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“Imagination is more important than knowledge. For knowledge is limited
to all we now know and understand, while imagination embraces the entire

world, and all there ever will be to know and understand.”
Albert Einstein (1879-1955)
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Abstract

Amongst the unique features of cancer cells perhaps themost crucial one is the change
in the cellular decision-making process. While both non-cancer and cancer cells are
constantly integrating different external cues that reach them and computing cellular
decisions (e.g. proliferation or apoptosis) based on the integration of these cues; this
integration and consequently the cellular decisions taken by cancer cells are arguably
very distinct from the decisions that would be expected from non-cancer cells. Since
cellular signaling networks and its different states are the computational circuits that
determine cellular outcome, it is clear to many that these networks will be highly dys-
regulated in cancer cells. us, developing and applying methods that will be capable
of mapping and predicting how cancer mutations translate into signaling network
perturbations, which could explain cancer development as well as cancer resistance to
treatment, represent not only a huge challenge, but also one with potentially extreme
beneĕt for our understanding of the disease and for patients. is thesis summarizes
my efforts during the last years in contributing positively to overcome this challenge.

is thesis is divided into six parts. Starting with a brief introduction to the
history and some basic concepts of cancer, signaling networks and human protein
kinases (part I), we quickly move on to describing existing methods to analyze cancer
signaling networks, including methods proposed by us, as well as three of the articles
that are part of this PhD thesis (part II). In part III, we illustrate with an article that
has been submitted recently, how next-generation sequencing data and mass spec-
trometry data can be combined to uncover genome-speciĕc signaling networks. In
part IV, I describe the two computational methods that I have developed and how
they can be integrated with the aim of predicting how signaling networks will be
dysregulated in cancer. As a matter of fact, the following part (part V) proves the
usefulness of the method by identifying a functional mutation in a group of ovarian
clear cell carcinoma cell lines that could cause their resistance to cisplatin treatment.
Part VI closes the thesis by summarizing its main points and proposing some future
perspectives for the work presented here.

All in all, this work establishes a new framework for the prediction of mechanisms
underlying cancer development and evolution which, one would hope, should help
close the gap between cancer genotype and phenotype.



DANSK RESUMÉ ix

Dansk resumé

Cancerceller udviser mange unikke træk, hvoraf ændringer i de cellulære beslut-
ningsprocesser formodentlig hører til blandt de vigtigste. Cancerceller såvel som
normale celler integrerer løbende forskellige udefrakommende indtryk til at træffe
beslutninger, f.eks. om proliferation eller apoptose. Denne integration hos cancercel-
ler og de deraf aĘedte beslutninger er distinkt fra den, der observeres hos tilsvarende
normale celler. Da cellulære signaleringsnetværk og deres tilhørende tilstande udgør
de kredsløb, som styrer cellers adfærd, er det derfor oplagt, at disse netværk oe vil
være fejlregulerede i cancerceller. At udvikle og anvende metoder, som vil være i
stand til at forudsige, hvordan mutationer i cancer fører til forandringer i signale-
ringsnetværk, er en stor udfordring. Men genvinsten er at sådanne metoder vil føre
til en bedre forståelse af cancercellers udvikling og lægemiddelresistens og dermed
på længere sigt give mulighed for at hjælpe personer, der rammes af cancer. Den-
ne aandling opsummerermine bidrag over de seneste år til at løse denne udfordring.

Aandlingen består af seks dele og starter med en kortfattet introduktion til
grundlæggende begreber inden for cancer, signaleringsnetværk og humane prote-
inkinaser (del I). Hereer følger en beskrivelse af metoder til at analysere cancer-
signaleringsnetværk – herunder metoder udviklet af os – samt et resumé af tre af
de artikler, der udgør en del af denne ph.d.-aandling (del II). I del III illustrerer
vi (med en nyligt indsendt artikel), hvordan data fra next-generation sequencing og
massespektrometri kan kombineres til at afdække genomspeciĕkke signaleringsnet-
værk. I del IV beskriver jeg de to beregningsmetoder, som jeg har udviklet, samt
hvordan de kan kombineres til at forudsige hvordan signaleringsnetværk fejlreguleres
i cancer. Den følgende del (V) viser anvendeligheden af denne kombinationsmeto-
de ved at identiĕcere en funktionel mutation, som vil kunne føre til resistens mod
behandling med cisplatin i en gruppe af ovarian clear cell carcinoma cellelinjer. Del
VI er en opsamling af aandlingens hovedpointer og afsluttes med en diskussion af
perspektiverne samt forslag til videre arbejde.

Denne aandling etablerer således en ny fremgangsmåde til at beskrive og for-
udsige de begivenheder og mekanismer, der ligger til grund for udvikling af cancer,
og som – med lidt held – kan hjælpe med til at bygge bro mellem de genotypiske og
fænotypiske aspekter af denne udvikling.
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Chapter 1

Cancer: Past, present and future.

Despite increasing rates of incidence and our relative inability to fundamentally
understand it or treat it, cancer is not a modern disease. e oldest descriptions in
humans dates back to ancient Egypt, circa 3000 BC (American Cancer Society, 2012;
Mukherjee, 2010), and has recently been described inNeanderthal fossil recordsmore
than 120,000 years old (Monge et al., 2013). In this chapter, an extremely concise
history of the disease is provided, with a special focus on the most recent develop-
ments following the genomic revolution of this century. Next, current and alternative
paradigms in the interpretation of cancer mutations are discussed, and we continue
by addressing the relevance of signaling networks in cancer disease. A section on
human protein kinases, key components of signaling networks, completes this ĕrst
chapter.

1.1 Brief history of cancer before and aer the genomic revolution
of 2000

Cancer history in modern humans dates back to early human history, with its oldest
description being 5000 years old (American Cancer Society, 2012; Mukherjee, 2010).
is description of eight breast tumors was found as part of an Egyptian textbook on
trauma surgery called the Edwin Smith Papyrus and it is ĕnished with the conclusive
and prevailing statement “ere is no treatment” (American Cancer Society, 2012).
Recent discoveries from fossil records dating back 120,000 years indicate that cancer
also inĘicted Neanderthals (Monge et al., 2013). Despite its old history, it would not
be until around 400 BC when the disease would receive its current name cancer, from
one of the fathers of medicine Hippocrates, who used the greek word for crab carcinos
to describe the ĕnger-like projections that many tumors present (American Cancer
Society, 2012; Mukherjee, 2010).
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4 CHAPTER 1. CANCER: PAST, PRESENT AND FUTURE.

In coming centuries, the advance of general medicine, which has resulted in better
treatment and resolution of other diseases, has lead to a signiĕcant raise in human
life expectancy. is combined with an increasing exposure to mutagenic sources
and other cellular insults such as tobacco, chemical agents or UV radiation, has
transformed cancer from an almost anecdotal into the epidemic disease that is today.
Nonetheless, in more recent decades, important discoveries regarding fundamental
cancer processes (such as the mutational basis of cancer, its evolution or the devel-
opment of metastasis) and its treatment (including radiotherapy and chemotherapy
or more recently combination targeted therapy or immunotherapy) have been made
by scientists of the magnitude of Marie Curie or Sydney Farber and more recently
scientiĕc teams lead by researchers like Harold Varmus, J. Michael Bishop or Robert
Weinberg (Mukherjee, 2010).

e turn of the 21st century marked a genomic revolution, epitomized by the
publication of the human genome project in 2001 (the International Human Genome
Sequencing Consortium, 2001; Venter et al., 2001). is revolution has had clear
consequences for cancer research and today there are hundreds of tumors that are
being sequenced in the hunt for molecular aberrations that ultimately might lead to a
more effective treatment of the disease (Wong et al., 2011). While cancers had been
described with some unifying features or hallmarks that to some extend helped our
understanding of the disease (Hanahan andWeinberg, 2000, 2011), cancer sequencing
revealed a high inter-patient disparity in their tumor genetic mutations (Vogelstein
et al., 2013), which led to the hard realization that the interpretation of cancer se-
quencing data would be the real bottleneck separating generation of new data and
generation of new knowledge that could translate into better therapies (Yaffe, 2013).
is interpretation gap can be illustrated as the comparison between the number of
cancer genome mutations reported and the number of mutations regarded as playing
an important role in cancer (Figure 1.1).

1.2 Current and alternatives paradigms in the interpretation of
cancer mutations

Since the beginning of this cancer genome era, several paradigms have been proposed
to facilitate our understanding of this sequencing data tsunami, with different degrees
of success and popularity. Perhaps two of the most established paradigms are the can-
cer driver/passenger and the oncogene/tumor suppressor classiĕcation systems. e
cancer-driver paradigm differentiates between mutations that are causally implicated
in oncogenesis and confer growth advantage (driver mutations) and mutations that
are simply bystanders that occur as a result of the high genomic instability of tumors
but do not confer growth advantage to cancer cells (passenger mutations) (Stratton
et al., 2009) as shown in Figure 1.2. On the other hand, the oncogene/tumor sup-
pressor paradigm deĕnes as proto-oncogenes and oncogenes those genes that would,
under physiological conditions, promote cell growth (proto-oncogenes), but when
activated in cancer (oncogenes) lead to an increased cellular proliferation. With the
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Figure 1.1. Interpretation Gap Evolution. e upper line shows the number of
somatic cancermutations reported in the Catalogue Of SomaticMutations In Can-
cer (COSMIC) (Forbes et al., 2001) every year compared to the number of muta-
tions regarded as playing a driving role in cancer (Futreal et al., 2004), in the lower
line. Note the Y axis in log scale.

opposite effect, tumor suppressors would inhibit cellular growth under physiological
conditions, and when inactivated in cancer cells would promote uncontrolled tumor
proliferation (Stehelin et al., 1976). For simplicity, an automotive analogy is oen
used, where proto-oncogenes can be considered as the accelerator on a car and tumor
suppressors are considered its brakes.

While both paradigms have been proven helpful in the identiĕcation of some
important cancer mutations and genes (such as BRAF V600E, present in more than
50% of all malignant melanomas (Davies et al., 2002), or the ĕrst cancer gene ever de-
scribed, the oncogene src (Stehelin et al., 1976)), the complexity and non-linearity of
the circuits that drive decision-making processes in cells have challenged their limits,
as evident from the increasing gap in Figure 1.1. More precisely, at least three funda-
mental principles of cellular systems that have now been clearly established represent
clear oppositions to these relatively simple descriptions of cancer cells. Firstly, given
the fact that a protein can be (in)activated by different genetic perturbations (or as we
name them, analogous mutations), it cannot be assumed that strong signs of positive
selection will be evident and point to speciĕc mutations as being drivers (Creixell
et al., 2012). Secondly, it has now been shown that two different mutations that do
not drive cancer development by themselves when appearing separately, can lead to
cancer when they appear together in the same cell or even in neighboring cells (Wu
et al., 2010), in what could be described as two passengers becoming drivers or, as we
call them, synthetic oncogenes (Creixell et al., 2012). Finally, a groundbreaking study
published in Science in 2005 (Janes et al., 2005) demonstrated that JNK’s function
in relation to apoptosis (i.e. whether it promotes or inhibits apoptosis) can only be
predicted if the different cues and other parts of its network are taken into account, as
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A. Driver versus Passenger Approach

Healthy genome Cancer genome

TNF

Apoptosis

TNF

Apoptosis
Proliferation

B. Network Biology Approach

Healthy signaling Cancer signaling

Driver mutation Passenger mutations

Figure 1.2. Current and alternative cancer paradigms. A. e driver/passenger
paradigm largely relies on ĕnding positive selection for the same individual muta-
tion in different tumors. B. In our network biology approach, we predict the impact
of mutations at the signaling network level, regardless of whether a given mutation
has been seen in different tumors or not, thus aligning with the current trend of
personalized medicine.

it can play both a pro-apoptotic and anti-apoptotic cellular role. By extension, binary
classiĕcations of protein and mutation function that consider genes and proteins in
isolation are unlikely to provide a systematic precise prediction of cellular outcome,
including and (one could argue) especially in cancer. Several of these challenges are
further discussed in Chapter 3.

1.3 Cancer and signaling networks

While the power of genomics has only been used more recently to support it, the link
between cancer and signaling networks was established much longer ago. Once it was
clear that cancer cells behave and respond to cues differently from normal cells and
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this difference is fundamental in their pathogenesis, it became obvious that perturba-
tions in signaling networks were at the core of the disease, as reviewed by Vogelstein
and colleagues (Vogelstein and Kinzler, 2004). e uprise of cancer genomics has not
only conĕrmed but also reinforced the importance of signaling networks and kinases
in cancer, as the kinase domain is the domain most oen encoded by cancer genes
(Futreal et al., 2004). Not surprisingly, many of the proteins that have been given
crucial roles in cancer (e.g. Src, BRAF, Abl or the many tyrosine kinase receptors) are
human protein kinases themselves.

With the intention of providing an alternative predictive approach to cancer mu-
tation interpretation that would not suffer from the same defects as previous methods
and that would focus on signaling networks, we hypothesized that one could try to
accurately predict the cellular effect of mutations that affected signaling networks,
as these networks crucially regulate cellular decision-making processes perturbed in
cancer (Figure 1.2).

1.4 e human kinome - kinase regulation, activation and substrate
speciĕcity

Shortly aer the publication of the human genome, Gerard Manning and his col-
leagues published, what is considered a reference article for researchers working on
signaling and kinases in particular (Manning et al., 2002). In this article, they deĕned
the human protein kinome superfamily, with 518 active kinases and 106 pseudo-
kinases (human proteins that while containing a kinase domain, this domain has lost
its catalytic activity), which represents one of the biggest protein superfamilies as well
as a key component of signaling networks, thanks to the unique catalytic properties
of the kinase domain, which allows signal transduction by phosphorylation (Hanks
et al., 1988) (Figure 1.3).

Precisely these 106 pseudo-kinases provided good evidence for amino acid
residues that play a critical in Magnesium coordination, ATP binding and phospho-
transfer, all of which essential processes for a kinase domain to perform its catalytic
activity (i.e. phosphorylation of substrates). Some of these critical residues appeared
to be mutated in these different kinases, which provided an explanation for their lack
of activity (Zeqiraj and van Aalten, 2010) (Figure 1.4).

