier, which
outputs yi. A positive yi classifies as a seizure/simulated seizure, whereas a negative yi belongs to the
normal activity class.
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Figure 3.6: Diagram of the segmentation of the data strings from files containing simulated seizures.
Between each segment a period of 5 s of data is left unused. Each normal activity segment lasts 1 min.

3.4.1 Data partitioning

Data were partitioned due to the fact that during the recordings, for practical reasons, all simulated
seizures, were simulated within a short time with the control subjects practicing the simulations in be-
tween. It was therefore not possible to make a causal split of the data into training and test periods, where
the first part would be used for training and the last part for test. For the classification, both a training set
and a test set of data was needed. Therefore data was divided into smaller segments and split randomly
into the training and test phases. By splitting data in smaller segments of seizures/simulated seizures
and normal activity there were more segments to choose from, when randomizing the training and test
phases related to the classification. This ensured that both the training and test phases contained segments
from all the different activities performed. For each control subject several files were processed. A file
containing simulated seizures was divided in subparts as shown in Fig. 3.6, where the data parts between
the simulated seizures were left unused, since, as previously mentioned, the control subjects might have
been practicing for the simulation of simulated seizures in between the actual simulations. The simulated
seizures were split in separate segments containing each simulated seizure as a whole. The normal ac-
tivity period after the simulated seizures was split into segments of 1 min. This length ensured that the
movements within the segments made sense, and that a sufficient number of segments were obtained for
training and test. Between each segment a sequence of 5 s was left unused to reduce the correlation be-
tween two successive periods as much as possible without too much loss of data. Files without simulated
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seizures were treated in the same way as the period following the simulated seizures. The files were split
into segments of 1 min, with 5 s sequences left unused between each. The sEMG data from the epileptic
patients were handled in the same way, except that the data in between seizures were not discarded, but
split in the same way as files without any seizure/simulated seizures.

3.4.2 Wavelet based feature extraction

In classification problems the choice of features is often more important than the choice of classifier
[12, 52]. The features outline the details to discriminate between groups, whereas one classifier might
provide a similar result as another based on the same set of features. The features for discriminating
between seizures/simulated seizures and normal activities should therefore be chosen based on how well
they distinguish between the two groups. Based on a visual inspection of data, Nijsen et al. [60] found
that a wavelet decomposition with the fifth Daubechies as a mother wavelet was the most appropriate
feature compared to the STFT for ACM data. Consequently, we have decided to use the fifth Daubechies
as a mother wavelet for our data; ACM as well as sEMG and ANG. Compared to the STFT where a
signal is split in sine functions with different frequencies, the continuous wavelet transformation divides
the signal into shifted and scaled versions of a mother wavelet. The discrete wavelet decomposition is
basically two filters that are applied sequentially to the input signal again and again (one time for each
step). The filters are composed as low- (g) and high-pass (h) filters based on the mother wavelet. From
each filtration an approximation (A) and a detail (D) signal is achieved. Each approximation signal can
be further filtered into a new level with both an approximation and a detail signal, see Fig. 3.7. The
black squares in the figure mark the division by the DWT, whereas the wavelet packet transform (WPT)
is demonstrated by all squares, where also the detail signals are filtered. A mother wavelet is defined
by a scaling function ϕ(l) and a wavelet function ψ(l) [49], described by the low-pas filter, g, and the
high-pass filter, h [81]:

ϕj,k(l) = 2j/2 · gj(l − 2jk) (3.1)

ψj,k(l) = 2j/2 · hj(l − 2jk) (3.2)

where j is the resolution or scale parameter, k is the translation parameter and 2j/2 is a normalization
factor for the inner product. The decomposition is then described as the discrete approximation, Aj(k),
and detail, Dj(k), signals given by [81]:

Aj(k) = u(l) ∗ ϕj,k(l) (3.3)

Dj(k) = u(l) ∗ ψj,k(l) (3.4)

Each window of each channel (ACM, ANG or sEMG) was applied in the wavelet transformation as
u(l). By the extension of the DWT to further filtering on each detail signal as well, the WPT was
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Figure 3.7: The signal, u(l), is filtered and thereby split in approximation and detail signals. The scheme
with the black boxes shows the decomposition with a normal wavelet, whereas the total scheme shows
the decomposition with wavelet packets. The decomposition is in both cases made to level 7 (seven
layers). According to this scheme the detail bands we use for the DWT would be named: DAAA4,
DAAAA5, DAAAAA6 (and DAAAAAA7 for sEMG signals). These names are long, which is why we
use the short terms instead: D4, D5, D6 (and D7 sEMG signals).

obtained. Thereby the signal was split up in uniform frequency bands with equal frequency and time
resolutions for all frequencies. This means that no matter which frequency band showed the largest
difference between seizures/simulated seizures and normal activity in the movement data, an appropriate
resolution was achieved for both time and frequency. So, a good time resolution was not compromised by
a bad frequency resolution and, correspondingly, a good frequency resolution was not compromised by a
bad time resolution. Each DWT and WPT was determined from a window of 0.75 and 1 s, respectively,
both with an overlap of 50%. For the epileptic patients, only the DWT method was tested with a window
of 1 s and 50% overlap. The windows should be short enough to capture the important details of the
seizures and at the same time, long enough to keep a good frequency resolution. The window lengths
were chosen based on the results of an evaluation of the optimal value for the two methods, DWT and
WPT, respectively. Before the windows were divided in approximation and detailed signals, they were
filtered by multiplying a Hann window of the same length as the signal window to smoothen the spectrum.
All feature extractions were processed with the Wavelet Toolbox in MATLAB.

3.4.3 DWT feature extraction

The DWT can be made with an optional number of layers. We found that for the sEMG signals with
a sampling frequency of 1024 Hz it was most efficient to use 7 layers, whereby the last bands had a
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Figure 3.8: Flowchart of the feature extraction from Fig. 3.5. One window of data is analyzed at a time.
l is the sample number. The chosen sub-bands are reconstructed, which for the DWT are D4, D5, D6 and
D7 (only for sEMG signals). For the WPT the sub-bands used are DDA3 and ADD3 for the ACM and
ANG signals, whereas AAAAD5 and DDAAA5 are used for the sEMG signals (The names are given as
illustrated in Fig. 3.7.). A ”log-sum” measure is calculated from the used bands as input to the feature
vector.

band-width of 4 Hz. For the ACM/ANG signals we found that 6 layers were to be used, whereby the last
band had a band-width of 0.94 Hz. From a visual inspection of the features extracted from the different
bands in the 7 (6) layers, the detail signals layer 4-6 (ACM/ANG signals) and 4-7 (sEMG signals) turned
out to provide larger differences (for the log-sum/energy parameter introduced below), when comparing
the simulated seizures to randomly chosen normal activities. For the ACM/ANG signals the frequencies
extracted were 0.94-7.5 Hz and for the sEMG signals they were 4-64 Hz. To evaluate these signals and
decrease the amount of data entering the feature vector we were interested in a measure for each signal
indicating how much ”energy” they contained. This was evaluated by calculating a “log-sum” measure
of the signals as shown in Fig. 3.8 and given in 3.5:

xj−3 = log(

L

2j∑

k=1

|Dj(k)|), (3.5)

where L is the number of samples in the signal u(l), j is the level (4, 5, 6 for ACM/ANG and 4, 5, 6,
7 for sEMG) and Dj(k) is the detail signal at level j. By applying the logarithm, it was ensured that
the smaller differences between feature vectors from different classes were enhanced, while the larger
differences between feature vectors were reduced. The influence on the system by possible outliers was
thereby reduced. This means that the system was assumed to be less affected by outliers in the movement
signals. The feature vector, x, was then collected from the vectors a, b and c, with three (ACM/ANG) or
four (sEMG) ”log-sum” measures for each data window for all channels in the different modalities:

a = [x1,ACM1
, x2,ACM1

, x3,ACM1
, x1,ACM2

, ..., x1,ACM23
, x2,ACM23

, x3,ACM23
]

b = [x1,ANG1
, x2,ANG1

, x3,ANG1
, x1,ANG2

, ..., x1,ANG23
, x2,ANG23

, x3,ANG23
]

c = [x1,EMG1 , x2,EMG1 , ..., x4,EMG1 , x1,EMG2 , ..., x3,EMG14 , x4,EMG14 ]

xn = [an,bn, cn]T , (3.6)
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where ACM1 means ACM channel 1 and so on and n is the time index. For convenience the time index,
n, is omitted in the previous equations. The concatenation of the measures into a feature vector is shown
as the last step in Fig. 3.8.

3.4.4 WPT feature extraction

As with the DWT, the WPT can be made with an optional number of layers. We used the same number
of steps as for the DWT. This divides the sEMG signal into frequency bands with a bandwidth of 4 Hz.
From a visual inspection of the reconstructed sEMG signals we found the reconstruction signals that
contained the largest differences between simulated seizures and normal activities. It turned out to be the
second and the fourth band in the fifth step, corresponding to frequency bands of 16-32 Hz and 48-64 Hz,
respectively, making it unnecessary to decompose it into seven steps. For the ACM/ANG data, because
of the lower sampling frequency, the decomposition was made in six layers as used for the DWT. This
provided frequency bands for the reconstructed signals of 0.94 Hz. A visual inspection (as described
above) was conducted with the result that the fourth (22.5-30 Hz) and seventh (45-52.5 Hz) band of the
third step contained the larger differences between the simulated seizures and normal activities for both
ACM and ANG.

As for the DWT, we calculate ”log-sum” measures of the signals, as given in (3.7) (for sEMG data) and
(3.8) (for ACM/ANG data):

xp = log(
2L/5∑

k=1

|R(k)|), R = AAAAD5(p = 1), R = DDAAA5(p = 2) (3.7)

xp = log(
2L/3∑

k=1

|R(k)|), R = DDA3(p = 1), R = ADD3(p = 2) (3.8)

where L is the number of samples in the signal u(l) and R(k) is the reconstructed signal for the given
sub-band. As previously explained, the logarithm was applied to ensure that smaller differences between
feature vectors from different classes were enhanced and the influence by possible outliers was assumed
to be reduced. The feature vector, x, was then collected from the vectors a, b and c, with two ”log-sum”
measures for each data window for all channels in the three modalities:

a = [x1,ACM1
, x2,ACM1

, x1,ACM2
, ..., x1,ACM23

, x2,ACM23
]

b = [x1,ANG1 , x2,ANG1 , x1,ANG2 , ..., x1,ANG23 , x2,ANG23 ]

c = [x1,EMG1 , x2,EMG1 , x1,EMG2 , ..., x1,EMG14 , x2,EMG14 ]

xn = [an,bn, cn]T , (3.9)
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3.4.5 Final feature vector

All possible combinations ((a), (b), (c), (a, b), (a, c), (b, c) and (a, b, c)) of the three modalities were
sent through the classifier, to explore which combination would be better for an alarm system. Eqs. (3.6)
and (3.9) represent the combination where all data are used. The entering of the feature vector into the
classifier is shown as the final step in the classification procedure (see Fig. 3.5).

3.4.6 Support vector machine based classification

We decided to see the classification problem as binary with the two classes seizure and other activity.
Another choice could have been to classify the simulated seizures into different groups depending on the
seizure type, but in this study we were interested in examining the possibility of making one classifier
for all convulsive seizures. The class, seizure, contained different kinds of seizures/simulated seizures
with motor manifestations, whereas the class other activity contained anything but the seizures/simulated
seizures. The amount of data in the two classes was very different, since we had more other activity

data than seizure/simulated seizure data, which made the SVM algorithm attractive compared to other
algorithms, e.g. neural network classifiers [90]. When using the SVM, one is sure to find a global
and unique solution to the classification problem (quadratic optimization problem, see equation 3.13),
compared to neural network where there can be multiple local minima and thereby multiple solutions
[11]. This means that one can be certain that an optimal solution is obtained using SVM. A third reason
to choose SVM is that it is less disposed to overfitting, since it chooses a specific hyperplane (with the
largest margins) to separate the two classes [21].

SVM belongs to the class of supervised learning algorithms. This means that the algorithm based on a
training group of a dataset is able to fit the best decision boundary to separate classes and afterwards use
this classifier for unknown test data. In our case we know which class our test data belongs to, which
makes it possible to validate the classifier (best decision boundary).

The classification is the last part in the detection algorithm. Data was divided into two groups, training
and test (Fig. 3.9), where the classifier was trained on the data from the training group. The data from the
test group was then classified with the classifier trained for the purpose. The classifier returns a positive
or negative value for each test vector, depending on whether it is classified as a seizure/simulated seizure
or not. Since we had target values for each test point, we were able to validate the performance of the
classifier. The division of the data into these groups (training and test) were made randomly, for both
seizure/simulated seizure and all other activity data, ensuring close to equal amounts of each data type
in each group. It was ensured that each seizure/simulated seizure type was represented in both phases
(training and test).
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Figure 3.9: The classification part of the algorithm is split in two; the training and the testing phase.
During the training phase the classifier is trained on feature vectors and their corresponding target (-
1 (other activity) or 1 (seizure/simulated seizure)). In the test phase the ”new” data is classified as
seizure/simulated seizure or other activity. In the test phase yn is unknown to the classifier, but used to
validate the classifier.
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Figure 3.10: Two classes, green and purple, are linearly separable by the black hyperplane. Many other
hyperplanes would separate the two classes, but this one maximizes the margin between the support
vectors (the data points of most importance to the classifier (enlarged)) of the two classes.

For the training, data was labeled:

{xn, yn} , n = 1, ..., k, yn ∈ {−1, 1} , xn ∈ <d, (3.10)

where k is the number of training examples, d is the dimension, xn is the feature vector (n is the time
index) and yn the matching target, indicating which of the classes the feature vectors belong to, 1 for
seizures/simulated seizures and -1 for all other activities.
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Figure 3.11: Two classes, as in Fig. 3.10, but now two points are shown to be on the wrong side of
the margin, having slack variables different from 0. In such situations the hyperplane will be placed to
maximize the margin and at the same time lower the errors. The trade-off between the two are decided
by C in (3.13).

A two-class linearly separable data set can be classified by a hyperplane described by [72]:

f(xn) = w · xn + b = 0, (3.11)

where w is the normal to the hyperplane and b is a shifting constant. An example of the two datasets (in
2D) separated by (3.11) is shown in Fig. 3.10. The first SVM method described by Vapnik and Lerner
[87] was the hard-margin linear SVM, which cannot take possible errors into account. Later Vapnik and
Cortes [21] introduced a soft-margin version, which is the one we have used. It uses a slack variable,
ξn, to handle errors (e.g. when two classes are not completely linearly separable). The hyperplane
is computed based on support vectors. The classifier chooses the feature vectors of most importance
(regarding separation of the two classes), and uses them as support vectors. These feature vectors from
the two classes must satisfy [72]:

yn · (w · xn + b) ≥ 1− ξn, where ξn ≥ 0 ∀n, (3.12)

where the positive slack variable, ξn, is introduced to handle data, where the groups are not completely
separable. Data points assigned to the wrong side of the margin (defined by (3.12)) thereby have a penalty
that increases with the distance to the margin. This is illustrated in Fig. 3.11.

To separate the two classes, the problem of finding the optimal parameters, w and b, can be reduced to
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minimize the performance function [72]:

min
w

(
1

2
‖w‖2 + C

k∑

n=1

ξn

)
subject to yn · (w · xn + b) ≥ 1− ξn, (3.13)

where C is a factor setting the trade-off between the size of the margin and the penalty of the slack vari-
able, ξn [72]. From tests we found that the most optimal value of C for our algorithm was 0.8, which was
used for the results we present. For (3.13) to be minimized, each term should be minimized. Minimizing
the first term means maximizing the margin between the support vectors of the two classes, which corre-
sponds to maximizing the distance between the boundaries of the two classes. The second term, which
encompasses the slack variable, is minimized by keeping the distance from incorrectly classified feature
vectors to the margin as small as possible. When a feature vector is correctly classified ξn is set to 0,
whereby the second term in (3.13) will be 0. For a feature vector correctly classified, but placed on the
wrong side of the margin, ξn is between 0 and 1, whereas it is above 1, if the feature vector is wrongly
classified. This is also illustrated in Fig. 3.11. In the two latter cases the margin is attempted placed as
close to these incorrectly classified feature vectors as possible in order to minimize the second term in
(3.13).

To solve (3.13) Lagrange multipliers are used and the equation is transformed from its primary form to
the dual form, whereby it is possible to identify the parameters for the hyperplane which best separates
the two classes. These steps are all performed in MATLAB by the SVMlight package specified in [39]. The
package returns a classification model based on the given training set, which can then be used to classify
a test set.

3.4.7 Test methodology

To evaluate how well the detection algorithms perform, certain measures may be calculated for each
patient/control subject. The test measures used are:

• Sensitivity (SEN) - the fraction of seizures that are correctly classified.

• Latency (LAT) - the time from seizure start (clinical onset) to the detection time.

• False Detection Rate (FDR) - the number of falsely detected simulated seizure onsets per hour.

When the content of a window is classified as a simulated seizure an alarm will be generated. The la-
tency is measured as the delay from simulated seizure start till the alarm is generated (first window with
a positive outcast). Since this is sought to be implemented as an on-line algorithm, it means that the
shortest possible latency will correspond to the length of the window (0.75 s and 1 s, respectively). Only
the first window, in a row of successive detections, will generate an alarm. This means that when suc-
cessive other activity windows are detected as a seizure/simulated seizure only the first one will generate
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Figure 3.12: The results from the DWT feature extraction method. C means control.

a false alarm, and thereby it will only count for one false positive (FP). When evaluating the results of
detecting seizures/simulated seizures on a large database, the FDR is a more ideal measure than the often
used specificity, since it gives a better impression of the results. To obtain valuable results for FDR the
measurements should contain several hours for testing. For practical reasons we only measured for 1.5–3
hours for the control subjects, which may influence our results.

3.5 Results

The results on the control subjects vary depending on the feature extraction method. The results for the
DWT method are shown in Fig. 3.12, whereas the results for the WPT method are shown in Fig. 3.13. To
compare the results of the different combinations of modalities, the median and 95% confidence level of
all results are given in Table 3.2, for both methods.
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Figure 3.13: The results from the WPT feature extraction method. C means control.

3.5.1 DWT method

The DWT method (Fig. 3.12) shows an almost perfect result (SEN = 100%, FDR = 0, LAT = 0.75 s),
when combining all modalities, while the detection is less accurate when only one modality is used. For
the first control subject (C) the worst performance is seen when only the ACM data is included, whereas
the worst performance for control subject 2, 4, 5, 6, 9 and 10 are seen when only the ANG data is used.
For the last three control subjects (3, 7 and 8) the worst performance is achieved when only the sEMG
data is used. The latencies are short for all tests; the longest latency is seen for control subject 9, where
only the ANG data is used. The FDR shows that for several tests the number of false detections per hour
is remarkably high. For 7 of the 10 control subjects the highest FDR is observed when only the ANG data
is used for the remaining three it is when only sEMG or ACM is used. When all modalities are used, the
FDR is equal to 0 for 8 of the 10 control subjects, the last two (C1 and C8) have an FDR of 0.67 and 1.7,
respectively. The results in Table 3.2 shows that the ANG modality alone has the worst performance and
that clearly a combination of all modalities achieves the best performance.
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Table 3.2: Median values (and in parentheses the 2.5% and 97.5% percentiles). 1: ACM, 2: ANG, 3:
sEMG.

Discrete wavelet transform Wavelet packet transform

SEN [%] FDR [/h] LAT [s] SEN [%] FDR [/h] LAT [s]

1 100 (52-100) 0.5 (0-70) 0.75 (0.75-1.6) 100 (52-100) 0 (0-5.8) 1 (1-1.4)

2 71 (60-100) 49 (4.3-77) 0.75 (0.75-3.5) 29 (0-86) 0 (0-19) 19 (1-28)

3 93 (49-100) 13 (1.1-50) 0.75 (0.75-1.1) 71 (39-97) 11 (2.9-33) 1 (1-1.9)

1,2 100 (82-100) 0 (0-38) 0.75 (0.75-0.75) 100 (77-100) 0 (0-19) 1 (1-1)

1,3 100 (89-100) 0 (0-13) 0.75 (0.75-1.0) 100 (81-100) 0 (0-3.5) 1 (1-1)

2,3 100 (86-100) 4.5 (0.2-27) 0.75 (0.75-0.75) 71 (52-97) 4.5 (2.7-19) 1 (1-1.4)

All 100 (100-100) 0 (0-1.7) 0.75 (0.75-0.75) 100 (100-100) 0 (0-18) 1 (1-1)

3.5.2 WPT method

For all control subjects except for control subject 6, the accuracy is the lowest when only the ANG data
is used, and for some the sensitivity is as low as 0%. For control subject 6 the performances are the
worst when the ANG data is combined with the sEMG data. For all control subjects the best results are
obtained, when all modalities are combined. The latency is seen to be short for all tests except for control
subject 2, 3, 7, 8, 9 and 10, when only the ANG data is used. The FDR is as low as 0 for about half of
the tests, for a few it is as high as 30, and for the rest the FDR is around 10. When all modalities are
used for eight of the 10 control subjects it succeeded in keeping an FDR of 0, but for the remaining two
(C1 and C8) the FDR is 11 and 18, respectively. Looking into Table 3.2 it is seen that the ANG modality
alone performs the worst with a sensitivity that is too low and a median latency that is much too high. A
combination of all modalities is shown to provide the best results.

3.5.3 Comparison of DWT and WPT

The results for the control subjects on multi-modal data (sEMG, ACM and ANG) show that the algorithm
performs better when all three modalities are used (see Table 3.2). This is independent on whether the
DWT or the WPT feature extraction method is applied. From Table 3.2 it is clearly seen that, when all
modalities are used the two methods provide similar results, with the only exceptions being the latency,
where the lower bound is depending on the window length, and the FDR which has a higher 97.5%
percentile for the WPT method. This difference is caused by two controls (C1 and C8) who are seen to
have much larger FDR in Fig. 3.13, than in Fig. 3.12, when all modalities are used. Besides from using
all modalities it is difficult to say which method provides the best result. It depends on the individual
control subject and whether the sensitivity or the FDR is considered the most important. The DWT gives
the highest sensitivity for all, whereas the WPT provides a lower FDR.
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Figure 3.14: The sensitivity, specificity, latency and FDR are showed for the results on the EMG data
from the five patients. The sensitivity, specificity and the FDR are shown as bars for each patient. For
the latency the median is shown by the bars and the largest latency is indicated by the black line.

3.5.4 Results for epileptic patients

For the patients where only the sEMG data are provided, the results are shown in Fig. 3.14. In this case
only the DWT method is tested. This shows that the algorithm detects only half of the seizures for patient
1. The reason is that the other half is myoclonus, which is very short lasting (< 0.5 seconds) and only
happening in one muscle. This means that the muscles included in these seizures might not be the ones,
which we have measured. It should be noticed that the seizures are detected at onset. Further it can be
seen that there are only very few false positives (0.08/h). For patient 2 all seizures are detected, but most
of them with a delay. There are very few false positives (0.07/h), which is important for an alarm system.
For the third patient the algorithm is only able to detect one seizure, but at the same time it does not
capture any false positives. It should be noticed that 50% of the seizures in the test data are spasms which
the algorithm is not directly intended for. For the fourth patient all the seizures are detected at onset, but
it has too many false alarms, the FDR, however, might be high due to the fact that we have less than an
hour of data to test the algorithm on. For the last patient the algorithm is not able to detect all seizures, but
those detected are detected at onset. No post-processing has yet been applied, which might have lowered
the FDR for some patients. A change in the window size might be able to increase the sensitivity for
patients with very short lasting seizures.
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3.6 Discussion

The best results for the control subjects, for distinguishing between simulated seizures and other activities
based on the two wavelet methods, are obtained when all three modalities are included. However, if the
number of modalities or sensors/electrodes could be reduced, without worsening the results too much, it
would be preferable considering the usability and comfort for the patients. The ANG modality alone is
not useful, but the best results are obtained when it is combined with the ACM and the sEMG modalities.
For both methods it would be the ANG modality that would be eliminated, if one wanted to base a system
on only two modalities, since the combination of ACM and sEMG, show the next best performance for
both methods. Based on the results it seems evident to combine all three modalities, but it does not allow
us to determine which wavelet method is the best in this case.

3.6.1 Frequency bands

It should also be noted that DWT and WPT are based on different frequencies, so this might as well
influence the results. During our briefly examination of which frequency bands provided the largest
differences between simulated seizures and normal activities, it resulted in different frequency bands for
the two methods. We could have used the exact same frequencies for the WPT as we used for the DWT,
but our examination showed us to do otherwise. This has improved the results on some levels (overall
lower FDR), while lowering it on other (lower overall sensitivity). This examination was made on a
limited amount of data, and of course it would have been best if the examination had been expanded to
include all data, and go through all possible combinations of the frequency bands. The results point to
the fact, that the differences between seizure and other activity data are visible in more frequency bands
and it seems evident that the result is improved by including more modalities independent of the chosen
feature.

3.6.2 Epileptic seizures

Comparing the control subjects and the patients show equally well results using the algorithm based on
the sEMG modality alone (SEN: C: 93%, Pt: 73%, FDR: C: 49/h, Pt: 0.08/h, LAT: C: 0.75 s, Pt: 0.75).
The better results on the control subjects using more than one modality imply that better results might
be achieved on patients when more modalities are applied. The movements simulated by the control
subjects closely resembled those occurring during the seizures, therefore it is reasonable to assume that
the signals recorded by the movement sensors are similar to what we would have recorded from patients
with epilepsy. However the muscle signals depend on the recruitment of the motor nerve cells. In the case
of control subjects the motor cells are physiologically activated, while in the case of ”real” seizures the
recruitment is pathological. Thus we cannot exclude that the sEMG signal recorded during the simulated
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seizures have different characteristics than the epileptic ones.

3.6.3 Moven system issues

The prime limitation in getting the adequate patient data was the way the Moven sensors were attached to
the patient. They were placed in pockets of a specially designed suit. Wearing this suit did not constitute a
problem for the well functioning patients. However, these patients rarely have GTC seizures. The patients
who frequently have this seizure type are typically mentally retarded, and they could not tolerate the suit.
Thus for future studies fewer sensors should be used, and they should be applied without the dependence
of a suit. Due to this lack of data from patients with the right type of seizures, it was not an option to
find the optimal positioning of the different sensors, with respect to a seizure detection algorithm. It did
reveal the advantage of using more modalities to obtain a more robust algorithm, based on data from the
control subjects, and due to the similarities with the patient data it is assumed that it can be expected on
real patients as well.

3.7 Conclusion

The first aim of this study was to record multi-modal data from a full body approach. We succeeded in
this, but had to acknowledge that the suit used was not appropriate for the type of patients, which we were
interested in.

The second aim of our study was to determine the outcome with a seizure detection algorithm when using
one or more modalities and furthermore which combination of the modalities that would perform best.
As our results on control subjects who could tolerate the suit are encouraging for using a combination
of all three modalities, it is worthwhile to focus on further development of a sensor setup, which could
be tolerated by the patients. Fewer and smaller sEMG electrodes and/or motion sensors attached to the
patient, with wireless communication could solve this problem. To make such a change it would be
helpful to investigate which places on the body that are more suited to wear these sensors and what
number of sensors and/or electrodes is necessary to achieve an acceptable result.

The third aim was to develop an algorithm capable of discriminating seizures from all other activities
based on uni- or multi-modal data. As mentioned earlier, we chose to look at the classification problem
as binary, but when real seizures are collected it might improve the results if the seizures are split up in
different groups, depending on the type. The results from the patient data, implied that it might be hard
to make one detection algorithm which focuses on all seizure types with motor manifestations, due to the
large inter-seizure differences.

From these observations, we changed our focus to only include two seizure types, which we were able
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to detect with the presented algorithm; tonic and GTC seizures. Furthermore we looked more into a
uni-modal approach, due to our trouble with collection of multi-modal data from patients.
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CHAPTER

FOUR

INVESTIGATION OF GENERALIZED TONIC
AND TONIC-CLONIC SEIZURES

Objective Tonic muscle contraction constitutes the characteristic semiologic feature of several

epileptic seizures. Tonic seizures are defined as sustained increase in muscle contraction lasting from

seconds to minutes [31], whereas GTC seizures are defined as a sequence consisting of a tonic followed

by a clonic phase [62]. Is a tonic seizure a fragment of a GTC seizure or fundamentally different? It is

still unclear whether these seizure types share a final common pathway of MU activation, and it has not

been elucidated whether the tonic muscle activation during the seizures is different from the physiologic

one. If we can find differences between the physiologic and the pathologic tonic activation, this may

provide features which can be used in a detection algorithm. This is the subject matter of Paper IV, which

this chapter is composed upon.

4.1 Background

Visual inspection of sEMG signals from polygraphic recordings has previously contributed to the identi-
fication of the pathomechanisms of several seizure-types: myoclonic, atonic, myoclonic-atonic, epileptic
spasms, and startle-induced reflex seizures [56]. Recording sEMG signals during seizures proved to pro-
vide valuable diagnostic information in the clinical practice. Tassinari et al. [82] encouraged the use of
off-line analysis of digital polygraphic recordings of epileptic seizures. Digital recording systems allow
measuring precisely the time between the EEG and EMG signals, as well as the precise duration of the
muscle activity [69, 83]. Although quantitative analysis of EMG signals was investigated extensively in
several types of movement disorders [34], to the best of our knowledge myoclonus is the only seizure
type in which this feature has been addressed [35, 65, 73].

Muscles are involved in the tonic and GTC seizures, at the end of the common final neural pathway, and
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sEMG signals provide valuable information at a high temporal resolution.

The properties of the sEMG signals can be described by characteristics in the time domain and in the
frequency domain. In the time domain, the amplitude characteristics of the signal are represented by
the RMS. The frequency domain characteristics can be visualized using spectrograms and expressed by
the median frequency (MF) and the relative power of the signal in the different frequency bands. The
correlation between the muscle activation on the two sides can be reflected by the EMG-EMG coherence.

4.1.1 Research hypotheses

Epileptic seizures occur due to abnormal excessive or synchronous neuronal activity in the brain. We
hypothesized that this will be reflected in the pathomechanism of the epileptic tonic muscle activation by
a shift toward higher frequency domains, increase in coherence, and/or increase in the RMS feature. We
hypothesized that some of the sEMG features would be promising for a seizure detection algorithm.

Our hypotheses are:

• to find differences between the pathologic and physiologic activation of the muscles during tonic
activation.

• to find answers for how alike the two types of tonic activation (tonic seizure and tonic phase of
GTC seizure) truly are.

• that some of our findings may be promising features in a seizure detection system.

4.2 Methods

The methodology of this research area both include information on the subjects, the recording and the
seizures before it presents the different approaches used to outline the characteristics of the sEMG data
during epileptic and simulated seizures.

4.2.1 Subjects

All patients included were admitted to the EMU at the Danish Epilepsy Center in Dianalund, Denmark,
for diagnostic reasons. They all had a history of tonic or GTC seizures in the referral. In addition, we
also included control subjects who simulated epileptic seizures.

Fifty-seven consecutive patients were included. Twenty-three patients did not have seizures during the
monitoring, 20 patients had seizures with tonic muscle activation (10 patients had tonic (shown in Table
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C.2 in appendix C), 10 patients had GTC seizures (see Table C.1 (TC1-TC10) in appendix C)), and 14
patients had epileptic seizures other than tonic and GTC. Twenty control subjects was recruited in total.
In the group of the patients with epilepsy (seven females, 13 males) the average age was 24.8 years (range
6-58). The group of control subjects was age and gender matched: average age 25.4 years (range 6-54),
eight were female and 12 were male (for the age: p>0.6; for the gender: p = 1). The subgroup of patients
with tonic seizures (four females, six males) had an average age of 20.4 years (range 6-58), whereas in the
subgroup with GTC seizures (three females, seven males) the average age was 29.2 years (range 11-55).
There was no significant difference among the two patient subgroups and the group of control subject
concerning the age (p > 0.1) or concerning the gender (p > 0.7).

4.2.2 Recordings

In addition to the standard EEG electrodes, sEMG electrodes were placed on the deltoid muscles (place-
ment 2 in Fig. 2.4) as described in section 2.2.1.

The sEMG signals were sampled with a frequency of 1024 Hz, and an anti-aliasing filter of 512 Hz.

All sEMG signals were notch filtered (49-51 Hz) with a Butterworth infinite impulse response filter to
remove noise from the power line and furthermore high-pass filtered (10 Hz) with an equiripple finite
impulse response (FIR) filter, as the signal beneath 10 Hz may be obscured because of the movements
of the electrodes against the skin [53]. For both filters, the group delay was assessed and found not to
interfere with the investigated frequencies. Information on the filter is given in tables in appendix D.

4.2.3 Seizures

The long-term video-EEG recordings were reviewed by a clinical neurophysiologist and an epileptologist,
who marked time epochs containing a tonic seizure or the tonic component of a GTC seizure, based on
visual analysis. These epochs were marked only if they unequivocally corresponded to a seizure period.

In case of the secondarily generalized seizures the start of the bilateral symmetric tonic muscle contraction
was marked as the onset.

We recorded 63 epileptic seizures with tonic muscle activation from the 20 patients, the number of
seizures was in the range of one to ten (average 3.2 seizures/patient) during the recordings. The pa-
tients with tonic seizures had more seizures (average 4.5 seizures/patient; range 1-10) than the patients
with GTC seizures (average 1.8 seizures/patient; range 1-4) (p < 0.03).