In addition to coordination of Magnesium, ATP binding and phospho-transfer,
most kinase domains are inactive until they are activated by phosphorylation of one
or more residues in their activation segment. is segment consists of a loop that
connects the N-lobe and the C-lobe of the kinase domain between two conserved
linear motifs (DFG and APE motif). Phosphorylation of the activation segment
favors the transition towards a closed active conformation of the domain that will
allow phosphorylation of substrates (Hanks and Hunter, 1995; Johnson et al., 1996;
Huse and Kuriyan, 2002; Nolen et al., 2004) (Figure 1.4).
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Figure 1.3. e human kinome. Phylogenetic tree illustrating the sequence rela-
tionship between the different families of human protein kinases.

Finally, each kinase domain needs to recognize and phosphorylate speciĕc sub-
strates. is rather complex process of selecting substrate encapsulates at least two
types of selectivity; at a higher or cellular level, substrate protein speciĕcity, which
is driven by different factors such as cellular localization, co-expression of kinase
protein and substrate or scaffolding adaptor proteins (Linding et al., 2007); and at a
lower or molecular level, peptide speciĕcity, where speciĕc residues within the kinase
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domain (also known as determinants of speciĕcity) determine speciĕc preferences at
different positions of the substrate peptide (Turk, 2008) (Figure 1.4 and Figure 1.5).
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Figure 1.4. Functional residues in the kinase domain. Several speciĕc residues of
the kinase domain play crucial roles in activation (catalytically essential residues in
red), regulation (regulatory residues in yellow) and substrate speciĕcity (determi-
nants of speciĕcity in blue). An important challenge that is part of this PhD project
aims at determining which residues belong to these different categories.

As will be obvious from Chapters 6 and 7, kinase peptide speciĕcity is a major
topic of this PhD thesis, especially because we have developed a framework, KINspect,
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to predict peptide substrate speciĕcity from kinase domain sequence, crucial for our
assessment of cancer mutations in signaling networks (Figure 1.6). Peptide speciĕcity
for a given kinase domain can be investigated experimentally by deploying Oriented
Peptide Libraries (OPL), where puriĕed kinase domains are exposed to an immense
library of peptides that contain random combinations of residues in every position
except one ĕxed residue in a given position, thus making it possible to extrapolate
substrate peptide preferences (Yaffe et al., 2001; Hutti et al., 2004; Turk et al., 2006).
Matrices resulting from these experiments are subsequently quantiĕed and Position-
Speciĕc Scoring Matrices (PSSM) generated. For simplicity and more visual appeal,
these matrices are oen presented as sequence logos (Figure 1.5).
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Figure 1.5. Kinase speciĕcity. A. Cellular enzyme speciĕcity, such as kinase
speciĕcity, encapsulates two distinct mechanisms of speciĕcity: protein speciĕcity
and peptide speciĕcity. Protein speciĕcity determines the interaction between the
whole kinase protein and its protein substrate and it is driven by processes such as
interactions between other domains and motifs (e.g. SH2 & phospho-tyrosine in
this ĕgure), co-expression of the two proteins, cellular localization, scaffold pro-
teins, etc. Peptide speciĕcity is solely driven by the sequence and structure of the
kinase domain and drives the phosphorylation of speciĕc peptides within the sub-
strate protein. B. Peptide speciĕcity is determined experimentally byOriented Pep-
tide Library (OPL) screening, where puriĕed kinases are exposed to random pep-
tides where only particular positions are ĕxed to one speciĕc residue, thus deter-
mining substrate molecular preferences for every given kinase. e experimental
results can be turned into Position-Speciĕc Scoring Matrices (PSSM) or logos.
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Figure 1.6. Kinase speciĕcity within the scope of this PhD thesis. Aer deter-
mining the speciĕcity for several human protein kinases, all this data can be used
for the training of computational algorithms (KINspect) which try to identify the
determinants of speciĕcity in the kinase domain. is opens up new research av-
enues and opportunities in the modeling of speciĕcity in cancer and evolutions
or the identiĕcation of functional mutations or network drugs for personalized
medicine, especially upon integration with other techniques that model the other
functional residues within a single framework (ReKINect).



Part II

Existing and new approaches to study
cancer signaling networks
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Chapter 2

Current methods to identify functional
cancer variants

As brieĘy introduced in Chapter 1, there are multiple computational tools that are
being used for the annotation of tumor somatic variants and prediction of their
functional impact in cancer. While in my PhD, we became part of the International
Cancer Genome Consortium (ICGC), a network of international research institutions
involving several speciĕc cancer research projects with the ultimate aim of generating
comprehensive catalogues of the genomic abnormalities underlying tumors of 50 dif-
ferent cancer types and subtypes. In this perspective, we provide recommendations
for speciĕc computational tools and discuss the immense challenge that represents
the identiĕcation of mutations that contribute functionally to oncogenesis, tumor
maintenance or response to therapy.
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The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in 

tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of 

somatic mutations in each tumor, but only a minority drive tumor progression. We present the 

result of discussions within the ICGC on how to address the challenge of identifying mutations 

that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend 

computational techniques to annotate somatic variants and predict their impact on cancer 

phenotype. 

 

 

 
  

Large-scale sequencing of cancer genomes often reveals many thousands of somatic missense 

(amino-acid changing) mutations in proteins. However, not all cancer mutations provide a 

selective (“driving”) advantage to cancer cells1,2. Many mutations are so-called “passengers” 

because their impact on protein function is either insignificant or the affected protein is not 

important for tumor progression. The important practical problem is to determine which 

mutations are likely drivers. Although the carcinogenicity of a particular mutation depends on 

concurrent genomic alterations in the cell, one can significantly reduce the number of potential 

driver candidates by determining the functional impact of each mutation. Thus, a key challenge 

is to distinguish between functional and non-functional mutations, and by extension between 

those that contribute to tumorigenesis (drivers) and those that do not (passengers) (see Box 1 

for definitions). 

 

Cancer has been likened to an evolutionary process by which tumor cells gain a fitness 

advantage over their neighboring cells2. The process creates cells with altered abilities such as 

the circumvention of apoptosis and senescence, deregulated cell division, and failed responses 

to external cues such as contact-contact inhibition and ligand-mediated cell signaling3,4. Normal 

cells are reprogrammed by changes in the genome that are subsequently selected and clonally 

expanded. In a similar manner to the way germline mutations can leave behind patterns 

indicative of negative or positive selection over millions of years, somatic mutations that 

engender increases in tumor fitness also can leave telltale signs in the protein sequence. The 

analysis of a given protein can thus reveal a pattern of alterations that recurrently result in its 

loss of function, as in classic tumor suppressors, like TP53, RB1 or PTEN5. 

 

Mutation events collected across several patient samples can also reveal signs of clustering in 

the peptide sequence or the three-dimensional protein structure that indicates a critical domain 

has been modulated. In the extreme case, the presence of the same amino acid change in the 

same position in different individuals can be a strong indicator of such gain of function or 

oncogenomic events, as is the case with the KRAS6 or BRAF7 oncogenes. Such patterns can 

be leveraged by informatics tools to predict if a particular mutational event induces a selectable 

phenotype. 
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We review the computational analyses that are commonly carried out after the detection of 

somatic mutations across a cohort of cancer samples to identify likely functional and likely driver 

mutations (Fig. 1). Our focus will be on single nucleotide variants (SNVs) and small indels 

(operationally defined here as variants shorter than 50 bp) that change the amino acid 

sequence or affect regulatory regions. The output of these analyses consists of prioritized lists 

of mutations, genes and pathways that may undergo follow-up experiments to demonstrate their 

actual role in cancer. 

 

We divide the process of identifying functional and driver variants into three independent, but 

related, approaches (Fig. 1). The first consists of mapping mutations to annotated functional 

genomic features, identifying their consequences and determining if they have been previously 

reported. The second uses computational methods to predict the nature and magnitude of the 

functional impact of mutation in particular elements (e.g., proteins or regulatory regions). The 

third employs statistical methods to find signs of positive selection across the cohort. Figure 1 

lists a subset of the computational tools employed in each of the approaches. In the sections 

that follow, we review the rationale and tools of each approach and conclude by presenting 

some of the unsolved challenges and future perspectives in the field.  

 

 

 
 

The first step in determining the possible functional consequences of somatic mutations is to 

identify annotated genomic features that may be affected by them. Features that are more likely 

to encode genomic functions include protein-coding and non-coding transcripts, transcription 

factor binding sites and other potential regulatory regions. Less well-characterized features, 

such as highly conserved regions or regions of open chromatin, may also be of interest. There 

are a variety of software tools that infer the consequences of mutations, but frequently these 

use different terms and different definitions for the effect itself8–10 (Supplementary Table 1). 

 

A large project such as the ICGC requires a common set of terms describing mutation 

consequences to facilitate the comparison of results among different groups. We have 

developed a standard set of ‘consequence terms’ drawn from the Sequence Ontology11 (see 

Supplementary Table 2). This list will be extended and updated as the project unfolds. Along 

with the Sequence Ontology term used to describe the effect of a mutation, we also identify a 

minimal set of ancillary information that annotation tools should provide for each relevant 

consequence term, such as coding DNA sequence (CDS), protein relative coordinates, and 

predicted amino acid substitutions. Several of these annotations will depend on the specific 

transcript the mutation falls within, and so we recommend that a transcript identifier always be 

included. Note that this caveat means that a single mutation can, and frequently will, be 

assigned multiple consequences on multiple transcripts. 

 

We recommend using tools that can output mutation descriptions in the format defined by 

Human Genome Variation Society (HGVS) at all relevant levels (e.g. DNA-level for all 
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mutations, and RNA and protein level descriptions where applicable). HGVS nomenclature 

provides a succinct and feature-centric format for variant descriptions, and some of the tools in 

Supplementary Table 1 (e.g. the Ensembl VEP) have options to produce output in this format. 

We propose a common ranking scheme for the term set that summarizes the effects of a 

mutation that falls in multiple genomic features, such as multiple transcripts (see 

Supplementary Table 2). In addition, the ranking may be used for prioritizing mutations for 

follow-up analysis. 

 

When assigning consequence terms to variants, the source of all underlying annotations, such 

as gene models and regulatory elements, must be noted to clearly document the event. In the 

context of ICGC, we recommend using the GENCODE12 comprehensive set of gene models for 

all gene-associated annotations and identifying the specific release that was used. We advocate 

the use of GENCODE because of the detailed and frequently updated annotation of splice 

variants, pseudogenes and non-coding RNA loci, and the ready accessibility of all data for 

automated annotation via Ensembl and UCSC. Using the same gene models as the ENCODE 

project13 will also allow further integration of somatic mutation data and the wider set of 

ENCODE annotations. 

 

Comparing the list of mutations to catalogues of known variants 

 

An obvious step in determining the implication of detected variants is to identify those that have 

been observed previously in other cancers, that are involved in other diseases, or that exist as 

germline polymorphisms. The growing collection of somatic variants detected within the different 

ICGC projects is a useful source of information, as are databases such as dbSNP14, 1000 

Genomes15, Catalogue of Somatic Mutations in Cancer (COSMIC)16 and databases of variants 

associated with hereditary diseases17,18. Several of the tools listed in Table 1 automatically 

report if the variant is already known. Since none of these sources are definitive, the ICGC 

recommends that, at a minimum, projects report matches to variants known in dbSNP, OMIM, 

1000 Genomes and COSMIC along with the version number of the database. Although dbSNP 

has sometimes been used to filter for somatic mutations, historically it contained primarily 

germline variants. However, in newer releases, many somatic mutations including mutational 

hotspots are also present, for example in JAK2, KRAS and BRAF. Thus, although we 

recommend reporting matches in dbSNP we do not recommend using it to filter out somatic 

mutations. 

 

 

 
 

For many variants, no further assessment can be made about their potential impact on cell 

operation. Nevertheless, for the specific subset of mutations that affect either protein coding 

sequences or known regulatory sites, one can make computational predictions about their 

potential effects. In this section we describe computational analyses that may shed light on the 

possible functions of these variants.   
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Mutations affecting protein coding sequence 

 

A number of computational methods have been developed to differentiate “functional” or 

“disease-associated” non-synonymous mutations from “non-functional” or polymorphic 

variants19–24 (Supplementary Table 3). Some of these are specifically designed for cancer 

variants25–28. As a general rule, these approaches use evolutionary information (multiple 

sequence alignments), secondary and tertiary structure features, physico-chemical properties of 

amino acids, as well as information about the role of amino acid side chains in the 3D structure 

of proteins, such as protein surface placement in interaction sites. 

  

Methods aimed at assessing the functional effect of non-synonymous mutations can be 

classified as “machine learning” and “direct”. Machine learning methods use relevant properties 

of the original and mutant residues (e.g., size, polarity), structural information (e.g., surface 

accessibility, hydrogen bonding), and/or evolutionary conservation and other features. These 

methods are then trained to distinguish between positive sets of disease-associated variants 

and negative control sets of presumably non-functional or passenger variants. In contrast, direct 

methods assess the effect of a mutation through a computed phenomenological score based on 

a particular theoretical model that does not require training sets.  

 

Most of these computational approaches have been benchmarked on variants with pronounced 

phenotypic effects29 (e.g., functionally deleterious and Mendelian disease-associated variants) 

and appropriate negative control sets, reporting accuracies close to ~80%. Although not 

originally designed for this purpose, some of them have been widely employed to rank cancer 

somatic mutations for their likelihood to be drivers, without previously benchmarking their 

performance on this problem. 

 

One of the main challenges to produce such benchmarking is the difficulty of collecting well-

curated sets of driver and passenger mutations. A recent effort to circumvent this problem 

employed various datasets of likely driver and likely passenger mutations25. Under the 

assumption that each proxy dataset is incomplete in non-overlapping ways, this study compared 

the performance of three well-known methods and their impact scores transformed to account 

for the baseline tolerance across several datasets rather than on individual datasets25. In the 

future, when many more cancer genomes have been sequenced and we understand better the 

implication of genetic variants on cancer phenotype, it may be possible to collect gold standard 

datasets to perform more accurate validation. 

 

Given the high-throughput nature of cancer genome projects, one important aspect to consider 

for tool selection is their computational efficiency when thousands of variants are analyzed. Pre-

computation of functional impact scores for all possible mutations in the human proteome is a 

useful remedy (as done by some tools presented in Supplementary Table 3). There is also at 

least one database (dbNSFP30) devoted to collecting and integrating such precomputed 

functional impact scores from different tools. In some cases it may be useful to visualize the 

location of mutations in protein 3D structure, if available, to further assess their potential role 
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with respect to protein stability and/or function, for instance using MuPIT Interactive31 or the 

MutationAssessor web server22.  

 

The output of any computational method should be interpreted as a ranked list of candidate 

driver variants based on the user-submitted mutations, with the vast majority not likely to be true 

positives. The purpose of this ranking is to prioritize mutations for further experimental testing. 

Using a combination of methods based on different theoretical principles (and hence 

independent error models) may help mitigate false positive and negative rates suffered by any 

one method alone, thus resulting in a cleaner list of candidates for experimental validation. 

 

 

Mutations affecting regulatory sites 

  

Only very recently has it become feasible to identify and characterize somatic noncoding 

mutations that affect putative regulatory sites. Predicting the functional effects of regulatory 

variants typically starts either by purely statistical approaches, such as the application of 

machine learning methods to learn motif models from the regulatory sequences, or by modeling 

the transcription factor (TF) to DNA binding biophysics aided by experimental data such as 

those obtained from micro-fluidics or protein binding experiments32,33. Both approaches result in 

predictions of binding sites for different TFs within regulatory sequences. There are several 

tools for making such predictions, such as The Meme Suite34, and the ENCODE project 

catalogues a number of relevant experimental data sets13. Furthermore, RegulomeDB provides 

an integrated approach to analyze regulatory variants35. It uses datasets from ENCODE13 and 

other sources and also uses motif models (eg. from JASPAR36).  

  

When a somatic mutation falls within a TF binding site, it is possible to score its effect in multiple 

ways. Perhaps the simplest is to take the relevant binding site motif model36 and evaluate the 

score difference that the variant causes in that binding site’s match to the model. This is close in 

spirit to scores that are derived from multiple alignments, such as PFAM log E value37. 

However, the interpretation of this particular score is not straightforward because the actual 

binding probability of TF to DNA depends strongly on the factor concentration within the cell and 

the presence of other protein binding factors and may thus vary across cell types. Furthermore, 

it is not clear in general whether stronger or weaker predicted binding is better or worse for TF 

function, and clarifying this will require studying the particular promoter and gene in more detail.  

 

Pleasance et al. (ref. 38) used a specific tool39 to address the functionality of mutations within 

promoters in a lung cancer cell line. Although somatic mutations did not differ significantly from 

the null expectation as a set, individual variants were predicted to have significant disruptive 

effects on potential binding motifs. More recently, systematic analyses integrating TF binding, 

histone marks, and other epigenomic data were used to identify pathways disrupted by Genome 

Wide Association Study (GWAS) at the regulatory level40. 

 

In addition to promoters and enhancers, it is also important to consider possible effects of 

mutations in splicing, especially now that the connection between splicing and cancer is 
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becoming increasingly clear (e.g., ref 41). Consequences of mutations in splicing regulatory 

elements are still difficult to predict but including additional experimental data, such as RNA-

Seq, may lead to improvements in this area. 

 

Given that the majority of somatic mutations reside in non-coding sequence, the need to 

computationally prioritize them for follow-up functional validation is clear. The recent discovery 

of melanoma driver mutations in the promoter sequence of telomerase reverse transcriptase 

(TERT) gene highlights the potential of regulatory variation to drive tumorigenesis43,44. As 

cancer genome projects are moving toward sequencing whole genomes, more non-coding 

driving mutations will likely be discovered. To facilitate such discoveries more computational 

method development to score regulatory variants is needed. 

 

 

 
 

Independent of whether or not a functional consequence can be predicted for a given mutation, 

one can assess to what extent a given mutation has been observed at a higher frequency than 

expected. The rationale for assessing mutation frequency is that driver mutations provide an 

adaptive advantage to cancer cells (Box 1, e.g., BRAF V600E mutation found in melanoma7) 

and should thus be positively selected during the clonal evolution of tumors. Provided that 

similar selective pressures act on different patient tumors and that the same mutation is 

positively selected, one should be able to trace driver mutations by noting their higher 

frequency, a common trace of positive selection. 

 

In principle, exploiting this fact to find driver genes is straightforward: it is simply a statistical 

comparison between the mutation rate observed in a gene versus what is expected under a 

neutral model. However, in practice this approach involves difficult choices with respect to the 

selection of appropriate models for neutral evolution. For example, germline variation should not 

be used to calibrate a null model for somatic mutation analysis26 because this reflects 

evolutionary pressures and mutation processes during species evolution rather than during the 

development of cancer. In addition, many cancers have defects in DNA repair processes that 

change the neutral mutation rate, which have different regional impacts38,45,46, and local 

mutation rate is variable depending on other factors such as replication timing47. 

 

To accurately identify significantly mutated genes, gene-specific mutation rates should thus be 

computed. This can be done using synonymous mutations48 and/or mutations in introns and 

UTR sequences (eg. InVex)49; however, these approaches can only be effectively used in 

tumors with very high mutation rates. In other cases gene-specific mutation rates must be 

estimated taking into account factors known to affect mutation rate such as mutation context, 

replication timing and expression levels (eg. MuSiC50 and MutSig51).  

 

Given the difficulties that are intrinsic to recurrence-based methods, new methods have been 

developed that try to infer signs of positive selection using alternative means. One such 
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approach, OncodriveFM52, consists of detecting genes that exhibit a significant bias towards the 

accumulation of somatic mutations with high functional impact. This method employs well-

known metrics of the functional impact of individual mutations (those in Supplementary Table 

3) to detect genes and pathways with this functional impact bias52. Another novel approach, 

ActiveDriver53, involves the discovery of genes significantly enriched for somatic mutations that 

alter ‘active sites’ in proteins, such as signaling sites, regulatory domains or linear motifs, 

assuming that such active mutations are more likely to have a wide-spread downstream effect 

and lead to a phenotypic advantage for tumor cells53.  

 

Supplementary Table 4 lists several statistical approaches recently developed to identify 

candidate driver genes with signs of positive selection in a cohort of tumors46,48–50,52–54. As some 

of these methods are based on different theoretical principles, we recommend applying multiple 

complementary methods and comparing their results. 

 

Despite these recent advances, future methods will need to capture the high degree of inter-

tumor heterogeneity, as different tumors may acquire the same hallmark of cancer by different 

means (known as analogous mutations55). This heterogeneity is clearly underestimated in the 

current driver/passenger model. 

 

 

 
  

Cancer genome sequencing is a rapidly expanding field, and consequently computational 

methods used to interpret these data are evolving. We have presented a review of classes of 

practical tools currently available for analysis of a subset of genetic variation data. Because of 

the rapid evolution of the field, we have purposely avoided recommending particular tools or 

methods. Instead we present general guidelines to assist in making educated choices of 

methods that can address particular research problems. A number of pipelines facilitate the 

user-friendly application of various tools presented here. For instance, CRAVAT56 maps 

mutations to their consequences on protein coding genes and it predicts their implication in 

cancer and disease using CHASM26 and VEST57. IntOGen-mutations58 provides a way to apply 

tools of the three approaches, including mapping mutations using Ensembl VEP8, reporting their 

functional impact on proteins (using MutationAssessor22, SIFT20, PolyPhen259 and TransFIC25) 

and identifying genes with signs of positive selection across a cohort using OncodriveFM52. 

 

It is important to emphasize the limited capacity of these approaches to directly identify the  

causative mutations of tumor development. Rather, they are intended to prioritize candidates for 

follow-up experiments that may demonstrate their actual implication in the cancer phenotype. 

Reporting back the results of these rounds of validation experiments to the method's authors 

could in principle help them improve their approaches. The current relative scarcity of 

established spaces for this information exchange should be specifically addressed as part of the 

development of this field. Furthermore, these validation experiments will contribute to expand 

the catalogs of well characterized driver and passenger mutations, thus creating appropriate 

datasets for the development of computational prediction tools. 
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There are three key challenges in the field of cancer mutation analysis (Box 2). The first is to 

improve the accuracy of prediction of the functional impact of a mutation. Because mutations do 

not occur in isolation, but coexist with other somatic alterations that work together to alter 

cellular processes, separate gene-by-gene analyses are error-prone. A promising direction is 

the integration of multiple sources of biological information60, and the use of pathway and 

network analyses in the interpretation of cancer genomes22,61,62. 

 

The second challenge is to develop reliable computational methods for the classification of 

mutations by functional impact type: loss of function, gain of function or switch of function22,61,62. 

The computational classification of mutations by type as well as strength of impact will 

contribute to the more complete elucidation of functional alterations in a cancer genome. The 

rich information encoded in the 3D structure of proteins, which is not yet well utilized by current 

approaches, can be particularly useful for deducing both the functional type and cellular 

consequences of mutations. 

 

Lastly, there is the practical challenge of identifying mutations that confer resistance or 

sensitivity to a particular form of therapy (see for example63,64). We look forward to the day when 

functional prediction methods support personalized therapeutics, in which the patient’s therapy 

is informed by analysis of the specific genetic alteration profile in an individual tumor. The 

development of better approaches for analysis of functional and driver mutations will help to 

facilitate this process and in so doing will support the future development of personalized cancer 

medicine. 

 

 

 

Figure legends 

 

Figure 1. Scheme depicting the three main approaches routinely employed in the analysis of 

cancer somatic mutations, as reviewed in this perspective. Although there are important 

relationships of precedence between elements from different approaches, they do not 

necessarily correspond to sequential steps. Tools employed in each of the approaches are 

shown in the middle. Integrative pipelines refer to tools that facilitate the use of methods across 

all approaches (e.g., IntOGen-mutations pipeline).  

 

Box 1: Definitions 

We define a functional variant as a genomic variant that affects the molecular function of a 

protein (as a gain, loss or switch of function). A non-functional variant does not significantly 

affect the molecular function of a protein. A driver variant confers a selective advantage to a 

particular tumor cell, while a passenger variant does not. It is important to distinguish between 

functional versus non-functional and driver versus passenger as they describe different 

concepts. For example, a mutation might dramatically affect the function of a protein without 

providing any selective advantage to the tumor (it is a functional passenger variant). 

Non-synonymous mutations are those that alter the amino acid sequence of a protein. 
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Box 2: Current Challenges 

 

1. Assess the functional impact of sets of mutations. 

Most current methods cannot accurately predict changes in protein and cellular function 

because changes in tumor phenotype typically result from multiple genetic alterations.  

 

2. Complement the identification of functional and driver mutations by the prediction of 

how mutations affect protein and cellular function. 

There is a need for methods that not only identify functional or driver mutations but also predict 

the likely cellular outcome resulting from mutations such as gain, loss or switch of function, and 

how mutations might affect cellular networks. 

 

3. Apply predictive tools to biologically relevant questions such as drug resistance. 

The ideal method should not only predict the effect of multiple mutations in an integrative 

manner and how they affect protein and cellular outcome, but also tackle translational clinical 

challenges such as drug resistance. 
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Supplementary Table 2. Tools to annotate variants to genomic features that may be 

affected using Sequence Ontology Terms 

  

Name Description Run by 

Ensembl Variant Effect  

Predictor (VEP)
8 

(http://www.ensembl.org) 

Predicts the effect of variants with respect 

to the Ensembl gene set and regulatory 

build. Given a variant mapped to the 

reference genome, the system identifies 

any transcripts or regulatory regions that 

overlap the variant and uses a rule-based 

approach to predict the effect that each 

allele of the variant may have on the 

feature. Various useful ancillary 

annotations such as mRNA coordinates, 

amino acid changes, SIFT & PolyPhen 

predictions etc. are also reported. It also 

provides information about variants already 

known from various sources. 

• Using web interface 

• Using standalone Perl 

script 

• Using Ensembl's Perl 

API 

• Using Ensembl’s REST 

API 

  

VAGrENT 
(http://www.sanger.ac.uk/resources/s

oftware/vagrent/) 

Suite of PERL modules that make use of 

the ENSEMBL-variation and ENSEMBL-

core APIs to retrieve the information on 

individual variants in a structured format. 

For each query variant, the user receives 

all the data on its effect and location at the 

level of DNA, mRNA, CDS, and protein. 

• Using suite of PERL 

modules in command 

line 

ASOoViR 
(https://sourceforge.net/p/asoovir/) 

Annotates consequence terms of variants 

using Ensembl gene sets. 

Ensembl gene models and reference 

coding sequences are loaded into memory 

prior to annotation of variants allowing 

rapid annotation of whole genome scale 

calls. Annotation is performed on a 

transcript level basis, identifying associated 

sequence ontology terms for affected and 

nearby transcripts. Default output can be 

obtained on a gene basis, or on a transcript 

level basis.  

• Querying via 

intermediate scripts in a 

command-line 

interface, user-

generated scripts using 

the ruby modules, an 

interactive Ruby shell 

(IRB), or via a web 

browser by running the 

software in server 

mode 

VARIANT
10

 
http://variant.bioinfo.cipf.es/ 

VARIANT (VARIant ANalysis Tool) reports 

the consequences of variants affecting 

coding transcripts, as well as noncoding 

SNVs situated both within the gene and in 

the neighborhood that could affect different 

regulatory motifs, splicing signals, and 

other structural elements, including Jaspar 

regulatory motifs, miRNA targets, splice 

sites, exonic splicing silencers, calculations 

of selective pressures on the particular 

polymorphic positions. It also provides 

• Using a remote 

database cluster and 

operates through 

efficient RESTful Web 

Services that optimize 

search and transaction 

operations 

• Using command Line 

interface, REST Web 

service and Web 

interface have been 



information about variants already known 

from various sources. 

implemented 

Oncotator 
http://www.broadinstitute.org/cancer/c

ga/oncotator 

Maps SNV and indels to genes, transcripts, 

functional consequences, and other 

relevant features.  This mapping uses 

transcript information derived from the 

UCSC KnownGenes Track.  Additionally, 

Oncotator annotates variants with 

information from other public data sources, 

including dbSNP, COSMIC, UniProt, 

DrugBank, ORegAnno, Cancer Gene 

Census, Tumorscape, TCGA Copy Number 

Portal, previously published MutSig 

Analyses, and the Gene Ontology. 