The control subjects were trained to perform the sustained, maximal muscle contraction in all limb mus-
cles lying in a bed. The movements were described based on the detailed description by Gastaut [30] and
the description in the definition of the GTC seizures by the international league against epilepsy (ILAE)
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[62]. The control subjects watched video recordings with GTC seizures. The simulated seizures were
recorded in the presence of the PhD student and a physician with experience in evaluating long-term
video-EEG recordings. If necessary, the control subjects were asked to correct the way they activated the
muscles. Each control subject simulated 5 GTC seizures, providing a total of 100 simulated seizures.

4.2.4 Data analysis

To characterize the sEMG signals during the epileptic and the simulated seizures, several quantitative
parameters were calculated.

Time domain

The amplitude is fluctuating within broad ranges, and outliers have huge influence. To avoid this, instead
of the raw amplitude, the classical RMS is used to characterize the amplitude:

RMS(u) =

√√√√ 1

L− 1

L∑

l=0

u(l)2, (4.1)

where u(l) is the sEMG signal and L is the window length. The RMS value was calculated in a 3 s long
window and each window overlapped the preceding and following window with 2 s. As there seems
to exist no established definition for the minimum duration of a tonic contraction to qualify as a tonic
seizure, we used 3 s long successive time windows as proposed by Lüders et al. [48].

Frequency domain

The frequency features were visualized using plots of the magnitude of the fast Fourier transform (FFT)
and spectrograms, and they were quantified by the MF and the relative power (100-500 Hz). fMF is
defined as the frequency that divides the magnitude spectrum in two parts of equal sizes (the area under
the curve for the frequencies lower than fMF equals the area under the curve for the frequencies higher
than fMF) [32, 88], and it is expressed as,

fMF∑

f=0

|Um(f)| = 1

2

fs/2∑

f=0

|Um(f)| , m = 1, 2, 3..., (4.2)

where m is the window number, fs is the sampling frequency, fMF is the median frequency, and the Um

is the discrete frequency spectrum of the window m. | • | computes the absolute values of the discrete
frequency spectrum. The MF values were calculated from time windows of 3 s duration, overlapping by
2 s. Spectrograms were calculated for each seizure. The power was calculated for a small window of
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125 samples, and each window has 50% overlap to its neighboring windows. This offered a frequency
and time resolution of 7.5 Hz and 0.125 s, respectively. In addition, we determined the relative power
(RP) in the higher frequency domain. The band was chosen from a visual inspection of the spectrograms.
In the frequency range 100-500 Hz the power was seen to be higher for the epileptic seizures compared
to the simulated seizures (Fig. 4.3). The RP was calculated by dividing the power in the 100-500 Hz
frequency range by the total power of the signal in the whole frequency domain, in each time-window of
3 s overlapping by 2 s:

RP(m) =

∑500
f=100 |Um(f)|2
∑fs/2

f=0 |Um(f)|2
, m = 1, 2, 3..., (4.3)

where Um(f) represents the N-point discrete frequency spectrum (N = 4096) of the m’th window.

Coherence

Coherence is the correlation in the frequency domain between two oscillatory activities in spatially dis-
tinct systems [54]. This normalized measure of correlation has values between 0 and 1. A coherence
value of 1 indicates a perfectly linear relationship, whereas 0 is when the two signals are completely
independent. We calculated EMG-EMG coherence between the right and left sides, using the standard
methods in this field [10, 26, 36, 41]. We opted for including the results from the analysis of the unrecti-
fied EMG signals because previous studies have suggested that rectification might impair the oscillatory
input between two sEMG signals [57]. Furthermore, one of the previous studies showed that this analysis
method is reliable also for unrectified data [10]. However, we also analyzed the rectified data, and the
results were similar (see Table C.3 and C.4 in appendix C). Briefly, we used the following equation:

|Srl(f)|2 =
|Grl(f)|2

Grr(f)Gll(f)
, (4.4)

where |Srl(f)|2 is the coherence between the signals, r (right) and l (left). The numerator features the
cross-spectrum of the two signals, whereas the denominator is a product of the auto-spectra of the two
signals. These are as given by Halliday et al. [36]. We added the approach used by Grosse et al. by
including both the Fisher’s transform and a 3-point moving average filter [35].

Fisher’s transform is described by [27]:

z(f) =
1

2
· ln1 + |Srl(f)|2

1− |Srl(f)|2
, (4.5)

and the moving average (MA) filter by [67]:

zMA(f) =

∑
z(f − 1 : f + 1)

3
, (4.6)
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where zMA is the final coherence spectra for a seizure. We plotted the coherence spectra for each seizure
and furthermore calculated the coherence in the whole frequency band (10-512 Hz) as the mean of the
coherence values in this domain.

For each subject we calculated the mean of the RMS, MF, RP, and coherence values of all time windows,
during all seizures, and the mean of the values from the left and right deltoid muscles were used in the
statistical analysis. Therefore, for each patient only one (mean) value was used in the statistical analysis,
regardless of the number of seizures the patient had. This was done to avoid the bias toward the data
from patients with more seizures. Because the sEMG parameters (calculated from the time windows
of 3 s) were not constant within the seizures, we also calculated the 95th percentile (peak) values, for
each patient for each quantitative sEMG parameter, besides determining the mean value of the different
parameters for the whole seizure period (as described above). This make it possible to express the highest
level of activation for a certain parameter, for each patient, without being biased by the outlier values, i.e.
the upper 5th percentile.

Statistics

The normality of the data distribution was assessed using Kolmogorov-Smirnoff test. Depending on
this we used either the Mann-Whitney test or t-test for the comparisons. To compare gender and the
occurrence of the observed sEMG features between the two groups, Fisher’s exact test was used.

4.3 Results

Examples of the sEMG signals from the different groups are shown in Fig. 4.1. The quantitative sEMG
parameters are presented in Table 4.1 (whole seizure period).

Table 4.1: Median values of the whole seizure period for all patients (and in parentheses the 2.5% and
97.5% percentiles) for the different surface EMG parameters.

Epileptic Tonic GTC Simulated

RMS [mV] 0.636 (0.055-2.20) 0.251 (0.053-0.784) 1.16 (0.356-2.46) 0.440 (0.170-1.10)

MF [Hz] 76.8 (59.0-112) 86.2 (63.3-113) 73.6 (59.0-80.8) 63.9 (56.9-83.9)

RP (100-500 Hz) [Hz] 0.151 (0.047-0.395) 0.217 (0.114-0.401) 0.110 (0.041-0.176) 0.079 (0.039-0.207)

Coherence 0.120 (0.050-0.255) 0.117 (0.048-0.178) 0.120 (0.063-0.289) 0.071 (0.046-0.109)
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Figure 4.1: sEMG signals of representative seizures: (A) the tonic phase of a GTC seizure; (B)
tonic seizure; (C) simulated seizure. The vertical, dotted line in figure A marks the end of the tonic
phase/beginning of the clonic phase, as seen on the video-EEG recordings. The tonic phase starts at
time = 0 s, and in figure B and C it ends at time = 20 s. The scale of the y-axis is different for subfigure
B.

4.3.1 Amplitude characteristics

The visual inspection of the sEMG signals suggested that amplitudes were higher during the tonic phase
of the GTC seizures as compared to the seizures from the other subjects (Fig. 4.1). The RMS (Table 4.1)
for the group of epileptic seizures was not significantly different from that of the simulated seizures (p >
0.4). However, the subgroup analysis showed that the RMS during the tonic phase of the GTC seizures
was significantly higher compared to the RMS of the simulated seizures (p < 0.001), and furthermore
significantly higher than that of the tonic seizures (p < 0.001). The RMS during the tonic seizures were
significantly lower than during the simulated seizures (p < 0.05).

4.3.2 Median frequency

The magnitude spectrum visualizes the distribution of the signal at the different frequency components
(Fig. 4.2). During the epileptic seizures (especially the tonic ones) we observed a shift of the energy
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Figure 4.2: Power spectrums of representative seizures: (A) the tonic phase of a GTC seizure; (B)
tonic seizure; (C) simulated seizure. The scale of the y-axis is different for the three seizures. For the
simulated seizures most of the power is in the frequency band <100 Hz. During the epileptic seizures
(especially the tonic seizure) one can observe a shift toward the higher frequencies.

toward higher frequencies. The power of the simulated seizures in the magnitude spectrum (Fig. 4.2C) are
mostly below 100 Hz. The MF (Table 4.1) was significantly higher during the epileptic seizures compared
to the simulated ones (p< 0.005). The subgroup analysis showed that MF was significantly higher during
the tonic seizures than during the simulated seizures (p < 0.001), and furthermore significantly higher
than during the tonic phase of the GTC seizures (p < 0.05). There was no significant difference between
the MF during the tonic phase of the GTC seizures and the simulated ones (p > 0.1).

4.3.3 Relative power

Figure 4.3 shows spectrograms of the RP for the different frequencies. Inspection of the spectrograms
suggested higher power for the frequency domains above 100 Hz during the epileptic seizures as com-
pared to the simulated ones. To express this quantitatively we calculated the RP for the frequency range
of 100-500 Hz. The RP (100-500 Hz) was significantly larger during the epileptic seizures compared to
the simulated seizures (p < 0.01). RP (100-500 Hz) was higher during the tonic seizures than during the
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Figure 4.3: Spectrograms (time-frequency plots) of representative seizures: (A) the tonic phase of a
GTC seizure; (B) tonic seizure; (C) simulated seizure. The vertical, dotted line in figure A marks the
end of the tonic phase/beginning of the clonic phase, as seen on the video-EEG recordings. The color
code represents the size of the logarithm of the relative power.

tonic phase of the GTC seizures (p < 0.01) and higher than during the simulated seizures (p < 0.0005).
There was no significant difference between the RP (100-500 Hz) during the tonic phase of the GTC
seizures and the simulated ones (p > 0.3).

4.3.4 Coherence

The visual inspection of the EMG signals showed bilateral-synchronous, sustained muscle activation
during the analyzed seizure periods in all groups. The coherence spectra demonstrated that there were
several frequencies with significant coherence for each patient (Fig. 4.4), and that these frequencies
varied from subject to subject. In the absence of certain, dominating frequencies for the significant level
of coherence, we opted to calculate the coherence for the whole frequency band and to compare this
among the groups. The coherence was significantly higher during the epileptic seizures than during the
simulated ones (p < 0.0005). There was not any significant difference in coherence between the two
subgroups of epileptic seizures (p > 0.3), but in both epilepsy subgroups the coherence was higher than
in the group with simulated seizures (p < 0.01).
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Figure 4.4: Coherence spectra (blue curve) for: (A) the tonic phase of a GTC seizure; (B) tonic seizure;
(C) simulated tonic seizure. The black dotted line defines the significance level calculated as in the
standard methods [26]. The coherence spectra were smoothed with a moving average filter [35].

4.3.5 Peak values

To reflect the highest level of activation achieved by each patient/control subject, in addition to mean val-
ues for the whole-seizure period (detailed above), we also calculated the 95th percentile of the parameters
(peak values). The shift toward the higher frequencies during the tonic seizures, the increase in the RMS
during the tonic phase of the GTC seizures, and the increase in the coherence in the epileptic seizures
(both types) were even more pronounced when analyzing the peak values (Table 4.2).

Table 4.2: Median values of the peak values for all patients (and in parentheses 2.5% and 97.5% per-
centiles) for the different surface EMG parameters.

Epileptic Tonic GTC Simulated

RMS [mV] 1.09 (0.086-2.57) 0.666 (0.078-1.10) 2.00 (0.672-2.64) 0.665 (0.264-1.43)

MF [Hz] 92.5 (64.4-141) 101 (78.8-142) 87.9 (61.6-96.2) 73.6 (61.0-92.5)

RP (100-500 Hz) [Hz] 0.286 (0.072-0.583) 0.316 (0.265-0.602) 0.234 (0.052-0.297) 0.134 (0.052-0.273)

Coherence 0.135 (0.056-0.361) 0.219 (0.054-0.266) 0.123 (0.074-0.381) 0.081 (0.058-0.142)
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4.3.6 The effect of duration

There was no statistically significant difference between the duration of the tonic seizures and the duration
of the tonic phase of the GTC seizures in our patients (median: 14.66 and 15.95 s, respectively; p >
0.6). There was no significant correlation between the duration and the quantitative sEMG parameters
that distinguished between the two seizure-types: RP (100-500 Hz), MF, RMS (p > 0.12). A multiple
regression analysis for categorical (seizure-type: tonic vs. GTC) and continuous (duration) predictors
showed that it was only the seizure type that predicted these quantitative sEMG parameters.

4.4 Discussion

We found a significant shift toward higher frequencies during tonic seizures. Patients with GTC seizures
had a significantly increased RMS, whereas patients with tonic seizures had significantly lower RMS than
the simulated seizures. The EMG-EMG coherence was significantly higher during the epileptic seizures
in both subgroups.

The mechanism of muscle activation in the control subjects simulating the seizures is obviously a physio-
logic one. Although, based on visual assessment, the posturing and muscle contractions appeared similar
during the simulated and the epileptic seizures, the mechanisms of muscle activation were different.

As the sEMG parameters were not constant within the seizures; in addition to determining the mean value
of the different parameters for the whole seizure period, we also calculated the 95th percentile (peak)
values. Our results were even more pronounced when analyzing the peak values than when analyzing the
mean values of the whole seizure periods.

4.4.1 Tonic activation

Quantitative analysis of the sEMG demonstrated significant differences between the two subgroups of
epileptic seizures in which the qualitative visual assessment showed ”sustained muscle activation”: tonic
seizures are produced by a significant shift toward the higher frequency bands, whereas the tonic phase of
the GTC seizures is produced by an increase in the amplitude characteristic. These differences between
the tonic seizures and tonic phase of the GTC seizures are not merely a function of time, as there was no
significant difference in duration between the two seizure types, and the quantitative EMG parameters that
differentiated between them did not show a correlation with the duration of the tonic muscle activation.

As early as 1963, Gastaut, described that the tonic phase of the GTC seizures was ”more intense” than
the contraction of tonic seizures based on visual analysis of the sEMG in polygraphic recordings [31].
Our quantitative analysis demonstrating higher amplitude characteristic of the tonic phase of the GTC
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seizures are consistent with these early observations. Our findings furthermore support that tonic seizures
are not merely truncated manifestations or fragments of GTC seizures (i.e., minus the clonic phase), not
even at the level of the final pathway (the MUs). We suggest that the ”sustained tonic contraction” has to
be defined differently for tonic and GTC seizures, emphasizing the increase in frequency in the case of
the tonic seizures and the increase in amplitude for the GTC seizures.

4.4.2 Pathophysiological explanation

Although various quantitative sEMG parameters have been used to infer details about the CNS con-
trol mechanism of muscle activity, the technical limitations of the method should be emphasized, as the
sEMG reflects both peripheral and central properties of the neuromuscular system [25]. However, the
shift toward higher frequency domains during the muscle activation has been attributed to the recruitment
of more motor neurons, including the ones with higher threshold [68, 88]. The shift toward higher fre-
quencies during the tonic seizures can thus be explained by an increase in the recruitment of more, high
threshold motor neurons. The increase in the RMS of the sEMG signal can be caused by synchronization
of the MU activity or by lengthening of the muscular action potential [3]. This means that the two types
of tonic seizures have different kinds of activation of the MUs, thus the signals from the CNS must be of
different origin as well.

4.4.3 Control subjects

The control subjects were trained to activate the muscles on the two sides simultaneously and in syn-
chronization. The visual analysis of the recordings showed that the ”sustained” muscle activation during
all analyzed seizures in all patients and control subjects were bilateral, symmetrical, and synchronous.
However, the coherence was significantly higher during the epileptic seizures in both subgroups for the
whole seizure period as compared with the simulated ones. This suggests that the neural networks on
both sides are synchronously activated also in the efferent pathways. Grosse et al. [35] found markedly
increased EMG-EMG mean coherence between the muscle pairs on the two sides in nine patients with
high frequency rhythmic myoclonus. Our findings in patients with generalized tonic and GTC seizures
are consistent with this.

4.5 Conclusion

The first aim of our study was to explore if there are any differences between the pathologic and phys-
iologic activation of the muscles during tonic activation. We compared several quantitative sEMG pa-
rameters (median and ”peak”) for the entire seizure epoch and found that these can distinguish between
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epileptic and non-epileptic muscle activation.

The second aim was to explore if the two types of tonic activation (tonic seizure and tonic phase of GTC
seizure) are truly alike. Our results provide insight into the pathomechanism of the muscle activation
during epileptic seizures, and we found significant differences between the 2 types of epileptic seizures:
tonic and tonic phase of GTC. This advocates for a change in the corresponding ILAE definition.

The third aim was to validate if some of the parameters would be valuable as a feature for a seizure de-
tection algorithm. Our results showed potentially diagnostic significance and the fact that several of the
sEMG parameters are specific for epileptic muscle activation suggest that they potentially can constitute
the substrate for automatic seizure detection algorithms. One specific sEMG feature that showed a sig-
nificant difference between the epileptic and simulated seizures was the increase in frequency reflected
by the MF and the RP.

Based on these observations, and our conclusions from the previous chapter we continuously focus on
developing a detection algorithm based on sEMG alone, limiting it to investigate the higher frequencies.
Thus, it will be possible to increase the number of modalities later if it is found to be necessary.
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CHAPTER

FIVE

DETECTION OF GENERALIZED
TONIC-CLONIC EPILEPTIC SEIZURES

Objective Concerning seizure detection, the highest potential clinical relevance is for the GTC

seizures, as these are associated with an increased risk of sudden unexpected death in epilepsy (SUDEP)

in unsupervised patients. The advantage of an sEMG based seizure detection system is its feasibility as

it only implies application of a small, portable device. To our knowledge, no other group have prior suc-

ceeded in designing an algorithm for seizure detection based on sEMG signals alone. This chapter serves

to show the possibilities for a seizure detection algorithm based solely on sEMG data and, furthermore,

to test it in a small wireless sEMG device. This is also presented in Paper V-VII, which this chapter is

composed upon.

5.1 Background

In chapter 3 we focused on using multi-modal data, including sEMG, accelerometers and gyroscopes for
detection of epileptic seizures with motor manifestations. One other group has also tried to detect seizures
based on a combination of accelerometers and sEMG [66]. Other authors have used EEG [2, 13, 77],
video [23], ECG [38], EEG/ECG [84] or accelerometers [7, 22, 37, 43, 45, 58, 59] to develop seizure
detection systems for GTC seizures. One group have even tried to discriminate GTC seizures from other
seizures based on accelerometers [6, 7]. Both Kramer et al. and Lockman et al. achieved promising
results on detecting GTC seizures based on accelerometer data. However, the seizures were detected
rather late since the accelerometers were best at detecting the clonic phase of the seizures. Based on this
and the promising results we obtained in the study described in Chapter 4 [20], we decided to focus on
one modality, the sEMG.

A couple of the mentioned studies [43, 45] have their algorithm implemented and tested in small devices
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based on accelerometers. Thus we will focus the design of an algorithm toward an implementation in a
small sEMG device.

We suggest that better results will be obtained by designing a sensitive and specific algorithm that detects
the seizures already in the tonic-phase, which precedes the clonic one. We chose sEMG as our modality,
because there is an intensive activation of the muscles during the tonic phase. To make the system
feasible (easy to wear by the patients) we aimed at using as few sensors as possible, i.e. only one or
two channels [15, 16]. Furthermore, we focused on designing a simple detection algorithm in order to
keep the algorithm computationally efficient and make an implementation of the algorithm in a portable
device possible.

5.1.1 Research hypotheses

The main aim of the study is to propose the first algorithm based on only sEMG signals for detecting
epileptic GTC seizures. Our hypothesis is that the information content of the sEMG is sufficient for early
detection of GTC seizures.

Our hypotheses are:

• to develop a GTC seizure detection algorithm based on sEMG data (off-line study).

• to make it possible to implement the algorithm into a small wireless sEMG device (on-line study).

5.2 Recordings

This chapter consist of an off-line and an on-line implementation of the same algorithm. Thus, this
section is divided into the off-line and the on-line study. The off-line study is performed based on normal
sEMG data, used to design a GTC seizure detection algorithm. The on-line study is an evaluation of the
algorithm implemented in a small wireless sEMG device.

5.2.1 Off-line study

This study was based on sixty consecutive patients admitted to the EMU at the Danish Epilepsy Center
in Dianalund, Denmark for diagnostic reasons, with a history of GTC seizures in the referral. Eleven
patients had GTC seizures. The rest of the patients had seizures other than GTC or did not have epileptic
seizures at all during the monitoring period. The recordings included EEG, video, ECG and sEMG
electrodes. The sEMG electrodes were mounted as described in section 2.2.1. For this study we have
only analyzed the signals from the left deltoid and anterior tibial muscles. The admission lasted 1-4 days
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depending on the patient. The sEMG was sampled with a frequency of 1024 Hz. The long-term video-
EEG recordings were reviewed by a clinical neurophysiologist and an epileptologist, who marked the
time-epochs containing a GTC seizure, based on visual analysis. The physician marked the start of the
tonic phase, when this was unequivocal. In total we recorded 22 GTC seizures in 776 hours. The number
of seizures and the demographic data are listed in Table C.1. The recording time for each patient is listed
in Table 5.1.

Table 5.1: The length of the analyzed files.

Patient File length [h]

TC1 15.9-25.3

TC2 92.5-95.2

TC3 89.4-93.4

TC4 46.6

TC5 89.9-95.5

TC6 90.9-95.2

TC7 91.5-94.3

TC8 12.4-16.2

TC9 37.2

TC10 89.0

TC11 88.1

During the long term monitoring, trained neurophysiology technicians monitored the recordings to make
sure that data showed sEMG activity and not noise, which would imply a loose connection (high
impedance). It happened that the sEMG electrodes were accidentally detached for some patients dur-
ing the recordings. In these cases the technicians corrected this as soon as possible. The epochs with
detached/loose electrodes were excluded from the analysis, but in total more than 96% of the data was
used, making it reasonable to look at the algorithm working both at night and during the day. Since some
periods were excluded, the time lengths were not exactly the same for the two muscles and thereby neither
for the combination of them. Therefore different time lengths are provided for some patients in Table 5.1.

5.2.2 On-line study

Five consecutive patients were included from the Danish Epilepsy Center in Dianalund, Denmark, for
diagnostic reasons. All included patients have a history of GTC seizures. The demographic data, the
amount of GTC seizures during the recording, duration of the seizures and the recordings are all listed in
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Table 5.2.

Table 5.2: The patients’s gender, age, the amount of seizures, the length of the admission and the length
of the GTC seizures.

Patient Gender Age # GTC
Seizure File

duration [s] length [h]

D207 F 15 0 -

D208 M 34 3 88, 77, 52 68.4

D209 M 48 0 50.1

D210 M 38 0 53.3

D211 M 44 4 100, 105, 98, 102 126

The normal admission recordings included EEG, video, ECG and sEMG electrodes placed on several,
clinically relevant muscles. Along with this a wireless sEMG device from the Danish company IctalCare
A/S [5], with an implementation of our algorithm, was placed on a tibial muscle (left/right) as shown in
Fig. 5.1. The choice of side for the placement of the device (left/right) was decided by the physician
based on records on where each patient normally have their seizures expressed the most. The device
only provides hidden alarms, which means that the staff at the hospital are unaware of the times of the
alarms. The admission lasted 2-5 days depending on the patient, thus providing us with a huge amount
of data for each patient. The sEMG was sampled with a frequency of 1024 Hz. Two of the patients had
GTC seizures, while the others had other kinds of seizures or none at all. The times for the beginning
and ending of the seizures were annotated by a physician based on the gold standard (video and EEG
signals). For the first patient we had some recording problems, which meant that unfortunately no data
was recorded from the wireless sEMG device placed on the tibial muscle, see table 5.2.

5.3 Methods

The methods section is divided into three sections; the feature extraction, the detection approach and the
changes for the on-line implementation of the algorithm.

5.3.1 Feature extraction

In Chapter 4 we analyzed the similarities and differences between sEMG signals from real epileptic
seizures and sEMG signals from simulated seizures. We showed that real seizures in contrast to normal
activity had a large proportion of data in the frequency band above 100 Hz. In this study, a visual
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Figure 5.1: The wireless sEMG device placed on the tibial muscle.
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Figure 5.2: Figure ’A’ shows the seizure (with surrounding activity) before filtering and figure ’B’ the
signal after filtering. The right and left black vertical lines denote the beginning and end of the GTC
seizure, whereas the middle black vertical line denotes the start of the clonic phase, marked by the
physician. The data is from the left deltoid.

evaluation of all seizures from the 11 off-line patients revealed that the differences between seizures
and normal activities were even more pronounced when processed with a high-pass filter with a cut-off
frequency of 150 Hz. The high-pass filtering ensures, that a larger amount of the artifacts will be removed.
We have used a FIR hamming window filter, where the group delay is ensured to be linear in the frequency
band of interest. A seizure from a representative patient is shown in Fig. 5.2 before and after filtering.
The filter coefficients are given in Table D.3 in Appendix D.

5.3. Methods 57



Our results in Chapter 4 on the sEMG signals during real and simulated seizures showed that simple
features are able to distinguish between the two groups. We therefore chose to focus this study on finding
a simple and computationally efficient feature, that would be able to discriminate GTC seizures from
normal activity. The final method is meant to be used in a seizure detection system and it is therefore
important to capture the seizures soon after the onset. Since the seizures are started by a tonic phase, we
searched for a feature to discriminate this part of the seizure from normal activities.

In Chapter 4 we found that the epileptic tonic activity contained a larger proportion of higher frequencies
than the physiologic activities. We have therefore chosen to focus our feature choice on the frequency
domain, since this might distinguish both types of seizures (tonic and GTC) from normal activities though
we only focus on one type in this study. We chose a simple measure for the instantaneous frequency
through the zero-crossing compared to the power spectrum (used in [20]), since it is more convenient for
implementation in a portable detection device. Previously, other groups [86, 91] have used zero-crossing
for prediction of epileptic seizures based on EEG. Since we wanted our algorithm to focus only on actual
sEMG data, we decided to count only those zero-crossings, which extended above and below a hysteresis.
This ensured that the actual zero-crossing count would not be affected by noise. We do not claim that
this method will eliminate all noise and artifacts in a large scale trial of the detection system, and further
noise and artifact reduction will probably be needed. From a quantitative inspection of data, we found
background noise with a standard deviation (SD) as high as 15µV, so to ensure that the zero-crossing
only operates outside the noise region, we chose to include a hysteresis of±50µV, corresponding to 3·SD
≈ 50µV. A zero-crossing is then only registered when the signal peaks preceding and following it exceeds
50µV and −50µV, respectively. So, if the signal starts by rising above 50µV one count is set when the
signal goes below −50µV and another count is set, when the signal again is above 50µV and so on. We
found that when applying the zero-crossing method with a hysteresis of ±50µV on the filtered data, the
number of crossings was high throughout the entire tonic phase, see Fig. 5.3. The count of zero-crossings
is seen to decrease at the end of the tonic phase and throughout the clonic phase. This decrease is however
caused by the clonic phase consisting of alternating periods with high activity and no activity at all. We
evaluated the count of zero-crossings with a smaller window size and found that the count is as high in
the active clonic phases as in the tonic phase, so the reason for the decrease in the number of counts is
that the window includes both the active periods and the periods with no activity in the clonic phase.

5.3.2 Detection approach

Although many more parameters could be considered to make the algorithm more advanced, in our search
for the optimal method to classify the data into GTC seizures or normal activity, we chose to consider two
parameters. The first one is the number of zero-crossings in a given window (called the threshold) and
the second one is the number of succeeding windows, where the number of zero-crossings exceeds the
threshold, needed to finally classify a seizure. As in Chapter 3, we chose to use a window of 1 s. In this

58 Chapter 5. Detection of Generalized Tonic-Clonic Epileptic Seizures



400 420 440 460 480 500
0

50

100

150

200

250

300

# 
co

un
ts

/s
ec

on
d

Time (s)

Figure 5.3: The number of zero-crossings in windows of 1 second as a function of the time for the
filtered data in Fig. 5.2 (one seizure from a representative patient). It is clearly seen that the number of
zero-crossings rises fast at the start of the tonic phase, stays high throughout the tonic phase and drops
at the beginning of the clonic phase. The right and left black vertical lines denote the beginning and end
of the GTC seizure, whereas the middle black vertical line denotes the beginning of the clonic phase.

study we opted for an overlap of 75% for the windows. These two values, length and overlap of windows,
were chosen based on a visual inspection of the feature-plot (see example in Fig. 5.3) for all seizures.
Furthermore, this inspection showed that the maximum number of zero-crossings during the tonic phase
of the seizures was about 255 counts if all seizures were to be detected. We varied the threshold from
200 (180 for anterior tibial muscle) to 300, with an interval of 5 counts between (180) 200 and 240 and
between 260 and 300, whereas we had an interval of one count from 241-259. When seeking to avoid
too many false detections and at the same time ensuring a sufficiently short latency, the band of properly
chosen numbers of windows to make a seizure detection is most likely narrow. We therefore varied
the number of windows to make a seizure detection from 2 to 30, where two windows correspond to a
minimum delay of 1.25 seconds and 30 to a minimum delay of 8.25 seconds, to ensure that all possible
solutions are tested. The number of windows was varied with intervals of two between 2 and 10 and
between 20 and 30, whereas it was varied with intervals of one between 11 and 19. The beginning of the
GTC seizures were marked by a clinical neurophysiologist and an epileptologist by a visual evaluation
of data, as this, so far, is more reliable than any automated method. However, the exact start-time was
sometimes uncertain. In these cases we opted for marking the clinical time-point that unequivocally
showed the onset of the tonic phase. Thus, in theory this marking might come a few seconds later than
the real seizure-onset. We therefore added a condition in our interpretation of the results which changed
the latency to the minimum (based on the number of windows included) if the estimated start-time turned
out to be earlier than the clinical (actual) time-point (though within 100 seconds from it). For each pair
of parameters the three measures from section 3.4.7 were calculated to evaluate the results.
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In order to evaluate which parameters were optimal, we used a 4-fold cross validation method [80], where
the 11 patients (pt) were randomly partitioned into four subgroups (1: pt 2,6,10; 2: pt 1,4,9; 3: pt 5,7,11;
4: pt 3,8). From the 4 subgroups, one was retained for validation of the parameters, whereas the other
three subgroups were used for training the optimal choice of parameters. The validation group was then
used to evaluate the trained choice of parameters. The cross-validation process was repeated four times,
one time with each of the four subgroups as validation group. This method ensured that all patients
were used (an equal number of times) for both training and validation. The optimal parameters for each
training session were chosen from a 2D-plot, which express the relationship between the sensitivity and
FDR (specificity), and the latency. The plot express the mean latency for all seizures in the training groups
on the abscissa:

abscissa = LAT, (5.1)

and the sensitivity minus the false detection rate on the ordinate:

ordinate =





SEN− FDR, for SEN − FDR ≥ 0

0, for SEN − FDR < 0
, (5.2)

where SEN is the sensitivity (between 0 and 1) and FDR is the false detection rate given per hour (the
FDR corresponds to the specificity). If none of the seizures for a patient are detected the latency is
given the value of the maximum latency of the patients involved in the training session. The approach of
plotting the sensitivity and the FDR on one axis, and the latency on the other makes it easier to search
parameters that both ensures high sensitivity, low FDR (i.e. high specificity) and short latency. In Fig.
5.4 an example of the plot is shown for the training session of group 1-3. The encircled point on the
curves in Fig. 5.4 is chosen as the best trade-off between the sensitivity and the FDR and the latency
in our point of view. We have prioritized a sensitivity as close to 100% as possible, while keeping the
FDR as low as possible, secondly we also tried to obtain a short latency. This is because we would rather
have the detections delayed by a second, than not detecting them at all. In Fig. 5.4 the optimal point
with respect to achieving both high sensitivity and specificity would be as close to one as possible on the
y-axis. Secondly, we chose the point so as the latency would not be too large (the point being placed too
far right on the x-axis). The optimal parameters are considered not to be outliers, so that small changes in
the threshold or number of windows to finalize a detection does not change drastically (e.g. the amount
of seizures detected). If so, another set of optimal parameters will be searched.

The optimal choice of parameters chosen based on a plot equal to the one shown in Fig. 5.4 for each of
the four training sessions are given in Table 5.3 for the three training branches: deltoid muscle data alone,
anterior tibial muscle data alone and the combination of data from both muscles. The parameters for the
combination of the two muscles are achieved by requesting that the seizure should be visible through the
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Figure 5.4: Each curve shows different threshold levels and for each curve the number of windows is
varied. The black circle marks the chosen point on the curves. The thicker curve highlights the mean of
the curves.

features in both muscles (channels) at the same time. This combination should reduce the number of false
alarms, which are only visible in one muscle. Therefore lower values are expected for the two parameters,
compared to the detection being based on just one muscle.

Table 5.3: The parameters chosen through the four training phases. # win=number of windows,
th=threshold.

Training Deltoid Tibialis Combined

groups # win th # win th # win th

1,2,3 19 241 26 195 8 200

1,2,4 15 253 28 195 8 195

1,3,4 19 245 24 190 8 200

2,3,4 19 240 24 205 8 200

5.3.3 On-line implementation of the algorithm

For the on-line implementation of the algorithm the two parameters (threshold and number of windows)
were trained for the data on which it was intended to be used (recorded with the wireless sEMG device).
Even though we developed the algorithm with consideration to a later implementation in a small detection
device, small changes had to be made to realize the implementation. The first thing changed was the filter,
since the device could not encompass a filter of the size we used in the off-line version of the algorithm.
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A new filter was designed, so as it resembled the old one as closely as possible, and at the same time with
an order as low as 11 (the maximum number of coefficients allowed for the filter to follow the limitations
regarding the capacity of the current version of the wireless sEMG device). The off-line implementation
of the filter had an order of 21, meaning that both the summations and multiplications have been lowered
with 10 in the algorithm. The filter characteristics of the off-line version is shown in blue in Fig. 5.5. The
on-line filter was chosen as an FIR equiripple filter with order 11. This filter is shown in red in Fig. 5.5.
The filter coefficients are given in Table D.3 in Appendix D.
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Figure 5.5: The filter characteristics for the off-line filter (blue) and the new on-line filter (red) imple-
mented in the wireless sEMG device.