• Using web service or 

web interface. Results 

are cached across 

submissions to improve 

performance.   

• Command-line and 

Python API versions 

will be publicly available 

soon. 

 

snpEff
9
 

http://snpeff.sourceforge.net 

 

Predicts the effect of variants with respect 

to the Ensembl, NCBI and UCSC gene sets 

and regulatory build. Identifies transcripts 

or regulatory regions that overlap the 

variant and predicts the effect that each 

allele of the variant may have on the 

feature. Provides additional annotations 

such as mRNA coordinates and amino 

acid changes. Putative effect impact 

classes are provided for easy 

categorization. Predictions about loss 

of function and non-mediated decay can be 

provided. Accompanying tools SnpSift 

provides other annotations, such as 

dbSNP, SIFT, GWAS Catalogue, 

PolyPhen, Gerp and conservation scores. 

• Command line: Java 

program (platform 

independent) 

• Web interface: 

Integrated to Galaxy 

project 

• API: Java API provided. 

 

!

Other tools for annotating variants to genomic features also exists, however, at the 
time of writing this perspective they do support the use of sequence ontology terms. 
Examples include ANNOVAR65, AnnTools66, CRAVAT56 and VAT67. 



Supplementary Table 3. Methods to assess the functional effect of nsSNVs that 

can be used in a high-throughput manner 

  

Type Name Description Run by 

D SIFT
19,20

 
http://sift.jcvi.org 

 

Given an input protein sequence, SIFT 

searches for similar sequences against a 

database defined by the user, builds a 

multiple sequence alignment of similar 

proteins and calculates normalized 

probabilities for all possible substitutions 

at all positions of the alignment. Based 

on these probabilities, SIFT classifies 

substitutions as likely neutral or 

deleterious. 

• Downloading source code 

and binaries  

• Using web interface 

• Other tools, such as 

Ensembl VEP, also 

provide precomputed 

SIFT scores. 

D PolyPhen2
59 

http://genetics.bwh.harvard.ed

u/pph2 

Naïve Bayes classifier trained from two 

data sets that contain both deleterious 

and neutral amino acid changes. Eight 

sequence-based and three structure-

based predictive features, most of them 

involving comparison of a given property 

of the wild-type amino acid and its 

mutated counterpart are the properties 

used to build the classifier. 

• Downloading source code  

• Using web interface 

• Other tools, such as 

Ensembl VEP, also 

provide precomputed 

PolyPhen2 scores 

 

D/C MutationAssessor
22 

mutationassessor.org 
A prediction of the functional impact of 

protein missense mutations is based on 

the assessment of evolutionary 

conservation of amino acid residues in a 

protein family multiple sequence 

alignment. The novelty of the approach is 

in exploiting the evolutionary 

conservation in protein subfamilies, 

which are determined by clustering 

multiple sequence alignments of 

homologous sequences on the 

background of conservation of overall 

function
68

. 

• Using web interface, 

which also provides 

numerous biological 

annotations and the 

possibility to inspect 

mutations in multiple 

sequence alignment and 

in 3D structures  

• Downloading functional 

impact scores 

precomputed for all 

missense SNVs in the 

reference genome  

C CHASM
26 

http://www.cravat.us 
A random forest classifier is trained on a 

curated set of driver mutations derived 

from COSMIC and randomly simulated 

passenger mutations. It uses eighty-six 

diverse features (available at SNVBox 

database
69

), including physio-chemical 

properties of amino acid residues, scores 

derived from multiple sequence 

alignments of protein or DNA, region-

based amino acid sequence 

composition, predicted properties of local 

protein structure and annotations from 

• Downloading source code  

• Using web interface 

(results returned via email 

in spreadsheet and/or tab-

delimited format)   



the UniProtKB feature tables. 

D VEST
57 

http://www.cravat.us 
Random forest classifier trained on 

mutations from Human Gene Mutation 

Database and high-frequency nsSNPs 

from ESP6500. VEST uses features from 

the SNVBox database
69

 (same as 

CHASM above). 

• Downloading source code  

• Using web interface 

(results returned via email 

in spreadsheet and/or tab-

delimited format)  

C transFIC
25 

http://bg.upf.edu/transfic 
transFIC (for transformed functional 

impact scores for cancer) takes the 

Functional Impact Score (FIS) produced 

by any method aimed at evaluating the 

impact of a mutation on the functionality 

of a protein and transforms it, taking into 

account the baseline tolerance of similar 

proteins to functional impacting variants. 

The transformation can be interpreted as 

an adjustment for the impact of the 

somatic variant on cell operation. 

transFIC has been shown to outperform 

the original scores in nine proxy datasets 

of driver and passenger mutations. 

• Obtaining transFIC of 

SIFT, PolyPhen2 and 

MutationAssessor from a 

web service and using 

IntOGen-mutations 

pipeline 

• Downloading PERL 

program to transform any 

functional impact score 

 

A LS-SNP/PDB
23 

(http://ls-snp.icm.jhu.edu/ls-

snp-pdb) 
 

LS-SNP/PDB annotates all human SNPs 

that produce an amino acid change in a 

protein structure in PDB. Features of 

each nsSNP’s local structural 

environment, putative binding 

interactions and evolutionary 

conservation are displayed. nsSNPs can 

be filtered by evolutionary conservation, 

proximity to ligand or domain interface, 

secondary structure, solvent accessiblity, 

and severity of amino acid substitution. 

These annotations allow users to quickly 

scan a large number of nsSNPs of 

interest and prioritize those with higher 

likelihood of impacting normal protein 

activities. 

• Using web interface 

 
 
 

D CONDEL
21 

http://bg.upf.edu/condel 
Condel (Consensus deleteriousness 

score) is an approach to combine the 

functional impact scores of non-

synonymous single nucleotide variants 

(nsSNVs). It uses values extracted from 

the complementary cumulative 

distributions of the scores produced by 

individual tools on a dataset of 

deleterious and neutral nsSNVs as 

weights to combine them. Tested with 

• Obtaining Condel scores 

for the combination of 

SIFT, PolyPhen2 and 

MutationAssessor from a 

webservice. 

• Downloading PERL 

program to combine any 

functional impact score. 

 



five well-known tools on a proven dataset 

of deleterious and neutral nsSNVs, the 

integrated score outperforms the 

individual methods. 

D Logre (LogR Pfam E-

value)
27

 
http://www.rbvi.ucsf.edu/Outre

ach/genentech.html 

  

  

Wild-type and mutant sequence are 

aligned to the Pfam HMM that represents 

the domain where the mutation is 

located. Then, the logarithm of the ratio 

of the e-values (LogR E-value) of these 

two alignments is calculated. Positive 

ratios correspond to mutations that 

decrease the fit of the protein sequence 

to the HMM. 

• Using Canpredict web 

server 

D MAPP
24 

http://mendel.stanford.edu/Sid

owLab/downloads/MAPP  

  

A multiple alignment of closely related 

protein sequences, and a phylogenetic 

tree of the relationships between the 

sequences are used to derive six 

matrices that reflect the constraints faced 

by the 20 amino acids to occupy each 

position of the alignment. Each matrix is 

built on the basis of a single physico-

chemical property of the aminoacids. The 

results for the six physico-chemical 

properties are then de-correlated to 

compute a single score that measures 

the violation of constraints across all 

properties. 

• Dowloading source code 

Note that PolyPhen2, CHASM and VEST are “machine learning algorithms” while the 
rest are “direct” methods. See main text for definition of these terms.  
 

Legend Type!
D: Tools designed to discriminate disease-associated variants from polymorphisms.!
C: Tools specifically designed to rank likely cancer driver mutations!
A: Tools that annotate information on known variants !



Supplementary Table 4. Available tools to identify driver genes from a cohort of 

cancer patients 

  

Name Description Run by 

MutSig 
https://confluence.broadinsti

tute.org/display/CGATools/

MutSig 

MutSig (for "Mutation Significance") is a 

package of tools for analyzing mutation 

data. It operates on a cohort of patients 

and identifies mutations, genes, and 

other genomic elements predicted to be 

driver candidates. 

• Requesting MutSig program 

from the authors 

 

Input required is list of 

mutations found in each patient 

and the list of regions 

sequenced to sufficient depth 

("covered") for mutation calling. 

MuSiC
50 

http://gmt.genome.wustl.ed

u/genome-music/ 

MuSiC (for “Mutational Significance In 

Cancer”) contains a set of tools to 

analyse cancer genomes, including a 

package to identify Mutated Genes 

(SMG package). Various statistical tests 

(e.g., convolution test [CT], a Fisher’s 

combined P-value test [FCPT] and the 

likelihood ratio test [LRT]) can be applied 

for this purpose). 

• Downloading MuSiC software 

tools from their web page 

 

Input required is list of 

mutations found in each patient 

(MAF) and alignment files 

(BAM). 

List of regions of interest also 

provided 

OncodriveFM
52 

http://bg.upf.edu/oncodrive 

  

OncodriveFM uncovers driver genes or 

gene sets (such as pathways) based on 

the accumulation of functional mutations 

across tumor samples as a signal of 

positive selection. It computes a metric 

of functional impact using three well-

known methods (SIFT, PolyPhen2 and 

MutationAssessor) and assesses how 

the functional impact of variants found in 

a gene across several tumor samples 

deviates from a null distribution. 

• Downloading OncodriveFM as 

a Perl program  

• Using IntOGen-mutations 

pipeline 

 

Input required is the list of 

mutations found in each patient 

dN/dS Nonsynonymous /synonymous dN/dS 

ratio is an approach from evolutionary 

genetics (see e.g., Hartl and Clark 

2007
70

). Ratio dN/dS>1 is consistent with 

positive selection acting on 

nonsynonymous mutations, dN/dS=1 

with neutral evolution and dN/dS<1 with 

purifying (negative) selection acting on 

the variants. 

• Downloading one of several 

(non-cancer specific) 

implementations of the tool  

 

Input required is coding 

(nucleotide) sequences of the 

cancers and the reference 

sequence  

InVEx49  
http://www.broadinstitute.or

g/software/invex/ 

Permutation-based method for 

ascertaining genes with a somatic 

mutation distribution showing 

evidence of positive selection for non-

silent mutations. Mutations are 

permuted on a per-patient, per-

• Downloading InVEx as a 

python program 

 

Input required is list of 

mutations found in each patient 

(MAF) and wiggle file. 



trinucleotide-context basis across the 

covered exon, intron and UTR base 

pairs of a gene, generating a null 

model of the distribution of mutations 

to which the observed distribution can 

be compared to determine statistical 

significance. The method can operate 

on whole exome as well as whole 

genome sequencing data in high 

mutation rate cancers. 

 

ActiveDriver53 
http://www.baderlab.org/Sof
tware/ActiveDriver/ 

ActiveDriver is a method for predicting 

cancer driver genes that show specific 

mutations in functional sites in protein 

sequences, such as phosphorylation 

sites. The gene-centric regression 

model estimates mutation significance 

by integrating mutation frequency, 

protein disorder, number of signaling 

sites and their proximity to mutations. 

ActiveDriver is complementary to 

standard frequency-based methods of 

mutation significance and helps 

interpret rare, but site-specific 

mutations. 

• Downloading the ActiveDriver 

R package and associated data 

files (protein sequences, 

disorder predictions, 

phosphorylation signaling sites) 

from its web page.  

 

Input required is list of 

mutations in each patient 

!

!







Chapter 3

New strategies to personalize network
medicine

On a more forward-looking and signaling-centric view to the cancer problem than
the review included in Chapter 2, in this perspective, we discuss how cancer cells, by
hijacking signaling networks, transition from a game governed by Nash equilibria of
cooperation between all cells into a new scenario where cancer cells become masters
of their own destinies. In reviewing the strategies cancer cells use to become “selĕsh”,
we discuss how genetic lesions can lead to altered protein function, changes to the
structure and dynamics of signaling networks and, ultimately, cellular phenotype. We
also describe general properties of cancer signaling networks and challenges in cancer
network biology, and ĕnish by suggesting how the future of personalized medicine
could be revolutionized by a combination of relatively new technologies that could
allow the discovery of network drugs.
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dynamics of signaling networks and ultimately cellular phenotype. Next, 

we describe five general properties of cancer signaling networks (Fig. 1)  

and define five challenges in cancer network biology and propose 

strategies to overcome them (Fig. 2). By meeting these challenges, 

network biology may fundamentally advance not only basic biology 

but also patient treatment. Finally, we describe how a combination 

of relatively new technologies could become a potent cocktail for the 

discovery of network drugs, and we discuss the practical implementation 

of personalized and tumor-specific cancer therapy.

From genomic lesions to functional network perturbations

Tumor cells often harbor hundreds to thousands of genetic lesions. But 

based on the observation that some of these genetic lesions are repeat-

edly observed in several cancers (e.g., BRAF V600E, present in >50% 

of all malignant melanomas5), it has been hypothesized that only a few 

genetic lesions are causally implicated in cancer development (‘drivers’), 

whereas the majority have no functional consequences (‘passengers’)6.

Although this classification has had some use in identifying 

mutations that are highly prevalent, it is now apparent that a tumor 

is not, under any circumstances, a static and uniform population of 

malignant cells. Rather, it is a dynamic ensemble of subpopulations 

with different abnormalities undergoing molecular evolution7–9. 

Two fundamental principles of cancer signaling networks can explain 

why a binary driver/passenger classification may be too simplistic to 

accommodate the complex dynamic nature of tumors. First, different 

tumors can develop similar phenotypes by acquiring mutations in 

different proteins10, in what we term analogous mutations (Fig. 1a). 

Second, it has been shown that two different mutations not capable 

of causally driving cancer by themselves are able to do so when they 

appear in combination within the same cells or even within two 

neighboring cells11, in what could be described as two passengers 

becoming drivers or, as we refer to them, synthetic oncogenes (Fig. 1b).  

Thus, patient-to-patient heterogeneity can be driven by the presence 

of different mutations in the same or in different proteins that lead to a 

similar signaling state and phenotypic outcome.

Altogether, the intrinsic heterogeneity of tumors makes it a pressing 

challenge for cancer network biologists to develop tools to identify 

the extent to which combinations of cancer mutations affect protein 

function and cellular and phenotypic states (Fig. 2a,b). Even though 

several such tools have been developed (reviewed in ref. 12), existing 

methods are mainly based on protein structure and/or sequence 

conservation. This is at odds with recent findings that show that cancer 

mutations tend not to cluster on the most conserved protein regions. 