The frequencies of interest are all above 150 Hz, where the phase is seen to be linear for both filters.
For the on-line filter the equiripples make small differences in the suppression of the signal above a
frequency of 150 Hz, but these are considered insignificant. For the frequencies below 150 Hz, a larger
difference is seen, but for both filters, this part of the signal is lowered tremendously. This means, that it
will be insignificant, when continuing with the count of zero-crossings above and below the hysteresis of
±50µV. Since the algorithm is to be used on sEMG from the wireless sEMG device, the parameters must
be fitted to this exact type of data. At the time of implementation, we only had data from two patients
with GTC seizures. Normally we would record from both the biceps and the tibial muscle, but in the case
of these two patients, unfortunately some technical problems had occurred with the device on the biceps,
which meant that we only had sEMG data from the tibial muscle during the seizures. The parameters
were trained as described in the previous section for the off-line version of the algorithm, from which we
found the optimal parameters to be number of windows = 15 and threshold = 300 µV. Thus the number
of windows is similar to the one obtained in the off-line version for the normal sEMG data, whereas the
threshold in case of the wireless sEMG device data is a bit higher than for the normal sEMG data. The
results of the on-line version of the algorithm is verified by comparing the hidden seizure alarms found
by the algorithm to the times annotated by the neurophysiology technicians. The seizure times found by
the algorithm is sent to a third party, before the true seizure times are received from the recording site.
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This is to verify that it is a double-blind study.

5.4 Results

Since the off-line and on-line studies are conducted separately, this section is divided into two subsections
each containing the results of one study.

5.4.1 Results for the off-line version

The test results for the two electrode placements (deltoid and anterior tibial) are presented in Table 5.4
together with the combined results where an alarm is generated if it is registered in both muscles at the
same time. The overall results of the evaluation are very promising and suggest that it is possible to
choose parameters such that the same algorithm (incl. parameters) may be used for all patients, providing
a generic method for a detection system for epileptic patients with GTC seizures.

When using data only from the deltoid muscle all seizures are detected with an acceptable mean latency.
The latency is different for the different patients, since it varies how abrupt the seizures start and how
early the muscles are recruited into the seizure. A visual inspection of the sEMG data compared to the
video shows that the seizures for patient 9, for whom the latency is very long, involve the deltoid muscle
relatively late. Besides good sensitivity and latency, the results for the deltoid muscle alone also show
a very low FDR. The mean FDR is 0.04, which corresponds to approximately 1 in 24-hours. Most of
the false detections are in the daytime, and only three were during the night (12pm-8am) for the results
on the deltoid muscle data, see Fig. 5.6. This is only approximately 10% of the false alarms, so if the
algorithm was implemented in a system only to be used during the night, where a surveillance system is
mostly needed, the FDR would be approximately one false alarm for every tenth day.

The results for the data from the anterior tibial muscle alone are not as good as for the deltoid muscle.
For the anterior tibial the mean sensitivity is 77%. Only for 7 of the patients are all seizures detected, for
two of the remaining three, none of the seizures are detected. This may be caused by the high number of
windows. If it is too high the length of the period they cover might exceed the length of the tonic phase
for some patients, and thereby cause detection to fail. The mean latency is longer for detections based
only on the anterior tibial muscles compared to those based on the deltoid muscle. However, for some
patients latency is lower than for the deltoid muscle and for some patients it is higher. For all those with
a lower latency all seizures are detected. The same pattern is seen for the FDR, where the mean is much
higher for the results on the anterior tibial muscle compared to the deltoid muscle, but for three patients
it is actually lower.
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Figure 5.6: Histograms of the false alarms for all 11 patients. The abscissa shows the time of the day
(24-hours).

If the two sets of data are combined, the results improve somewhat regarding latency, which was expected.
Similarly to the results based on the deltoid muscle alone, all seizures are detected, the mean FDR is low,
but the mean latency is even shorter for the detection based on both muscles. However for two patients (4
and 11) the latencies are increased for the combination of both muscles compared to the deltoid muscle
alone. The explanation may be found in the fact that the latency is very high for these patients, when only
the anterior tibial data are used, which implies that the seizures are seen later in this muscle than in the
deltoid muscle.

5.4.2 Results for the on-line version

The data was collected from the recording site and visualized through the free-ware program EDFbrowser
[85]. The data files contain one vector featuring the sEMG signal and one holding a notation vector, which
contains the alarm times. An example of a GTC seizure and the matching hidden alarms are shown in
Fig. 5.7. Several alarms are shown, but in a final product only the first one will set off an actual alarm.
The time for each ”first” alarm in a sequence is annotated as a seizure and compared to the true seizure
times. The results for each patient are shown in Table 5.5. For patient D207 no data is recorded on the
tibial muscle. Patient D209 and D210 had no seizures, but neither did we detect any false alarms. Patient
D208 had three GTC seizures during the admission, while patient D211 had four. For patient D208 we
were able to detect all three seizures, and at the same time we did not register any false alarms. For patient
D211 we succeeded in detecting one of the four seizures, while the other three were missed. Furthermore,
we registered one false alarm for this patient.
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Figure 5.7: The sEMG during the second GTC seizure from patient D208. The period is divided into a
tonic and a clonic phase. It is seen that all the consecutive alarms are set within the tonic phase. The two
green vertical lines mark the beginning and end of the seizure. The three single white vertical lines are
as stated synchronization time stamps, which are set by the wireless device to keep track of the time.

Table 5.5: The results for each of the on-line analyzed patients.

Patient SEN [%] LAT [s] FDR [/h]

D207 - - -

D208 100 31; 18; 5 0.000

D209 - - 0.000

D210 - - 0.000

D211 25 46 0.008

Mean 57 25 0.003
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5.5 Discussion

For the normal sEMG data (off-line system) the results for the two muscles and the combination of them
are not only dependent on the chosen muscle, but also on the chosen parameters, see Table 5.3. For the
combined method the number of windows for a detection is low, explaining the short latency. For the
anterior tibial muscle the number of windows is large, which explains the long latencies. Looking at the
parameters in Table 5.3, one will see that they are more alike for the combination of the two muscles,
than for the deltoid muscle alone, where group three is tested with parameters somewhat different from
the others. If group three had instead been tested with parameters similar to the other three groups (19
windows and a threshold of 241), the sensitivity would have stayed the same, but the latency would have
been longer and the FDR smaller, which would bring the mean FDR to 0.03 and the mean latency to 13.9
for the deltoid muscle data alone. This suggests that a result corresponding to the one presented in Table
5.4 would be obtained by using the exact same parameters for all patients.

The on-line version of the algorithm proved to function intentionally for patient D208-D210 with a 100%
sensitivity and no false alarms. Unfortunately, it did not perform as good for patient D211.

Comparing the mean results in Table 5.5 (SEN = 57%, LAT = 25s, FDR = 0.003/h) to the mean results on
normal sEMG data on the tibial muscle in Table 5.4 (SEN = 77%, LAT = 14.1s, FDR = 0.2/h), the overall
impression is an improvement, especially when taking into account that patient D211 is an outlier. The
sensitivity was better for the algorithm on the normal sEMG data (though only when patient D211 is not
excluded), but the false detection rate was significantly improved in the on-line algorithm.

5.5.1 Data quality

The normal electrodes used to collect the data are wired; the impedances are kept low by the health-care
personal monitoring the signals and making sure that the background noise does not increase too much.
For the wireless sEMG device used, there are no test of the impedances. For now, we have to rely on the
quality of the data, but in the next version it will be designed to measure the impedance regularly.

Very few time periods were excluded from the evaluation of data, but in a real time situation it is important
that all data is useful. The wireless sEMG device, which was used in the on-line test, was more adhesive,
and were less likely to fall of. In periods where the electrode(s) or the wireless sEMG device are loose or
have completely fallen off, the algorithm will not be able to detect any seizures.

The missing data for the first patient testing the wireless sEMG device imply that we have some recording
problems, which need to be clarified. It should be noticed that the used wireless sEMG device is only a
prototype and the next version is in preparation. Thus the complications are expected to be corrected.
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5.5.2 Choice and number of muscles

Since combining the deltoid data with the anterior tibial data only improves the latency by 4 s on average,
a detection system would more appropriately be based on the deltoid muscle alone, since the gain of
adding data from an extra muscle is too small. If data should be combined from two muscles in a detection
system one would probably choose two muscles closer together, than the deltoid and the tibial muscle.

Other muscles might be used as well. These two muscles were chosen since, in our experience, the deltoid
muscle is always strongly involved in GTC seizures. The tibial muscle provides a less visible placement
for a detection device, if it should be worn in daytime situations.

The wireless sEMG device was placed on biceps and the tibial muscle during the recordings, but for
the first two included patients with seizures, only one third of the seizures had been recorded with the
devices placed on biceps, which is the reason that we have not included this data. From the results on the
conventional data we do believe that a better result of the on-line algorithm will be obtained, when it is
applied on the biceps, instead of the tibial muscle. The reason for placing the wireless sEMG device on
the biceps instead of the deltoid muscle is, that the biceps have tested to be a more comfortable place to
wear this type of sensor.

5.5.3 Patient D211

For patient D211, where the on-line algorithm failed to detect three of the seizures, the seizures are quite
different from the typical GTC seizures. These seizures consist of more interchanging tonic and clonic
phases than the usual two. Furthermore each phase is shorter than during a classical GTC seizure. In
Fig. 5.8 the count of zero-crossings during seizures are plotted for patient D200 (used for training of the
parameters), D208 and D211. The feature (zero-crossing) for the seizures is very much alike within each
patient. It is furthermore seen that the feature for the seizures for patient D208 is very similar to the ones
for patient D200, whereas the ones for D211 is seen to be very different. The algorithm detects the peak,
which is seen to be both shorter and lower for the seizures for patient D211. Thus the tonic phases for
patient D211 may not be long and strong enough for the algorithm to capture them. The many alternating
phases of tonic and clonic activity may explain the longer latency, since there is a clonic phase before the
tonic phase, where the seizures are detected.

If the threshold was lowered to 250 (closer to the value for the normal sEMG data) six of the seven
seizures were captured, but the amount of false positives would also increase to seven.
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Figure 5.8: The zero-crossing counts for each seizure for patient D200, D208 and D211, respectively.
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5.5.4 Comparison with seizure detection based on EEG

The sensitivity and specificity of seizure detection systems based on EEG signals vary widely: 70-100%
(for sensitivity) and 0.5 -72 false detections / 24 hours (for specificity) [33, 40, 55, 63, 74]. The best
performing ones are based on invasive recordings (intracranial electrodes) or many scalp electrodes (>
60) [55]. In the best performing studies they achieve the same sensitivity as our off-line approach, but
a lower FDR and shorter latency. It should, however, be considered that their system would not be
feasible for a long-term monitoring in the patients home or in the everyday life of a patient. In spite of
using signals from a non-invasive recording (sEMG) and just one channel, we obtained a sensitivity of
100% and a specificity of 1 false-detection / 24 hours (deltoid muscle). This is compatible with the best
performing EEG-based systems, but our system is easier to implement because it is non-invasive.

5.5.5 Comparison with seizure detection based on ACM

If we compare our deltoid results to other studies [43, 45] who have developed an algorithm to detect
GTC seizures based on motion-data, our is more sensitive (SEN = 100% versus 88% [45] and 91% [43]).
The study by Kramer et al. [43] includes 15 patients (22 seizures as in our study), whereas the results by
Lockman et al. [45] is based on a very limited database (6 patients with 8 seizures). At the same time
our algorithm captures seizures in the tonic-phase, whereas the other methods focus on the clonic-phase.
Therefore our latencies are shorter than in these two studies with accelerometers. We are not able to
compare the FDR to [45], since they have not listed how long their recordings were, but only that they
captured 204 false alarms for the 8 patients. They do, however, state that they have a large false detection
rate, so we would expect their system to have a larger FDR, than what we are able to provide. Kramer
et al. [43] reports an FDR of 0.004/h (8 false alarms on 1692 hours), which is lower than what we have
provided, but this should be held up against the lower sensitivity they achieved, which we find is more
important to keep as close to 100% as possible.

If we compare our on-line results to Kramer et al. [43] our sensitivity is now lower, but our FDR (0.003/h)
is slightly lower than theirs (0.004/h). Compared to Lockman et al. [45], at the same time our on-line
results show a lower sensitivity as well, but also a much lower number of false alarms. Our on-line results
do show a too low sensitivity compared to these studies, but if we exclude the outlier patient (D211),
we would have shown a 100% sensitivity, which we expect to do for future patients with typical GTC
seizures. Our FDR is the lowest of all the studies, which make our system the most reliable regarding
false alarms. Since the other two methods are based on a detection in the clonic phase, as opposed to
ours, which is based on the tonic phase, we expect to have a lower latency period.
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5.5.6 Latency

Our latencies are longer, than for seizure detection algorithms based on EEG, but shorter than for seizure
detection algorithms based on ACM. In general, the latency of our on-line algorithm could be improved.
The used parameters are trained on a very narrow basis, and a modification of the algorithm toward a
shorter detection time would be welcome in a future solution.

5.6 Conclusion

The first aim of this study was to develop a seizure detection algorithm based solely on the sEMG modal-
ity. We succeeded in doing this and to the best of our knowledge this is the first of its kind. The algorithm
is a generic (the same algorithm/parameters are used for all patients) seizure detection system that is
non-invasive (based on sEMG recordings), feasible (was applicable in all recruited patients), with high
sensitivity (100%), low rate of false alarms (1 / 24 hours) and able to run in real-time. The algorithm was
evaluated with a 4-fold cross-validation on one or two channels of sEMG from the deltoid or tibial muscle
from 11 patients with GTC seizures. It is only addressed to GTC seizures. Nevertheless, it is the group of
patients with this seizure type that has the highest risk for injuries following seizures and SUDEP [42]. If
the algorithm would be used in nighttime only situations, it would provide an even lower median FDR of
approximately one in ten days. Test on larger databases are needed to confirm the promising potentials of
this algorithm in an on-line implementation.

The second aim was to implement the algorithm into a wireless sEMG device. We had to make some
changes, but kept the algorithm as close to the original as possible. The implemented algorithm was
tested through recordings with a wireless sEMG device and presented results which, when excluding the
outlier, showed to be equally promising, with an even lower FDR. This makes our system preferable
compared to the alarm devices used today that are based on accelerometers in a wristband or bed alarms.
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CHAPTER

SIX

CONCLUSION

The overall purpose of this Ph.D. project was to design a seizure detection algorithm for convulsive
seizure based on movement signals registered with a uni- or multi-modality system. The dissertation ob-
jective is pursued through three research areas each with different purposes. In the first study, we tried to
register subject movements with multiple modalities and to make an algorithm capable of discriminating
convulsive epileptic seizures from normal activities. In the second study, the focus was to explore the dif-
ferences and similarities between physiologic and pathologic activities, both tonic seizures and the tonic
phase of GTC seizures. In the third study we focused on one modality and designed an algorithm able
to discriminate GTC seizures from every other activity. Furthermore, the reliability of this algorithm was
briefly tested in a wireless sEMG device.

The first research area provided us with valuable information regarding the use of one or more modalities
in a detection algorithm. For the algorithm we presented, it was clear that the inclusion of more modali-
ties provided a better result for the control subjects. We succeeded in measuring multi-modal data from
14 epileptic patients. Unfortunately, only one of the patients had a convulsive epileptic seizure during
the recordings. We were, however, able to visually show that the simulated seizures are similar to real
seizures. Thus, the results for the detection algorithm on patient recordings, when including more modal-
ities are expected to show an improvement similar to the one seen for the control subjects. Besides from
the multiple modalities multiple placements on the body were also used in this setup. This have probably
been a valuable factor for the results as well.
The presented algorithm was made for all included convulsive seizures, but in the patient group we found
that among the evaluated seizures, it was only appropriate for tonic and GTC seizures. This gave us a
clear indication that better results could be achieved if we focused on a single seizure type instead of
various seizure types.

For the second research area, we found several differences in the sEMG signal between the physiologic
and the pathologic activity. These findings constitute the substrate for a seizure detection algorithm as
feature input. Furthermore we detected clear differences between the tonic seizures and the tonic phase
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of the GTC seizures, which advocate for a change in the ILAE definition of these seizures. The first part
of a GTC seizure is defined as being equal to a tonic seizure, which our results clearly disprove.

The third research area aimed at developing a simple detection algorithm with low computational power
based on sEMG signals alone and furthermore have it implemented into a wireless sEMG device for a
double-blind test of the reliability. A novel detection algorithm was developed, which was able to detect
GTC seizures with very few false detections. Compared to other methods/products such as the ones
presented in Kramer et al. [43] and Lockman et al. [45] it presented a higher sensitivity, a lower or
comparable FDR and a shorter detection latency, since our algorithm is able to detect the GTC seizure
in the tonic phase compared to the other methods detecting the GTC seizures in the clonic phase (which
succeeds the tonic phase).
The implementation of the algorithm into a wireless device was performed successfully with very few
changes of the algorithm. The clinical test showed very promising results in 3 of 4 patients. The last
patient had very atypical GTC seizures, and it is, thus, considered an outlier. This uni-modal approach
showed very promising results, which might be further improved if an extra modality is added (e.g. ACM)
as we saw in our first study.

6.1 Future perspectives

The area within detection of epileptic seizures is wide, and the possibilities are many. We suggest that
some of the future studies to investigate further should be:

• to test the algorithm for GTC seizures implemented in the wireless sEMG device on more patients
in order to achieve a more profound result for the reliability.

• to investigate the improvement on the reliability of adding an accelerometer into the wireless sEMG
device.

• to investigate if the reliability is improved by adding more features or some kind of post-processing,
to help lower the latency.

• to find a multi-modal system suitable for epileptic patients with convulsive seizures, and explore
which positions on the body are the most appropriate for a seizure detection algorithm, in order to
optimize the results, but furthermore with respect to user-friendliness.

• to investigate if the algorithm based on minor changes may be able to detect tonic seizures.

• to explore the possibilities of detecting other seizures with algorithms dedicated for the purpose,
based on a multi-modal system as well as an uni-modal system.
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1.1 Introduction

The measurements involved in the project "‘Detection of Epileptic Seizures with Mul-
timodal Signal Processing"’ are carried out at two places: the Danish Epilepsy Center
in Dianalund and Rigshospitalet, the University hospital in Copenhagen. Both places
contains an Epilepsy Monitoring Unit (EMU), where the measurements will take place,
but the facilities are quite different for the two places. At Rigshospitalet the patients are
bound to maintain in their bed during the entire admission, beside from visits to the bath-
room. At the Danish Epilepsy Center in Dianalund the patients are free to move around
in their own room, the common-room or outside (within a limited radius). The measure-
ments are therefore dependent on where they take place. This manual will describe the
preparation, the set-up and the performance in connection with the measurements.

1.2 Orientation

The patient is monitored with EEG electrodes as usual. The EMG electrodes are mounted
as described by chief physician Sándor Beniczky in another document. At last the patient
should be wearing a suit containing 16 sensors of the types shown at figure 1.1 and 1.2.
The mounting of this suit and the measurements by it are described in this manual.

The entire guide should be read carefully before start.

It is very important that the sensors are handled with caution, since the wires do not
sustain tearing. The sensors are to be separated by holding at the sockets and not at the
wires! This is demonstrated at figure 1.3.

The suits are made of a very tensile fabric, which make them fit many persons of different
heights and widths. The sizes are as stated in table 1.1. Even though the suits are tensile
they should be treated carefully, since the fabric is very fine. Underneath the suit the
patient may wear tight shorts and a t-shirt, besides from underwear. Other cloth should
be worn on top of the suit. Since there are no wires or other physical connections to
extern electronic equipment this will not be a problem. This means that only the device
for collection of the EEG and EMG signals is to be mounted on top of the cloth.

1.3 Preparation of the suit

1. Based on the size of the person a suitable suit is chosen from table 1.1.

Table 1.1: Size of the suits.
Size Body weigth [kg] Heigth [cm]

3-6 years 14-21 94-115
6-9 years 20-29 115-134
9-16 years 29-61 134-173

L 60-88 170-190
XL 80-100 180-205
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Figure 1.1: The sensor type used at the hands, feet, head and pelvis (lower back).

Figure 1.2: The sensor type used at the lower and upper arms, shoulders, lower legs and
thighs.

Figure 1.3: At the left it is shown how one should hold at the sockets, when the cords
are to be separated. At the right it is shown what not to do.
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2. All zippers in the suit should be opened.

3. The sensors are placed in the suit one by one so that the base side (the one where
the screws are visible) is turned toward the skin of the person wearing the suit.
The sensors should be connected as shown in figure 1.4. They are named by their
placement in the suit around the body parts, see table 1.2. When the cords are
placed in the cavities in the suit it is important that they are not broken, see figure
1.5. (If the wires are not long enough there are extension cords, which could be
used.)

4. Start by placing the sensor at the right forearm (R fARM) in the suit so that the
arrow points away from the wrist. The sensor is placed from the opening at the
wrist with the cord first. It is placed in the white/orange pocket.

5. Afterward the sensor at the right upper arm (R uARM) is placed with the arrow
pointing away from the previous sensor (R fARM). The sleeve is opened at the
shoulder. The sensor is linked to the previous sensor and placed in the white/orange
pocket with the cord first, so that the cord gets toward the shoulder.

6. The right shoulder sensor (R SHOU) is linked to the right upper arm sensor (R
uARM) and placed in the white/orange pocket in the right shoulder of the suit.
The cord is placed in the white/orange gap.

7. Repeat item 4-6 for left arm/shoulder (L fARM, L uARM, L SHOU).

8. Place right lower leg sensor (R lLEG) in the suit from the opening at the right ankle.
The sensor should be placed in the white/orange pocket with the arrow pointing up
along the leg. The cord from the other end of the sensor should be led into the gap
in the white/orange fabric, so it end up at the ankle.

9. The sensor at the right thigh (R uLEG) is linked to the sensor at the right lower
leg (R lLEG) through the leg opening at the hip. The sensor is placed in the
white/orange pocket with the cord first and the arrow pointing away from the sensor
at the lower leg (R lLEG). At the other end of the sensor the cord is connected with
an extension cord marked G. This is further connected to one of the long gray cords
and connected to Xbus Master #2.

10. Item 8 and 9 is repeated for the left lower leg and thigh (L uLEG, L lLEG). Only
the long gray cord is here connected to Xbus Master #1.

11. The sensor for the lower back (PELV) is placed in the pocket at the lower back in
the suit with the arrow pointing upwards toward the neck of the suit. The sensor is
placed under the elastic band, so this is placed between the two sockets (entrance
for the cords), see figure 1.6.

12. An extension cord marked K should be placed at the end of the cord at the left
shoulder (L SHOU). The cord should then be pulled through the white/orange space
in the back of the suit until it reaches the sensor in the lower back. The cord is
linked to the sensor at the lower back (PELV). Another extension cord marked E
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is linked to the other socket at the sensor at the lower back. This cord is pulled up
through the white/orange space at the back of the suit. The cord is pulled through
the hole at the top of the left pocket. This cord is connected to one of the long gray
cords and further to Xbus Master #1.

13. An extension cord marked K should be linked to the sensor at the right shoulder
(R SHOU). The cord should be pulled through the white/orange space at the back
of the suit and out at the hole at the neck of the suit and connected to the head
sensor.

14. An extension cord marked K is pulled from the neck of the suit through the white/o-
range space at the back of the suit to the opening at the right pocket. The end of
the cord with a hole should be placed at the neck and connected to the head sensor.
The end with a pin should be placed through the pocket and connected to one of
the long gray cords and further to Xbus Master #2.

15. The sensor for the right hand (R HAND) is placed in the glove for the right hand
and the sensor for the left hand (L HAND) is placed in the glove for the left hand.
The sensors for the feet (R FOOT / L FOOT) are placed in the covers for the shoes.
Instead of the gloves and the shoe covers elastic bands might be used, since it might
be more comfortable for the patient.

1.4 Application of the suit

1. If the patient wears shoes these should be removed. The patient undress until
the parts that are suppose to be underneath the suit (tight shorts and a t-shirt).
Jogging-trousers and a blouse with a zipper is recommended, for clothes to wear
atop of the suit.

2. The two parts of the suit are separated by the cord from the pelvis sensor, which
goes up through the upper part of the suit, to easier apply the suit.

3. The lower part of the suit is applied and pulled up to a comfortable place. Be careful
not to step on any of the sensors.

4. The upper part of the suit is applied from below instead of pulling it from atop of
the head. The arms are pulled through the sleeves; one at a time. The two cords
linked to the headband should be hanging out from above at the neck. To avoid any
displacement of the suit the patient should use the holes for the thumbs at the end
of the sleeves. The cord separating the two parts of the suit in step 2 is connected.

5. Open the velcro in the covers for the shoes and pull them over the feet. It is
important to check that the sensors are placed at the matching feet. Apply the
patient his/her shoes, if he/she wants to wear shoes and pull down the covers and
close them underneath the shoes/feet with the velcro. Elastic bands might be used
instead of the covers for the shoes. Link the sensors for the feet to the cords from
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Figure 1.4: The connections of the sensors. This shows the set-up for which way they
should be turned and which sensors should be linked together.

Figure 1.5: The placement of the cords. Be carefull not to bend the wires.
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Table 1.2: Placement of the sensors
Text on the sensors Placement
PELV Pelvis
L SHOU Left shoulder
L uARM Left upper arm
L fARM Left forearm
L HAND Left hand
L uLEG Left thigh
L lLEG Left lower leg
L FOOT Left foot
HEAD Head
R SHOU Right shoulder
R uARM Right upper arm
R fARM Right forearm
R HAND Right hand
R uLEG Right thigh
R lLEG Right lower leg
R FOOT Right foot

Figure 1.6: The placement of the sensor at the lower back (PELV). The elastic band is
placed between the to sockets for the cords.
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the sensors at the lower legs. If the cords are to short the extension cords marked
B may be used.

6. Close all zippers. The headband should be placed in one of the front pockets or be
taped to the suit on the front of the patient.

7. Apply the gloves with the sensors or mount the sensors underneath the elastic bands
and link the sensors in the gloves to the cords from the sensors at the lower arms.

8. The two Xbus Masters are placed in a bag together with the batteries. The cords
from the batteries are connected to the Xbus Masters at the middle, see figure 1.7.

9. The two Xbus Masters are connected with the cord with a red mark, through the
sockets marked with red.

1.5 Test of the placement of the sensors

1. The Xbus Masters are started by a push on the clear/white button, see figure 1.7.
The little diode at the Xbus Masters next to the on/off button will now flash with
a light. When there is a connection it will be blue. If it has a different color the
explanation can be found in figure 1.8.

2. The program Moven Studio 2.5 is started by double clicking at the icon at the
desktop of the computer. The window shown in figure 1.9 will appear.

3. The test should take place without electro magnetic disturbances. These are shown
by yellow/red circles instead of green in the Xsens MVN program.

4. The patients height and length of feet should be typed in under the flag Actor Dims
in the left side. Afterward the flag Calibrations is chosen, see figure 1.10. Different
posing types can be chosen for the calibration of the system. Choose an N-pose,
which is the natural pose, and also the easiest for the patient to perform.

5. Push N-pose, so that it is marked. Then push the calibrate button and figure 1.11
appears. It is important that the patient is standing exactly as shown with the legs
placed with the width of the hips and the arms down by the side with the palm
toward the body. Push next and wait until the time has run out (4 sec). (The
same is done, when the suit needs to be calibrated during a recording, only the
measurement has to be stopped at first).

6. The system is now calibrated and Moven Studio gives a validation of how well it is
done. If the calibration is good or acceptable push accept to continue otherwise a
new calibration is performed by pressing restart. Once again the patient should be
asked to stand correctly and totally still. Push next and await 4 sec.

8



Power supply

On/off button

Number

Figure 1.7: At the bottom it is shown where to connect the battery packages. At the
top the on/off button is shown. The Xbus masters are turned on with one push and are
turned off by three fast pushes. Both when the Xbus Master are turned on and when
they are shut down a short beep sound will be heard.
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7. The movements stated in table 1.3 are performed. For the sensors to be rightfully
placed every movement should reveal the movement on the screen that the patient
is performing. If the patient is not capable of performing the movements himself
the personnel may be helpful.

8. If the tests do not show the expected some of the sensors may be placed wrong.
It is possible to start by checking whether the sensor(s) showing something wrong
is(are) rightfully placed.

9. If it is not possible to find the sensor that makes the mistake, the patient may
undress the suit and all the sensors should be checked for placement and direction.
This occasion should though be rare.

10. When the sensors are back in the suit it is applied to the patient once again.

11. The test of the placement of the sensors should be performed.

12. The patient and the program is now ready for the measurements, see under Data
measurements how to perform these.

1.6 Handling of visits to the lavatory

When the patient needs to go to the lavatory, he/she needs to partly undress. This is
done by the items described underneath. The patient or nurse should be instructed in
this procedure.

1. It is mentioned to the personnel that the patient has to go to the toilet, so that this
can be annotated with the storage of data.

2. If necessary the EMG and EEG cords are disconnected.

3. The bag containing the Xbux Masters and the batteries is carried along with the
patient to the bathroom.

4. The pants are carefully pulled down, and the cords between the upper and lower
parts of the suit are held aside for the patient to be able to sit on the toilet.

5. After the visit to the lavatory the pants are pulled up again like normal pants.

6. The measurement may stop as the patient enters the lavatory, but it will automat-
ically resume, when the patient arrives back to the main room.
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Table 1.3: Test of the placement of the sensors.
Number Movement

1 Hold the arms stretched as in a T-pose. Bend in the elbows,
so that the hands gets in front of the face.

2 Hold the arms stretched as in a T-pose. Bend in the elbows
(so the hands approaches the face) until the joint has an angle of 45 degrees.
Turn 45 degrees in the shoulder joint, so the hands get into the air.

3 Kick right leg forward (stretch).
4 Kick right leg to the right (stretch).
5 Kick left leg forward (stretch).
6 Kick left leg to the left (stretch).
7 Lift the right leg by bending in the knee joint and turning the leg to the right.
8 Lift the left leg by bending in the knee joint and turning the leg to the left.
9 Tip right hand up and down and from side to side.
10 Tip left hand up and down and from side to side.
11 Tip right foot up and down and from side to side.
12 Tip left foot up and down and from side to side.

1.7 Data measurements

1. In the EMU at the Danish Epilepsy Center the patient should, due to problems
with electro magnetic disturbances, be placed in room 2. See last in the document
for further explanations. In the EMU at Rigshospitalet, the University hospital in
Copenhagen, both beds available may be used.

2. Under File in Moven Studio 2.5 New Recording Session is chosen. A box will
appear where the patients number or initials should be written under Session name
and under Folder C:\\Documents and Settings\All Users\Moven_data\ should be
written. Afterward push "Ok". The session is now ready. The window seen in figure
1.9 will now appear.

3. The system is ready for the measurements to start. The EEG and EMG measure-
ments are started through Nervus or Harmony as usual. The Moven measurement
is started by pushing the red button, see Fig. 1.12. The time in the EEG recording
program (Nervus or Harmony) is annotated at the point where the Moven program
is started. This time is used to synchronize the two measurements later on.

4. If the Moven system looses contact and ends the session (this is seen by the figure
disappearing and the frame counting stopping) the previous item should be repeated.

5. The batteries holds for about 8 hours. When the batteries are almost flat they
should be exchanged with the other set. The flat batteries should be charged, see
Charging batteries. To make sure that the system do not run out of power the
batterier should be charged every 7.5 hour.

6. After the measurement is finished the Xbus Masters should both be turned off by
pushing fast three times at the white button as shown in figure 1.7.
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1.8 Limitations

In the EMU at the Danish Epilepsy Center if the patients wants to go outside, a new
calibration is needed and the computer should be placed outside with the patient. See
last in the document for more details.

In Rigshospitalet the measurement will most likely stop each time a patient goes to the
bathroom, but the system will start a new recording when the patient return to the main
room.

1.9 Disconnection and removal of the suit

1. Hand and feet sensors are disconnected from the rest of the system.

2. The gloves with sensors are removed.

3. The shoe covers are opened. The shoes (if the patient wears any) are removed and
afterward the covers with sensors.

4. All zippers are opened. The long gray wires as well as the wires between the upper
and lower parts of the suit are disconnected. The upper part of the suit is carefully
removed from the arms and pulled down to be fully removed.

5. The lower part is pulled down and removed without dropping any of the sensors on
the floor.

1.10 After the measurement

1. The battery packages are charged.

Fault modeRed

Low battery modeYellow

Wireless mode – host not foundPurple

Trying to connectBlue Purple switch

Wireless mode – sending dataBlue flashing

Wireless mode - connectedBlue

Serial modeGreen

Power downOff

Xbus Master active modeLED color

Figure 1.8: The table defines the colors of the diode at the Xbus Masters and the meaning
of them.
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Figure 1.9: The patients height and length of feet are typed in under “bodyHeight” and
“footSize”.

Figure 1.10: The window in Moven Studio before calibration.

13



Figure 1.11: The window in Moven Studio during calibration.

Figure 1.12: The window in Moven Studio after calibration. The measurement is started
by pushing the red button. At the bottom of the window the Frame number will then be
increasing.
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2. The AA batteries in the Xbus Masters are removed and charged. The other set of
batteries are put into the Xbus Masters.