In kinases, for example, mutations typically hit the kinase activation 

segment, a functional, yet largely nonconserved protein region13. 

Navigating cancer network attractors for tumor-

specific therapy

Pau Creixell1, Erwin M Schoof1, Janine T Erler2 & Rune Linding1

Cells employ highly dynamic signaling networks to drive 

biological decision processes. Perturbations to these signaling 

networks may attract cells to new malignant signaling and 

phenotypic states, termed cancer network attractors, that 

result in cancer development. As different cancer cells reach 

these malignant states by accumulating different molecular 

alterations, uncovering these mechanisms represents a grand 

challenge in cancer biology. Addressing this challenge will 

require new systems-based strategies that capture the intrinsic 

properties of cancer signaling networks and provide deeper 

understanding of the processes by which genetic lesions 

perturb these networks and lead to disease phenotypes. 

Network biology will help circumvent fundamental obstacles 

in cancer treatment, such as drug resistance and metastasis, 

empowering personalized and tumor-specific cancer therapies.

Cells are constantly computing decisions based on the integration of 

different cues that reach them at various times. In contrast to single-

cell organisms, in multicellular organisms, cellular decisions should,  

ultimately, benefit the organism as a whole, even if that implies that an 

individual cell will have to decide to commit suicide. In line with this 

unique feature, signaling networks have evolved during multicellular 

evolution to allow cells to integrate cues and make decisions that ensure 

cooperative behavior between them. By hijacking these mechanisms, 

cancer cells escape cooperative rules and transition from a game gov-

erned by Nash equilibria1,2 between all cells into a new scenario where 

cancer cells decide their behavior purely based on their own benefit, 

or as phrased by Hanahan and Weinberg3, “become masters of their 

own destinies.” Given the central role played by signaling networks in 

the integration of cues to compute any cellular responses, we argue that 

cancer is not simply a disease with a genetic basis, but is one ultimately 

driven by perturbations at the signaling network level, and that both the 

‘cue-signal-response’ rules of cellular decision-making and the switch 

in strategy from cooperative to selfish are major, hitherto understudied, 

hallmarks of cancer3,4.

In this article, we dissect the strategies cancer cells use to become 

‘selfish’ and drive disease. We first review how genetic lesions can lead to 

altered protein function, which can result in changes to the structure and 
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An insightful example of how to explore 

this sequence-function relationship in protein 

domains was carried out by researchers in 

the Ranganathan and Yaffe laboratories who, 

using methods from statistical mechanics, 

generated synthetic WW domains de novo 

that maintained fold and function17,18. 

Further supporting a complex sequence-

function relationship, additional studies from 

the Ranganathan laboratory demonstrated 

that, in addition to protein architecture 

described as combinations of modules such 

as globular domains and linear motifs19–21, 

protein domains themselves often have well-

defined sectors formed by sparse networks of 

residues often linking spatially distant regions 

that contribute cooperatively but unequally 

to its function22,23. Although some targeted 

studies analyzing several cancer mutations in 

a single kinase have been conducted24, similar 

approaches to those used for WW domains 

should be pursued to generate high-throughput 

experimental studies of cancer mutations in the 

context of signaling networks. These would 

help gain a better understanding of which 

amino acid residues can be changed freely 

without affecting the protein and network 

function and, most importantly, which cannot.

From network perturbations to cellular 

phenotypes

The characterization of cellular signaling pro-

cesses has largely focused on identifying the 

function of individual genes and proteins. A 

notable exception is a landmark study25 on the 

context dependence of the Jun-activated kinase 

(JNK) in apoptosis. Before this work, para-

doxical results suggested that JNK had a pro- 

apoptotic function26, an anti-apoptotic func-

tion27 or even a lack of involvement in apopto-

sis28. The systematic approach undertaken by 

Janes et al.25 revealed that the phosphorylation 

status of JNK (and thus its catalytic activity) 

was not sufficient to determine apoptotic com-

mitment; instead, activation of JNK could lead 

to both apoptosis and proliferation depending 

on the cellular signaling network state at the time of activation. Thus, this 

work demonstrated that a protein’s cellular role is not a static property 

but rather can only be defined dynamically—that is, its role depends 

on the context of the network it is operating within. Similar context 

dependencies have been confirmed for other kinases, such as Erk and 

MK2. Because of this, which is referred to as the multivariate property 

of signaling networks (Fig. 1c), we suggest that it is essential to study 

cellular context at the systems level. 

Although these multivariate molecular networks seem to have evolved 

a complex structure that makes them robust against deletion of a few 

proteins29, they are highly dynamic. Thus, a more accurate description 

of signaling networks should take into account the fact that a single static 

network does not exist unchanged over time. Instead, a cell contains 

a dynamic ensemble of networks whose different permutations are 

manifested in the cell depending on the different cues the cell is presented 

Because cancer cells would obtain the greatest fitness advantage 

from mutations that target the most-functional residues, we reason 

that a better understanding of the functionality of protein residues 

would allow more accurate predictions of the consequences of cancer 

mutations. Functional residues have been defined as those residues 

required for a protein to perform its molecular function(s), in the 

sense that they cannot be freely changed without directly affecting 

the role(s) of the protein14. Here we extend this definition to include 

a more fine-grained and precise definition of protein function as 

an ensemble of protein features that together describe the different 

functional capabilities of proteins (e.g., ATP binding, substrate 

specificity, protein activation or phospho-tyrosine binding). This new 

definition would not only adapt well to current studies of sequence-

function associations15,16, but also lead to a better description of the 

effects of a mutation affecting such residues (Fig. 2a,b).

Figure 1  Properties of cancer signaling networks. (a) Analogous mutations. Two different tumors 

may achieve the same signaling and phenotypic outcome with two different mutations (b) Synthetic 

oncogenes. Mutations that are not oncogenic on their own can cooperate when appearing together 

to drive tumor formation11; by analogy to synthetic lethality, we call the genes harboring cooperative 

mutations, synthetic oncogenes. (c) Multivariate nature of signaling networks. The response of a cell to 

a specific cue depends on, and can only be predicted by taking into account, the state of the cellular 

signaling networks25. This dependency, known as the multivariate nature of signaling networks, is 

often neglected when classifying mutations and genes as oncogenes or tumor suppressors and cancer 

drivers or passengers. (d) Dynamic networks. Although signaling networks are often represented as 

static, it is clear that they are highly dynamic entities. Given that the role of signaling networks in 

computing cellular responses is highly dependent on it, and that cancer mutations will perturb it, this 

dynamic nature is a critical property of cancer signaling networks. (e) Signaling network landscapes. 

The different states that a signaling network occupies can be represented as a landscape (with stable 

steady states or attractors represented as valleys and unstable steady states represented as hills), where 

the cell constantly gets pushed by signaling cues31,32,39,40. These states drive cellular and disease 

phenotypes and represent network drug targets.
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with (Fig. 1d). This dynamic nature of signaling networks could, at least 

in part, explain why all mutant proteins do not seem to be expressed at a 

given point in time30, if a substantial part of the proteome is so dynamic 

that it is expressed only when the cell senses a specific cue.

Moreover, according to a general principle of complex systems 

introduced in the 1980s31,32, dynamic cellular networks can only exist 

in a finite number of states, owing to the constraints that interactions 

between nodes impose on one another. These network states can be 

represented as landscapes, where most-probable and least-probable 

states are represented as valleys and mountains, respectively (Fig. 1e). 

Cells are continuously exploring this landscape 

and are pushed from one state to another by 

different environmental or intracellular cues.

Implications for cancer research

The multivariate nature of signaling networks has 

profound implications for cancer research. Just as 

it is inaccurate to assign a static function (e.g., 

apoptotic or anti-apoptotic) to a single protein, 

it is clear that static interpretations of mutations, 

that is, driver or passenger mutations, are also 

misleading. For example, given that the pheno-

typic role of JNK strongly depends on network 

state, it is clear that a mutation in JNK (and thus 

probably any other mutation) should not be 

statically labeled as a driver or passenger or as 

an oncogene or tumor suppressor, as such clas-

sifications are context dependent (e.g., disease 

or cell-type specific). Several examples, such 

as Myc33 or WT1 (ref. 34) gene products that 

act as both tumor suppressors and oncogenes, 

support this idea. These results underscore the 

importance of assessing mutations based on their 

effects on signaling networks and of developing 

novel classification methods to do so. Along these 

lines, MAP2K4 (one of the protein kinases that 

can phosphorylate and activate JNK) has been 

shown to be recurrently lost or mutated in sev-

eral cancers35–38. These represent prime examples 

of mutations that may display ambivalent pheno-

typic impact similar to JNK.

Motivated by the example of MAP2K4 and 

many other mutated kinases38, we maintain 

that mutations capable of affecting signaling 

networks—which we call network-attacking 

mutations (Fig. 2c)—are more likely to affect 

phenotype than other mutations. Thus, we discuss 

a general strategy in which mutations in individual 

cancers are assessed based on, first, the likelihood 

they will affect protein function, and second, 

the cellular role of the signaling network that 

they are operating within (Fig. 3). Our strategy 

extends the concepts  introduced by Waddington 

and elaborated by Kauffman and Huang et 

al.31,32,39,40, where cancer mutations are turned 

into perturbations capable of reshaping these 

landscapes. We represent the cellular response 

or phenotype as another dimension where each 

network state (every point in the landscape) is 

constantly projected to and translated into a 

cellular decision or phenotypic outcome. 

We postulate that network-attacking mutations affect the cell not by 

perturbing how the signaling landscape is projected to the phenotypic 

dimension, but by changing the ensemble of dynamic networks that 

can be manifested in a cell and, in consequence, the number and 

stability of steady states in the signaling landscape, thus creating new 

attractor states that only cancer cells can occupy, also known as cancer 

network attractors (Fig. 3). This has additional implications for other 

mechanisms, such as oncogene and non-oncogene addiction41, where 

cancer cells would be trapped in cancer attractor states and could 

escape from them by reverting the genomic aberration that initially 
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Figure 2  Challenges in cancer network biology. (a) Functional consequences of cancer mutations. 

Using an ensemble of protein-function features (e.g., ATP binding, substrate specificity, activation 

of the protein kinase or phospho-tyrosine binding), which together represent a comprehensive 

description of a protein’s molecular functions, will enable more accurate and predictive evaluation 

of cancer mutations. (b) Modeling of disease networks. Although experimental and computational 

tools for modeling molecular networks exist, creating more comprehensive, sensitive and 

accurate new tools especially designed to model disease-associated networks still represents a 

big challenge in network biology. (c) Network-attacking mutations and cancer network attractors. 

Network-attacking mutations are mutations that lead to a new cellular phenotype by perturbing 

signaling networks either at the network structure or the network dynamics level. Network-

attacking mutations transform signaling networks, generating new possible network states by 

changing the number and/or stability of steady states in the signaling landscape31,32,39,40. These 

acquired signaling capabilities lead to alterations in the cell’s normal ‘cue-signal-output’ flow 

and thereby drive disease phenotypes (see Fig. 3 for further details). (d) Tumor subpopulations 

and micro-environment. The field is only beginning to comprehend the complex interactions that 

exist between different co-evolving tumor cell subpopulations and between those cells and the 

tumor microenvironment, both of which strongly influence tumor progression. (e) Network-aware 

and temporal drugs. As predicted by R.L. and Pawson66 several years ago, new pharmaceutical 

strategies that target networks instead of single proteins are becoming available47,48. We predict 

this trend will not only continue, but also include recent advances that highlight the possibility to 

‘cure’ networks using time- and order-dependent therapies68. In coming years, the discovery of 

resistant, metastatic, tissue or cell-specific networks could lead to an even greater advance in the 

field of network medicine (Fig. 5).
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Despite the fact that the number of known cancer network-attacking 

mutations is still relatively low, recent findings suggest that in-frame 

mutations are enriched on interaction interfaces57, which implies 

they are also likely to affect determinants of specificity. Moreover, 

many fusion proteins have been discovered that likely directly rewire 

or create new network states58. Given the rate at which cancer muta-

tions are being reported and the development of new computational 

methods for systematically identifying these mutations (Fig. 2b),  

we predict a steep increase in the number of network-attacking muta-

tions that will be uncovered in the coming years.

Personalized cancer network biology

Led by recent advances in sequencing technologies, the amount of data 

on cancer genome mutations is growing exponentially59. Current efforts 

caused the perturbed landscape. Given 

the high degree of determinism that exists 

between signaling networks, landscapes and 

phenotypes, we argue that network-attacking 

mutations are at the heart of all new decision-

making capabilities acquired by cancer cells. 

Consequently, in our view, the study of 

both network-attacking mutations and new 

attractor states acquired by cancer cells, that 

is, cancer network attractors, deserves the 

highest priority from the field. Such studies 

should be performed through systematic and 

quantitative sampling of cell dynamics at 

multiple levels (e.g., genomic or epigenetic, 

proteomic and phenotypic), followed by 

nonlinear interpolation and integrative 

computational modeling (Fig. 4).

The first network-attacking cancer mutation, 

described more than 15 years ago42, was a point 

mutation in the kinase domain of RET (M918T), 

which leads to a switch in peptide specificity. In 

line with their importance, network-attacking 

mutations have attracted more attention in 

recent years43–48. Moreover, information has 

been accumulating steadily about how specific-

ity in signaling networks and modular protein 

domains emerges49–51, leading to the defini-

tion of determinants of specificity in protein 

domains52,53. These determinants, sometimes referred to as  specificity-

determining residues, are residues that can lead to substrate specificity 

changes after mutation. Notably, direct mutagenesis of these determinants 

of specificity has been used to rewire the entire histidine kinase signal-

ing system in bacteria in a predictive manner54. Recent follow-up work 

indicates that mutations in determinants of specificity prevent cross-talk 

and allow protein family expansions55, in a process similar to the one 

powered by negative selection over Src homology 3 (SH3) protein domains 

that show similar specificity56. We propose that similar studies in human 

signaling networks, coupled with mapping of cancer mutations on these 

determinants of specificity, would shed new light on whether signaling 

rewiring is a general principle of oncogenesis and tumor progression, 

knowledge of which would in turn be critical as molecular therapies tar-

get proteins and their networks and not genes.