3. All sensors are removed from the suit and placed in the suitcase.

4. The suit is washed with a disinfectant at maximum 30 degrees and it is dried by
hanging. The gloves, the shoe covers and the headband are washed with disinfectant
in cold water by hands.

5. (Only for the person responsible for the measurements: The MVN files are opened
and saved as MVNX files under the same names (File -> Save as). The MVN files
are saved at the server network and the mvnx files are transfered to a transportable
harddisc. Nervus/Harmony data is saved as EDF+ files. These are as well saved on
the extern/transportable hard disc.)

1.11 Charging batteries

1.11.1 AA batteries

The batteries are placed in the Xbus Masters as shown at figure 1.14. When they need
to be charged they should be removed and replaced by another set. The charging is
performed by placing the first battery at the left in the charger, see figure 1.13. Then
pressing the button “Soft” until “Soft charging” is written at the display in the upper
right corner. The rest of the batteries may by placed in the charger one by one from the
left. After a while small batteries charging is seen above each battery. The batteries are
charged when it writes done instead of showing the little battery pictures.

1.11.2 Lithium batteries

The lithium batteries are charged by the system shown in figure 1.15. When the batteries
are to be charged these are connected to the charger while it is turned off. First the
balance plug is connected as shown in figure 1.16. Afterward the charger cord is used to
connect the battery to the charger as shown in figure 1.17. The battery is now ready to
be charged. The power supply is turned on and there will be light in the display of the
charger. In the display “[MEMORY No. 0] A123 9.9V 4600“ or “[MEMORY No. 0] C:
4.6A 50◦C“ is shown. It is very important not to press any button but the ones
stated to be pushed. The “Enter” button is held down until one hears two beeps. The
display now shows “CHARGE START SOLO MODE”. Once again the “Enter” button
is pushed and the charger will check the number of cells in the battery. Afterward the
charging is started and the display shows “A123 SOLO/CHG 00.00 (time) 0.00A () 00.00V
(power)”. The device will beep when the charging is finished. There is a charge limit of
45 min, so after that the charger will also beep. When the beep is heard it is important to
immediately stop the charging. It is stopped by holding down the “Enter” button. After
charging the power supply should be turned off. The battery may then be disconnected.
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SOFT CHARGINGCHARGE

Figure 1.13: The placement of the batteries in the Charger for the AA batteries.

Figure 1.14: The placement of the batteries in the Xbus Masters are on the back.
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On/off

Balance socket

Enter

Figure 1.15: The charger for the lithium batteries.

Balance plug from battery

in balance socket for charger

Figure 1.16: Connection of the balance plug.
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Figure 1.17: Charging of a lithium battery.
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1.12 Details for the test subjects (non-patients)

The measurements take between 2-4 hours. The subjects are asked to perform some
predefined activities. These include: scanning through the TV channels with the remote
controller, use of a cell phone, use of a computer, training on an exercise bike, gambling
with dices (inducing a non-seizure shaking movement to the measurements) and eating.
Furthermore the subjects are asked to simulate three different types of seizures - five of
each. They have videos shown of the seizures and are further instructed by a physician.

Tonic-Clonic

This type of seizure is generated with the test subject lying on a bed. The tonic phase is
made as an isometric contraction in all muscles at once (limbs extended). This is followed
by the clonic phase which consists of rhythmically repetitive jerks made by alternation of
contracting and relaxing the muscles.

Versive - asymmetric tonic seizure

The versive seizures are characterized by a forced turn of the head to an almost uncom-
fortable angle, where the subject looks to the right side and upwards. This should be
followed by an isometric muscle contraction in an asymmetric posturing with the right
arm raised above the head.

Myoclonic

A myoclonia is a very short lasting jerk (less than a second), where just a single muscle
contracts. To simulate this, the right biceps should be contracted for as short a time as
possible.

1.13 Electro magnetic disturbances in the EMU rooms

1.13.1 Room 1

Everything but the bed seems fine. When the person is in contact with the bed (e.g. sits
on the bed) the sensors close to the bed show magnetic disturbances. Afterward the body
on the computer screen is no longer normal as it is after the calibration.

1.13.2 Room 2

A small electro magnetic disturbance when approaching the bed from the side closest to
the window. Otherwise no problems with this room.

1.13.3 Room 3

This room has the same problem as room 1. When the person wearing the suit has been
in the bed the graphic illustration of the body on the computer screen is screwed up.
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1.13.4 Room 4

The worst room. There are both problems with electro magnetic disturbances at the wall
(towards the bathroom), the changing table and the bed.

1.13.5 The common room

No problems. But when the patient heads outside, the body is screwed up on the screen
(from passing through the door) and a new calibration is needed. When the patient is
outside, the computer should be placed outside as well for the patient to have a freedom
as large as possible to move around.
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APPENDIX

B

MULTI-MODAL PATIENT DATA

The multi-modal data from the patient, who had a GTC seizure, while monitored with all modalities,
ACM, ANG and EMG. From the sEMG data in Fig. B.1 it seems that the seizure sets off almost at
the same time in all muscles shown. Unfortunately it is also seen that the signals have been cut due
to their amplitude being too large compared to the voltage, which the amplifier is able to deliver. This
makes it hard to compare the strength of the signals between the muscles. The next figure (Fig. B.2)
shows the spectrograms of the sEMG signals. This verifies that the pattern described in Chapter 3, of
all the frequencies being represented during the seizure compared to the surrounding activity, is strongly
presented here. Fig. B.3 and B.5 shows that acceleration and angular velocity data respectively, for the
same seizure as seen in Fig. B.1. It is clear that the power is very different for the sensors, placed all
around the body. Both the acceleration and the angular velocity are larger when a sensor is placed at a
more agile limb, e.g. placement 9, 10, 13, 14, the upper and lower arm positions. In Fig. B.4 and B.6 the
spectrograms for the data in Fig. B.3 and B.5 are presented, these as well show the pattern described in
Chapter 3, where the higher frequencies only are pronounced during the seizure.
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Figure B.1: The sEMG signal during a real seizure. The muscles shown are (from the top and down)
sternocleidomastoid, deltoid, biceps brachii, triceps brachii, biceps femoris, quadriceps femoris, and
tibialis anterior, at the left are the muscle on the left side of the body and at the right are the muscles on
the right side.
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Figure B.2: The spectrograms of the sEMG signal shown in Fig. B.1. The signals are presented in the
same order as in Fig. B.1.
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Figure B.4: The spectrograms of the ACM signal shown in Fig. B.3. The signals are presented in the
same order as in Fig. B.3.

111



0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

0

20

40

A
ng

ul
ar

 V
el

oc
ity

 [r
ad

/s
]

0

20

40

0

20

40

0

20

40

0 50 100 150
0

20

40

Time [s]
0 50 100 150

Time [s]

Figure B.5: The ANG signal during a real seizure (the same as seen in Fig. B.1). The signals are
presented in the same order as in Fig. B.3.

112 Appendix B. Multi-modal Patient Data



Figure B.6: The spectrograms of the ANG signal shown in Fig. B.5. The signals are presented in the
same order as in Fig. B.3.
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APPENDIX

C

SEMG PATIENT DATA

In Table C.1 the number of seizures and the demographic data are listed for all patients with GTC seizures.

In Table C.2 the number of seizures and the demographic data are listed for all patients with tonic seizures.

In Table C.3 the parameter values are given for the coherence of the rectified sEMG.

In Table C.4 the statistical results for the coherence are given both for the rectified and the unrectified
sEMG.
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Table C.3: Median values of the whole seizure period for all patients (and in parentheses the 2.5% and
97.5% percentiles) for the coherence of the rectified and the unrectified surface EMG data.

Epileptic Tonic GTC Simulated

Unrectified 0.120 (0.050-0.255) 0.117 (0.048-0.178) 0.120 (0.063-0.289) 0.071 (0.046-0.109)

Rectified 0.113 (0.043-0.320) 0.115 (0.041-0.202) 0.091 (0.056-0.357) 0.068 (0.037-0.109)

Table C.4: P-values for the coherence of rectified and unrectified EMG data, respectively.

Unrectified Rectified

Epileptic vs. Simulated 0.0005 0.0024

Tonic vs. Simulated 0.068 0.0046

GTC vs. Simulated 0.0034 0.0386

Tonic vs. GTC 1 0.3447
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APPENDIX

D

FILTER SPECIFICATIONS

For the filters introduced in section 4.2.2 the data are given in Table D.1 and D.2, respectively. For the
filters introduced in section 5.3 the filter coefficients are given in Table D.3.

Table D.1: The filter constants for the equiripple high-pass filter introduced in section 4.2.2.

Stopband frequency (Hz) 9

Passband frequency (Hz) 10

Stopband Attenuation 0.1

Passband Ripple 0.0575

Density Factor 20

Table D.2: The filter constants for the Butterworth notch filter introduced in section 4.2.2.

First Passband Frequency (Hz) 49

First Stopband Frequency (Hz) 49.8

Second Stopband Frequency (Hz) 50.2

Second Passband Frequency (Hz) 51

Stopband Attenuation (dB) 0.458

Passband Ripple (dB) 23.0
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Table D.3: The filter coefficients for the filters introduced in section 5.3.

Off-line On-line

-0.000558 0.049484

-0.003295 0.092877

-0.005887 -0.099066

-0.001947 -0.139826

0.014547 -0.248322

0.034152 0.729993

0.027894 -0.248322

-0.031912 -0.139826

-0.139848 -0.099066

-0.247502 0.092877

0.706695 0.049484

-0.247502

-0.139848

-0.031912

0.027894

0.034152

0.014547

-0.001947

-0.005887

-0.003295

-0.000558
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Multi-modal Intelligent Seizure Acquisition (MISA) system - A new

approach towards seizure detection based on full body motion measures

Isa Conradsen†∗, Sándor Beniczky∗, Peter Wolf∗, Daniella Terney∗, Thomas Sams† and Helge B.D. Sorensen†
†Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

∗Danish Epilepsy Center, Dianalund, Denmark

Abstract— Many epilepsy patients cannot call for help during
a seizure, because they are unconscious or because of the
affection of their motor system or speech function. This can lead
to injuries, medical complications and at worst death. An alarm
system setting off at seizure onset could help to avoid hazards.
Today no reliable alarm systems are available. A Multi-modal
Intelligent Seizure Acquisition (MISA) system based on full
body motion data seems as a good approach towards detection
of epileptic seizures. The system is the first to provide a full
body description for epilepsy applications. Three test subjects
were used for this pilot project. Each subject simulated 15
seizures and in addition performed some predefined normal
activities, during a 4-hour monitoring with electromyography
(EMG), accelerometer, magnetometer and gyroscope (AMG),
electrocardiography (ECG), electroencephalography (EEG) and
audio and video recording. The results showed that a non-
subject specific MISA system developed on data from the
modalities: accelerometer (ACM), gyroscope and EMG is able
to detect 98% of the simulated seizures and at the same time
mistakes only 4 of the normal movements for seizures. If the
system is individualized (subject specific) it is able to detect all
simulated seizures with a maximum of 1 false positive. Based on
the results from the simulated seizures and normal movements
the MISA system seems to be a promising approach to seizure
detection.

I. INTRODUCTION

Epilepsy is a neurological disorder: the propensity of the

brain to generate epileptic seizures. Approximately one third

of the patients continue to have seizures in spite of adequate

medication. Many of these start suddenly and unpredictably,

make the patient lose consciousness and may carry risks

of severe trauma and even death. If the patient is alone

the seizures may pass unnoticed, especially during sleep.

This makes it desirable to detect them, if it is not possible

to prevent them. When the seizures are detected an alarm

can warn staff at the hospital or relatives at home of the

seizures. Today such alarm systems exist, but they are not

reliable. A study on the sensitivity of epilepsy bed alarms and

pulse oxymeters [9] showed that in the case of tonic-clonic

seizures the sensitivity was 30-35% and for other seizures it

was even less. A new device for warning about seizures is

therefore needed. Several groups have worked on detecting

seizures based on ACM data [1], [6], [7]. Nijsen et al. [1]
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have shown that in a test on 18 patients it was possible to

detect the seizures of 10 patients based on visual inspection

of ACM data. From these results an alarm system based on

ACM data seems as a good approach. Other modalities which

might improve the functioning of ACM data for detection of

epileptic seizures are EMG, gyroscopes and magnetometers.

The current paper therefore proposes a new approach to

seizure detection denoted Multi-modal Intelligent Seizure

Acquisition (MISA) system containing all of the four above

mentioned modalities. This system is the first to provide

a full body description for epilepsy applications. For this

graphical description of the subject the magnetometers help

the positioning in space. Nijsen et al. [2] state that to

capture the majority of the seizures (especially the myoclonic

seizures) focus should be on the lower arm which is the body

part mostly involved in myoclonic seizures. Based on this

result the current paper initially is centered on the movements

of the lower arm. We analyzed signals from the movement

sensor on the lower arm and the EMG from the biceps.

As a first step in developing the MISA system the current

paper will examine whether the different modalities of the

system provide complementary information with respect to

the detection of seizures.

II. METHODOLOGY

A. Subjects and Data Collection

The data was collected in the Epilepsy Monitoring Unit

(EMU) at the Danish Epilepsy Center in Dianalund. The

subjects were monitored for about 4 hours and EEG, AMG,

EMG, ECG, audio and video recordings were stored. The

AMG sensor system used is Xsens MVN, which is developed

by Xsens Technologies [10]. Xsens MVN contains 16 sensors

placed in a suit worn by the test subject. Each sensor

contains both a 3D accelerometer, 3D magnetometer and 3D

gyroscope. Data from the AMGs are sent via a bluetooth

connection to a server where it is stored. The subject wore

28 surface EMG electrodes resulting in 14 bipolar EMG

channels placed on 14 muscles. The active EMG electrode

is placed on the belly of the muscle, while the reference

electrode is placed on nearby bone or tendon. The EMG

signals are collected at a sampling frequency of 1 kHz

(bandpass filter: 1 Hz - 500 Hz). The digital signals were

synchronized with the signals from the other modalities

recorded during monitoring. In the future all modalities will

be wireless, whereby the MISA system will be completely
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wireless, making it easier for the patients to get around and

be more free of equipment.

For this pilot project three test subjects were enrolled,

two males and one female, though gender has no theoretical

influence. Due to ethical considerations we only included

adults, whereas children will also be included in the more

detailed follow-up investigation. The recordings contain nor-

mal activity such as eating, biking, use of computer and

cellular phone and gambling with dices. Furthermore the

subjects were instructed by physicians to simulate 15 seizure

events of three seizure types (five events of each). The

seizures simulated are tonic-clonic, versive-asymmetric tonic

and myoclonic. The times when seizures occurred have been

clinically annotated.

B. The seizures

1) Tonic-Clonic: This type of seizure is generated with

the test subject lying on a bed. The tonic phase is made

as an isometric contraction in all muscles at once (limbs

extended). This is followed by the clonic phase which

consists of rhythmically repetitive jerks made by alternation

of contracting and relaxing the muscles.

2) Versive - asymmetric tonic seizure: The versive

seizures are characterized by a forced turn of the head to

an almost uncomfortable angle, where the subject looks to a

side and upwards. This is followed by an isometric muscle

contraction in an asymmetric posturing with an arm raised

above the head.

3) Myoclonic: A myoclonia is a very short lasting jerk

(less than a second), where just a single muscle contracts.

To simulate this, one biceps has been contracted for as short

a time as possible.

C. Multi-modal Motion Data Presentation

In MATLAB a program is designed to visualize the simu-

lated seizures and the normal physiological movements. The

program is able to display acceleration and angular velocity

in three dimensions, in addition to the electrical signals from

the muscle (EMG).

From a visual inspection of the data, it can be seen that for

all modalities each seizure type is stereotypical. Two figures

each showing the acceleration and angular velocity in the

lower arm together with the EMG signal from the biceps are

presented.

In Fig. 1 a simulated tonic-clonic seizure is presented.

For this simulated seizure the tonic phase lasts about 8

seconds followed by the clonic phase lasting about 14

seconds, where the rhythmic repetitive jerks are easily seen.

The tonic phase starts with a high acceleration and angular

velocity of the lower arm, but through the tonic phase these

values are close to zero, because the arm is not moving,

the muscles are isometrically contracted, as indicated by

the EMG signal. Later in the clonic phase the acceleration

and angular velocity are again large, seen as rhythmic jerks

caused by alternating activation-deactivation of the muscles.

The absolute maximum amplitudes of the acceleration and

angular velocity are about 100 m/s2 and 10 rad, respectively.

The absolute maximum amplitude of the EMG signal is about

3 mV.

Fig. 1. A tonic-clonic simulated seizure framed by the black vertical lines
placed by physicians. On top of the figure the acceleration is shown, in the
middle is the angular velocity and at the bottom the muscle activity. The
acceleration and angular velocity are from the AMG sensor at the lower
arm, whereas the EMG data is from the biceps.

In Fig. 2 the data from a versive - asymmetric tonic seizure

is shown. As it can be seen in the first part where the

head is turning the lower arm is not involved, but when

the raised arm becomes part of the seizure (asymmetric

tonic seizure) the amplitude of the acceleration and angular

velocity increases to about 30 m/s2 and 12 rad, respectively.

At the same time the EMG signal has an absolute maximum

amplitude of about 2.5 mV.

The data from the myoclonic seizure is not shown, but

the duration is found to be about half a second. Real

myoclonia are even shorter in duration. The acceleration,

angular velocity and EMG signal have absolute maximum

amplitudes of 35 m/s2, 7 rad and 3.5 mV, respectively.

D. Processing Motion Data

Based on the seizures having stereotypical patterns, theo-

retically it should be possible to distinguish the seizures

from the normal activities by a biomedical signal processing

algorithm. A simple approach towards such an algorithm

could be the Root-Mean-Square (RMS) value, RMS(x) =
√

1

N

∑N

n=1
x(n)2, which is often used in connection with

physiological data [4]. This is calculated for a window of

half a second of the data and the windows are overlapping

by 50%. The size of the window is chosen based on the fact

that the myoclonic seizures are shorter than half a second, so

to enhance the amplitude of these seizures a short window

is needed. On the other hand the window should not be

too short, which would induce a poor frequency resolution.

Normally a window of 1 second is used when working with

physiological data [3].
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Fig. 2. A versive - asymmetric tonic simulated seizure framed by the black
vertical lines placed by physicians. On top of the figure the acceleration is
shown, in the middle is the angular velocity and at the bottom the muscle
activity. The acceleration and angular velocity are from the AMG sensor at
the lower arm, whereas the EMG data is from the biceps.

The RMS value of a window is calculated for all three

modalities: acceleration, angular velocity and muscle activity.

For the acceleration and the angular velocity it is proposed

that the mean of the RMS values are calculated across the

three dimensions, RMStotal = (RMSx +RMSy +RMSz)/3.

This is seen similar in other research projects [8]. This

is done for all the time epochs analyzed (i.e. the periods

containing the seizures and the periods containing different

normal activities performed by the subjects). The periods of

the normal activities are identified visually by inspection of

the videos. From the RMS values the largest value is found

for each modality for each period analyzed. These results can

be plotted in a feature scatter plot showing the possibility of

distinguishing seizures from normal activity.
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Fig. 3. The absolute maximal RMS values for simulated seizures and
normal activities for the first subject. The * denote the seizures, whereas
the squares denote the normal activities. The . marks the Bayes classifier
discriminating between seizures and normal activity.
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III. RESULTS AND DISCUSSION

From the feature scatter plots for the two subjects shown

in Fig. 3, 4 and 5, it can be seen that the different modalities

provide complementary information, meaning that the group

of seizure-events cannot be differentiated from the group of

normal activities based on just one modality. It is seen that

the seizures are actually grouped in the 3D plot whereas

most of the normal activities are grouped at another place

in the feature space. Only few of the normal activities are

placed closer to the group of seizure data than the one with

normal activity data. Those that are placed closer to the group

of seizure data are still not surrounded by seizure data, but

are only placed in the outer sphere of the seizure-group.

This means that by using all modalities it becomes possible

to distinguish between seizures and normal activities. The

distribution functions of the data are assumed to be gausian,

which makes the Bayes classifier optimal. In Fig. 3 a Bayes

classifier decision boundary is added, based on the decision

function [5]:
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TABLE I

DETECTION OF SEIZURES BASED ON DATA FROM THE LOWER ARM SENSOR AND THE BICEPS . (AV: ANGULAR VELOCITY)

Modalities 1. subject 2. subject 3. subject All

ACM AV EMG Sen [%] FP Sen [%] FP Sen [%] FP Sen [%] FP

x 100 2 53 1 67 3 87 8

x 53 1 73 6 67 0 52 6

x 100 1 100 2 100 3 96 4

x x 100 3 93 2 100 2 89 8

x x 100 1 100 2 100 0 96 3

x x 100 0 100 2 100 0 98 4

x x x 100 0 100 1 100 0 98 4

TABLE II

DETECTION OF SEIZURES BASED ON DATA FROM THE THIGH SENSOR AND THE QUADRICEPS . (AV: ANGULAR VELOCITY)

Modalities 1. subject 2. subject 3. subject All

ACM AV EMG Sen [%] FP Sen [%] FP Sen [%] FP Sen [%] FP

x 67 6 100 9 33 0 33 7

x 67 3 67 0 67 3 78 12

x 100 6 67 2 100 3 100 15

x x 80 2 100 0 93 2 91 6

x x 100 4 100 3 100 2 98 11

x x 100 4 100 4 100 2 89 7

x x x 100 4 100 0 100 2 98 8

di(x) = lnP (Ci) −
1

2
ln |Ci|

−
1

2

[

(x − mi)
T

C−1

i (x − mi)
]

(1)

where i = 1, 2 and mi and Ci are the mean and covariance

matrix for class i, respectively. These measures are given by:

mi = Ei [x] (2)

Ci = Ei

[

(x − mi) (x − mi)
T
]

. (3)

Since no a priori probability is known and data are to be

split in two classes, P (Ci) is set to 1/2. The use of a

classifier indicate the possibility of classifying multi-modal

motion signals as seizure or non-seizure. In Table I the

sensitivity (sen) (percentage of the seizures that are detected)

and false positives (FP) (the number of normal activities that

are detected as seizures during the 4-hour recording session)

are given for each subject, for the three modalities separately

and for a combinations of them. It is clearly seen that the

best results, i.e. the highest sensitivity and the lowest number

of false positives, are achieved when all three modalities are

used. The table both shows the result of a subject specific

MISA system for each of the subjects and of the non-subject

specific MISA system. The non-subject specific system is

able to detect 98% of the simulated seizures and at the same

time it captures only 4 false positives. On the other hand

the subject specific systems are able to register all simulated

seizures and only captures 0-1 false positive. The movements

that are detected as seizures for the non-subject specific

system constitute one period of gambling with dices from

the first and the second subject, respectively, and furthermore

one period of biking from the second and the third subject,

respectively. The periods of gambling with dices might be

registered as a seizure due to the relatively high muscle force

and the rhythmic/alternating feature of the movements while

shaking the dice cup. This could be mistaken for a clonic

movement. There are no physiological explanation to why

the biking periods are detected as seizures based on the data

from the arm, since it is mostly the legs that are used on an

exercise bike.

Furthermore the same study is made for the sensor at the

thigh and the EMG electrode at the quadriceps. The results

seen in Table II show that it is not just a MISA system based

on data from the arm that makes it possible to distinguish

between simulated seizures and normal activities. Even a

MISA system based on the leg is able to partly detect the

simulated seizures without detecting too many false positives.

This is explained by the fact that the legs are also involved in

some of the seizures as it is difficult to keep them entirely still

when contracting other muscles during the seizures where the

legs are not involved.

IV. CONCLUSION

A fairly simple first version of the MISA system in a

non-subject specific version is shown to be able to achieve a

sensitivity of 98% and at the same time only capture 4 false

positives. This means that it is actually able to distinguish

between the simulated seizures and the normal activity from

the test subjects in this study. Looking at the subject specific

MISA system even better results are seen with a sensitivity

of 100% and only 0-1 false positive. Based on these results

and the knowledge of real seizures having an even larger

force than one can produce voluntarily, it seems possible

2594



to distinguish between real seizures and normal activity

based on biomedical signal processing algorithms dedicated

for a MISA system. Furthermore it has been shown that

the use of all the modalities of the MISA system provide

complementary information which ensures a higher classifi-

cation accuracy. Real seizures might not be as similar as the

simulated ones. This means that in a future perspective more

advanced features should be extracted and possibly a non-

linear classification algorithm should be used to distinguish

between seizures and normal activities. A second generation

fully automatic MISA system is under development based

on data from epileptic patients.
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Seizure Onset Detection based on a Uni- or Multi-modal Intelligent

Seizure Acquisition (UISA/MISA) System

Isa Conradsen†∗, Sándor Beniczky∗, Peter Wolf∗, Jonas Henriksen†, Thomas Sams† and Helge B.D. Sorensen†

Abstract— An automatic Uni- or Multi-modal Inteligent
Seizure Acquisition (UISA/MISA) system is highly applicable
for onset detection of epileptic seizures based on motion data.
The modalities used are surface electromyography (sEMG),
acceleration (ACC) and angular velocity (ANG). The new
proposed automatic algorithm on motion data is extracting
features as “log-sum” measures of discrete wavelet components.
Classification into the two groups “seizure” versus “non-
seizure” is made based on the support vector machine (SVM)
algorithm.

The algorithm performs with a sensitivity of 91-100%, a
median latency of 1 second and a specificity of 100% on
multi-modal data from five healthy subjects simulating seizures.
The uni-modal algorithm based on sEMG data from the
subjects and patients performs satisfactorily in some cases.
As expected, our results clearly show superiority of the multi-
modal approach, as compared with the uni-modal one.

I. INTRODUCTION

More than 50 million people around the world suffer from

epilepsy and about 25% of them cannot become seizure

free. Patients dreading the next seizure onset has potential to

become socialy isolated. Severe and sometimes fatal injuries

can occur during seizures. An alarm system, capable of

detecting seizures, could alert relatives and caretakers and en-

sure help for the patient. Several groups [1], [2] have already

tried to develop such a system based on motion data, but

none of them is performing well enough to reach clinical use.

We therefore propose a new automatic detection algorithm

capable of capturing the seizures with motor manifestations,

without too many false alarms. It was decided in our previous

study [3] to work further with movement sensors and surface

electromyography (sEMG) registrations, as these provided

promising results. Our new approach on these multi-modal

motion data encompasses feature extraction with a discrete

wavelet decomposition and an automatic classification with

support vector machines (SVM). The MISA method includ-

ing motion and sEMG data, was tested on 5 healthy subjects

simulating seizures. However, due to impediments with the

recruitment of patients, at present time it was only possible

to test a uni-modal method on sEMG data alone, from 5

patients suffering from epilepsy.
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Helge BD Sorensen, hbs@elektro.dtu.dk

†DTU Electrical Engineering, Ørsteds Plads, building 349, DK-2800 Kgs.
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∗Danish Epilepsy Center, Kolonivej 1, DK-4293 Dianalund

II. METHODOLOGY

A. Data Collection

Data were recorded at the Danish Epilepsy Center in

Dianalund, Denmark. The 5 healthy subjects were measured

with 16 movement sensors, containing 3D accelerometers,

3D gyroscopes and 3D magnetometers, and 14 bipolar sEMG

channels for 2-4 hours using our setup described in [3].

Each subject simulated 15 seizures in total, divided in the

three types, myoclonic, tonic-clonic and versive. These are

defined by epileptologists and described in details in [3]. The

healthy volunteers carefully watched a video-recording with

the movement pattern they had to imitate. An epileptologist

explained them the typical aspects of the seizures, and the

participants practised the movements before the recording.

It was difficult to find patients with enough seizures with

motor manifestations who could cooperate to wear all the

equipment, so for this study the patients have only been

measured with 4 sEMG channels with a sampling frequency

of 1024Hz. The sEMG electrodes were placed on deltoid and

tibialis anterior muscles on both sides of the body (active

electrode on the muscle bulk, reference electrode on the

tendon adjacent to it). The number and type of seizures along

with the sex and age of the patients are listed in Table I.

Furthermore the length of the signals for the testing phase

of the classification is listed.

TABLE I

THE PATIENTS GENDER, AGE AND THE AMOUNT AND TYPE OF SEIZURES

ALONG WITH THE LENGTH OF THE TEST FILE.

Gender Age
# of

Seizure Type
Length of

seizures Test File [h]

Pt 1 F 2 13 Tonic, Myoclonic 12
Pt 2 F 29 4 Tonic-clonic 27
Pt 3 M 5 14 Tonic, Spasm 31
Pt 4 M 48 10 Tonic 0.75
Pt 5 M 30 11 Tonic 8

B. Data Processing

The processing of data is split into three parts. The

first part is the data partitioning, followed by the feature

extraction and the last part is the classification into seizure

and non-seizure events.

1) Data Partitioning: Data are split in smaller parts of

seizure and non-seizure data to have more parts to choose

from for the different iterations in the training and testing

phases related to the classification. This provides a more
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reliable result. The data are partitioned based on which

subject is measured: healthy subject or patient, respectively.

For each subject several files are processed. A patient file

containing seizures is divided in subparts as shown in Fig.

1, where each data part between the seizures is split into

periods of 1 minute. This is long enough to ensure that

the movements within the period make sense, and short

enough to ensure that sufficiently many periods for training

and testing are obtained. Between each period a sequence

of 5 seconds is left unused to avoid correlation between

two successive periods. In the files containing simulated

seizures, the periods between these are left unused, since the

healthy subjects were practicing for the seizure simulations

in between seizure periods. A file without seizures is treated

equally, regardless of whether it is from a healthy subject or

a patient. The file is split into periods of 1 minute, with

5 seconds sequences left unused between each - just as

explained above for the patient file containing seizures.

Seizure
Unused (5 sec) Excess (unused)

Non-Seizure (60 sec)

Fig. 1. The segmentation of a patient file containing five seizures. Between
the seizures data are split into periods of 1 minute, with a sequence of 5
seconds left unused between successive periods.

2) Feature Extraction: Nijsen et al [1] showed that

the wavelet decomposition would be a better choice for

a feature than the short time Fourier transformation. The

inherent properties of the wavelet transformation compared

to the short time Fourier transformation gives a better time-

frequency (time-scale) representation of normal movements

versus seizures. As in [1] we have chosen to use the fifth

Daubechies as the mother wavelet. The features are extracted

from the discrete wavelet decomposition of windows of 1

second. The windows overlap by 50% and are filtered prior

to the wavelet decomposition using a Hann filter of the same

size as the window. This is done to smoothen the spectrum of

the signal before processing it. The wavelet decomposition

is performed through filtration with a high- and a low-pass

filter as given by [4]:

A = vlow[m] =
L−1

∑
l=0

u[l]g[2m− l] (1)

D = vhigh[m] =
L−1

∑
l=0

u[l]h[2m+1− l] (2)

where 2 is the downsampling factor, m and l are the sample

number in the signal, L is the number of samples in the

window and g and h are low- and high-pass filters, respec-

tively. For each filtration the signal is then divided in an

Approximation- (A) and a Detail- (D) signal. ylow is the

approximation signal, whereas yhigh is the detail signal. From

each approximation signal a new step with filtrations is made

by splitting as shown in Fig. 2. Each channel (ACC, ANG

or EMG) is applied in the wavelet decomposition as u(l).
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Fig. 2. The signal, u(l), is filtered and thereby split in approximation and
detail signals, each approximation signal is further filtered. This is done six
(seven) times. For the feature vector we only use the detail signals from the
fourth to the sixth (seventh) sub-band ( fs = 1kHz). The frequencies beneath
the squares state the bounds for the sub-band.

From a visual inspection based on a comparison of the

spectral content for seizure and non-seizure events, respec-

tively, the frequencies of interest were found to be in the

lower range. Based on this conclusion, only the detail signals

layer 4-6 (7) are further used for the feature extraction.

To decrease the amount of data entering the feature vector,

a “log-sum” measure is calculated for each sub-band used.

x j−3 = log(

M

2 j

∑
m=1

|D j(m)|), where j = 4,5,6(,7) (3)

where M is the number of samples in the signal u(l), j is the

sub-band number (4,5,6(,7)) and D(m) is the detail signal.

For our data M = 120 for ACC/ANG and M = 1024 for

EMG data. By applying the logarithm it is ensured that the

smaller and more essential details are enhanced, while the

larger and insignificant ones are reduced.

The feature vector, x, is then collected as:

a = [x1,ACC1
, ...,x3,ACC1

,D1,ACC2
, ...,x2,ACC69

,x3,ACC69
]

b = [x1,ANG1
, ...,x3,ANG1

,D1,ANG2
, ...,x2,ANG69

,x3,ANG69
]

c = [x1,EMG1
, ...,x4,EMG1

,D1,EMG2
, ...,x4,EMG14

]

xn = [an,bn,cn]
T , (4)

where ACC1 means ACC channel 1 and so on and n is the

time index. For convenience the time index, n, is omitted in

the previous equations.

For the ACC/ANG data, six steps of filtration are made,

but only the detail signals from sub-band four to six are used

further on. The sEMG data are filtered in seven steps and the

detail signals from sub-band four to seven are used further

on. These are also the sub-bands outlined in Fig. 2. These

numbers of filtrations mean that we only use the frequencies

0.94-7.5 Hz for the ACC/ANG data and the frequencies from

4-64 Hz of the sEMG signals. The frequencies are chosen

based on a visual inspection of the spectra of the signals.

The feature vector is now complete and can be submitted

to a classifier.

3) Classification: The problem is to solve a binary clas-

sification problem with the classes Seizure and Non-seizure.

The class Seizure contains all the seizures in the measure-

ments, whereas the class Non-seizure contains everything

else. This means that the class Non-seizure contains much
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more data than the class Seizure. As a classifier SVM is

used, since it has proven to be better (than other complex

algorithms such as artificial neural network) at handling data

with very dissimilar amounts of data in the classes [5]. Data

are divided into two groups, “train” and “test”, whereas the

classifier is trained on data from the “train” group. The

data from the “test” group can then be classified with the

classifier trained for the purpose. The classifier will return a

positive or negative value for each ”‘test”’ vector, dependent

on whether it is estimated as belonging to a seizure period

or not. The divisions into these groups of the healthy subject

data are made randomly, for both seizure and non-seizure

data, ensuring close to equal amounts of each data type in

each group. For the patients, the first couple of seizures along

with non-seizure data are used for training and the rest of

the seizures with non-seizure data for testing. The division

is made in this way to keep it causal and thereby imitate a

real-time situation.

For the training, data is labeled:

{xn,yn} ,n = 1, ..., l,yn ∈ {−1,1} ,xn ∈ ℜd , (5)

where l is the number of training examples, xn is the feature

vector (n is the time index) and yn the matching target,

indicating which of the classes the feature vectors belong

to, -1 for non-seizure and 1 for seizure.

A two-class linearly separable data set (where d > 2) can

be separated by a hyperplane described by:

f (xn) = w ·xn +b = 0, (6)

where w is the normal to the hyperplane and b is a shifting

constant. The hyperplane is computed based on support

vectors, which are the feature vectors that are placed closest

to the hyperplane separating the two classes. These feature

vectors from the two classes must satisfy:

yn · (w ·xn +b) ≥ 1−ξn, where ξn ≥ 0∀n, (7)

where ξn, a positive slack variable, is introduced to handle

data, due that most classification problems are not completely

separable. Data points assigned to the wrong side of the

margin (defined by (7)) thereby have a penalty that increases

with the distance to the margin.

To separate the two classes the problem of finding the

optimal parameters, w and b, can be reduced to minimizing

the performance function (8):

1

2
‖w‖2 +C

l

∑
n=1

ξn subject to yn ·(w ·xn +b)≥ 1−ξn, (8)

where C is a factor which sets the trade-off between the size

of the margin and the penalty of the slack variable, ξn [6].

For (8) to be minimized, each term should be minimized.

Minimizing the first term means maximizing the margin be-

tween the support vectors of the two classes. The second term

which encompass the slack variable is minimized by keeping

the distance from incorrectly classified feature vectors to

the margin as small as possible. When a feature vector is

correctly classified ξn is set to 0, whereby the second term

in (8) will be 0. For a feature vector correctly classified, but

placed on the wrong side of the margin, ξn is between 0 and

1. Whereas it is above 1, if the feature vector is wrongly

classified. In the two latter cases the margin is attempted

placed as close to these incorrectly classified feature vectors

as possible to minimize the second term in (8).

To solve (8) Lagrange multipliers are multiplied and the

equation is transformed from its primary form to the dual

form, whereby it is possible to identify the parameters for

the hyperplane which best separates the two classes. These

steps are all performed in MATLAB by the SVMlight package

specified in [7]. The package returns a classification-model

based on the given training set, which can then be used to

classify a test set.

III. RESULTS AND DISCUSSION

The results are presented as sensitivity (the amount of the

seizures that are detected), specificity (the amount of non-

seizures that are not detected) and latency (the time it takes to

detect the seizures after seizure onset). The specificity might

not be the best measure for the number of false alarms, but

for the healthy subjects the measurements were very compact

and every movement was planned beforehand, so no other

measure would provide a more reliable value. On the other

hand, we have further chosen to calculate the false detection

rate (FDR) for the epilepsy patients, which is the amount

of false detections per hour. An optimal result has 100%

sensitivity and specificity, a latency of 1 second (due to the

window length) and an FDR of 0.

The results for the healthy subjects on multi-modal data

are shown in Fig. 3. The mean sensitivity and specificity

are calculated for 30 iterations, whereas for the latencies the

median is provided. It is clearly seen that for subject 1-4 the

system has the highest sensitivity when all modalities are

used. For the fifth subject the algorithm performs better with

respect to sensitivity, if the EMG data is left out. Almost

the same is seen concerning the specificity. The algorithm

performs best for most subjects when all modalities are used,

with exception of subject 2 where it is better if the EMG data

is left out. With respect to the latency of the detections of the

simulated seizures the result is also dependent on the subject,

but most subjects have the best - or at least a very acceptable

result when all modalities are used. There are a few outliers,

but one should remember that it is the maximum latency that

is depicted.

For the patients where only the sEMG data are provided,

the results are shown in Fig. 4. This shows that the algorithm

detects only half of the seizures for patient 1. The reason is

that the other half is myoclonus, which is very short lasting

(< 0.5 seconds) and only happening in one muscle. This

means that the muscles included in these seizures might not

be the ones, which we have measured. It should be noticed

that the seizures are detected at onset. Further it can be seen

that there are only very few false positives (0.08/h). For

patient 2 all seizures are detected, but most of them with

a delay. The false positives are very few (0.07/h), which
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Fig. 3. The sensitivity, specificity and latency is showed for the results on
the data from the five healthy subjects. For each subject the result is given
for each modality alone and combinations of them. For the sensitivity and
specificity the mean for 30 iterations (bars) and the standard deviation (blue
lines) are shown. For the latency the median is shown by the bars (a bit
difficult to see) and the blue line indicate maximum latency.

is important for an alarm system. For the third patient the

algorithm is only able to detect one seizure, but neither

does it capture any false positives. Notice that 50% of the

seizures in the test data are spasms which the algorithm is not

directly intended for. For the fourth patient all the seizures

are detected at onset, but it has too many false alarms, the

FDR might however be high due to the fact that we have

less than an hour of data to test the algorithm on. For the

last patient the algorithm is not able to detect all seizures,

but those detected are however detected at onset. No post-

processing has yet been applied, which might lower the FDR

for some patients. A change in the window size might be

able to increase the sensitivity for patients with very short

lasting seizures. Comparing the healthy subjects and the

patients show equally well results using the UISA system

on sEMG data. The better results on the healthy subjects

using the MISA algorithm imply that better results might be

achieved on patients using our multi-modal approach, which

is the focus for our future experiments. The movements

simulated by the healthy volunteers closely resembled those

occurring during the seizures, therefore it is reasonable to

assume that the signals recorded by the movement sensors

are similar to what we would have recorded from patients

with epilepsy. However the muscle-signals depend on the

recruitment of the motor nerve cells. In the case of volunteers

the motor cells are physiologically activated, while in the

case of ”real” seizures the recruitment is a pathological one.

Thus we cannot exclude that the EMG signal recorded during

the simulated seizures have different characteristics than the

epileptic ones.

IV. CONCLUSION

The automatic MISA system implemented is a new ap-

proach for motion data with feature extraction from discrete
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Fig. 4. The sensitivity, specificity, latency and false detection rate (FDR)
are showed for the results on the EMG data from the five patients. The
sensitivity, specificity and the FDR are shown as bars for each patient.
For the latency the median is shown by the bars and the largest latency is
indicated by the black line.

wavelet components. Data are classified with an SVM algo-

rithm into the classes seizure and non-seizure. On the multi-

modal data from the healthy subjects the algorithm performs

as intended, with a sensitivity of 91-100%, a median latency

of 1 second and a specificity of 100%. Analysis of the sEMG

data performed satisfactorily for both some of the patients

and some of the healthy subjects imitating seizures. Our data

on healthy subjects show the superiority of the multi-modal

approach as compared to the unimodal one. At the moment,

the device is a prototype for research use only. We have

experienced that some patients feel uncomfortable wearing

the suit containing the sensors. As a consequence suit and

device setup is being modified for future experiments.
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The objective is to develop a non-invasive automatic method for detection of epileptic

seizures  with motor manifestations. Ten healthy subjects who simulated seizures and one

patient  participated in the study. Surface electromyography (sEMG) and motion sensor fea-

tures  were extracted as energy measures of reconstructed sub-bands from the discrete

wavelet  transformation (DWT) and the wavelet packet transformation (WPT). Based on the

extracted features all data segments were classified using a support vector machine (SVM)

algorithm  as simulated seizure or normal activity. A case study of the seizure from the

patient  showed that the simulated seizures were visually similar to the epileptic one. The

multi-modal intelligent seizure acquisition (MISA) system showed high sensitivity, short

detection  latency and low false detection rate. The results showed superiority of the multi-

modal  detection system compared to the uni-modal one. The presented system has a

promising potential for seizure detection based on multi-modal data.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Epilepsy is a functional disorder of the brain caused by exces-
sive  discharges of groups of neurons clinically characterized
by  repeated unprovoked seizures lasting from seconds to min-
utes.  About 1% of the world’s population has epilepsy. Seizure
manifestations can be motor (tonic, clonic, tonic–clonic, etc.),
sensory,  psychic or vegetative, and consciousness may  be
retained  or altered, sometimes with automatic behavior. In
spite  of much  progress with pharmacological, surgical and

∗ Corresponding author at: Oersteds plads bygn. 349, 2800 Kgs. Lyngby, Denmark. Tel.: +45 45253704; fax: +45 45880117.
∗∗ Corresponding author.

E-mail  addresses: ic@elektro.dtu.dk, isaconradsen@gmail.com (I. Conradsen), hbs@elektro.dtu.dk (H.B.D. Sorensen).

other treatments, about 25% of epilepsy patients continue to
have seizures. For many  of these patients, seizure onset is
unpredictable, impairing independent living and increasing
the  risk of injuries, e.g. by falls or burns. Therapy resis-
tant  patients with generalized tonic–clonic seizures have an
increased  risk of dying as a consequence of a seizure, espe-
cially  when they live alone and the seizures occur during sleep
[1,2].  An automatic seizure detection system that alerts rela-
tives  or other helpers of an on-going seizure would alleviate
several  of these problems. The earlier a seizure is detected,

0169-2607/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2011.06.005
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the more  useful the system would be. It could also be benefi-
cial  in determining therapeutic success or failure in patients
who  live alone and cannot reliably report whether they still
have  seizures. A clinically feasible detection system needs to
be both reliable and comfortable.

Today  the diagnostic gold standard in epilepsy is electroen-
cephalography (EEG) with simultaneous video surveillance.
EEG  is known to be reliable for detection of seizures [3–5].
EEG-recordings require, however, either an invasive recording
(intracranial electrodes) or the placement of several scalp-
electrodes, which is less stable over time. The patient might
also  be uncomfortable wearing electrodes on the scalp, which
are  very noticeable for others, and thereby stigmatizing the
patient  further. Despite the EEG method being the gold stan-
dard,  it does not necessarily seem to be the best option for a
seizure  alarm outside the hospital. It has been attempted to
use  video recordings for seizure detection [6], but they had
too  many  restrictions and limitations (obstacle-free area of
movement  covered by light and camera).

Nijsen et al. [7] used accelerometers (ACM) for seizure
detection. The visual analysis of the movement  data recorded
with  these sensors showed promising results (91% of the
seizures  with motor phenomena were detected), and was  con-
sidered  feasible for detection of seizures. Others [8,9] have
tried  to detect seizures based on ACM data, but an ideal
method has not yet been presented.

Earlier studies [7–9] on detecting seizures from ACM data
did  not report on aspects concerning the time between seizure
onset  and the detection, but only on detection versus no
detection.  It is highly desirable to achieve an early detec-
tion  of seizures (i.e. with only a few seconds of delay) to
make  possible an intervention to stop the seizures and/or
prevent injuries during the seizures. To make such a system
reliable  for detection of seizures we decided to work with
multi-modal data, so we extended the system from using
only  ACM to combine it with sEMG and gyroscopes (angu-
lar  velocity (ANG) data). Gyroscopes provide information on
the  rotation of each joint, so this data covers e.g. movements
where the limbs are accelerated less, but still rotated. In a pre-
liminary  study [10] we found that the three modalities sEMG,
ACM  and ANG provided complementary information with
potential  improvement of classification accuracy. The next
issue  was  to identify the most promising features to distin-
guish  between seizures and normal activities and furthermore
identify  the most appropriate classifier to automatically differ-
entiate  between the two classes based on the feature vectors.
Nijsen  et al. [11] showed through a visual analysis that the
continuous wavelet transformation (CWT) seems to be a bet-
ter  feature than short time Fourier transformation (STFT) for
ACM  data. Seizure detection from sEMG signals is a rather
unexplored field, but from a visual inspection of the data it
seems  that both the amplitude and the frequencies of the
signal  during seizures are different from normal activities.
The  discrete wavelet transformation (DWT) seems to be a
good  choice as a feature extraction method, since it provides
a  good frequency resolution at low frequencies and further-
more  a good time resolution at the high frequencies. Based on
this we  used DWT for feature extraction and support vector
machines (SVM) as a classifier in a pilot study [12], including
both  sEMG, ACM and ANG data, with very promising results

on  distinguishing between seizures/simulated seizures and
normal  activities.

In  this paper we search for the best feature extraction
method based on the wavelet transformation to separate
simulated seizures from normal activity. The wavelet trans-
formation  is good at describing both the morphology and the
spatial  distribution in the movement  signals. Compared to the
DWT,  the wavelet packet transformation (WPT) provides equal
time  and frequency resolution for all frequencies. Besides
DWT  we have therefore also tested the WPT  as a method
for  extracting features for all modalities in this automatic
multi-modal intelligent seizure acquisition (MISA) system. To
classify our data into the two groups, seizures and normal
activities, we used SVM [13] (as in our pilot study [12]) as a
binary  classifier trained on feature vectors from both classes,
since  it is well known to function better than other classifiers
when  the data classes are of unequal sizes. We  used data from
healthy  subjects who simulated seizures (as instructed by a
physician) to develop our algorithm upon. To assess the simi-
larity  between the simulated seizures and a real one, we  have
visually  compared the raw data from the simulated seizures
with  a real seizure from a patient for all modalities.

This paper is organized as follows: the recordings are pre-
sented  in Section 2; data presentation is given in Section 3;
the  method in details in Section 4 and the results in Section
5.  At last Sections 6 and 7 encompass the discussion and the
conclusion,  respectively.

2. Recordings

The goal of the project was to detect simulated seizures from
multi-modal signals based on movement  data (sEMG, ACM and
ANG).  To be able to statistically explore whether the automatic
detection algorithm is functioning, the number of simulated
seizures for each healthy subject had to be more  than five.
The  reason for initially using healthy subjects (who simulated
seizures) instead of epileptic patients was the difficulty in
the  patient recruitment. Most patients with more  than five
seizures  with motor manifestations within a few days are
mentally  retarded and therefore have difficulties in cooperat-
ing,  when wearing the suit containing the movement  sensors.
Therefore  it has yet only been possible to collect seizure data
from  one patient and we only succeeded in obtaining one
seizure  from this patient. Ten healthy subjects who  were
instructed to simulate seizures are therefore monitored with
all  modalities and used for the project.

The project had been approved by the ethics committee
of Region Zealand, Denmark. All subjects involved received
information on the project and gave their written consent to
participate  in the study.

The  recordings on healthy subjects were made at the
Danish Epilepsy Centre in Dianalund, Denmark. Ten healthy
subjects  aged 23–30, both male and female, were  included. It
is  assumed that there is no effect of gender. The measure-
ments lasted 1.5–3 h for each healthy subject. All of the healthy
subjects  were  asked to simulate three types of seizures and
some  normal activities. They were given a description of the
seizures,  and they watched seizures on a video. Before the
recording  the healthy subjects trained simulating the seizures
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Table 1 – Information about the healthy controls.

Subjects Gender Age Test file
length [h]

1 F 26 1.5
2 M 30 1.25
3 M 26 0.85
4 F 24 1
5 F 26 1
6 M 24 1
7 M 27 0.75
8 M 25 1
9 M 24 1.25

10 M 23 1

while assisted by a physician. During the recordings a physi-
cian  was  present to check that the simulated seizures were
visually  similar to real ones, when looking at the patients. If
they  were  not, the subject was  corrected and asked to simulate
a  new one. The normal activities were biking, use of mobile
phone,  computer and TV, eating and gambling with dices. The
last  activity was  chosen because of the movement’s similar-
ity  to clonic seizures or the clonic phase of the tonic–clonic
seizures, whereas the rest were activities which the patients
as  well as gambling have access to during a normal admission
in  the epilepsy monitoring unit (EMU). Each of the seizures was
simulated  five times for each healthy subject. The times for
the  simulated seizures were annotated like during a normal
admission. The three types of simulated seizures and their
descriptions are as follows:

Myoclonic is a very short lasting twitch in a single muscle.
The  healthy subject is asked to make as short a contraction
of  the right biceps brachii as possible, which will cause a very
short  lasting movement  of the right lower arm.

Versive–asymmetric tonic seizure is characterized by a turn of
the  head to an almost uncomfortable angle, where the healthy
subject  is looking upwards and to the side. This is followed by
an isometric contraction in an asymmetric posturing, where
the  arm, on the same side towards which the head is turned,
will  be placed above the head.

Tonic–clonic starts as an isometric contraction of all the mus-
cles.  After a while it changes to rhythmically repetitive jerks
made  by alternating contraction and relaxation of the mus-
cles.

The  gender and age of the healthy subjects are listed in
Table  1, as well as the length of the signals for the testing
phase of the classification. The sEMG data were sampled at
frequency  of 1024 Hz, whereas ACM and ANG were sampled at
frequency of 120 Hz.

The epileptic patient was  admitted to the EMU  at Rigshos-
pitalet (Copenhagen University Hospital) for a diagnostic
indication, as stipulated by the ethics committee. The admis-
sion  lasted 3 days, where the patient, a 29 years old male had
one  seizure (of the generalized tonic–clonic seizure type). The
time  for the seizure has been clinically annotated by the neu-
rophysiology  technicians and later checked by a physician.
The  sEMG data were  sampled at frequency of 1000 Hz, whereas
the  ACM and ANG were  sampled at a frequency of 120 Hz as
for  the healthy subjects. The reason for the use of different
sampling frequencies for the sEMG data is that the two par-
ticipating  departments use different recording programs  with

different  setup possibilities for the sampling frequencies. Fur-
thermore  the sEMG data from the EMU  at the Danish Epilepsy
Centre  were filtered before exportation, so to equalize the fre-
quency  bands of the sEMG signals for the different subjects all
data  was filtered with a low-pass filter with a cut-off at 70 Hz.

The  recordings all included both EEG, video, sEMG, electro-
cardiography (ECG) and motion sensors (ACM and ANG), but
for  this study only sEMG data and the data from the motion
sensors  were used. The motion sensors used are the system by
Xsens [14] called Xsens MVN, which is a wireless system con-
sisting  of a suit with 16 sensors. Each of these sensors includes
3D  ACM, 3D gyroscopes and 3D magnetometers. Based on the
recordings,  the Xsens MVN  software system performs neces-
sary  biomechanical calculations, which provide data from 7
extra positions on the body (shown as position 2, 3, 4, 5, 6, 19
and  23 in Fig. 1). The output therefore is 3D ACM and 3D ANG
from  23 different locations on the body, see Fig. 1. With these
23  placements on the body a full body system able to outline
practically all movements of the body parts during seizures is
obtained. For each of these two modalities we  have 69 chan-
nels.  For the recording on the patient we were  not able to use
the  head sensor (position 7 in Fig. 1), hence, due to the biome-
chanical  calculations in the software, data are useless for three
positions  (position 5, 6 and 7 in Fig. 1). The third modality,
sEMG, is applied as 14 surface electrodes, each accompanied
with its own reference electrode, placed on nearby bone or
tendon.  The sEMG electrodes are placed on the center of the
belly  of the muscle and symmetrically on the body on the fol-
lowing  muscles: sternocleidomastoid, deltoid, biceps brachii,
triceps  brachii, biceps femoris, quadriceps femoris, and tibialis
anterior.  The muscles are chosen by a physician based on the
knowledge  on which parts of the body are most active during
seizures,  and to ensure full body coverage.

The recordings were performed by starting all conventional
measurements in the EMU  (i.e. all modalities except for the
motion  sensor system). When this was up and running, the
motion  sensor system was started and the time in the sEMG
sampling  system was annotated by the neurophysiological
assistant, as precisely as possible. All data types were  then
used  from this point and on, whereby they were  synchronized.

The  sEMG electrodes are connected to the EEG amplifier,
which, in this case, is not wireless. It is the plan to imple-
ment  the system as fully wireless in the future, allowing for
the  patients to move  around more  freely, while wearing the
alarm  and monitoring device. The hope is to identify which
sensor  positions are better at distinguishing seizures from nor-
mal activities and thereby being able to lower the number of
sensors.

3.  Data  presentation

To assess the reliability of using simulated seizure data from
healthy  subjects instead of epileptic patients, the raw data
from  the simulated seizures were compared visually to an
epileptic  one for all modalities. Since we only could record
one  patient with epilepsy, a statistical comparison of the
quantitative data/parameters was  not possible. A represen-
tative  simulated tonic–clonic seizure is shown in this paper
for  comparison with the real seizure. Fig. 2 shows the time
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Fig. 1 – The placement of the sensor positions from the Xsens MVN  system, see the Manual for Xsens MVN,  revision D,
June, 2008 [14].

Fig. 2 – The sEMG data for a real seizure and a representative simulated seizure are shown in a and b, respectively. The
matching spectrograms (for a normalization of the signals) are shown in c and d, respectively, where the red color means
high power, blue color means low. The data is from the right biceps. The seizure and the simulated seizure are both
surrounded by normal activity data, 1.5 min  prior and 1 min  later. The black vertical lines represent onsets and offsets of
seizures and simulated seizures. (For interpretation of the references to color in this figure legend, the reader is referred to
the web  version of the article.)
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Fig. 3 – The ACM data for a real seizure and a representative simulated seizure are shown in a and b, respectively. The
matching spectrograms (for a normalization of the signals) are shown in c and d, respectively, where the red color means
high power, blue color means low. The data is from the right lower arm. The seizure and the simulated seizure are both
surrounded by normal activity data, 1.5 min  prior and 1 min  later. The black vertical lines represent onsets and offsets of
seizures and simulates seizures. (For interpretation of the references to color in this figure legend, the reader is referred to
the web  version of the article.)

plots and spectrograms of a seizure/simulated seizure and the
surrounding  normal activity for the patient and the healthy
subject,  respectively. The data is sEMG from the right biceps
brachii.  The start and end of the seizure/simulated seizure is
marked by the black vertical lines. For the patient it can be
seen  that the seizure starts prior to the muscle activity, so the
first  signs of the seizure was  only visible in the EEG or other
muscles  and first a bit later did the tonic–clonic part start in
the  biceps brachii. The starting point for the simulated seizure
is  defined as were  the muscle activity starts. For some patients
the  start of a seizure might as well be when the muscle activ-
ities  are started, so this will not be seen as a difference. A
clear  difference is the amplitude of the signals, but it should
be  noted that this characteristic depends among other on the
strength  of the subject and the thickness of the skin/fat layer
between  electrode and muscle. The spectrograms are made
based  on normalized signals (to make sure the amplitude dif-
ferences  will not influence our interpretation) and plotted with
the  same color bar. From the spectrograms it is revealed that
for  both the seizure and the simulated seizure the power con-
tained  in the signal is increased for all frequencies through a
longer period compared to the normal activities. In a future
study  we  might examine the higher frequencies (above 70 Hz),
since  the signals do not seem to be unimportant above this
limit.  We  cannot exclude that besides the difference in ampli-
tude  there are other differences too between the sEMG signals
from  the seizure and the simulated seizures.

Figs. 3 and 4, which show the raw ACM and ANG data
from the right forearm, respectively, for both the patient
and  a representative healthy subject, are visually similar.

The  amplitude, however, is also a problem for these modal-
ities.  The movements during the real seizure seem to have
larger  acceleration and angular velocity and furthermore both
movements  seem to be more  confounded in the real seizure,
whereas  most of the healthy subjects have lower accelera-
tions  and angular velocities especially. There are though also
differences  among patients with epilepsy and the one we
recorded  from may  have had faster movements than the aver-
age  patient. We will have to trust that the acceleration of
the  simulated seizures were similar to real ones seen visu-
ally,  when looking at the healthy subjects, since this was  what
the  physician concluded during the simulations. The spectro-
grams  show that the real seizure has a larger power in the
higher  end of the frequencies, than the simulated seizure,
but  the simulated seizures do though show a higher power in
some frequencies (above 15 Hz for the ANG signal and above
1  Hz for the ACM signal) than the normal activities. These
spectrograms are as well as for the sEMG generated based on
the  normalized signals to avoid power differences based on the
amplitude  of the signal. There are smaller differences in the
frequencies  between ACM and ANG that seems to give some
useful  complementary features to our algorithm.

The movements simulated by the healthy subjects visu-
ally  (when looking at the healthy subject) closely resembled
those  occurring during the seizures, therefore it is reasonable
to  assume that the signals recorded by the motion sensors are
similar to what we  would have recorded from patients with
epilepsy.  This is also what we observed when we  compared
the  data from the simulated seizures to the real one, though
with  some differences in the strength of the seizures. How-
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Fig. 4 – The ANG data for a real seizure and a representative simulated seizure are shown in a and b, respectively. The
matching spectrograms (for a normalization of the signals) are shown in c and d, respectively, where the red color means
high power, blue color means low. The data is from the right lower arm. The seizure and the simulated seizure are both
surrounded by normal activity data, 1.5 min  prior and 1 min  later. The black vertical lines represent onsets and offsets of
seizures and simulated seizures. (For interpretation of the references to color in this figure legend, the reader is referred to
the web  version of the article.)

ever, these differences make the real seizure stand out even
more  from the normal background activity, suggesting that
the  algorithm might work even better on the real seizure data
than  on the simulated ones.

4.  Method

The method for detection of seizures based on multi-modal
data  is split in several steps as outlined in Fig. 5. The first step
is  to extract appropriate features and the second is to classify
the  data based on these features. Prior to these steps it is,
however,  necessary to take a look at the data and how it may

be  divided into training and test sets for the classification. All
of  the signal processing is performed in MATLAB 7.6.

4.1.  Data  partitioning

Data are partitioned due to the fact that during the recordings,
for  practical reasons, all simulated seizures, were  simulated
within  a short time with the healthy subjects practicing the
simulations  in between. It is therefore not possible to make a
causal spilt of the data into training and test periods, where
the  first part would be used for training and the last part for
test.

ACM1(l)

0ˆ

ACM2(l)

ACM23(l)

...

or
Feature

extraction
Classificationx(n)

0ˆi

i

y
y

ANG1(l)

ANG23(l)

...

or
EMG1(l)

EMG14(l)

...

Fig. 5 – Method for detection of simulated seizures based on multi modal data. Three types of data are used, from which
features are extracted. The feature vector is sent through to a classifier, which outputs yi. A positive yi classifies as a
simulated seizure, whereas a negative yi belongs to the normal activity class.
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Fig. 6 – Diagram of the segmentation of the data strings
from  files containing simulated seizures. Between each
segment  a period of 5 s of data is left unused. Each normal
activity segment lasts 1 min.

For the classification, both a training set and a test set of
data  is needed. Therefore data is divided into smaller seg-
ments  and split randomly into the training and test phases. By
splitting data in smaller segments of simulated seizures and
normal  activity data there are more  segments to choose from,
when  randomizing the training and test phases related to the
classification.  This ensures that both the training and test
phases  contain segments from all the different activities per-
formed.  For each healthy subject several files are processed.
A  file containing seizures is divided in subparts as shown in
Fig.  6, where the data parts between the simulated seizures are
left unused, since, as earlier mentioned, the healthy subjects
might  have been practicing for the simulation of simulated
seizures in between the actual simulations. The simulated
seizures are split in separate segments as to contain each sim-
ulated  seizure as a whole. The data period after the simulated
seizures is split into segments of 1 min. This length ensures
that  the movements within the segments make sense, and
that  a sufficient number of segments are obtained for train-
ing  and test. Between each segment a sequence of 5 s is left
unused  to reduce the correlation between two successive peri-
ods  as much  as possible without too much  loss of data. A file
without  simulated seizures is treated in the same way as the
period  following the simulated seizures. The file is split into
segments  of 1 min, with 5 s sequences left unused between
each–just as explained above.

4.2. Preprocessing

With 14 sEMG channels and 69 channels of ACM and ANG,
respectively, we have 152 channels in total. In order to decrease
this  number and thereby the computational load regarding
the  feature extraction, for ACM and ANG we used the length
of  the direction vector instead of the three dimensional (3D)
coordinates,  x, y and z (e.g. for ACM):

ACM =
√

ACM2
x + ACM2

y + ACM2
z (1)

Naturally since we only have one signal for each sEMG elec-
trode,  the raw sEMG data will be used.

This preprocessing of data leaves us with 60 channels (pre-
liminary  features) of data in total.

4.3.  Feature  extraction

In classification problems the choice of features is often more
important  than the choice of classifier [15], since the fea-
tures  outline the details to discriminate between two groups,

whereas  one classifier might provide a similar result as
another,  based on the same set of features.

The features for discriminating between simulated seizures
and  normal activities should therefore be chosen based on how
well  they distinguish between the two groups. Based on a
visual  inspection of data Nijsen et al. [11] found that a wavelet
decomposition with the fifth Daubechies as a mother wavelet
was  the most appropriate feature compared to the STFT for
ACM  data. Consequently, we have decided to use the fifth
Daubechies as a mother wavelet for our data; ACM as well as
sEMG  and ANG. Compared to the STFT where a signal is split in
sine functions with different frequencies, the wavelet trans-
formation  divides the signal into shifted and scaled versions
of  a mother wavelet. The discrete wavelet decomposition is
basically  two filters that are applied sequentially to the input
signal  again and again (one time for each step), the filters are
composed  as low- (g) and high-pass (h) filters based on the
mother  wavelet. From each filtration an approximation (A) and
a  detail (D) signal is achieved. Each approximation signal can
be  further filtered into a new level with both an approxima-
tion and a detail signal, see Fig. 7. The black squares mark the
division  by the DWT, whereas the WPT  is demonstrated by all
squares,  where also the detail signals are filtered. A mother
wavelet  is defined by a scaling function ϕ(x) and a wavelet
function  (x) [16], described by the low-pas filter, g, and the
high-pass  filter, h [17]:

ϕj,m(l) = 2j/2 · gj(l − 2jm) (2)

 j,m(l) = 2j/2 · hj(l − 2jm), (3)

where j is the resolution or scale parameter, m is the trans-
lation  parameter and the inner product normalization is
described  by 2j/2. The decomposition is then described as the
discrete  approximation, Aj(m), and detail, Dj(m), signals given
by  [17]:

Aj(m) = u(l) ∗ ϕj,m(l) (4)

Dj(m) = u(l) ∗  j,m(l), (5)

Each window of each channel (ACM, ANG or sEMG) is
applied  in the wavelet transformation as u(l). By the extension
of  the DWT to further filtering on each detail signal as well,
the  WPT  is, as stated above, obtained. Thereby the signal is
split  up in uniform frequency bands with equal frequency and
time  resolutions for all frequencies. This means that no matter
which  frequency band shows the largest difference between
simulated seizures and normal activity in the movement  data,
an  appropriate resolution is achieved for both time and fre-
quency.  So a good time resolution is not compromised by a bad
frequency  resolution and correspondingly a good frequency
resolution is not compromised by a bad time resolution.

Each DWT and WPT  is determined from a window of 0.75
and  1 s, respectively, both with an overlap of 50%. The win-
dows  should be short enough to capture the important details
of  the seizures and at the same time, long enough to keep a
good  frequency resolution. The window lengths are chosen
based  on the results of our assessment of the optimal value
for  the two methods (DWT  and WPT), respectively. Before the
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Fig. 7 – The signal, u(l), is filtered and thereby split in approximation and detail signals. The scheme with the black boxes
shows the decomposition with a normal wavelet, whereas the total scheme shows the decomposition with wavelet
packets. The decomposition is in both cases made to level 7 (seven layers). According to this scheme the detail bands we
use for the DWT would be named: DAAA4, DAAAA5, DAAAAA6 (and DAAAAAA7 for sEMG signals). These names are long,
which is why  we  use the short terms instead: D4, D5, D6 (and D7 sEMG signals).

windows are divided in approximation and detailed signals,
they  are filtered by multiplying a Hann window of the same
length  as the signal window to smoothen the spectrum. All
feature  extractions are processed in MATLAB with the Wavelet
Toolbox.

4.4. DWT feature  extraction

The DWT can be made with an optional number of layers. We
found  that for the sEMG signals with a sampling frequency
of  1024 Hz it would be most efficient to use 7 layers, whereby
the  last bands had a resolution of 4 Hz. For the ACM/ANG sig-
nals  we found that 6 layers were to be used, whereby the last
band  had a resolution of ∼1 Hz. From a visual inspection of the
features  extracted from the different bands in the 7 (6) layers,
the  detail signals layer 4–6 (ACM/ANG signals) and 4–7 (sEMG
signals)  turned out to provide larger differences (for the log-
sum/energy  parameter introduced below), when comparing
the  simulated seizures to randomly chosen normal activi-

ties.  For the ACM/ANG signals the frequencies extracted are
0.94–7.5  Hz and for the sEMG signals they are 4–64 Hz.