Figure 4  Traditional versus network biology 

approaches. In more traditional biological 

approaches, where only one or a few genes 

or proteins are sampled across a limited 

set of conditions, there has been limited 

success in deriving predictive models across 

conditions or cell types that would require 

comprehensive sampling. In contrast, 

network biology relies on systematic 

sampling across combinations of states 

that result in increased performance of a 

network model. Unlike classic approaches, 

in which the system is stimulated with 

single specific cellular cues (e.g., growth 

factor), in the network biology approach, the 

multivariate nature of signaling networks and 

the nonlinear relationship between signaling 

input and output can be successfully 

elucidated by interrogating the system with 

multiple orthogonal cues.
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Figure 3  Network-attacking cancer mutations. Proteins are the key elements of signaling networks as a 

result of their ability to integrate external cues and direct the information flow toward a specific cellular 

outcome (e.g., epidermal growth factor (EGF) leading to proliferation or tumor necrosis factor alpha  

(TNF-a) leading to apoptosis). Network-attacking mutations affect the ‘cue-signal-output’ cellular 

information flow by affecting either the dynamics (middle), for example, by keeping proteins 

constitutively active, or the structure (right), by affecting protein specificity, of the signaling networks. 

Signaling networks can be represented as a landscape with the most likely network states represented 

as valleys (stable steady states or attractors) and the least likely network states as mountains (unstable 

steady states). Network-attacking mutations dysregulate signaling networks by perturbing the number 

and/or stability of steady states in the landscape, effectively creating new cancer-specific attractors that 

only cancer cells will be able to reach.
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from the Cancer Genome Atlas and Cancer 

Genome Project, now under the umbrella of the 

International Cancer Genome Consortium60, 

will facilitate the annotation and collection of 

cancer genome data. We foresee similar waves 

of technological progress and the generation 

of new consortiums in the cancer proteomics 

fields in the near future. The establishment 

of the Clinical Proteomic Tumor Analysis 

Consortium (http://proteomics.cancer.gov/pro-

grams/cptacnetwork),  and the implementation 

of new approaches61 and labeling techniques62 

optimized for patient samples are encouraging 

advances in this direction.

These advances, however, will need to 

be coordinated with new algorithmic and 

experimental high-throughput methods (e.g., 

high-content screening) capable of interpreting 

this flood of information because the functional 

interpretation of the data is currently the main 

bottleneck in the field of personalized cancer 

network biology. Computational integration 

of large quantitative data sets is also becoming 

increasingly important, and thus there is a 

growing requirement for supercomputing 

infrastructure with large algorithmic dynamic 

range (e.g., next-generation large shared memory systems). Benchmarking 

and validation of systematic workflows and algorithms is already receiving 

increasing attention through initiatives, such as the DREAM challenge63 

and IMPROVER64.

Two emerging areas in network biology that are likely to contribute to 

the future of cancer research are the study of cell-cell interactions (Fig. 2d)  

and drugs specifically designed to interfere with diseased network 

dynamics (that is, network drugs; Fig. 2e).

R.L. and collaborators65 studied cell-cell interactions by isotopically 

labeling two distinct subpopulations of cells, one expressing ephrin-B1+ 

and the other Eph-B2+, and carrying out a comprehensive phospho-

proteomic analysis. This strategy facilitated the first measurements 

of phosphorylation events during the interaction of two cell 

subpopulations. The proliferative behavior of cancer cells is still poorly 

understood in part because it is difficult to experimentally study the 

transmission of proliferative factors from one cell to its neighbors3. 

Therefore, we argue that a similar isotopic labeling strategy could 

be used to investigate the cooperation between cells with different 

oncogenic lesions that together (that is, synthetic oncogenes; Figs. 1b 

and 2d) lead to tumor formation11.

Combination drugs that interfere with disease networks (so-called 

network medicine66) have been shown to lead to a better response than 

single-hit therapies by causing secondary perturbations to signaling 

networks47,48,67. Recent work by the Yaffe laboratory represents a clear 

leap forward within the field of network medicine68,69. Following network 

modeling, Yaffe and colleagues68 managed to decode the signaling 

network dynamics that drive resistance to DNA-damaging chemotherapy. 

This information was used to sensitize otherwise resistant triple-negative 

breast cancer cells to conventional DNA-damaging chemotherapy by 

administering doxorubicin (Adriamycin, Doxil) and erlotinib (Tarceva) 

in an order- and time-dependent fashion. This could be considered the 

first example of temporal network drugs (Figs. 2e and 5).

We predict that personalized or even tumor-specific cancer therapy will 

become a reality in the foreseeable future, starting from early diagnosis of 

the disease, followed by next-generation sequencing, proteomic analysis, 

high-throughput profiling of phenotypic cell states in the tumor and 

design of patient-specific combinations of network drugs with resistance 

follow-up (Fig. 5). Relatively new techniques, such as single-cell and high-

depth sequencing70,71, imaging72 and cytometry time-of-flight73, could 

prove especially valuable for monitoring the number, properties and 

behavior of different tumor subclones (Fig. 2d). Ideally, network drugs, 

such as the aforementioned order- and time-dependent combination68, 

should then be chosen based on the interpretation of sequencing as well 

as the proteomic and phenotypic analysis of tumor cells and tested on 

the tumor-specific cell lines and xenograft model. The best-performing 

combination should ultimately be transferred back to the patient (Fig. 5).  

This whole process should take the shortest time possible to avoid 

the evolution of the tumor in the patient and the consequent loss of 

relationship between the primary tumor and the cell line. Tumor-

specific cell lines would be kept and treated with the same drugs used 

in the patient to monitor tumor evolution and treat for resistance 

and/or metastasis as soon as there is enough evidence of it (Fig. 5).  

Ideally, every patient and paired xenograft or cell line should have a 

complete electronic record showing the treatment history to facilitate 

retrospective and cross-disease studies74,75.

Conclusions

Although we have highlighted some of the challenges that still exist in 

cancer network biology, substantial progress is also being made. For 

example, the usage of patient-derived tumor tissue in animal xenograft 

models to test the response to particular drugs aimed at developing 

new personalized cancer therapy is rapidly becoming an established 

technology76. Surgical orthotopic implantation to transplant tumors 

taken directly from the patient to the corresponding organ of immu-

nodeficient mice77 is currently one of the most promising methods to 

enable drug screening in patients. In addition, new clinical trials, such 

as the MD Anderson T9 project78, are under way in which patients are 

given therapy that targets tumor-specific aberrations. Nevertheless, 

the implementation of the strategy depicted in Figure 5 would benefit 

from further developments in technology, funding and legislation. For 

Figure 5  Personalized cancer network biology. The goal of personalized cancer network biology is to 

be able to treat each tumor with the best combination of drugs tailored to that tumor. Ideally, early 

diagnosis should be followed by the development of tumor-specific cell lines and xenograft models, 

cancer genome sequencing, and proteomic and phenotypic analysis. Combinations of network drugs 

should then be tried in the tumor-specific cell line and xenograft model and eventually transferred 

back to the patient. Continuing to treat the tumor-specific cell culture with the same network drug 

combination as is used in the patient may be useful for understanding potential resistance and/or 

metastasis.
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example, generating models for cancer research that represent human 

patient diversity79 and mimicking the complexity of tumor microenvi-

ronments (J.T.E. and collaborators)80 remain extraordinary challenges 

(Fig. 2), and further research efforts and investments are required. 

As cancer biology becomes a ‘big data’ science, similar to physics, 

we expect to see more systematic, data-driven research efforts that 

will uncover and confront many of the tumor complexities that have 

remained elusive so far.

Despite recent predictions of >13 million cancer deaths in 2030 

(ref. 81), as discussed in this Perspective, we foresee that within this 

timeframe tumor-specific medicine will become a reality, thanks to 

a new generation of cancer network biologists who will hopefully 

overcome these challenges, positively contributing to the battle 

against this devastating disease and the significant reduction of patient 

suffering.
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Chapter 4

e genetic code and its consequences
for short-term evolution and cancer. A
story about serine.

When studying protein evolution, both in short and long timescales, the impact
that the genetic code has on the probability of seeing different amino acid residue
substitutions is not always taken into account. In this article, we demonstrate how,
especially in short-time evolution, such as the one present in complex diseases like
cancer, or between phylogenetically close species, the genetic code has a signiĕcant
impact in determining the evolution of amino acid residues, with mutations between
amino acid residues that are close in mutational space (e.g. one nucleotide apart
from one another) occurring at a much higher rate than mutations further away in
mutational distance (e.g. two or three mutations away from one another). As a result
from this, we show that serine, thanks to its unique occupancy within the codon
table (six codons distributed across different parts of the table), is the amino acid
residue with highest mutability and targetability or, in other words, a mutational hub.
Finally, we demonstrate that the cell can ĕne-tune the mutational activity of different
residues when these residues encode functionality, as phosphorylatable residues,
such as serine, show a much lower mutability when they are the regulated residue in
phosphorylation sites.
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Mutational properties of amino acid
residues: implications for evolvability

of phosphorylatable residues
Pau Creixell1, Erwin M. Schoof1, Chris Soon Heng Tan2

and Rune Linding1,*
1Cellular Signal Integration Group (C-SIG), Center for Biological Sequence Analysis (CBS), Department

of Systems Biology, Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark
2Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria

As François Jacob pointed out over 30 years ago, evolution is a tinkering process, and, as such, relies on
the genetic diversity produced by mutation subsequently shaped by Darwinian selection. However, there
is one implicit assumption that is made when studying this tinkering process; it is typically assumed that
all amino acid residues are equally likely to mutate or to result from a mutation. Here, by reconstructing
ancestral sequences and computing mutational probabilities for all the amino acid residues, we refute this
assumption and show extensive inequalities between different residues in terms of their mutational
activity. Moreover, we highlight the importance of the genetic code and physico-chemical properties of
the amino acid residues as likely causes of these inequalities and uncover serine as a mutational hot
spot. Finally, we explore the consequences that these different mutational properties have on phosphoryl-
ation site evolution, showing that a higher degree of evolvability exists for phosphorylated threonine and,
to a lesser extent, serine in comparison with tyrosine residues. As exemplified by the suppression of
serine’s mutational activity in phosphorylation sites, our results suggest that the cell can fine-tune the
mutational activities of amino acid residues when they reside in functional protein regions.

Keywords: amino acid evolvability; mutation; phosphorylation site evolution

1. INTRODUCTION
Cells are constantly evolving in a race for adaptation to
dynamic environmental challenges. As described by
François Jacob over three decades ago [1], this process
is more analogous to tinkering than to free design, in
the sense that nature does not create a new protein func-
tion from a blank canvas nor with unlimited resources,
but instead evolves through innovation with existing
proteins (figure 1a,b). In line with this principle of func-
tionalization by tinkering, most general models of
protein evolution (e.g. duplication–divergence [2], neo-
functionalization or subfunctionalization [3]) are based
on gene duplication being the main source of new
genes, proteins and consequently new cellular function.

In this study, we aim to extend the principle of tin-
kering in evolution, initially developed by Jacob [1], to
include the effect the genetic code has on protein evol-
ution. Our hypothesis is that evolution is not only
constrained because it needs to tinker with existing
proteins; it is also affected by the genetic code in the
sense that genetic variation is not generated by

substituting amino acid residues from the evolving
protein at random, but instead the genetic code dic-
tates that some amino acid substitutions will be more
frequent than others (figure 1c).

2. THE INFLUENCE OF THE GENETIC CODE ON
MUTATIONAL PATHS
In essence, substitutions between amino acid residues
that are far away from each other in mutational space
are less likely than between residues that are close to
each other (figure 2). For instance, if we had to com-
pute the probability of every amino acid residue to
be the target of a mutation from methionine, we
would have to consider the mutational distance and
the physico-chemical similarity between the two
residues. Isoleucine, leucine, phenylalanine, valine,
threonine, lysine and arginine are, in terms of muta-
tional distance, the closest residues to methionine,
because they are all just one nucleotide mutation
away from it (figure 2a). Alanine, valine, isoleucine
and leucine are the closest residues in physico-chemical
distance, because they are small hydrophobic resi-
dues similar to methionine (figure 2b). Combining
these two distances (mutational and physico-chemical)
that determine the genetic diversity generated and
selection of protein variants, one can rationalize the
amino acid substitution frequencies observed along
evolution (figure 2c).
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Next, we tested the validity and generality of this
influence the genetic code has on mutational
paths. In principle, one would expect the effect of
the genetic code to decrease with time, because
longer evolutionary distances would allow several
mutations in the same amino acid residues to become
more likely (figure 3a). As briefly suggested earlier
(figure 2c), regardless of what amino acid substi-
tution is more probable, purifying selection will act
subsequently to disfavour substitutions that would
lead to radical changes in the physico-chemical prop-
erties of the protein residue. Thus, unlike the effect
of the genetic code, we expect the effect of the
physico-chemical properties of the different amino
acids to remain constant over time. To test the influence
of the genetic code and physico-chemical proper-
ties on protein evolution, we reconstructed ancestral
sequences at different evolutionary distances between
humans and other vertebrates (figure 3b and see §7 for
further details). Supporting our hypothesis, we indeed
observed different targets of mutation at different evol-
utionary distances (figure 3c), with mutational targets
closer in mutational space for shorter evolutionary dis-
tances (L1: human–orangutan) and less influenced by
mutational distance for longer evolutionary distances
(L7: human–frog).