To evaluate these signals and decrease the amount of data
entering  the feature vector we  are interested in a measure for
each  signal indicating how much  “energy” they contain. This
can  be evaluated by calculating a “log-sum” measure of the
signals  as shown in Fig. 8 and given in (6):

xj−3 = log

⎛
⎝

L/2j∑

m=1

|Dj(m)|

⎞
⎠ , (6)

where L is the number of samples in the signal u(l), j is the res-
olution  (4, 5, 6 for ACM/ANG and 4, 5, 6, 7 for sEMG) and Dj(m) is
the  detail signal. By applying the logarithm, it is ensured that
the  smaller differences between feature vectors from differ-
ent  classes are enhanced, while the larger differences between
feature  vectors are reduced. The influence on the system by
possible  outliers is thereby reduced. This means that the sys-

ACM1 (l)

ACM2 (l).
)(),...,( 1,ACM3,1,ACM1, mDmD

Wavelet

Decomposition

ACM23 (l)

...

ANG1 (l) )(na

)(),...,( 23,ACM3,23,ACM1, mDmD

)(),...,( 1,ANG3,1,ANG1, mDmD
Decomposition

and
Coefficients

Reconstruction

log
1 ( )

ANG23 (l)

...

EMG1 (l)

)(
)(

n
n

c
b)(),...,( 23,ANG3,23,ANG1, mDmD

)(),...,( 1,EMG4,1,EMG1, mDmD
EMG1 (l)

EMG14 (l)

... )(),...,( 14,EMG4,14,EMG1, mDmD

Fig. 8 – Flowchart of the feature extraction from Fig. 5. One window of data is analyzed at a time. l is the sample number.
The chosen sub-bands are reconstructed, which for the DWT are D4, D5, D6 and D7 (only for sEMG signals). For the WPT  the
sub-bands used are DDA3 and ADD3 for the ACM and ANG signals, whereas AAAAD5 and DDAAA5 are used for the sEMG
signals (The names are given as illustrated in Fig. 7.). A “log-sum” measure is calculated from the used bands as input to
the feature vector.
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tem is assumed to be less affected by outliers in the movement
signals.

The  feature vector, x, is then collected from the vectors a,
b  and c, with three (ACM/ANG) or four (sEMG) “log-sum” mea-
sures  for each data window for all channels in the different
modalities:

a  = [x1,ACM1 , x2,ACM1 , x3,ACM1 , x1,ACM2 , . . . , x1,ACM2B , x2,ACM2B , x3,ACM2B ]

b  = [x1,ANG1 , x2,ANG1 , x3,ANG1 , x1,ANG2 , . . . , x1,ANG2B , x2,ANG2B , x3,ANG2B ]

c =  [x1,EMG1 , x2,EMG1 , x3,EMG1 , x4,EMG2 , x1,EMG2 , . . . , x1,EMG14 , x2,EMG14 , x3,EMG14 , x4,EMG14 ]

xn = [an, bn, cn]T

, (7)

where  ACM1 means ACM channel 1 and so on and n is the
time  index. For convenience the time index, n, is omitted
in  the previous equations. The concatenation of the mea-
sures  into a feature vector is shown as the last step in
Fig.  8.

4.5.  WPT feature  extraction

As with the DWT, the WPT  can be made with an optional
number of layers. We used the same number of steps as
for  the DWT. This divides the signal into frequency bands
of  4 Hz. From a visual inspection of the reconstructed sEMG
signals  we  found the reconstruction signals that contained
the  largest differences between simulated seizures and nor-
mal  activities. It turned out to be the second and the fourth
band  in the fifth step, corresponding to frequency bands of
16–32  Hz and 48–64 Hz, respectively. So it showed unneces-
sary  to decompose it into seven steps. For the ACM/ANG data,
because  of the lower sampling frequency, the decomposition
was  made in six layers as used for the DWT. This gave fre-
quency  bands for the reconstructed signal s of 0.94 Hz. A visual
inspection  as described above was  conducted with the result
that  the fourth (22.5–30 Hz) and seventh (45–52.5 Hz) band
of  the third step contained the larger differences between
the  simulated seizures and normal activities for both ACM
and  ANG.

As  for the DWT, we calculate “log-sum” measure of the
signals,  as given in (8) (for sEMG data) and (9) (for ACM/ANG
data):

xk = log

⎛
⎝

2L/5∑

m=1

|R(m)|

⎞
⎠ , where R = AAAAD5(k = 1),

R  = DDAAA5(k = 2) (8)

xk = log

⎛
⎝

2L/3∑

m=1

|R(m)|

⎞
⎠ , where R = DDA3(k = 1),

R  = ADD3(k = 2) (9)

where L is the number of samples in the signal u(l) and R(m)
is  the reconstructed signal for the given sub-band. As earlier
explained, the logarithm is applied to ensure that smaller dif-
ferences  between feature vectors from different classes are

enhanced  and the influence by possible outliers is assumed to
be reduced.

The feature vector, x, is then collected from the vectors a,
b  and c, with two “log-sum” measures for each data window
for  all channels in the three modalities:

a = [x1,ACM1 , x2,ACM1 , x1,ACM2 , . . . , x1,ACM2B , x2,ACM2B ]

b = [x1,ANG1 , x2,ANG1 , x1,ANG2 , . . . , x1,ANG2B , x2,ANG2B ]

c  = [x1,EMG1 , x2,EMG1 , x1,EMG1 , . . . , x1,EMG14 , x2,EMG14 ]

xn = [an, bn, cn]T

(10)

where ACM1 means ACM channel 1 and so on and n is the time
index  as described above. As earlier noted the time index, n,
is omitted in the previous equations for convenience.

4.6.  Final  feature  vectors

All possible combinations (a, b, c, a and b, a and c, b and c
and  a, b and c) of the three modalities are sent through the
classifier,  to explore which combination would be better for
an  alarm system. Eqs. (7) and (10) represent the combination
where all data are used. The entering of the feature vector into
the  classifier is shown as the final step in the classification
procedure (see Fig. 5).

4.7.  Classification

We decided to see the problem as a binary classification prob-
lem  with the classes Seizure and Normal activity. One  could also
have  chosen to classify the simulated seizures into different
groups,  but in this study we  wanted to examine the possibil-
ity  of making one classifier for all motor seizures. The class,
Seizure,  contains different kinds of simulated seizures with
motor  manifestations, whereas the class Normal activity con-
tains  anything but the simulated seizures. The amount of data
in  the two classes is very different, since we  have more  nor-
mal  activity data than simulated seizure data, which makes
the  SVM algorithm attractive compared to, e.g. neural network
classifiers  [18]. When using the SVM one can also be sure to
find  a global and unique solution to the classification problem
(quadratic problem), compared to neural network where there
are  multiple local minima and thereby multiple solutions [19].
This  means that one can be sure that an optimal solution is
obtained  using SVM. A third reason to choose SVM is that it is
less  disposed to overfitting, since it chooses a specific hyper-
plane  (with the largest margins) to separate the two classes
[20].

The  classification is the last part in the detection algorithm.
Data  are divided into two groups, training and test, see Fig. 9,
where  the classifier is trained on the data from the training
group.  The data from the test group can then be classified with
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Fig. 9 – The classification part of the algorithm is split is two; the training and the testing phase. During the training phase
the classifier is trained on feature vectors and their corresponding target (−1 (normal activity) or 1 (simulated seizure)). In the
testing phase the “new” data is classified as simulated seizure or normal activity.

the classifier trained for the purpose. The classifier will return
a  positive or negative value for each test vector, dependent on
whether  it is classified as a simulated seizure or not.

The  divisions of the data into these groups are made ran-
domly,  for both simulated seizure and normal activity data,
ensuring  close to equal amounts of each data type in each
group.  It is ensured that each simulated seizure type is repre-
sented  in both phases (training and test).

For the training, data is labeled:

{xn, yn}, n = 1, . . . , k, yn ∈ {−1, 1}, xn ∈ �d, (11)

where k is the number of training examples, d is the dimen-
sion,  xn is the feature vector (n is the time index) and yn the
matching target, indicating which of the classes the feature
vectors  belong to, −1 for normal activity and 1 for simulated
seizure.

A  two-class linearly separable data set (where d > 2) can be
classified  by a hyperplane described by:

f (xn) = w · xn + b = 0, (12)

where w is the normal to the hyperplane and b is a shifting
constant.

The  hyperplane is computed based on support vectors,
which are the feature vectors placed closest to the hyperplane
separating the two classes. These feature vectors from the two
classes must satisfy:

yn · (w · xn + b) ≥ 1 − �n, where �n ≥ 0∀n, (13)

where �n, a positive slack variable, is introduced to handle
data,  due to the fact that most classification problems are not
completely  separable. Data points assigned to the wrong side
of  the margin (defined by (13)) thereby have a penalty that
increases  with the distance to the margin.

To separate the two classes, the problem of finding the opti-
mal  parameters, w and b, can be reduced to minimizing the
performance function [13]:

1
2

‖w‖2 + C

l∑

n=1

�n subjected to yn · (w · xn + b) ≥ 1 − �n, (14)

where C is a factor which sets the trade-off between the size
of  the margin and the penalty of the slack variable, �n [13].
From  tests we found that the most optimal value of C for our
algorithm  is 0.8, which is used for the results presented later
in  this paper.

For  (14) to be minimized, each term should be minimized.
Minimizing the first term means maximizing the margin
between the support vectors of the two classes. The second
term,  which encompasses the slack variable, is minimized by
keeping the distance from incorrectly classified feature vec-
tors  to the margin as small as possible. When a feature vector
is  correctly classified �n is set to 0, whereby the second term
in  (14) will be 0. For a feature vector correctly classified, but
placed  on the wrong side of the margin, �n is between 0 and
1,  whereas it is above 1, if the feature vector is wrongly classi-
fied.  In the two latter cases the margin is attempted placed as
close  to these incorrectly classified feature vectors as possible
in  order to minimize the second term in (14).

To solve (14) Lagrange multipliers are applied and we  obtain
[13]:

L(w,  b, �, ˛, r) = 1
2

〈w · w〉 +  C

l∑

n=1

�n

−
l∑

n=1

˛n [yn (〈xn · w〉 +  b) −  1 + �n] −
l∑

n=1

rn�n, (15)

where ˛n ≥ 0 and rn ≥ 0. Eq. (15) is then transformed from its
primary  form to the dual form by differentiating it with respect
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Fig. 10 – The results from the DWT feature extraction method. HS means healthy subject.

to w, �n and b and substitute the obtained relations into the
primal  form to obtain [13]:

L(w,  b, �, ˛, r) =
l∑

n=1

˛n − 1
2

l∑

n,j=1

ynyj˛n˛j
〈
xn · xj

〉
(16)

The hyperplane which separates the two classes the best could
then  be found by maximizing (16) with respect to

∑l

n=1yn˛n =
0,  C ≥ ˛n ≥ 0, n = 1, . . . l.

In (15) 〈xn·xj〉 may  also be written as K(xn·xj), where K is
a  kernel. If the two classes are not linearly separable a non-
linear  kernel may  be applied. A kernel is a function which
transforms a signal from one space (input space) into another
space  of a higher dimension, called the feature space. Thereby
a  linear hyperplane, separating the two classes may  be found
in  the new feature space. In our case, we have been able to
separate  the classes linearly, so a non-linear kernel has been
considered  unnecessary.

The  steps explained above are all performed in Matlab by
the  SVMlight package from Joachims [21]. The package returns
a  classification-model based on the given training set, which
can  then be used to classify a test set.

4.8.  Test  methodology

To evaluate how well the detection algorithms function, cer-
tain  measures may  be calculated for each healthy subject. The
test  measures used in this article are:

• Sensitivity (SEN) is the fraction of seizures that are correctly
classified.

•  Latency (LAT) is the time from seizure start to the detection.
•  False detection rate (FDR) is the number of falsely detected

simulated seizure onsets per hour.

When the content of a window is classified as a simulated
seizure an alarm will be generated. The latency is measured
as  the delay from simulated seizure start till the alarm is gen-
erated  (first window with a positive outcast). This means that
the  shortest possible latency will correspond to the length of
the  window (0.75 s for the DWT method and 1 s for the WPT
method,  respectively). Only the first window, in a row of suc-
cessive  detections, will generate an alarm. This means that
when  successive normal activity windows are detected as a sim-
ulated  seizure only the first one will generate a false alarm, and
thereby  it will only count for one FP.

The FDR is a better measure than the often used specificity,
when evaluating results on seizure/simulated seizure detec-
tion.  To obtain valuable results for FDR the measurements
should contain several hours for testing. For practical reasons
we  only measured for 1.5–3 h for the healthy subjects, which
may  influence our results.

5.  Results

The results vary depending on the feature extraction method.
The  results for the DWT method are shown in Fig. 10, whereas
the  results for the WPT  method are shown in Fig. 11. To com-
pare  the results of the different combinations of modalities,
the  median and 95% confidence level of all results (both meth-
ods)  are given in Table 2.

5.1.  DWT  method

The DWT method (Fig. 10) shows an almost perfect result,
when  combining all modalities, while the detection is less
accurate  when only one modality is used. For the first healthy
subject  (HS) the worst result is seen, when only the ACM data
is  included, whereas the worst result for healthy subject 2, 4,
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Fig. 11 – The results from the WPT  feature extraction method. HS means healthy subject.

5, 6, 9 and 10 are seen when only the ANG data is used. For
the  last three healthy subjects (3, 7 and 8) the worst result is
achieved  when only the sEMG data is used. The latencies are
short  for all tests; the longest latency is seen for the ninth
healthy  subject, where only the ANG data is used. The FDR
shows  that for several tests the number of false detections per
hour  is truly high. For 7 of the 10 healthy subjects the high-
est  FDR is observed when only the ANG data is used for the
remaining  three it is when only sEMG or ACM is used. When
all  modalities are used, the FDR is though equal to 0 for 8 of the
10  healthy subjects, the last two (HS 1 and 8) have an FDR of
0.67  and 1.7, respectively. In Table the results are presented to
easy compare the different combinations of modalities. This
shows  that the ANG modality alone performs the worst and
that  clearly a combination of all modalities performs the best.

5.2.  WPT  method

For all healthy subjects except for healthy subject 6, the accu-
racy  is the lowest when only the ANG data is used, and for
some  the sensitivity is as low as 0%. For the healthy subject

6  the results are the worst when the ANG data is combined
with the sEMG data. For all healthy subjects the best results
are  obtained, when all modalities are combined. The latency
is  seen to be short for all tests except for healthy subject 2, 3, 7,
8,  9 and 10, when only the ANG data is used. The FDR  is as low
as  0 for about half of the tests, for a few it is as high as 30, and
for  the rest the FDR is around 10. When all modalities are used
for  eight of the 10 healthy subjects it succeeded in keeping an
FDR  of 0, but for the remaining two (HS 1 and 8) the FDR is
11  and 18, respectively. Looking into Table 2 it is seen that the
ANG  modality alone performs the worst with a too low sensi-
tivity  and much  too high median latency. A combination of all
modalities  is shown to provide the best results.

5.3.  Comparison

The results for the healthy subjects on multi-modal data
(sEMG,  ACM and ANG) clearly show that the algorithm per-
forms  better when all three modalities are used (see Table 2).
This is independent on whether the DWT or the WPT  feature
extraction method is applied. From Table 2 it is clearly seen

Table 2 – Median values (and in parentheses the 95 confidence level). SEN: sensitivity; FDR: false detection rate; LAT:
latency.

Discrete wavelet transform Wavelet packet transform

SEN [%] FDR LAT [s] SEN [%] FDR LAT [s]

ACC 100  (52–100) 0.5 (0–70) 0.75 (0.75–1.6) 100 (52–100) 0 (0–5.8) 1 (1–1.4)
ANG 71 (60–100) 49 (4.3–77) 0.75 (0.75–3.5) 29 (0–86) 0 (0–19) 19 (1–28)
sEMG 93  (49–100) 13 (1.1–50) 0.75 (0.75–1.1) 71 (39–97) 11 (2.9–33) 1 (1–1.9)
ACC, ANG 100  (82–100) 0 (0–38) 0.75 (0.75–0.75) 100 (77–100) 0 (0–19) 1 (1–1)
ACC, sEMG 100  (89–100) 0 (0–13) 0.75 (0.75–1.0) 100 (81–100) 0 (0–3.5) 1 (1–1)
ANG, sEMG 100  (86–100) 4.5 (0.2–27) 0.75 (0.75–0.75) 71 (52–97) 4.5 (2.7–19) 1 (1–1.4)
All 100  (100–100) 0 (0–1.7) 0.75 (0.75–0.75) 100 (100–100) 0 (0–18) 1 (1–1)
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that, when all modalities are used the two methods provide
similar  results, with the only exceptions of the latency, where
the  lower bound is dependent on the window length, and the
FDR  which has a wider 95% confidence range for the WPT
method.  This difference is caused by two healthy subjects (1
and  8) who are seen to have much  larger FDR in Fig. 11, than
in  Fig. 10, when all modalities are used. Besides from using
all  modalities it is difficult to say which method provides the
best  result. It depends on the individual subject and whether
the  sensitivity or the FDR is the most important. The DWT
gives  the highest sensitivity for all, whereas the WPT  provides
a  lower FDR.

6.  Discussion

The best results, for distinguishing between simulated
seizures and normal activities based on the two wavelet
methods, are clearly obtained when all three modalities
are included. However, if the number of modalities or sen-
sors/electrodes could be reduced, without worsening the
results  too much,  it would be preferable considering the
usability  for the patients.

The  ANG modality alone is not useful, but the best results
are  obtained when it is combined with the ACM and the sEMG
modalities.  For both methods it would though be the ANG
modality  that would be eliminated, if one wanted to base a
system  on only two modalities, since the combination of ACM
and  sEMG, show the next best result for both methods.

Based on the results it seems evident to combine all three
modalities, but it does not allow us to determine which
wavelet method is the best. Beside the different approaches,
DWT  and WPT,  it should also be noted that the two are based
on  different frequencies, so this might as well influence the
results.  When we  examined which frequency bands gave the
largest  differences between simulated seizures and normal
activities,  it resulted in different bands for the two methods.
Based  on that examination we ended up investigating differ-
ent  frequencies for the two methods. We expect that future
tests  on patient data will reveal which wavelet method is
preferable  for a final detection system. Also, as mentioned ear-
lier,  we  chose to look at the classification problem as binary,
but  when real seizures are collected it might improve the
results  further if the seizures are split up in different groups,
dependent on the type. Furthermore we  will focus on using
more  patient-friendly measuring equipment, suitable for long
term monitoring.

The  prime limitation in getting the adequate patient data
was  the way  the motion sensors were attached to the patient.
They  were  placed in pockets of a specially designed suit.
Wearing  this suit did not constitute a problem for the well
functioning patients. However, these patients rarely have gen-
eralized tonic–clonic seizures. The patients who frequently
have  this seizure type are typically mentally retarded, and they
could not tolerate the suit.

The aim of our study was  to determine whether an algo-
rithm  for seizure detection based on multimodal data can be
developed  and further which combination of the modalities
that  would perform the best. As our results on healthy sub-
jects  who could tolerate the suit are encouraging for using a

combination  of all three modalities, it is worthwhile to focus
on  further development of a sensor setup, which could be tol-
erated  by the patients. Fewer and smaller sEMG electrodes
and/or motion sensors, attached to the patient, with wire-
less  communication could solve this problem. To make such
a  change it would be helpful to investigate which places on
the  body that are more  suited to wear these sensors and with
how  few sensors and/or electrodes is it possible to achieve an
acceptable  result.

7. Conclusion

The automatic MISA system implemented offers a new
approach for use of movement  data with feature extraction
from  discrete wavelet components or wavelet packet compo-
nents  combined with an advanced classifier, to detect epileptic
seizures.  Based on the present studies both feature extrac-
tion  methods provided equally promising results, and for both
the  best result was  obtained for all healthy subjects, when
combining all modalities. Future studies are needed to reveal
which  feature extraction method is the best choice for patient
data.

Our  data show the superiority of the multi-modal approach
as  compared to a uni-modal approach, especially compared to
the ANG modality alone. At the moment, the device is a pro-
totype  for research use only. We  have experienced that some
patients  feel uncomfortable wearing the suit containing the
sensors.  The superiority of the multi-modal results encourage
us  to develop a more  patient-friendly multi-modal equipment
containing the sensors, suitable for long term monitoring of
the  patients with epilepsy. It is convenient to base this new
equipment  on knowledge of which sensor/electrode place-
ments  alone or combined can provide acceptable results,
with  the presented algorithm. The next step is therefore to
test  the algorithm on a feature vector containing fewer sen-
sor/electrode places. It is furthermore important to research
on  improving the biomedical signal processing for either a
patient  specific or a patient generic system using our multi-
modal  seizure onset detection approach.
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SUMMARY

Purpose: Tonic seizures and the tonic phase of tonic–

clonic epileptic seizures are defined as ‘‘sustained tonic’’
muscle contraction lasting a few seconds to minutes.

Visual inspection of the surface electromyogram (EMG)

during seizures contributed considerably to a better

understanding and accurate diagnosis of several seizure

types. However, quantitative analysis of the surface EMG

during the epileptic seizures has received surprisingly

little attention until now. The aim of our study was to elu-

cidate the pathomechanism of the tonic muscle activation

during epileptic seizures.

Methods: Surface EMG was recorded from the deltoid

muscles, on both sides, during 63 seizures from 20

patients with epilepsy (10 with generalized tonic and 10

with tonic–clonic seizures). Twenty age- and gender-

matched normal controls simulated 100 generalized

tonic seizures. To characterize the signal properties we

calculated the root mean square (RMS) of the ampli-

tudes, the median frequency (MF), and the coherence.

Based on the spectrograms of both epileptic and simu-

lated seizures, we chose to determine the relative

spectral power (RP) in the higher (100–500 Hz) fre-

quency domain.

Key Findings: During the tonic seizures there was a signifi-

cant shift toward higher frequencies, expressed by an

increase in the MF and the RP (100–500 Hz). The ampli-

tude characteristic of the signal (RMS) was significantly

higher during the tonic phase of the tonic–clonic seizures

as compared to the simulated ones, whereas the RMS of

the tonic seizures was significantly lower than the simu-

lated ones. The EMG–EMG coherence was significantly

higher during the epileptic seizures (both types) as com-

pared to the simulated ones.

Significance: Our results indicate that the mechanism of

muscle activation during epileptic seizures is different

from the physiologic one. Furthermore the sustained

muscle activation during the tonic phase of tonic–clonic

seizures is different from that during tonic seizures: The

tonic phase of tonic–clonic seizures is characterized by

increased amplitude of the signal, whereas tonic seizures

are produced by a significant increase in the frequency of

the signal.

KEY WORDS: EMG, Epilepsy, Signal analysis, Tonic–

clonic seizures, Tonic seizures.

Tonic muscle contraction constitutes the characteristic
semiologic feature of several epileptic seizures. Tonic sei-
zures are defined as sustained increase in muscle contrac-
tion lasting from seconds to minutes (Gastaut et al., 1963),
whereas tonic–clonic seizures are defined as a sequence
consisting of a tonic followed by a clonic phase (Commis-
sion on Classification and terminology of the ILAE, 1981).
Clinically, it is not always easy to distinguish between pure
tonic and tonic–clonic seizures. Is a tonic seizure a fragment
of a tonic–clonic seizure or fundamentally different? It is
still unclear whether these seizure types share a final com-

mon pathway of motor unit (MU) activation, leading to the
characteristic, sustained tonic muscle activation, and it has
not been elucidated whether the tonic muscle activation dur-
ing the seizures is different from the physiologic one. The
electroencephalography (EEG) during these seizure types is
usually obscured by artifacts.

Visual inspection of surface electromyography (EMG)
signals from polygraphic recordings contributed to identify-
ing the pathomechanisms of several seizure-types:
myoclonic (including negative myoclonus), atonic, myo-
clonic–atonic, epileptic spasms, and startle-induced reflex
seizures (Mothersill et al., 2000). Recording surface EMG
signals during seizures proved to provide valuable diagnos-
tic information in the clinical practice: Tassinari et al.,
(2010) encouraged the use of off-line analysis of digital
polygraphic recordings of epileptic seizures. Digital record-
ing systems allow measuring precisely the time between the
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EEG and EMG signals, as well as the precise duration of the
muscle activity (Rubboli & Tassinari, 2006; Tassinari &
Rubboli, 2008).

Although quantitative analysis of EMG signals was
investigated extensively in several types of movement dis-
orders (Grosse & Brown, 2005), to the best of our knowl-
edge myoclonus is the only seizure type in which this
feature was addressed (Grosse et al., 2003; Panzica et al.,
2003; Shibasaki et al., 1978).

The properties of the surface EMG signals can be
described by characteristics in the time domain (variation in
time of the amplitude) and in the frequency domain. The
amplitude characteristics of the signal are reflected by the
root mean square (RMS). The frequency domain character-
istics can be visualized using spectrograms and they can be
expressed by the median frequency (MF) and the relative
power of the signal in the different frequency bands. The
correlation between the muscle activation on the two sides
can be reflected by the EMG–EMG coherence.

These quantitative parameters reflect different features
of the MU activation and recruitment. To elucidate the
pathomechanism of tonic muscle activation during seizures,
we recorded surface EMG during tonic and tonic–clonic
epileptic seizures, as well as seizures simulated by healthy
volunteers. We calculated the RMS, MF, and coherence
between the muscles on the left and right sides. Based on
the changes observed in the spectrogram, we calculated
the relative power of the signal in the frequency domain
100–500 Hz.

Epileptic seizures occur due to abnormal excessive or
synchronous neuronal activity in the brain. We hypothe-
sized that this will be reflected in the pathomechanism of
the epileptic tonic muscle activation by a shift toward higher
frequency domains, increase in coherence, and/or increase
in the amplitude feature.

Methods

Subjects
Fifty-seven consecutive patients admitted to our Epilepsy

Monitoring Unit for diagnostic reasons and who had a his-
tory of tonic or tonic–clonic seizures in the referral were
included. Twenty-three patients did not have seizures dur-
ing the monitoring, 20 patients had seizures with tonic mus-
cle activation (10 patients had tonic, and 10 patients had
tonic–clonic seizures), and 14 patients had epileptic seizures
other than tonic and tonic–clonic. In addition, 20 healthy
controls who simulated epileptic seizures had been
recruited. The project had been approved by the local ethics
committee and all subjects received information on the pro-
ject and gave their written consent.

In the group of the patients with epilepsy (7 female, 13
male) the mean age was 24.8 years (range 6–58). The
group of healthy controls was age and gender matched:
mean age 25.4 years (range 6–54), eight were female and

12 male (for the age: p = 0.64; for the gender: p = 1).
The subgroup of patients with tonic seizures (four female,
six male) had a mean age of 20.4 years (range 6–58),
whereas in the subgroup with tonic–clonic seizures (three
female, seven male) the mean age was 29.2 years (range
11–55). There was no significant difference among the
two patient subgroups and the group of healthy controls
concerning the age (p > 0.1) or concerning the gender
(p > 0.7).

One patient with tonic–clonic seizures had idiopathic
generalized epilepsy (juvenile myoclonic epilepsy); the
other nine patients in this group had symptomatic focal epi-
lepsy, with secondarily generalized seizures. In the group
with generalized tonic seizures, one patient had cryptogenic
epilepsy; all others had symptomatic focal or multifocal
epilepsy. Seven patients in this group had symptomatic
Lennox-Gastaut syndrome (Data S1).

Recordings
In addition to the standard EEG electrodes, surface EMG

electrodes (silver/silver chloride 9-mm surface electrodes)
were placed on the deltoid muscles on both sides in a mono-
polar setting (the active electrode was placed on the mid-
point of the muscle belly, whereas the reference electrode
was placed on the acromioclavicular joint, just proximal to
the insertion of the muscle). We opted for this setting to cir-
cumvent the effects of phase-cancellation that occur in the
bipolar setting, when both electrodes are placed on the
muscle (Bischoff et al., 1999; McAuley et al., 2000; Stau-
denmann et al., 2010).

The surface EMG signals were sampled with a frequency
of 1,024 Hz, and an anti-aliasing filter of 512 Hz. All EMG
signals were notch (49–51 Hz) filtered with an infinite
impulse response filter to remove noise from the power line
and furthermore high pass (10 Hz) filtered with a finite
impulse response filter, as the signal beneath 10 Hz is
obscured because of the movements of the electrodes
against the skin (Merletti & Parker, 2004). For both filters,
the group delay was assessed and found not to interfere with
the investigated frequencies.

Seizures
The long-term video–electroencephalography (EEG)

recordings were reviewed by a clinical neurophysiologist
and an epileptologist, who marked the time epochs contain-
ing a tonic seizure or the tonic component of a tonic–clonic
seizure, based on visual analysis. These epochs were
marked only if they unequivocally corresponded to a sei-
zure-period. In case of the secondarily generalized seizures,
the start of the bilateral symmetric phase was marked as the
onset.

We recorded 63 epileptic seizures with tonic muscle acti-
vation from the 20 patients (mean 3.2 seizures/patient; range
1–10). The patients with tonic seizures had more seizures
(mean 4.5 seizures/patient; range 1–10) than the patients
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with tonic–clonic seizures (mean 1.8 seizures/patient; range
1–4) (p = 0.027). To avoid an excessive influence on the
group-data from the patients with more seizures, the mean
of the seizures was calculated for each patient.

The healthy controls were trained to perform the sus-
tained, maximal muscle contraction in all upper limb mus-
cles in a position imitating the one during the epileptic
seizures, as instructed and as shown on the video. The
recording was done in the presence of two of the authors
(including a physician with experience in evaluating long-
term video-EEG recordings), and the healthy controls were
asked to correct the way they activated the muscles if that
was necessary. Each healthy control subject simulated five
seizures, which gives in total 100 simulated seizures.

Data analysis
To characterize the surface EMG signals during the epi-

leptic and the simulated seizures, several quantitative
parameters were calculated. All data analysis was done
using MATLAB 7.6 software (Mathworks, Natick, MA,
U.S.A.).

Time domain
The amplitude is fluctuating within broad ranges, and

outliers have huge influence. To avoid this, instead of the
raw amplitude, an expression of the mean value of a short
time window is used to characterize the amplitude (Ara-
badzhiev et al., 2010). An arithmetic mean of the raw signal
would provide a value close to zero; therefore, the signal is
squared before calculation of the mean and then to even out
the square effect, the root is applied. This is called the root
mean square (RMS) and is characterized using the RMS
value:

RMSðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN�1
n¼0

xðnÞ2
vuut ;

where x(n) is the EMG signal and N is the window length.
The RMS value was calculated for a window of a length of
3 s and each window overlapped the previous and the next
one with 2 s. As there seems to exist no established
definition for the minimum duration of a tonic contraction
to qualify as a tonic seizure, we used for the successive time
windows a duration of 3 s as proposed by L�ders et al.,
(1998).

Frequency domain
The frequency features were visualized using plots of the

magnitude of the fast Fourier transform (FFT) and spectro-
grams, and they were quantified by the MF and the relative
power (100–500 Hz).

MF is defined as the frequency that divides the magnitude
spectrum in two parts of equal sizes (the area under the
curve for the frequencies lower than MF equals the area
under the curve for the frequencies higher than MF) (Gelli

et al., 2007; Wakeling, 2009), and it is expressed according
to the formula:

XfMF

f¼0
FFTmðfÞj j ¼ 0:5

Xfs=2

f¼0
FFTmðfÞj j;m ¼ 1; 2; 3 . . . ;

where m is the window number, fs is the sampling fre-
quency, fMF is the MF, and the FFTm is the discrete fre-
quency spectrum of the window m. |Æ| computed the absolute
values of the discrete frequency spectrum. The MF values
were calculated from time windows of 3 s duration, over-
lapping by 2 s.

Spectrograms (diagrams visualizing the power of the
signal in the different frequency components across the
time) were calculated for each seizure. The power was cal-
culated for a small window of 125 samples, and each win-
dow was overlapping the previous and the next by 50%.
This offered a frequency and time resolution of 7.5 Hz and
0.125 s, respectively. The frequency was represented on
the y-axis, and the successive time windows on the x-axis.
For each time window the power was visualized for all
frequencies in a color-code (the size of the logarithm of
the relative power for the particular time window and
frequency band).

In addition, we determined the relative power (RP) in
the higher frequency domain. Based on the visual inspec-
tion of the spectrograms we chose the frequency range
100–500 Hz. The RP was calculated by dividing the power
in the 100–500 Hz frequency range by the total power of
the signal in the whole frequency domain, in each time-
window, of 3 s overlapping as for the other features by
2 s:

relPðmÞ ¼
P500

f¼100 XmðfÞj j2
Pfs

2

f¼0 XmðfÞj j2
; m ¼ 1; 2; 3 . . . ;

where Xm(f) is the N-point discrete frequency spectrum
(N = 4,096) of the m’th window.

Coherence
Coherence is the correlation in the frequency domain

between two oscillatory activities in spatially distinct sys-
tems (Mima & Hallett, 1999). This normalized measure of
correlation has values between 0 and 1. A coherence value
of 1 indicates a perfectly linear relationship, whereas 0 is
when the two signals are completely independent.

We calculated EMG–EMG coherence between the right
and left sides, using the standard methods in this field
(Brown et al., 1999; Farmer et al., 1993b; Halliday et al.,
1995; Kilner et al., 1999). We opted for including in this
article results from the analysis of the unrectified EMG sig-
nals because previous studies have suggested that rectifica-
tion might impair the oscillatory input between two EMG
signals (Neto & Christou, 2010). Furthermore, one of the
previous studies showed that this analysis method is reliable
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also for unrectified data (Brown et al., 1999). However, we
also analyzed the rectified data, and the results were similar
(Data S2). We plotted the coherence spectra for each sub-
ject and furthermore calculated the coherence in the whole
frequency band (10–512 Hz) as the mean of the coherence
values in this domain.

For each subject we calculated the mean of the RMS, MF,
RP, and coherence values of all time windows, during all
seizures, and the mean of the values from the left and right
deltoid muscles were entered into the statistical analysis.
Therefore, for each patient only one (mean) value was
entered into the statistical analysis, regardless of the number
of seizures the patient had. We did this to avoid the bias
toward the data from patients with more seizures.