3. MUTATIONAL PROPERTIES OF AMINO ACID
RESIDUES
By expanding our analysis, we computed matrices to
reflect the probability of every amino acid residue to
mutate and become every other amino acid residue at
different evolutionary distances (see the electronic
supplementary material, table S1). To better describe
the different mutational properties of amino acid
residues represented in these matrices, we introduce
two new terms, mutability and targetability. We
define mutability as the probability of an amino

acid residue to mutate, and targetability as the prob-
ability of an amino acid to be the result of a mutation.
By extension, we have termed our matrices (which
effectively contain mutability for each residue on their
rows, targetability on their columns and conservation
on their diagonal) mutability targetability (MUTA)
matrices. The rationale behind developing our
MUTA matrices is similar to the rationale behind
matrices such as point accepted mutation (PAM) [4]
or blocks of amino acid substitution matrix
(BLOSUM) [5] but they differ fundamentally in
their goal and, in consequence, also in the information
they contain (figure 4). While matrices such as PAM
or BLOSUM, default matrices used by popular tools
such as BLAST (Basic Local Alignment Search
Tool) [6], reflect the tendency of some amino acid resi-
dues to appear in a multiple sequence alignment of
homologue proteins, MUTA matrices describe the
probability of the different amino acid residues to
mutate (mutability) and be targets of mutation (target-
ability). Given that MUTA matrices are derived not
from conserved blocks but instead from a large range
of sequences with different degrees of evolvability,
they are likely to be more useful than previous matrices
for evolutionary analysis (e.g. the characterization of
phosphorylation sites or other protein sequences that
do not necessarily reside in conserved protein regions).

To better visualize every amino acid residue’s muta-
tional properties, one can represent each amino acid
residue as a data point on an x–y scatter plot, i.e. mut-
ability–targetability plot (figure 5a,b). Following this
strategy, we show mutability and targetability for
every amino acid residue at different evolutionary
distance (figure 5c); it is apparent that, contrary to
common assumption, different amino acid residues
have different mutational properties (i.e. mutability
and targetability). Moreover, it is evident that there
is a correlation between mutability and targetability
whereby amino acids that tend to mutate more are

instructions

free designer
(a) (b) (c)

innovator
constraint innovator 

same probabilities different probabilities

Figure 1. Creative methodologies and evolution. As an analogy to protein evolution in the hunt for new protein function, we
have illustrated different strategies to design a radio. (a) As Jacob described several years ago, nature does not evolve by creating
de novo protein function from a blank canvas resembling a free designer who can build a radio using some predefined instruc-

tions and any imaginable radio parts. (b) Instead, nature is more of an innovator who tinkers with existing proteins before
finding new protein function by a process of mutation and selection. Following with our analogy, the tinkerer does not generate
a radio from scratch, but it tinkers with existing devices by combining and substituting pieces, and the best design is selected
for. (c) In this study, we extend this concept by highlighting the fact that the sources and targets of mutations cannot be chosen
arbitrarily, but instead some amino acid substitutions will be more likely than others (different probabilities). Unlike in (b),

where different substitution probabilities are not considered, tinkering with the loudspeaker in the radio is more likely to
lead to some radio parts than others.
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also more likely targets of mutations. This correlation
indicates that the dynamic system of amino acid resi-
due substitutions and frequencies lies in equilibrium

in a stable steady state, where all the residues balance
out residue loss and gain after mutation, which results
in only small frequency fluctuations over time.
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Figure 2. Exploring evolutionary mutational targets. (a) In this codon table, we have highlighted amino acid residues that are
close to (one nucleotide mutation away from) methionine in mutational space. (b) In this table of physico-chemical properties

of different amino acid residues, we have highlighted amino acid residues that are close (similar) to methionine in physico-
chemical space (adapted from www.wikipedia.org). (c) Combining mutational and physico-chemical space allows rationaliz-
ation of why some mutational paths (amino acid substitutions) are more frequent than others. Here, we have highlighted in
orange the most preferred mutational paths owing to short mutational distance (first arrow) and short physico-chemical dis-

tance (second arrow). Residue conservation has been illustrated as a loop, and it should be considered as another possible
mutational path with very short mutational and physico-chemical distance.
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In contrast, large discrepancies between mutability
and targetability would lead to large fluctuations in fre-
quency and, with time, to extinction or perpetuation
(figure 5b). This correlation between mutability and
targetability is therefore the only path to prevent
amino acid residue extinction or perpetuation.

It is also apparent from our mutability–targetability
plots that different residues use different evolutionary
paths to hold their frequency stable. In one extreme,
serine evolves very fast by mutating very often, while
also being a more likely target of mutations, i.e. high
mutability and high targetability. At the opposite
extreme, tryptophan does not mutate frequently, but
at the same time it is not a frequent target of mutations
either, i.e. low mutability and targetability (figure 5c).
Analogous to how different nucleotide or protein
sequences can evolve at different speed, here we have
uncovered that even individual amino acid residues
can be fast- or slow-evolving (e.g. serine and trypto-
phan, respectively). Next, we will investigate the
causes and consequences of the mutational properties
of the different residues.

4. POSSIBLE CAUSES FOR DIFFERENT
MUTATIONAL PROPERTIES OF
AMINO ACID RESIDUES
The fact that serine is the fastest-evolving amino acid
residue can perhaps give us some insights into why
different amino acid residues would present different
mutational properties. First, considering mutational
space (figure 2a), it is apparent that serine is a unique
residue in that it is the only amino acid whose six
codons are distributed in two different groups, AGY
and TCN, that are so far apart from each other (at
least two nucleotide mutations away). As a consequence,
serine will be more easily reached from another amino
acid after mutation, i.e. it is very close in mutational
space to most other amino acid residues (in most cases,
only one nucleotide mutation away). In addition, from
the perspective of physico-chemical distance (figure 2b),
serine’s moderate physico-chemical properties, without
a bulky or charged side chain, make it less likely that the
amino acid substitution will be rejected by selection
(figure 2c), because it is close in physico-chemical space
to most other amino acid residues.
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Figure 3. Exploring evolutionary mutational targets. (a) The relative contribution of the genetic code (by disfavouring amino
acid residue substitutions that require several nucleotide mutations) and the physico-chemical properties (by disfavouring
amino acid residue substitutions between dissimilar residues) to mutation will vary over evolutionary time. The restrictions
imposed by the genetic code will have higher influence when comparing short-evolutionary distances, whereas the physico-
chemical properties of amino acid residues will have a constant influence, because selection against radical changes in

physico-chemical space will always be applied before a mutation becomes fixed. (b) Graphical representation of the phylo-
genetic tree whose ancestral sequences (L1, L2, L3, L4, L5, L6 and L7) we have reconstructed as described in §7.
(c) Here, we confirm the principle described in (a), by comparing mutational targets of methionine between L1 and
human and between L7 and human and showing that in shorter evolutionary distances (L1: red), methionine tends to
mutate only to residues that are one nucleotide mutation away, while for longer times (L7: black), more targets are possible.
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In comparison with serine, the other two amino acid
residues coded by six codons (leucine and arginine) do
not combine such mutational and physico-chemical

proximity with other amino acid residues and, in conse-
quence, are not as fast-evolving as serine. Despite the
fact that leucine’s physico-chemical properties are
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(like in the case of serine) relatively moderate from a
mutational perspective (figure 2a), unlike serine’s, the
two groups of codons that code for leucine, CTN and
TTR, are relatively close to each another. As a direct
consequence of this close mutational distance between
the two groups of codons, the two extra codons that leu-
cine is coded by (TTR) only provide leucine with direct
mutational access to six extra codons, compared with
eight extra codons that can be directly accessed from
serine’s two extra codons (AGY). In addition, half of
the new codons that can be accessed from leucine’s
two extra codons are stop codons (TAA, TAG and
TGA). Therefore, it can be concluded that, given their
mutational proximity to themselves and to stop
codons, the six leucine codons cannot contribute to
making leucine a more mutable and targetable residue.

On the other hand, arginine which is coded, similar
to leucine, by two groups of codons that are relatively
close to each other in mutational space (CGN and
AGR), would have the potential to have higher mut-
ability and targetability but is probably affected by its
extreme physico-chemical properties (charged and
large residue), preventing many amino acid substi-
tutions due to natural selection acting against them.

Overall, no other amino acid residue is encoded by as
many codons so far apart from each other in mutational
space which, combined with its weaker physico-chemical
properties, make serine a fast-evolving, mutational hub.

In conclusion, despite the fact that other causes
such as bioenergetic costs or tendency to reside in fast-
evolving protein regions are also plausible explanations
for the mutational properties of the differences residues,
we argue that these differences are founded on the muta-
tional and physico-chemical distance from each amino
acid residue to every other one of them.

5. IMPLICATIONS FOR PHOSPHORYLATION
SITE EVOLUTION
Having described the general mutational properties of
the different amino acid residues, we wanted to inves-
tigate to what extent cells can modulate these general
properties for specific residues. Given the large muta-
tional differences between serine (the fastest-evolving
amino acid residue), threonine (a relatively high-
evolving residue) and tyrosine (a rather slow-evolving
residue), we investigated the consequences that differ-
ent mutability and targetability may have for protein
phosphorylation and evolution of phosphorylation sites.

If these general mutational properties were main-
tained in phosphorylation sites, one would expect to
see fast removal of non-functional phosphorylation
sites and fast introduction of a high number of new
phosphorylation sites for fast-evolving residues (with
high mutability and targetability) like serine or threo-
nine. On the contrary, one would expect to see
higher conservation for slow-evolving residues such as
tyrosine. We have illustrated these different scenarios
for serine, threonine and tyrosine (figure 6a).

To test this hypothesis, we computed the sequence
conservation of human phosphorylated serines, threo-
nines and tyrosines, and used the sequence conservation
of these residues regardless of phosphorylated state as
baseline for comparison (figure 6b). In addition, to

discard the possibility that our results are driven by
difference in the likelihood of residues to reside on dis-
ordered regions of proteins, we included disorder
predictions in our results. In general, our results
show the expected trend with phosphorylated residues
being more conserved than non-phosphorylated resi-
dues, highlighting the likelihood that these are
functional sites [7]. Moreover, in line with the general
trend for the three residues observed earlier
(figure 5c), phosphorylated serines and threonines
are also much more conserved than phosphorylated
tyrosines. Nevertheless, our results (figure 6b) also
highlight some important subtleties that differ from
our previous observations that serine is the most muta-
tionally active residue (figure 5c); for instance, we
observed a higher degree of conservation for phosphory-
lated serines than for phosphorylated threonines. Since
the overall trend is maintained when taking into account
disorder predictions, we can conclude that these obser-
vations are not driven by different disorder propensity
of the different amino acid residues.

Moreover, we computed the fraction of amino acid
residues that were excluded from our analysis because
they reside in alignment gaps (see the electronic sup-
plementary material, figure S1), which allowed us to
refute the possibility that our observations could be
explained by major differences in the propensity of
different residues to reside in alignment gaps. In
theory, a higher gap propensity of tyrosine (and to a
lesser extend threonine) with respect to serine could
be a trivial explanation for the different degrees of con-
servation we observe, because we would have excluded
them from our analysis, but the gap propensities we
computed do not support this hypothesis.

These results suggest that the cell is indeed capable
of modulating the general mutational properties of
amino acid residues under special circumstances.
Moreover, the higher conservation of phosphorylated
serines in comparison with phosphorylated threonines
(observation which is in agreement with previous pub-
lished work [8]) suggests that serine phosphorylation
sites have more ancient functional properties, whereas
threonine phosphorylation sites have more recent ones.
Finally, it is perhaps surprising that the phosphotyro-
sine system, the signalling system that has appeared
most recently in evolution [9], also presents the highest
conservation. However, this apparent contradiction can
be resolved if this system did not evolve gradually, but
instead it evolved by a sudden burst (as supported in
the literature [9–11]) and has subsequently remained
more conserved (at least at the sequence level) than
the phosphoserine or phosphothreonine systems.

6. DISCUSSION AND CONCLUSIONS
In this study, we have uncovered natural forces driving
different mutability (probability that a given amino
acid residue will be mutated) for different amino acid
residues as well as different targetability (probability
that a given amino acid residue will be the result of a
mutation). These inequalities have made apparent
different evolutionary paths for different amino acid
residues, with some being slow-evolving and relying
for their existence on high conservation (low
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mutability and targetability), such as tryptophan, and
others being fast-evolving and relying for their exist-
ence on a high number of mutations leading to it
(high mutability and targetability), such as the most
mutationally active residue, serine.

In addition, we have computed matrices at dif-
ferent evolutionary distances (and therefore with
different degrees of contribution from the genetic code),
which may be important for assessing mutations for dis-
eases such as cancer, where somatic mutations are
accumulated through a fast evolutionary process. In
essence, using our MUTA matrices, computed on short
evolutionary distances and highly constrained by the gen-
etic code, one should be able to compute the likelihood of
different amino acid residue substitutions occurring in
diseases associated with alterations to the genome.

Given the influence that both the genetic code
and the physico-chemical properties of amino acid
residues have on mutability and targetability, it
would perhaps be natural to explore whether some

causal relationships exist between them. While several
hypotheses for the evolution of the genetic code
exist [12], perhaps the most accepted view is that the
organization of the genetic code can be explained by
a combination of the occupation of codon space by
the new amino acid residues as soon as they appeared
from their predecessors, and optimization, to some
extent, driven by physico-chemical properties of
amino acid residues. We therefore argue that the
observed mutability and targetability of amino acid
residues is, at a higher degree, a consequence rather
than a cause of the organization of the genetic code.

Finally, by contrasting the general trends in conser-
vation of the phosphorylatable residues in human (S,
T and Y) to the conservation of phosphorylation sites
(pS, pT and pY), we have uncovered a higher degree
of conservation for phosphorylation sites on serine
than expected. This would suggest that the cell can
modulate the mutational properties of amino acid resi-
dues in special circumstances as, in the case of serine,
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Figure 6. Phosphorylation site evolution. (a) As a direct consequence of our previous results, our hypothesis was that phos-
phorylation at serine, with the highest mutability and targetability rates, would evolve faster than phosphorylation at

threonine, which has slightly lower but still relatively high mutability and targetability rates, and much faster than tyrosine,
with very low mutability and targetability rates. (b) For each phosphorylatable amino acid residue, we have computed the frac-
tion of phosphorylated residue (in black) that is conserved (same amino acid) in the ancestor L7. For comparison, we have
computed conservation fraction for the residue, regardless of phosphorylated state (white) and conditional on whether the resi-
due resides in a disordered (cyan both phosphorylated and unphosphorylated residues and blue only phosphorylated residues)

or ordered protein region (orange both phosphorylated and unphosphorylated residues and red phosphorylated). Statistical
significance (*p , 0.05) was assessed by Fisher’s exact test.
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given their ancient functional importance, it prevents
these residues from evolving as fast as they would
under normal circumstances. In line with this per-
ception, it has been reported recently that aspartic
and glutamic acid tend to become phosphorylatable
residues (serine and threonine) during evolution, in a
mechanism that has been suggested as a transition
from a static to a dynamic regulation of protein folding
[13]. Because these two groups of residues are far from
each other in mutational space (two mutations away),
we can conclude that, similarly as we found for the
phosphotyrosine signalling system in our previous
work [8,14], this observation is likely to be driven by
positive selection.