Because the surface EMG parameters (calculated from
the time windows of 3 s) were not constant within the
seizures, besides determining the mean value of the
different parameters for the whole seizure period (as
described above), we also calculated the 95th percentile
(peak) values, for each patient and for each quantitative
EMG parameter. This way we can express the highest
level of activation for a certain parameter, for each
patient, without being biased by the outlier values (upper
5th percentile).

Statistics
The normality of the data distribution was assessed using

Kolmogorov-Smirnoff test. Because the data were not nor-
mally distributed we compared the quantitative EMG
parameters among the subject groups using Wilcoxon test.
To assess the matching of the gender between the two
groups and further between the subgroups, Fisher’s exact
test was used.

Results

Examples of the EMG signals from the different groups
are shown in Fig. 1. The quantitative EMG parameters are
presented in Table 1.

Median frequency
The magnitude spectrum visualizes the distribution of the

signal at the different frequency components (Fig. 2). Dur-
ing the epileptic seizures (especially the tonic ones) we
observed a shift to the right (toward the higher frequencies).
The FFT of the simulated seizures (Fig. 2C) are mostly
below 100 Hz.

The MF (Table 1) was significantly higher during the epi-
leptic seizures as compared with the simulated ones
(p = 0.005).

The subgroup analysis showed that MF was significantly
higher during the tonic seizures than during the simulated
seizures (p = 0.001), and furthermore significantly higher
than during the tonic phase of the tonic–clonic seizures
(p = 0.03). There was no significant difference between the

MF during the tonic phase of the tonic–clonic seizures and
the simulated ones (p = 0.18).

Relative power
Figure 3 shows spectrograms of the RP for the different

frequencies. Inspection of the spectrograms suggested
higher power for the frequency domains above 100 Hz dur-
ing the epileptic seizures as compared with the simulated
ones. To express this quantitatively we calculated the RP for
the frequency range of 100–500 Hz.

The RP (100–500 Hz) was significantly larger during the
epileptic seizures as compared with the simulated ones
(p = 0.006). RP (100–500 Hz) was higher during the tonic
seizures than during the tonic phase of the tonic–clonic sei-
zures (p = 0.009) and higher than during the simulated sei-
zures (p = 0.0004). There was no significant difference
between the RP (100–500 Hz) during the tonic phase of the
tonic–clonic seizures and the simulated ones (p = 0.37).

Amplitude characteristics
The visual inspection of the EMG signals suggested that

amplitudes were higher during the tonic phase of the tonic–
clonic seizures as compared to the seizures from the other
subjects (Fig. 1).

A

B

C

Figure 1.

EMG signals of representative seizures: (A) the tonic phase of a

tonic–clonic seizure; (B) tonic seizure; (C) simulated seizure.

The vertical, dotted line in figure A marks the end of the tonic

phase/beginning of the clonic phase, as seen on the video-EEG

recordings. The scale of the y-axis is different for the three

seizures.
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The RMS (Table 1) for the group of epileptic seizures
was not significantly different from that for the simulated
seizures (p = 0.47). However the subgroup analysis showed
that the RMS during the tonic phase of the tonic–clonic sei-
zures was significantly higher than during the simulated sei-
zures (p = 0.001), and furthermore significantly higher than
during the tonic seizures (p = 0.0008). The RMS during the
tonic seizures were significantly smaller than during the
simulated seizures (p = 0.045).

Coherence
The visual inspection of the EMG signals showed bilat-

eral-synchronous, sustained muscle activation during the
analyzed seizure periods in all groups. The coherence

spectra demonstrated that there were several frequencies
with significant coherence for each patient (Fig. 4), and that
these frequencies varied from subject to subject. In the
absence of certain, dominating frequencies for the signifi-
cant level of coherence, we opted to calculate the coherence
for the whole frequency band and to compare this among
the groups. The coherence was significantly higher during
the epileptic seizures than during the simulated ones
(p = 0.0005). There was not any significant difference in
coherence between the two subgroups of epileptic seizures
(p > 0.3), but in both epilepsy subgroups the coherence was
higher than in the group with simulated seizures (p £ 0.007).

Peak values
To reflect the highest level of activation achieved by each

patient/subject, in addition to mean values for the whole-sei-
zure period (detailed above), we also calculated the 95th

Table 1. Median values of the whole seizure period for all patients (and in parentheses 95% confidence intervals)

for the different surface EMG parameters

Epileptic Tonic Tonic–clonic Simulated

MF (Hz) 76.8 (59.0–112) 86.2 (63.3–113) 73.6 (59.0–80.8) 63.9 (56.9–83.9)

RP (100–500 Hz) 0.151 (0.047–0.395) 0.217 (0.114–0.401) 0.110 (0.041–0.176) 0.079 (0.039–0.207)

RMS (mV) 0.636 (0.055–2.20) 0.251 (0.053–0.784) 1.16 (0.356–2.46) 0.440 (0.170–1.10)

Coherence 0.120 (0.050–0.255) 0.117 (0.048–0.178) 0.120 (0.063–0.289) 0.071 (0.046–0.109)

A

B

C

Figure 3.

Spectrograms (time-frequency plots) of representative sei-

zures: (A) the tonic phase of a tonic–clonic seizure; (B) tonic

seizure; (C) simulated seizure. The vertical, dotted line in figure

A marks the end of the tonic phase/beginning of the clonic

phase, as seen on the video-EEG recordings. The color code

represents the size of the logarithm of the relative power.

Epilepsia ILAE

A

B

C

Figure 2.

Power spectrums of representative seizures: (A) the tonic

phase of a tonic–clonic seizure; (B) tonic seizure; (C) simulated

seizure. The scale of the y-axis is different for the three sei-

zures. For the simulated seizures most of the power is in the

frequency band <100 Hz. During the epileptic seizures (espe-

cially the tonic seizure) one can observe a shift toward the

higher frequencies.
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percentile of the parameters (peak values). The shift toward
the higher frequencies during the tonic seizures, the increase
in the amplitude characteristic (RMS) during the tonic phase
of the tonic–clonic seizures, and the increase in the coher-
ence in the epileptic seizures (both types) were even more
pronounced when analyzing the peak values (Data S3).

The effect of duration
There was no statistically significant difference between

the duration of the tonic seizures and the duration of the
tonic phase of the tonic–clonic seizures in our patients
(median: 14.66 and 15.95 s, respectively; p = 0.6). There
was no significant correlation between the duration and the
quantitative EMG parameters that distinguished between
the two seizure-types: RP 100–500 Hz, MF, RMS
(p > 0.12). A multiple regression analysis for categorical
(seizure-type: tonic vs. tonic–clonic) and continuous (dura-
tion) predictors showed that it was only the seizure type that
predicted these quantitative EMG parameters.

Discussion

We found a significant shift toward higher frequencies
during tonic seizures. Patients with tonic–clonic seizures

had significantly increased amplitude characteristic (RMS),
whereas patients with tonic seizures had significantly lower
RMS than the simulated seizures. The EMG–EMG coher-
ence was significantly higher during the epileptic seizures
(in both subgroups).

The mechanism of muscle activation in the healthy vol-
unteers simulating the seizures is obviously a physiologic
one. Although, based on visual assessment, the posturing
and muscle contractions appeared similar during the simu-
lated and the epileptic seizures, the mechanisms of muscle
activation were different.

As the surface, EMG parameters were not constant within
the seizures; in addition to determining the mean value of
the different parameters for the whole seizure period, we
also calculated the 95th percentile (peak) values. Our results
were even more pronounced when analyzing the peak val-
ues than when analyzing the mean values of the whole sei-
zure periods.

Quantitative analysis of the surface EMG demonstrated
significant differences between the two subgroups of epilep-
tic seizures in which the qualitative (visual) assessment
showed ‘‘sustained muscle activation’’: tonic seizures are
produced by a significant shift toward the higher frequency
bands, whereas the tonic phase of the tonic–clonic seizures
is produced by an increase in the amplitude characteristic.
These differences between the tonic seizures and tonic
phase of the tonic–clonic seizures are not merely a function
of time, as there was no significant difference in duration
between the two seizure types, and the quantitative EMG
parameters that differentiated between them did not show a
correlation with the duration of the tonic muscle activation.

Except for one patient with idiopathic generalized epi-
lepsy (JME) all patients (in both epileptic subgroups) had
symptomatic or unknown etiology. When excluding the
JME patient from the tonic–clonic group we obtained simi-
lar results for all analyses. However, it is interesting to point
out that the patient with JME was an outlier: The increase in
the RMS and coherence was even more pronounced than in
the other patients.

Although various quantitative surface EMG parameters
have been used to infer details about the central nervous sys-
tem (CNS) control mechanism of muscle activity, the tech-
nical limitations of the method should be emphasized, as the
surface EMG reflects both peripheral and central properties
of the neuromuscular system (Farina et al., 2004). However,
the shift toward higher frequency domains during the mus-
cle activation has been attributed to the recruitment of more
motor neurons, including the ones with higher threshold
(Wakeling, 2009; Riley et al., 2008). The increase in the
amplitude characteristic (RMS) of the surface EMG signal
can be caused by synchronization of the MU activity or by
lengthening of the muscular action potential (Arabadzhiev
et al., 2010).

The shift toward higher frequencies during the tonic
seizures can thus be explained by an increase in the

A

B

C

Figure 4.

Coherence spectra (blue curve) for: (A) the tonic phase of a

tonic–clonic seizure; (B) tonic seizure; (C) simulated tonic sei-

zure. The black dotted line defines the significance level calcu-

lated as in the standard methods (Farmer et al., 1993b). The

coherence spectra were smoothed with a moving average filter

(Grosse et al., 2003).
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recruitment of more, high threshold motor neurons.
Patients with Parkinson’s disease have an altered pattern
of MU recruitment: There is a preferential activation of
the low-threshold MUs suggesting that the extrapyrami-
dal system is involved in coordinating the recruitment of
the high threshold MUs (Glendinning & Enoka, 1994).
Based on this, we hypothesize that the observed shift
toward the higher frequencies during tonic seizures is
due to excessive activation of the extrapyramidal system.
In the early electroclinical studies of the tonic seizures,
Gastaut opined that these seizures result from an activa-
tion of the subcortical/extrapyramidal structures (Gastaut
et al., 1963). This is consistent with our findings and the
recently published ictal single photon emission computed
tomography (SPECT) data showing hyperperfusion in
the basal ganglia during focal tonic seizures (Wong
et al., 2010).

The increase in the amplitude characteristics of the EMG
signal during the tonic phase of the tonic–clonic seizures
can be explained by an increased synchronization in the
recruited motor neuron pool. Studies of patients with lesions
of the corticospinal tract demonstrated the importance of
these pathways in the presynaptic synchronization of the
spinal motor neurons (Farmer et al., 1993a; Smith et al.,
1999). This suggests that the increase in the amplitude dur-
ing the tonic phase of the tonic–clonic seizure could be
attributed to an excessive activation of the corticospinal
pathways, as opposed to the possible extrapyramidal domi-
nance during the tonic seizures.

As early as 1963, Gastaut, based on visual analysis of the
surface EMG in polygraphic recordings described that the
tonic phase of the tonic–clonic seizures was ‘‘more intense’’
than the contraction of tonic seizures (Gastaut et al., 1963).
Our quantitative analysis demonstrating higher amplitude
characteristic of the tonic phase of the tonic–clonic seizures
are consistent with these early observations. Our findings
further support that tonic seizures are not merely truncated
manifestations or fragments of tonic–clonic seizures (i.e.,
minus the clonic phase), not even at the level of the final
pathway (the MUs). We suggest that the ‘‘sustained tonic
contraction’’ has to be defined differently for tonic and
tonic–clonic seizures, emphasizing the increase in fre-
quency in the case of the tonic seizures and the increase in
amplitude for the tonic–clonic seizures. A different aspect
that we did not include in our study is the transition in tonic–
clonic seizures from the tonic to the clonic phase with its
cycles of inhibition interrupted by reappearance of the tonic
contraction, producing atonia alternating with violent flexor
spasms (Zifkin & Dravet, 2008).

The healthy controls were trained to activate simulta-
neously and synchronously the muscles on the two sides.
The visual analysis of the recordings showed that the ‘‘sus-
tained’’ muscle activation during all analyzed seizures in all
patients and subjects were bilateral, symmetrical, and syn-
chronous. However, the coherence was significantly higher

during the epileptic seizures (in both subgroups for the
whole seizure period) as compared with the simulated ones.
This suggests that the neural networks on both sides are syn-
chronously activated also in the efferent pathways. Grosse
et al., (2003) found markedly increased EMG–EMG mean
coherence between the muscle pairs on the two sides in nine
patients with high frequency rhythmic myoclonus. Our find-
ings in patients with generalized tonic and tonic–clonic sei-
zures are consistent with this.

In conclusion we demonstrated distinct patterns of
muscle activation during tonic seizures and the tonic
phase of tonic–clonic seizures. Our results provide fur-
ther insight into the pathomechanism of the muscle acti-
vation during epileptic seizures. In addition, our results
have potential diagnostic significance. A combination of
these parameters could provide supplementary informa-
tion in selected, difficult cases where the differentiation
between epileptic and nonepileptic seizures is difficult
only based on video-EEG data. A combination of these
distinct EMG features could also be used to design algo-
rithms for automatic seizure detection based on surface
EMG data.

To the best of our knowledge this is the first publication
addressing the quantitative analysis of the surface EMG sig-
nals during tonic and tonic–clonic epileptic seizures.

Acknowledgments

We wish to thank all sponsors for the PhD project of the author I. Con-
radsen. The supporters are the Danish Agency of Science Technology and
Innovation, the Danish Epilepsy Centre, the Peter & Jytte Wolf Foundation
for Epilepsy [grant PJWS 02-07 to I.C.], and the Technical University of
Denmark. Two authors S.B. and H.B.D.S. contributed equally to the work
done on this article.

Disclosure

None of the authors has any conflict of interest to disclose. We confirm
that we have read the Journal’s position on issues involved in ethical publi-
cation and affirm that this report is consistent with those guidelines.

References

Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV. (2010) Influ-
ence of motor unit synchronization on amplitude characteristics of sur-
face and intramuscularly recorded EMG signals. Eur J Appl Physiol
108:227–237.

Bischoff C, Fuglsang-Frederiksen A, Vendelbo L, Sumner A (1999) Stan-
dards of instrumentation of EMG. In Deuschl G, Eisen A (Eds) Recom-
mendations for the practice of clinical neurophysiology: guidelines of
the International Federation of Clinical Neurophysiology. 2nd revised
and enlarged ed. Elsevier, Amsterdam; Electroencephalogr Clin Neuro-
physiol Suppl 52:199–211.

Brown P, Farmer SF, Halliday DM, Marsden J, Rosenberg JR. (1999)
Coherent cortical and muscle discharge in cortical myoclonus. Brain
122:461–472.

Commission on Classification and terminology of the ILAE. (1981) Pro-
posal for revised clinical and electroencephalographic classification of
epileptic seizures. Epilepsia 22:489–501.

Farina D, Merletti R, Enoka RM. (2004) The extraction of neural strategies
from the surface EMG. J Appl Physiol 96:1486–1495.

2131

Patterns of Muscle Activation during Seizures

Epilepsia, 52(11):2125–2132, 2011
doi: 10.1111/j.1528-1167.2011.03286.x



Farmer SF, Swash M, Ingram DA, Stephens JA. (1993a) Changes in motor
unit synchronization following central nervous lesions in man. J Phys-
iol 463:83–105.

Farmer SF, Bremner FD, Halliday DM, Rosenberg JR, Stephens JA.
(1993b) The frequency content of common synaptic inputs to motoneu-
rones studied during voluntary isometric contraction in man. J Physiol
470:127–155.

Gastaut H, Roger J, Ouahchi S, Timsit M, Broughton R. (1963) An electro-
clinical study of generalized epileptic seizures of tonic expression. Epi-
lepsia 4:15–44.

Gelli F, Del Santo F, Popa T, Mazzocchio R, Rossi A. (2007) Factors influ-
encing the relation between corticospinal output and muscle force dur-
ing voluntary contractions. Eur J Neurosci 25:3469–3475.

Glendinning DS, Enoka RM. (1994) Motor unit behavior in Parkinson’s
disease. Phys Ther 74:61–70.

Grosse P, Brown P (2005) Corticomuscular and intermuscular frequency
analysis: physiological principles and applications in disorders of the
motor system. In Niedermeyer E, Lopes da Silva F (Eds) Electroen-
cephalography. Basic principles, clinical applications and related
fields. 5th ed. Lippincott, Williams and Wilkins, Philadelphia, pp. 881–
889.

Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P.
(2003) Abnormal corticomuscular and intermuscular coupling in high-
frequency rhythmic myoclonus. Brain 126:326–342.

Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, Farmer
SF. (1995) A framework for the analysis of mixed time series/point pro-
cess data – theory and application to the study of physiological tremor,
single motor unit discharges and electromyograms. Prog Biophys Mol
Biol 64:237–278.

Kilner JM, Baker SN, Salenius S, Jousm�ki V, Hari R, Lemon RN.
(1999) Task-dependent modulation of 15–30 Hz coherence between
rectified EMGs from human hand and forearm muscles. J Physiol
516:559–570.

L�ders H, Acharya J, Baumgartner C, Benbadis S, Bleasel A, Burgess R,
Dinner DS, Ebner A, Foldvary N, Geller E, Hamer H, Holthausen H,
Kotagal P, Morris H, Meencke HJ, Noachtar S, Rosenow F, Sakamoto
A, Steinhoff BJ, Tuxhorn I, Wullie E. (1998) Semiological seizure clas-
sification. Epilepsia 39:1006–1013.

McAuley JH, Britton TC, Rothwell JC, Findley LJ, Marsden CD. (2000)
The timing of primary orthostatic tremor bursts has a task-specific plas-
ticity. Brain 123:254–266.

Merletti R, Parker PA (2004) Electromyography (physiology, engineering
and noninvasive applications). 1st ed. IEEE press series in Biomedical
Engineering, John Wiley & Sons Inc., Hoboken, New Jersey, pp. 120–
121.

Mima T, Hallett M. (1999) Corticomuscular coherence: a review. J Clin
Neurophysiol 16:501–511.

Mothersill IW, Hilfiker P, Kr�mer G. (2000) Twenty years of ictal EEG-
EMG. Epilepsia 41(Suppl. 3):19–23.

Neto OP, Christou EA. (2010) Rectification of the EMG signal impairs the
identification of oscillatory input to the muscle. J Neurophysiol
103:1093–1103.

Panzica F, Canafoglia L, Franceschetti S, Binelli S, Ciano C, Visani E,
Avanzini G. (2003) Movement-activated myoclonus in genetically
defined progressive myoclonic epilepsies: EEG-EMG relationship
estimated using autoregressive models. Clin Neurophysiol 114:1041–
1052.

Riley ZA, Terry ME, Mendez-Villanueva A, Litsey JC, Enoka RM.
(2008) Motor unit recruitment and bursts of activity in the surface
electromyogram during a sustained contraction. Muscle Nerve 37:745–
753.

Rubboli G, Tassinari CA. (2006) Negative myoclonus. An overview of its
clinical features, pathophysiological mechanisms, and management.
Neurophysiol Clin 36:337–343.

Shibasaki H, Yamashita Y, Kuroiwa Y. (1978) Electroencephalographic
studies myoclonus. Brain 101:447–460.

Smith HC, Davey NJ, Savic G, Maskill DW, Ellaway PH, Frankel HL.
(1999) Motor unit discharge characteristics during voluntary contrac-
tion in patients with incomplete spinal cord injury. Exp Physiol
84:1151–1160.

Staudenmann D, Roeleveld K, Stegeman DF, van Die�n JH. (2010) Meth-
odological aspects of SEMG recordings for force estimation – a tutorial
and review. J Electromyogr Kinesiol 20:375–387.

Tassinari CA, Rubboli G (2008) Polygraphic recordings. In Engel J Jr, Ped-
ley TA (Eds) Epilepsy. A comprehensive textbook. 2nd ed. Lippincott
Williams and Wilkins, Philadelphia, pp. 873–894.

Tassinari CA, Cantalupo G, Rubboli G (2010) Polygraphic recording of
epileptic seizures. In Panayiotopoulos CP, Benbadis SR, Beran RG
(Eds) Atlas of epilepsies. Springer-Verlag, London, pp. 723–740.

Wakeling JM. (2009) Patterns of motor recruitment can be determined
using surface EMG. J Electromyogr Kinesiol 19:199–207.

Wong CH, Mohamed A, Larcos G, McCredie R, Somerville E, Bleasel A.
(2010) Brain activation patterns of versive, hypermotor, and bilateral
asymmetric tonic seizures. Epilepsia 51:2131–2139.

Zifkin BG, Dravet C (2008) Generalized tonic-clonic seizures. In Engel J
Jr, Pedley TA (Eds) Epilepsy. A comprehensive textbook. 2nd ed.
Lippincott, Williams a Wilkins, Philadelphia, vol 1, pp. 553–562.

Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Data S1. Clinical data of the 20 patients with epilepsy
(T, tonic seizures; TC, tonic–clonic seizures).
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whole seizure period for all patients (and in parentheses
95% confidence intervals) for the coherence of the rectified
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Seizure Onset Detection based on one sEMG channel

Isa Conradsenabd, Sándor Beniczkybc, Karsten Hopped, Peter Wolfb, Thomas Samsa and Helge B.D. Sorensena

Abstract—We present a new method to detect seizure onsets
of tonic-clonic epileptic seizures based on surface electromyog-
raphy (sEMG) data. The proposed method is generic and based
on a single channel making it ideal for a small detection or
monitoring device. The sEMG signal is high-pass filtered with
a Butterworth filter with a cut-off frequency of 150 Hz. The
number of zero-crossings with a hysteresis of ±50μV is the
only feature extracted. The number of counts in a window of
1 second and the number of windows to make a detection is
tested with a leave-one-out method. On 6 patients the method
performs with a sensitivity of 100%, a median latency of 7.6
seconds and a median false detection rate of 0.04/h.

I. INTRODUCTION
Epilepsy is a neurological disorder that causes seizures

due to an abnormal excessive or synchronous neural activity
in the brain [1]. About 1% of the world’s population suffers
from this condition. If patients are medicated appropriately
most become seizure free, but about 25% do not. Most of
these patients experience seizures with predominantly motor
symptoms such as tonic-clonic seizures. Their fear of having
seizures in public may result in social isolation, and an
objective risk of severe and sometimes fatal injuries during
seizures increases their perceptions of insecurity. During the
seizures the patients are not able to call for help. A simple
alarm system, capable of detecting seizures, could help the
patients by alerting relatives and caretakers, whenever a
seizure sets in. We propose a single channel method, which
is reliable and may be implemented in a small monitoring
or detection device.
Attempts have been made [2], [3], [4], [5] to develop

such a system based on motion data, but none of them is
performing well enough to reach clinical use. Earlier we
have focused on using several modalities and channels [2],
[3], but have now found that a better algorithm may be
developed with just one channel from a single modality. We
propose a new method capable of capturing the tonic-clonic
seizures, with a relatively short latency and without too many
false alarms. Our approach is generic and based on a single
channel of sEMG from the deltoid muscle and encompasses
feature extraction by counting zero-crossings. The method is
evaluated on 6 patients with tonic-clonic seizures.
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II. METHODOLOGY
A. Data Collection
The 6 patients were admitted to the Danish Epilepsy

Center in Dianalund, Denmark for diagnostic reasons. The
recordings included electroencephalography (EEG), video,
electrocardiography (ECG) and sEMG electrodes placed on
several, clinically relevant muscles. We analysed signals from
the left deltoid muscle, as this placement seemed to be the
most stable one. The active electrode was placed on the
center of the muscle, whereas the reference was placed on
the acromyoclavicular joint. The admission lasted 2-4 days
depending on the patient. The sEMG was sampled with a
frequency of 1024Hz. All patients had tonic-clonic seizures.
The number of seizures, sex and age of the patients are listed
in Table I together with the lengths of the signals. The times
for the beginning and ending of the seizures was annotated
by a physician based on video and EEG signals.

TABLE I
THE PATIENTS GENDER, AGE, THE AMOUNT OF SEIZURES AND THE

LENGTH OF THE ADMISSION.

Patient Gender Age # seizures File length [h]
1 M 39 1 93.4
2 M 25 1 46.6
3 F 23 1 25.3
4 F 26 2 95.2
5 M 38 1 96.5
6 M 62 2 95.5

B. Data Processing
The processing of data is split into two parts. The first

part is the feature extraction and the last part is the detection
approach.
1) Feature Extraction: In a previous study we analyzed

the similarities and differences between sEMG signals from
real epileptic seizures and sEMG signals from simulated
seizures [6]. We showed, that real seizures had a large
proportion of data in the frequency band above 100 Hz, in
contrast to normal activity. For this study we furthermore
made a visual evaluation of all the seizures for the 6 patients
and found that the seizures still contained a large proportion
of the signal, when preprocessed with a high-pass filter with
a cut-off frequency of 150 Hz. This furthermore ensures that
a large amount of the artifacts will be removed. We have
chosen a Butterworth filter with an order of 20. The group
delay of this filter is linear in the frequency band of interest.
The seizure of the first patient including prior and posterior
normal activity, is shown in Fig. 1 before and after filtering.
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Fig. 1. The upper figure shows the seizure (with surrounding activity)
before filtering and the lower shows the signal after filtering. The vertical
black dotted lines shows the beginning and ending of the seizure.

In our previous study on the sEMG signals during real and
simulated seizures we showed that simple features are able to
distinguish between the two groups [6]. Therefore we chose
to focus this study on finding a simple feature, which is able
to discriminate tonic-clonic seizures from normal activity.
Since the final method is meant to be used in a seizure
detection system it is important to capture the seizures at
onset. We therefore searched for a feature to discriminate
the tonic part of the seizure from normal activities, since
the clonic part almost always starts late in these tonic-clonic
seizures. We found that with a simple zero-crossing method
counting the zero-crossings with a hysteresis of ±50μV, the
number of crossings was high throughout the entire tonic
phase, see Fig. 2. This hysteresis also ensures that low-
amplitude artifacts, remaining even after the filtration, are
eliminated from a possible detection as a seizure.
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Fig. 2. The number of zero-crossings in windows of 1 second as a function
of the time. It is clearly seen that the number of zero-crossings rises fast at
seizure beginning, stays high throughout the tonic phase and is then lowered
at the start of the clonic phase. The black vertical lines denote the beginning
and end of the seizure.

2) Detection Approach: For our method we have chosen
to vary two parameters, when searching for the optimal
classification of the data into the two options; tonic-clonic
seizure and normal activity. The first one is the number of
zero-crossings in a given window, called the threshold, and
the second one is the number of windows with a count above
the threshold needed to classify a seizure. As in one of our
previous studies, we have chosen to use a window of 1
second [3]. In this case we have chosen an overlap of 75% for
the windows. We chose these values for the two parameters,
based on a visual inspection of the feature-plot (see example
in Fig. 2 for all seizures. Furthermore this inspection showed
that the maximum number of zero-crossings during the tonic
phase of the seizures is about 255 counts if all seizures are
to be detected. We have though varied the number of counts
from 180 to 340. In order to avoid too many false detections
while ensuring a sufficiently short latency, the band of well
chosen number of windows to make a seizure detection is
probably narrow. To ensure that all possible solutions are
tested, we have thus varied the number of windows to make
a seizure detection from 1 to 40.
We have evaluated the results of the variation of the two

parameters by a leave-one-out method, where the values of
the parameters are chosen from the best combination based
on 5 of the patients, when looking at all combinations in a
color-plot. The best combination of parameters is then tested
on the last patient. This means that all patients are used five
times for training and one time for testing the parameters. An
example of the color-plots is shown for the training on patient
1-5 in Fig. 3-5. The green color represents the good choice,
yellow is in between and red is a bad choice. The parameters
are first of all chosen to ensure that the sensitivity is 100%,
which means that only a point in the darker green area of Fig.
3 may be chosen. On Fig. 4 and 5 we then searched for the
point that both was closest to a green color within the darker
green area from Fig. 3. This will provide the best solution to
the combination of a low amount of false positives and at the
same time a short latency. A higher threshold and/or a higher
number of windows implies a lower number of FP, whereas
the latency is lowered by lowering the number of windows
and/or lowering the threshold. The green and yellow area
for higher number of windows in Fig. 4 is caused by less
seizures being detected or even non seizures being detected,
see Fig. 3. The choice of parameters for each of the five
training sessions are given in Table II.

TABLE II
THE CHOSEN PARAMETERS DURING THE TRAINING PHASE.

Training patients counts windows
2,3,4,5,6 254 18
1,3,4,5,6 254 16
1,2,4,5,6 250 18
1,2,3,5,6 250 18
1,2,3,4,6 250 18
1,2,3,4,5 250 18
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Fig. 4. The mean latency of the seizure detection, where green equals low
latency and red equals high latency.

III. RESULTS AND DISCUSSION

Based on the leave-one-out method the results for each
of the patients obtained with the parameters from Table II
is given in Table III. The results for the different patients
are very similar; all with a sensitivity of 100%. The false
detection rate (FDR) is found to be between 0 and 0.1885,
which compared to other studies are very promising values.
The latencies are between 7 and 10.5 seconds. This is fine
for a monitoring system and would as well be acceptable in a
detection device. The latency may be shortened by a change
of the parameters, but this will of course induce more false
positives as well. To improve the system even more it could
be implemented with an adaptive update on the threshold,
so every time a seizure is detected the threshold would be
fitted to suit the number of counts during the seizures even
better. The deltoid muscle was selected for sampling because
it is easily accessible, and always involved in generalized
tonic-clonic seizures. If a patients seizures have a tonic motor
onset in a different location, the method can probably be
adapted accordingly whereas different seizure types starting
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Fig. 5. The number of false positives (FP), where green equals few FP
and red equals many FP.

e.g. with myoclonia, automatisms or sensory symptoms will
need different approaches. In future studies we will include
more patients and seizures to confirm the promising results
in this paper.

TABLE III
THE RESULTS FOR EACH OF THE PATIENTS BASED ON THE PARAMETERS

FROM TABLE II.

Patient Sensitivity [%] Latency [s] FDR [/h]
1 100 9.5 0.0529
2 100 10.5 0.1075
3 100 8.25 0
4 100 8; 7.25 0.0310
5 100 7 0.0207
6 100 7; 7.25 0.1885

IV. CONCLUSION
The generic method we present is the first towards de-

tection of tonic-clonic seizures based on a single sEMG
channel. The data were classified as tonic-clonic seizure
or normal activity based on a leave-one-out method. Our
method performed as intended with a sensitivity of 100%, a
median latency of 7.6 seconds and a median FDR of 0.04/h.
We used no kind of adaption to the individual patients and
the method is therefore easy to implement in a simple system
for seizure monitoring or detection.
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Automated Algorithm for Generalized Tonic–Clonic
Epileptic Seizure Onset Detection Based on sEMG

Zero-Crossing Rate
Isa Conradsen*, Student Member, IEEE, Sándor Beniczky, Karsten Hoppe, Peter Wolf,

and Helge B. D. Sorensen, Member, IEEE

Abstract—Patients are not able to call for help during a gener-
alized tonic–clonic epileptic seizure. Our objective was to develop
a robust generic algorithm for automatic detection of tonic–clonic
seizures, based on surface electromyography (sEMG) signals suit-
able for a portable device. Twenty-two seizures were analyzed from
11 consecutive patients. Our method is based on a high-pass filter-
ing with a cutoff at 150 Hz, and monitoring a count of zero crossings
with a hysteresis of ±50 μV. Based on data from one sEMG elec-
trode (on the deltoid muscle), we achieved a sensitivity of 100%
with a mean detection latency of 13.7 s, while the rate of false
detection was limited to 1 false alarm per 24 h. The overall perfor-
mance of the presented generic algorithm is adequate for clinical
implementation.

Index Terms—Epilepsy, seizure detection, surface electromyog-
raphy (sEMG), tonic–clonic.

I. INTRODUCTION

E PILEPSY is a neurological disorder that causes seizures
due to an abnormal excessive or synchronous neural ac-

tivity in the brain [1]. About 0.5–1% of the world’s population
suffers from this condition [2]. In spite of much progress with
pharmacological, surgical, and alternative treatments (ketogenic
diet and vagal nerve stimulation), about 30–40% of epilepsy pa-
tients continue to have seizures [2]. For many of these patients,
seizure onset is unpredictable, impairing independent living and
increasing the risk of injuries, e.g., by falls or burns. As patients
do not remember the seizures, many of these episodes will be
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unrecorded (if not observed by someone else). The lack of pre-
cise data on the frequency of seizure occurrence precludes the
optimal adjustment of the treatment. Therapy resistant patients
with generalized tonic–clonic seizures have an increased risk of
dying in connection with a seizure, especially when they live
alone and the seizures occur during sleep [3], [4]. An alarm
system, capable of detecting these seizures, could help the pa-
tients by alerting relatives and caretakers, whenever a seizure
occurs.

Previously, we have focused on using multimodal data, in-
cluding surface electromyography (sEMG) and accelerometers
for detection of epileptic seizures with motor manifestations [5],
[6]. One other group has also tried to detect seizures based on
a combination of accelerometers and sEMG [7]. Other authors
have used electroencephalography (EEG) [8]–[10], electrocar-
diography (ECG) [11] or accelerometers [12]–[16] to develop
a seizure detection system for tonic–clonic seizures. One group
has even tried to discriminate tonic–clonic seizures from other
seizures based on accelerometers [17], [18]. Both Kramer et
al. and Lockman et al. achieved promising results on detecting
tonic–clonic seizures based on accelerometer data. However, the
seizures were detected rather late since the accelerometers were
best at detecting the clonic phase of the seizures. Our aim was
to obtain better results by developing a sensitive and specific
algorithm that detects the seizures already in the tonic phase
(that precedes the clonic one). We chose sEMG as our modality
(signals) because there is an intensive activation of the muscles
during the tonic phase. To make the system feasible (easy to wear
by the patients), we aimed at using as few sensors as possible
(only two channels). Furthermore, we focused on keeping the
algorithm computationally efficient to make an implementation
of the algorithm in a portable device possible. The main aim of
the study is to propose the first algorithm based on only sEMG
signals for detecting epileptic generalized tonic–clonic seizures.
Our hypothesis is that the information content of the sEMG is
sufficient for the early detection of tonic–clonic seizures. A
preliminary version of this work has been reported [19].

II. RECORDINGS

Sixty consecutive patients admitted to the Epilepsy Moni-
toring Unit at the Danish Epilepsy Center in Dianalund, Den-
mark, for diagnostic reasons, who had a history of tonic–clonic
seizures in the referral were included. Eleven patients had tonic–
clonic seizures. The rest of the patients had seizures other than

0018-9294/$26.00 © 2011 IEEE
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TABLE I
PATIENTS GENDER, AGE, THE AMOUNT OF SEIZURES, AND THE LENGTH OF THE

FILES

tonic–clonic or did not have epileptic seizures at all during
the monitoring period. The study was approved by the regional
ethics committee, and it was conducted according to the declara-
tion of Helsinki. The recordings included EEG, video, ECG, and
sEMG electrodes. We used 9-mm silver/silver chloride sEMG
electrodes placed on the deltoid and anterior tibial muscles on
both sides in a monopolar setting (the active electrode was
placed on the midpoint of the muscle belly, while the refer-
ence electrode was placed on the acromyoclavicular joint, just
proximal to the insertion of the muscle). For this study, we have
only analyzed the signals from the left deltoid and anterior tibial
muscles. The admission lasted 1–4 days depending on the pa-
tient. The sEMG was sampled with a frequency of 1024 Hz. The
long-term video-EEG recordings were reviewed by a clinical
neurophysiologist and an epileptologist, who marked the time
epochs containing a tonic–clonic seizure, based on visual analy-
sis. The physician marked the start of the tonic phase, when this
was unequivocal. In total, we recorded 22 tonic–clonic seizures
in 776 h. The number of seizures, the demographic data, and the
recording time for each patient are listed in Table I.

During the long-term monitoring, trained neurophysiology
technicians monitored the recordings to make sure that data
showed EMG activity and not noise, which would imply a loose
connection (high impedance). It happened that the sEMG elec-
trodes were accidentally detached in some patients. In these
cases, the technicians corrected this as soon as possible. The
epochs with detached/loose electrodes were excluded from the
analysis, but in total more than 96% of the data was used, mak-
ing it reasonable to look at the algorithm working both at night
and during the day. Since some periods were excluded, the time
lengths were not exactly the same for the two muscles; therefore,
different time lengths are given in Table I.

III. METHODS

The methods section is divided into two sections: the feature
extraction and the detection approach, respectively.

A. Feature Extraction

In a previous study, we analyzed the similarities and differ-
ences between sEMG signals from real epileptic seizures and
from simulated seizures [20]. We showed that real seizures in
contrast to normal activity had a large proportion of data in the

Fig. 1. (A) Seizure (with surrounding activity) before filtering. (B) Signal
after filtering. The right and left black vertical lines denote the beginning and
end of the generalized tonic–clonic seizure, whereas the middle black vertical
line denotes the start of the clonic phase, marked by the physician. The data are
from the left deltoid.

frequency band above 100 Hz. In this study, a visual evaluation
of all seizures from the 11 patients revealed that the differ-
ences between seizures and normal activities were even more
pronounced, when processed with a high-pass filter with a cut-
off frequency at 150 Hz. The high-pass filtering furthermore
ensures that a larger amount of the artifacts will be removed.
We have used a Butterworth filter with an order of 20 for the
filtering, where the group delay is ensured to be linear in the fre-
quency band of interest. A seizure from a representative patient
is shown in Fig. 1, before and after filtering.

Our previous study [20] on the sEMG signals during real and
simulated seizures showed that simple features are able to dis-
tinguish between the two groups. Therefore, in this study, we
chose to focus on finding a simple and computationally efficient
feature that would be able to discriminate tonic–clonic seizures
from normal activity. The final method is meant to be used in a
seizure detection system and it is, therefore, important to capture
the seizures soon after the onset. Since the seizures are started by
a tonic phase, we searched for a feature to discriminate this part
of the seizure from normal activities. In our previous study [20],
we found that the epileptic (generalized tonic and the tonic phase
of the generalized tonic–clonic) seizures contained a larger pro-
portion of higher frequencies than normal activities. We have,
therefore, chosen to focus our feature choice on the frequency
domain, since this might distinguish both types of seizures from
normal activities (though we only focus on one type in this
study). The authors of [12] and [13], who have used accelerom-
eter data, found algorithms to distinguish the clonic part from
normal activities. These methods seem to perform well, but have
longer latencies, because the clonic phase only comes after the
tonic phase of the seizure. We chose a simple measure for the
instantaneous frequency through the zero crossing compared to
the power spectrum (used in [20]), since it is more convenient
for implementation in a portable detection device. Previously,
other groups [21], [22] have used zero crossing for the predic-
tion of epileptic seizures based on EEG. Since we wanted our
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Fig. 2. Number of zero crossings in windows of 1 s as a function of the time
for the filtered data in Fig. 1 (one seizure from a representative patient). It is
clearly seen that the number of zero crossings rises fast at the start of the tonic
phase, stays high throughout the tonic phase and drops at the beginning of the
clonic phase. The right and left black vertical lines denote the beginning and
end of the generalized tonic–clonic seizure, whereas the middle black vertical
line denotes the beginning of the clonic phase.

algorithm to focus only on actual sEMG data, we decided to
count only those zero crossing, which extended above and be-
low a hysteresis. This ensured that the actual zero-crossing count
would not be affected by noise. From a quantitative inspection
of our data, we found background noise with a standard devia-
tion (SD) as high as 15μV, so to ensure that the zero crossing
only operates outside the noise region, we chose to include a
hysteresis of ±50μV, corresponding to 3SD ≈ 50μV. A zero
crossing is counted only when the signal peaks preceding and
following it exceed 50 and −50μV, respectively. So if the signal
starts by rising above 50μV, one count is set when the signal
goes below −50μV, and another count is set when the signal
again is above 50μV and so on. We found that when applying
the zero-crossing method with a hysteresis of ±50μV on the
filtered data, the number of crossings was high throughout the
entire tonic phase, see Fig. 2. The count of zero crossings is
seen to decrease at the end of the tonic phase and throughout the
clonic phase. This decrease is, however, caused by the clonic
phase consisting of alternating periods with high activity and no
activity at all. We evaluated the count of zero crossings with a
smaller window size and found that the count is as high in the
active clonic phases as in the tonic phases, so the reason for the
decrease in the number of counts is that the window includes
both the active periods and the periods with no activity in the
clonic phase.

B. Detection Approach

Although many more parameters could be varied to make the
algorithm more advanced, in our search for the optimal method
to classify the data into tonic–clonic seizures or normal activity,
we chose to vary two parameters. The first one is the number
of zero crossings in a given window (called the threshold) and
the second one is the number of succeeding windows, where the
number of zero crossings exceeds the threshold, needed to finally

classify a seizure. As in one of our previous studies, we chose to
use a window of 1 s [6]. In this study, we opted for an overlap of
75% for the windows. These two values, length and overlap of
windows, were chosen based on a visual inspection of the feature
plot (see example in Fig. 2) for all seizures. Furthermore, this
inspection showed that the maximum number of zero crossings
during the tonic phase of the seizures was about 255 counts if
all seizures were to be detected. We varied the threshold from
200 (180 for anterior tibial muscle) to 300, with an interval of
five counts between (180) 200 and 240, and between 260 and
300, whereas we had an interval of one count from 241 to 259.
When seeking to avoid too many false detections and at the same
time ensuring a sufficiently short latency, the band of properly
chosen numbers of windows to make a seizure detection is most
likely narrow. We, therefore, varied the number of windows to
make a seizure detection from 2 to 30, where two windows
correspond to a minimum delay of 1.25 s and 30 windows to a
minimum delay of 8.25 s, to ensure that all possible solutions
are tested. The number of windows was varied with intervals
of two between 2 and 10 and between 20 and 30, whereas
it was varied with intervals of one between 11 and 19. The
beginning of the tonic–clonic seizures were marked by a clinical
neurophysiologist and epileptologist by a visual evaluation of
data, as this is more reliable than any automated method, thus
far. However, the exact start time was sometimes uncertain.
In these cases, we opted for marking the clinical time point
that unequivocally showed the onset of the tonic phase. Thus,
in theory, this marking might come a few seconds later than
the real seizure onset. We therefore added an equation in our
interpretation of the results which changed the latency to the
minimum (based on the number of windows included) if the
estimated start time turned out to be earlier than the clinical
(actual) time point (though within 100 s from it). For each pair
of parameters, three measures were calculated to evaluate the
results.

1) The sensitivity (SEN): the percentage of the seizures,
which were classified by the algorithm.

2) The false detection rate (FDR): the amount of false de-
tections (normal activity classified as a seizure) per hour.
This is a measure of the specificity.

3) The latency (LAT): the time from the beginning of a
seizure to the detection of that seizure.

We used a fourfold cross-validation method [23], where the
11 patients (pt) were randomly partitioned into four subgroups
(1: pt 2,6,11; 2: pt 1,4,9; 3: pt 5,7,10; 4: pt 3,8), to evaluate
which parameters were optimal. From the four subgroups one
was retained for validation of the parameters, whereas the other
three subgroups were used for training the optimal choice of
parameters. The validation group was then used to evaluate the
trained choice of parameters. The cross-validation process was
repeated four times, one time with each of the four subgroups as
validation group. This method ensured that all patients were used
(an equal number of times) for both training and validation. The
optimal parameters for each training session were chosen from a
2-D plot, which express the relationship between the sensitivity
and FDR (specificity), and the latency. The plot expresses the
mean latency (for all seizures in the training groups) on the
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Fig. 3. Each curve shows different threshold levels, and for each curve the
number of windows is varied. The black circle marks the chosen point on the
curves. The thicker curve highlights the mean of the curves.

abscissa:

abscissa = LAT (1)

and the sensitivity minus the FDR on the ordinate:

ordinate =

{
SEN − FDR, for SEN − FDR ≥ 0
0, for SEN − FDR < 0

}
(2)

where SEN is the sensitivity (between 0 and 1), and FDR is the
false detection rate given per hour (the FDR corresponds to the
specificity). If none of the seizures for a patient are detected, the
latency is given the value of the maximum latency of the patients
involved in the training session. The approach of plotting the
sensitivity and the FDR on one axis and the latency on the
other makes it easier to search parameters that both ensure high
sensitivity, low FDR (i.e., high specificity), and short latency. In
Fig. 3, an example of the plot is shown for the training session
of groups 1–3. The point on the curves in Fig. 3 is chosen as
the best tradeoff between the sensitivity and the FDR and the
latency in our point of view. We have prioritized a sensitivity
as close to 100% as possible and at the same time as low an
FDR as possible; second, we also tried to obtain a short latency.
This is because we would rather have the detections delayed by a
second, than not detecting them at all. In Fig. 3, the optimal point
with respect to achieving both high sensitivity and specificity
would be as close to 1 as possible on the y-axis. Second, we
chose the point so as the latency would not be too large (the point
being placed too far right on the x-axis). The optimal parameters
are considered not to be outliers, so that small changes in the
threshold or number of windows to finalize a detection does not
change drastically (e.g., the amount of seizures detected). If so
another set of optimal parameters will be searched.

The optimal choice of parameters (chosen based on a plot
equal to the one shown in Fig. 3) for each of the four training
sessions is given in Table II for the three training branches:
deltoid muscle data alone, anterior tibial muscle data alone, and
the combination of data from both muscles. The parameters for
the combination of the two muscles are achieved by requesting

TABLE II
PARAMETERS CHOSEN TROUGH THE FOUR TRAINING PHASES

that the seizure should be visible through the features in both
muscles (channels) at the same time. This combination should
reduce the number of false alarms, which are only visible in
one muscle. Therefore, lower values are expected for the two
parameters, compared to the detection being based on just one
muscle.

IV. RESULTS

The test results for the two electrode placements (deltoid and
anterior tibial) are presented in Table III together with the com-
bined results, where an alarm is generated if it is registered in
both muscles at the same time. The overall results of the evalua-
tion are very promising and suggest that it is possible to choose
parameters such that the same algorithm (including parameters)
may be used for all patients, providing a generic method for a
detection system for epileptic patients with generalized tonic–
clonic seizures.

When using data only from the deltoid muscle, all seizures
are detected with an acceptable mean latency. The latency is dif-
ferent, however, for the different patients, since not all patients
have seizures which start equally abruptly, and furthermore how
early the muscles are recruited into the seizure varies. A visual
inspection of the sEMG data compared to the video shows that
the seizures for patient 9, for whom the latency is very long, in-
volve the deltoid muscle relatively late. Besides good sensitivity
and latency, the results for the deltoid muscle alone also show
a very low FDR. The mean FDR is 0.04, which corresponds to
approximately 1 in 24 h. Most of the false detections were in the
daytime, and only three were during the night (12 P.M.–8 A.M.);
for the results on the deltoid muscle data, see Fig. 4. This is
only approximately 10% of the false alarms, so if the algorithm
was implemented in a system only to be used during the night,
where a surveillance system is mostly needed, the FDR would
be approximately one false alarm for every tenth day.

The results for the data from the anterior tibial muscle alone
are not as good as for the deltoid muscle. For the anterior tibial,
the mean sensitivity is 77%. Only for seven patients, all seizures
are detected; for two of the remaining three, none of the seizures
are detected. This may be caused by the high number of win-
dows. If the number of windows is too high, the length of the
period they cover might exceed the length of the tonic phase
for some patients, and thereby cause detection to fail. The mean
latency is longer for detections based only on the anterior tibial
muscles compared to those based on the deltoid muscle. How-
ever, for some patients the latency is lower for the tibial muscle
than for the deltoid muscle, and for some patients it is higher.
For all those with a lower latency, all seizures are detected. The



CONRADSEN et al.: AUTOMATED ALGORITHM FOR GENERALIZED TONIC–CLONIC EPILEPTIC SEIZURE ONSET DETECTION 583

TABLE III
RESULTS FOR VALIDATION OF THE TRAINED PARAMETERS (SEE TABLE II), BASED ON A SINGLE MUSCLE OR THE COMBINATION OF TWO

Fig. 4. Histograms of the false alarms for all 11 patients. The abscissa shows
the time of the day (24 h).

same pattern is seen for the FDR, where the mean is much higher
for the results on the anterior tibial muscle compared to that of
the deltoid muscle, but for three patients it is actually lower.

If the two sets of data are combined, the results improve
somewhat regarding latency, as expected. Similar to the results
based on the deltoid muscle alone, all seizures are detected;
the mean FDR is low, but the mean latency is even shorter for
the detection based on both muscles. However, for two patients
(4 and 10) the latencies are increased for the combination of
both muscles as compared to the deltoid muscle alone. The
explanation may be found in the fact that the latency is very high
for these patients, when only the anterior tibial data are used,
which implies that the seizures are seen later in this muscle than
in the deltoid muscle.

V. DISCUSSION

The different results for the two muscles and the combination
of both are not only dependent on the chosen muscle, but also

on the chosen parameters (see Table II). Thus, for the combined
method the number of windows for a detection is less, which
explains the short latency and for the anterior tibial muscle
the number of windows is greater, which gives long latencies.
Looking at the parameters in Table II, one will see that they are
more alike for the combination of the two muscles, than for the
deltoid muscle alone, where group 3 is tested with parameters
somewhat different from the others. If group 3 had instead been
tested with parameters more alike to the other three groups (19
windows and a threshold of 241), the sensitivity would have
stayed the same, but the latency would have been longer and
the FDR smaller, which would bring the mean FDR to 0.03 and
the mean latency to 13.9 for the deltoid muscle data alone. This
suggests that an equivalent well result as presented in Table III
would be obtained by using the exact same parameters for all
patients.

Since combining the deltoid data with the anterior tibial data
only improves the latency (by 4s on average), a detection system
would more appropriately be based on the deltoid muscle alone,
since the gain of adding data from an extra muscle is too small.
If data were combined from two muscles in a detection system,
one would probably choose two muscles closer together than
the two we have used in this study.

The sensitivity and specificity of seizure detection systems
based on EEG signals vary widely: 70–100% (for sensitivity)
and 0.5–72 false detections per 24 h (for specificity) [24]–[27].
The best-performing ones are based on invasive recordings (in-
tracranial electrodes) or many scalp electrodes (>60) [27]. In
the best of these studies, they achieve the same sensitivity as
our approach, but a lower FDR and shorter latency. It should,
however, be considered that their system would not be feasible
for a long-term monitoring in the patients home or in the every-
day life of a patient. In spite of using signals from a noninvasive
recording (sEMG) and just one channel, we obtained a sensitiv-
ity of 100% and a specificity of 1 false detection per 24 h. This
is compatible with the best-performing EEG-based systems, but
our system is easily implemented, because it is noninvasive.
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If we compare our deltoid results to other studies [12], [13]
who have developed an algorithm to detect tonic–clonic seizures
based on motion data, ours are more sensitive (SEN = 100%
versus 88% [12] and 91% [13]). The study by Kramer et al. [13]
includes 15 patients (22 seizures as in our study), whereas the
results by Lockman et al. [12] are based on a very limited
database (six patients with eight seizures). At the same time, our
algorithm captures seizures in the tonic phase, whereas the other
methods focus on the clonic phase. Therefore, our latencies are
shorter than in these two studies with accelerometers. We are not
able to compare the FDR to [12], since they have not listed how
long their recordings were, but only that they captured 204 false
alarms for the eight patients. They do, however, state that they
have a large FDR, so we would expect their system to have a
larger FDR, than what we are able to provide. Kramer et al. [13]
report an FDR of 0.004 (eight false alarms in 1692 h), which
is lower than what we have provided, but this should be held
up against the lower sensitivity they achieved, which we find is
more important to keep as close to 100% as possible.

Very few time periods were excluded from the evaluation of
data, but in a real time situation it is important that all data are
useful. That means that in real time the electrode(s) collecting
the data for the algorithm must be extra adhesive, so as they will
not become loose. In periods where the electrode(s) are loose
or have completely fallen off, the algorithm will not be able to
detect any seizures.

The electrodes used to collect the data are wired; the
impedances are kept low by the healthcare personal monitor-
ing the signals and making sure that the background noise does
not increase too highly. More than 96% of the data are used. In a
home situation, wireless electrodes, firmly attached by a plaster
specifically designed for this purpose (Ictalcare A/S, Denmark),
would be used. The next step in our process is to implement
the algorithm into the hardware of a device with such a wireless
electrode.

Other muscles might be used as well. These two muscles were
chosen since, in our experience, the deltoid muscle is always
strongly involved in generalized tonic–clonic seizures. Anterior
tibial muscle provides a less visible placement for a detection
device, if it should be worn in daytime situations.

To the best of our knowledge, this is the first seizure detection
algorithm based solely on the sEMG modality. We have devel-
oped a generic (the same algorithm/parameters are used for all
patients) seizure detection system that is noninvasive (based
on sEMG recordings), feasible (was applicable in all recruited
patients), with high sensitivity (100%), low rate of false alarms
(1/24 h) and able to run in real time. The algorithm was evaluated
with a fourfold cross validation on one or two channels of sEMG
from the deltoid or anterior tibial muscle from 11 patients with
tonic–clonic seizures. It can only detect one seizure type: the
tonic–clonic ones. Nevertheless, it is the group of patients with
this seizure type that has the highest risk for injuries following
seizures and sudden unexpected death in epilepsy patients [28].
Implemented in a portable device, the algorithm presented pro-
vides advantages over the alarm devices used today, based on
accelerometers in a wristband or a bed alarm.

VI. CONCLUSION

We have developed a generic seizure detection algorithm,
which is the first of its kind to be based on sEMG data alone.
The algorithm focuses on detection of tonic–clonic seizures as
compared to normal activity. Our algorithm was validated with a
fourfold cross validation and we found that it is highly sensitive,
with low false detection rate and short detection latency. For one
muscle alone (deltoid), our method performed with a sensitivity
of 100%, a median latency of 13.7 s, and a median FDR of
0.04/h corresponding to one false alarm in 24 h. The algorithm
performs well enough to be implemented in clinical practice. A
first implementation in a nighttime only device would provide
a median FDR of approximately 1 in ten days.
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Evaluation of novel algorithm embedded in a wearable sEMG device
for seizure detection

Isa Conradsenabc, Sándor Beniczkybd, Peter Wolfb, Poul Jennumef and Helge B.D. Sorensena

Abstract— We implemented a modified version of a previ-
ously published algorithm for detection of generalized tonic-
clonic seizures into a prototype wireless surface electromyo-
graphy (sEMG) recording device. The method was modified
to require minimum computational load, and two parameters
were trained on prior sEMG data recorded with the device.
Along with the normal sEMG recording, the device is able to
set an alarm whenever the implemented algorithm detects a
seizure. These alarms are annotated in the data file along with
the signal. The device was tested at the Epilepsy Monitoring
Unit (EMU) at the Danish Epilepsy Center. Five patients were
included in the study and two of them had generalized tonic-
clonic seizures. All patients were monitored for 2-5 days. A
double-blind study was made on the five patients. The overall
result showed that the device detected four of seven seizures
and had a false detection rate of 0.003/h or one in twelve days.

Index Terms— Epilepsy, seizure detection, tonic-clonic, GTC,
surface Electromyography, sEMG, wireless device.

I. INTRODUCTION

About 1% of the world’s population suffers from epilepsy,
which is defined as a brain disorder with repetitive seizures
due to an abnormal excessive or synchronous neural activity
in the brain [1]. If patients are medicated appropriately
most become seizure free, but about one third are char-
acterized as medically refractory patients [2], [3]. Most
of these patients experience seizures with predominantly
motor symptoms such as generalized tonic-clonic (GTC)
seizures [4]. Epilepsy causes major societal burden [5]. GTC
carries major risk complications as fractures, falls, cardiac
complications, cognitive dysfunctions and ultimately sudden
unexpected death in epilepsy (SUDEP) [6], [7], [8]. GTC
may occur in situations where the patients are unobserved
and consequently helpless, e.g. while alone or during sleep.
Beside these complications GTC causes major concern to the
patients and their relatives.

One way to help the patients is through a simple alarm
system, capable of detecting the GTC seizures. Such an alarm
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system would then alert relatives and caretakers, whenever
a seizure sets in. In a previous study we found that there
are significant differences between tonic seizures and the
tonic phase of tonic-clonic seizures, when comparing them
to simulated tonic activity [9]. Based on this knowledge we
proposed an algorithm for the purpose of detecting GTC
seizures [10], which seems reliable on conventional sEMG
data. This algorithm has been modified and implemented
in a small sEMG wireless device developed by DELTA,
Denmark, on behalf of IctalCare A/S, Denmark.

Several groups (including ourselves) have attempted to
develop an effective alarm system based on accelerometer
data [11], [12], [13], [14], [15], but with a performance which
could be improved. Our previous results [11] on conventional
sEMG data (measured with standard sEMG electrodes) were
promising and we expect to achieve even better results with
the wireless sEMG data, due to the avoidance of artifacts
from wire-pulls. We present the results of an implementation
of a novel algorithm into a wireless detection device. It is
able to detect most GTC seizures, with a relatively short
latency and without too many false alarms. Our approach is
generic and based on a single wireless device placed on the
tibial muscle. The device with the algorithm implemented
has for this study been tested on five patients.

II. METHODOLOGY

A. Patients

Five consecutive patients were included from the Dan-
ish Epilepsy Center in Dianalund, Denmark, for diagnostic
reasons. All patients included have a history of generalized
tonic-clonic seizures. The patients’s age, gender, amount of
GTC seizures during the recording, duration of the seizures
and the recordings are all listed in Table I.

TABLE I
THE PATIENTS’S GENDER, AGE, THE AMOUNT OF SEIZURES, THE

LENGTH OF THE ADMISSION AND THE LENGTH OF THE GTC SEIZURES.

Patient Gender Age # GTC Seizure File
duration [s] length [h]

D207 F 15 0 -
D208 M 34 3 88, 77, 52 68.4
D209 M 48 0 50.1
D210 M 38 0 53.3
D211 M 44 4 100, 105, 98, 102 126



B. Recordings

The normal admission recordings included electroen-
cephalography (EEG), video, electrocardiography (ECG) and
sEMG electrodes placed on several, clinically relevant mus-
cles. Along with this our wireless device for measurements
of sEMG was placed on a tibial muscle (left/right) as shown
in Fig. 1. The choice of side for the placement of the device
(left/right) was decided by the physician based on records on
where each patient normally have their seizures expressed
the most. The device only sets hidden alarms, which means
that the staff at the hospital are unaware of the times of
the alarms. The admission lasted 2-5 days depending on
the patient, thus providing us with a huge amount of data
for each patient. The sEMG was sampled with a frequency
of 1024Hz. Two of the patients had GTC seizures, while
the others had other kinds of seizures or none at all. The
times for the beginning and ending of the seizures were
annotated by a physician based on the gold standard (video
and EEG signals). For the first patient we had some recording
problems, which means that unfortunately no data have been
recorded from the wireless device placed on the tibial muscle,
see table I.

Fig. 1. The wireless sEMG device placed on the tibial muscle.

C. Algorithm implementation

The original algorithm [10] is based on a high pass
filtering and a count of zero-crossings above and below
a hysteresis of ±50µV. This count of zero-crossings is
calculated for a window of 1 second and every window
overlaps the previous and the next by 75%. For the algorithm
to detect a seizure the count of zero-crossings should be
above a threshold (first parameter) for a certain number of
windows (second parameter). The two parameters (threshold
and number of windows) were trained for the data on which
it was intended to be used. Even though the algorithm was
developed with consideration to a later implementation in
a small detection device, small changes had to be made to
realize the implementation. The first thing changed was the
filter, since the device could not encompass a filter of the size

we used in the off-line algorithm. A new filter was designed,
so as it resembles the old one as closely as possible, and at
the same time with an order as low as 11 (the maximum
number of coefficients allowed for the filter to follow the
limitations regarding the capacity of the current version of
the wireless device). The off-line filter had an order of 21,
which means we have lowered both the summations and
multiplications with 10 in the algorithm. The filter in the off-
line algorithm was a finite impulse response (FIR) hamming
window filter, with the filter characteristics shown in blue in
Fig. 2. The new filter was chosen as an FIR equiripple filter
with order 11. This filter is shown in red in Fig. 2.
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Fig. 2. The filter characteristics for the off-line filter (blue) and the new
on-line filter (red) implemented in a wireless detection device.

The frequencies of interest are all above 150 Hz, where the
phase is seen to be linear for both filters. For the on-line filter
the equiripples make small differences in the suppression of
the signal above a frequency of 150 Hz. For the frequencies
below 150 Hz, a larger difference is seen, but for both
filters, this part of the signal is lowered tremendously. This
means, that it will be inconsiderable, when continuing with
the count of zero-crossings above and below the hysteresis
of ±50µV. Since the algorithm is to be used on sEMG from
our wireless sEMG device, the parameters (threshold and
number of windows) must be fitted to this exact type of data.
At the time of implementation we only had data from two
patients with GTC seizures. Normally we would record from
both the biceps and the tibial muscle, but in the case of these
two patients, we unfortunately had some technical problems
with the device on the biceps, which meant that we only had
sEMG data from the tibial muscle during the seizures. The
parameters were trained as described in [10], from which
we found the optimal parameters to be number of windows
= 15 and threshold = 300. Thus the number of windows is
similar to the one obtained in our off-line study [10] for the
conventional sEMG data, whereas the threshold in case of the
wireless device data is a bit higher than for the conventional
sEMG data.



D. Data evaluation

The data were collected from the recording site and
visualized through the free-ware program EDFbrowser [16].
The data files contain one vector featuring the sEMG signal
and one holding a notation vector, which contains the alarm
times. An example of a GTC seizure and the matching hidden
alarms are shown in Fig. 3. Several alarms are shown, but
in a final product only the first one will set off an actual
alarm. The time for each alarm is annotated and sent to a
third party, before the true seizure times are received from
the recording site. This is to verify that it is a double-blind
study. The results for each patient are shown in Table II.

Tonic Clonic

1 mV

10 sec

Sync timeSync timeSync time

Alarms

Sync. timeSync. timeSync. time

Fig. 3. The sEMG during the second GTC seizure from patient D208.
The period is divided into a tonic and a clonic phase. It is seen that all the
consecutive alarms are set within the tonic phase. The two green vertical
lines mark the beginning and end of the seizure. The three single white
vertical lines are as stated synchronization time stamps, which are set by
the wireless device to keep track of the time.

For patient D207 no data are recorded on the tibial muscle.
Patient D209 and D210 had no seizures, but neither did
we detect any false alarms. Patient D208 had three GTC
seizures during the admission, while patient D211 had four.
For patient D208 we were able to detect all three seizures,
and at the same time we did not register any false alarms.
For patient D211 we succeeded in detecting one of the four
seizures, while the other three were missed. Furthermore, we
registered one false alarm for this patient.

TABLE II
THE RESULTS FOR EACH OF THE PATIENTS.

Patient Sensitivity [%] Latency [s] FDR [/h]
D207 - - -
D208 100 31; 18; 5 0.000
D209 - - 0.000
D210 - - 0.000
D211 25 46 0.008
Mean 57 25 0.003

III. DISCUSSION

The device proved to function intentionally for patient
D208-D210 with a 100% sensitivity and no false alarms.

Unfortunately, it did not show as well a result for patient
D211.

In patient D211, where the algorithm failed to detect
three of the seizures, the seizures are quite different from
the typical GTC seizures. These seizures consist of more
interchanging tonic and clonic phases than the usual two.
Furthermore each phase is shorter than during a classical
GTC seizure. In Fig. 4 the count of zero-crossings during
seizures are plotted for patient D200 (used for training of the
parameters), D208 and D211. The features (zero-crossing)
for the seizures are very much alike within each patient.
It is furthermore seen that the feature for the seizures for
patient D208 is very similar to the ones for patient D200,
whereas the ones for D211 is seen to be very different. The
algorithm detects the peak, which is seen to be both shorter
and lower for the seizures for patient D211. Thus the tonic
phases for patient D211 may not be long and strong enough
for the algorithm to capture them. The many alternating
phases of tonic and clonic activity may explain the longer
latency, since there is a clonic phase before the tonic phase,
where the seizures are detected. In general the latency could
be improved, which is the plan for our future device. The
used parameters are trained on a very narrow basis, and a
modification of the algorithm towards a shorter detection
time would be welcome. If the threshold was lowered to
250 (about the value for the conventional sEMG data) six
of the seven seizures were captured, but the amount of false
positives would also increase to seven.

Comparing the mean results in Table II (sensitivity = 57%,
latency = 25s, FDR = 0.003/h) to our results on conventional
sEMG data on the tibial muscle (sensitivity = 77%, latency =
14.1s, FDR = 0.2/h) presented in [10], the overall impression
is an improvement, especially when taking into account that
patient D211 in this study is an outlier. The sensitivity was
better for the algorithm on the conventional sEMG data, but
the false detection rate was significantly improved in our
on-line algorithm.

If we compare our results to Kramer et al. [15] they have
a higher sensitivity (91%). Our FDR is however slightly
lower than theirs (0.004/h). Also Lockman et al. [14] have
an interesting study with a sensitivity of 88% and 204 false
positives. Unfortunately they do not list the number of hours
of data which they have analyzed, but they do state, that
they have a very high FDR. Our results do show a too
low sensitivity compared to these studies, but if we exclude
the outlier patient (D211), we would have shown a 100%
sensitivity, which we expect to do for future patients with
typical GTC seizures as well. Our false detection rate is the
lowest of all the studies, which make our system the most
reliable regarding false alarms. Since the other two methods
are based on a detection in the clonic phase, compared to
ours in the tonic phase, we expect to have a lower latency
period.

In our previous study on the conventional sEMG data,
the results showed to be significantly better for the data
recorded on deltoid, compared to those recorded from the
tibial muscle. In an unpublished study we obtained the same
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Fig. 4. The zero-crossing counts for each seizure for patient D200, D208
and D211, respectively.

promising results for data recorded from biceps. We therefore
expect to get a better result when testing the algorithm on
data from our wireless device recorded from the biceps,
however firstly we need to train parameters for this, since
there are differences between the two muscles with respect
to using the algorithm.

The missing data for the first patient imply that we have
some recording problems, which need to be clarified. It
should be noticed that the used wireless device is only a
prototype and the next version is in preparation. Thus the
complications are expected to be corrected.

IV. CONCLUSION

Our wireless device with an implemented generic algo-
rithm is the first device developed towards detection of
generalized tonic-clonic seizures based on a single sEMG
channel. The algorithm detects whenever a GTC seizure
starts. The results showed that the device performed as
intended for three of the five patients. For one patient it
failed to record any data and for another it only managed
to register one of four GTC seizures. However, the FDR has
proven to be extremely low, despite our huge amount of data
for each patient. Furthermore we have an explanation towards

the three missing detections, so we find that the results are
very promising. We expect to achieve an even better result,
when we test our device on sEMG data from the biceps.
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