It will be important to unravel the plausible mech-
anisms that have led to different mutability and
targetability rates (e.g. amino acid preference to resi-
due in fast-evolving or disordered regions), whether
different species with different genetic codes or
codon preferences have different residues’ mutational
properties, and to what extent these properties deter-
mine the frequency of every amino acid residue.
Moreover, it will also be important to implement tools
that can use these metrics to assess the importance of
mutations in cell signalling systems associated with
cancer progression. We argue this will eventually lead
to a better foundation for network-based medicine.

7. MATERIAL AND METHODS
(a) Alignments and computation of ancestral

sequences

Sequences of known and inferred proteins of 11 ver-
tebrate species, including Homo sapiens, with at least 6X
genome coverage were retrieved from the Ensembl
online database (release 55) at http://jul2009.archive.
ensembl.org/info/data/ftp/. These 11 metazoan species
are H. sapiens (human), Pongo pygmaeus (orangutan),
Cavia porcellus (guinea pig), Rattus norvegicus (rat), Mus
musculus (mouse), Monodelphis domestica (opossum),
Canis familiaris (dog), Bos taurus (cow), Ornithorhynchus
anatinus (platypus), Gallus gallus (chicken) and Xenopus
tropicalis (frog). The INPARANOID algorithm (v. 2.0) [15]
was used to infer orthologous sequences of human pro-
teins across the ten other vertebrate species using the
retrieved proteomes. The BLOSUM80 scoring matrix is
used with other default parameters in INPARANOID. In all
cases, only the longest translation of each known/inferred
genes was fed into INPARANOID for orthologue prediction.
The sequence of each known human phosphoprotein was
then grouped with its inferred orthologous protein
sequences for multiple sequence alignment using the
MAFFT algorithm (v. 6.240, E-INS-i option with default
parameters) [16]. Ancestral sequences were inferred
from each multiple sequence alignment using the
CODEML program in PAML phylogenetic software
suite [17]. The phylogenetic relationship depicted in
figure 2b [18] was input to CODEML with CodonFreq ¼
2 and using WAG substitution matrix [19].

(b) From coevolution matrices to mutability and

targetability rates

For each pair of ancestral-human sequences, we com-
puted a 20 � 20 coevolution matrix describing the

evolution tendency of each amino acid, with the ances-
tral amino acid in the row position and human-aligned
residue in the column position. In order to avoid inac-
curacies caused by alignment positions with lower
quality, we filtered out alignment positions in or next
to gaps (see the electronic supplementary material,
figure S1 for more information on the fraction of
residues excluded). We produced mutability and tar-
getability rates by normalizing the coevolution matrices
by row, i.e. effectively balancing out differences in
amino acid residue frequencies. The mutability rate for
each residue is then measured as the sum of all mutation
frequencies, i.e. row sum minus conservation. On the
other hand, the targetability rate is measured as the
sum of mutation frequencies of all amino acid residues
leading to a given amino acid residue, i.e. column sum
minus conservation.

(c) Phosphorylation site evolution

We have traced the evolution of human phosphoryl-
ation sites on serine, threonine and tyrosine by
measuring the fraction of each that is conserved
versus the fraction that has appeared recently in evol-
ution. More specifically, we compiled a list of human
phosphorylation sites obtained from the PhosphoSite-
Plus [20] and phosphoELM databases [21] and
computed what fraction of those are conserved in
our inferred ancestral sequences and thus compared
how the three signalling systems have evolved. In
order to predict disorder propensity for all the proteins
analysed, we ran DISOPRED v. 2.0 [22].
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Correction

Phil. Trans. R. Soc. B 367, 2584–2593 (19 September 2012) (doi:10.1098/rstb.2012.0076)

Research article: Mutational properties of amino acid residues: implications for evolvability
of phosphorylatable residues

Pau Creixell, Erwin M. Schoof, Chris Soon Heng Tan and Rune Linding

Part (a) of figure 2 incorrectly highlighted some amino acid residues that are more than one mutation away from meth-

ionine. In line with this, part (c) erroneously portrayed phenylalanine as being close to methionine in mutational space,

and in the main text (§2, THE INFLUENCE OF THE GENETIC CODE ON MUTATIONAL PATHS) it was incor-

rectly stated that phenylalanine is one of the closest residues to methionine. The corrected figure can be found below.

This error does not affect any of our results or conclusions.
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Part III

Combining NGS and MS data to close
the genotype-to-phenotype gap
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Chapter 5

Genome-speciĕc MS uncovering
hidden networks

Cancer cells and their signaling networks need to be monitored with technologies
that allow global and quantitative views of the system upon stimulation with different
cues. Mass Spectrometry (MS) is clearly one of the best techniques for this purpose,
however, precise global (phospho-)proteomic analysis and monitoring of cancer cells
has, for a long time, been hampered by the use of standardized reference databases
that mask mutation-associated signaling events. In this article, by combining Next-
Generation Sequencing (NGS) and MS data, we observe a direct correlation between
MS observability and the fraction of sequencing reads reporting a variant allele,
a down-regulation of mutant protein expression and demonstrate how otherwise-
hidden cancer-associated signaling networks can be revealed using this strategy.
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Network biology aims to predict phenotype from multi-scale models of cellular information 
processing, by integration of quantitative, genome-scale data. While Mass Spectrometry (MS) 
enables comprehensive sampling of cellular (phospho-)proteomes, the use of wild-type reference 
sequences results in masking of mutation-associated signaling events. Here we present an 
integrative strategy combining MS with exome sequencing to perform genome-specific proteomic 
analysis. Deploying the approach on a colorectal cancer cell line, we uncovered an otherwise-
hidden signaling network spanning 177 mutant proteins and 30 mutant phospho-peptides. We 
observed a direct correlation between the fraction of sequencing reads reporting a variant allele and 
the likelihood of a mutation to be observed by MS. Additionally, we found a significant decrease in 
the number of mutant peptides detected by MS compared to wild-type, suggesting a down-
regulation of mutant protein expression in cancer cells. We show that genome-specific proteomics 
experiments enable orthogonal cross-validation of DNA mutations and monitoring of dysregulated 
signaling networks. 
 
The fields of proteomics and genomics provide complementary views that are essential to integrate in order 
to predict and understand cellular phenotypes. By combining the two, information linking mutations at the 
DNA level to amino acid sequences at the protein level can be assessed. This provides a starting point to 
make inferences about the functional effects of such lesions, thus shaping a far more complete picture of the 
functional impact of mutations than genomic or proteomic studies alone. Before conclusions can be drawn 
about the expression of mutations at the protein level, and their potential role in altering cellular information 
processing, it is imperative they are directly observed experimentally. Here, we present a new strategy for 
including prior knowledge about the genome of a biological system being probed when conducting mass 
spectrometry (MS) based proteomics studies. Next Generation Sequencing (NGS) can provide information 
about mutations occurring throughout the entire genome, and recent advances in the MS field have led to a 
significant portion of the expressed proteome to be readily observable [Wiśniewski et al., JPR 2009, Beck et 
al., MSB 2011, Geiger et al., MCP 2012, Munoz et al., MSB 2011] Combined, these technologies pave the 
way to genome-wide investigations at both the DNA and protein level. Additionally, through optimized 
enrichment procedures, a large set of PTMs (such as phosphorylation, acetylation and ubiquitination) can be 
analyzed through MS based studies. Thus, by identification and quantitation of thousands of modified 
peptides in a single experiment, it is possible to globally monitor altered signaling dynamics in any given 
biological system. 
 
Traditionally, the raw data produced by an MS experiment, representing the peptides present within a 
sample, is matched to a database of reference protein sequences, in order to identify the observed peptide 
spectra using hypothetical spectra derived from in silico digestions. If a mutation occurs in these proteins 
however, the experimental spectra will not match with their theoretical spectra, leading to either 
misidentification or lack of identification of these proteins (Figure 1A-D). As many mutations have been 
attributed to play a role in disease [Wong et al. Annu.Rev. Genomics Hum. Genet. 2011, Greenman et al., 
Nature 2007], it is imperative that the protein dynamics associated with these mutations can be studied. We 
demonstrate that through the use of a genome-specific spectra database, obtained from accompanying NGS 
experiments, we can improve the number of identified proteins and phosphorylation sites due to identification 
of the mutated proteins and peptides, allowing for more accurate signaling network reconstruction (Figure 
1E-F). As a proof of principle, we here deployed the HT-29 colon cancer cell line. This cell line has previously 
been described in terms of its copy number variation, mRNA expression, phospho-proteomics and 
morphology [Yasui et al., Cancer Research 2004, Schlag et al., Gut 2000, Reichelt et al., Anticancer Res, 
Kim et al., JPR 2005, Le Bivic et al., PNAS 1988]. However, only limited protein code impacting mutations 
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have been identified [Ikediobi et al., Mol Can Ther 2006]. We thus analyzed the cell line through deep 
(phospho-) proteomic and genomic analysis. Using the Q-Exactive Orbitrap platform (Thermo Fisher 
Scientific) we identified 8,122 unique proteins and 27,872 unique phosphorylation sites in the HT-29 colon 
cancer cell line including 1,338 phosphorylated tyrosine (pTyr), 22,322 phosphorylated serine (pSer) and 
4,212 phosphorylated threonine (pThr) residues. Using the HiSeq platform (Ilumina), we performed exome 
sequencing of HT-29 cells with an average depth of 80X and >95% of all reads at 10X or more. This resulted 
in the identification of 7,234 missense variants, equating to 4,561 altered mutated protein sequences with 
respect to the human reference genome. 
 
The MS spectra generated by the proteomics experiments were searched using several variations of the 
sequence database. When using the reference Ensembl database, we identified 7,560 proteins and 26,072 
phosphorylation sites (of which 14,848 were confidently localized sites); in comparison, by including all 
possible single mutant proteins in the search database, these numbers increased to 8,122 proteins, 27,872 
phosphorylation sites (of which 15,808 were confidently localized sites). In total, we identified 562 additional 
proteins and 960 confidently localized additional phosphorylation sites by utilizing the genome-specific 
information for analyzing the proteomics data instead of the reference Ensembl database (Figure 2A). This is 
a 6-7% increase in identifications compared to using the reference database alone and opens the possibility 
for looking at the dynamics of the mutant proteins and phosphorylation sites, in addition to being able to 
distinguish technical artifacts from real variants that are present in the biological sample being studied. 
 
Next, we attempted to investigate a long-standing question of how many mutations are actually expressed at 
the proteome level. We analyzed whether the fraction of reads reporting a variant allele originating from NGS 
data, could be correlated to the likelihood of observing the mutation in the proteomics data. From the 
distribution of peptides (Figure 2B) containing a mutation with a given fraction of reads reporting a variant 
allele, it is clear that this measure is directly related to the expression rate of the peptides bearing this 
mutation. In other words, the higher the number of NGS reads of a given mutant allele, the higher the 
likelihood of identifying the mutant peptide using mass spectrometry, providing orthogonal validation whether 
a given mutation is present at the genomic level and also expressed at the proteome level.  
 
In order to investigate how many of the variant sites were actually expressed in the cells, we generated all 
possible tryptic peptides in silico, in order to see what percentage was observed. In total, we observed 193 
mutated tryptic peptides (of which 30 were phosphorylated peptides), correlating to a 1.5-3.7% of total 
mutant peptides possibly observable. Compared to the peptide coverage of the non-mutated proteome (7.6% 
as can be seen from Fig. 2C), this percentage is significantly lower than expected by chance (p-value <10e-
6, Wilcoxon test), especially for mutant peptides where the fraction of NGS reads reporting the mutant allele 
is 1.0 (meaning it is a homozygous mutation and thus the protein should only be present in its mutant form). 
We propose two explanations behind this significant difference in MS observability between wild-type and 
mutant peptides: Firstly, it is a possibility that the mutant peptides are being matched to the wild-type 
sequence through incomplete b- and y-ion series coverage. This could lead to the mutated amino acid not 
having been observed in the mass spectrum, causing the search algorithm to identify it as wild-type. 
Secondly, it is possible that mutant proteins show a lower degree of expression than wild-type proteins, 
rendering them undetectable in the MS experiment performed here. This second hypothesis is well 
supported by recent findings in another study [Shah et al., Nature, 2012].  
 
By combining the two technologies as described, our method provides a platform to conduct orthogonal 
cross-validation of mutations using NGS and MS data. More specifically, we investigated whether we could 
identify cases where there was disagreement between NGS and MS results. Focusing our attention on 
mutations with the highest NGS evidence of a homozygous mutation (fraction of reads reporting a mutation 
being 1), we identified three cases for which MS only identified the wild-type peptide. While we cannot 
conclude that this mutation is not present (the mutant peptide may have simply not been detected by the 
MS), we can conclude that these positions were either incorrectly identified as mutations by the NGS data or 
that, at the very least, the reported mutation is heterozygous. Out of all the possible mutated peptides with a 
reported mutant allele frequency of 1, we detected 82 peptides in our MS data (Online Supplementary Table 
1). As three of these peptides were found only as wild-type variants, our data suggests an NGS error rate of 
around 3.7%. Despite the small sample size of our observation, if we extend this rate to our whole data set, 
we would estimate that of the 7,234 missense variants reported by NGS in this study, 267 could be false 
positives. 
 
Of the total number of identified proteins, 9 were identified solely based on their mutated peptides (Online 
Supplementary Table 2). Given that no wild-type peptides were observed, these proteins would have never 
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been identified if the reference genome database had been used. For the other 168 proteins, for which at 
least 1 mutated peptide was observed (Online Supplementary Table 3), the traditional MS approach would 
have only identified the wild-type variant, while a genome-specific approach is able to identify the mutant 
variant as well. According to our sequencing results, the number of proteins containing at least one missense 
mutation, and therefore potential number of additional protein variants identifiable by MS, is 4,561. It is well 
established that a single amino acid variant can have a significant impact on protein function [e.g. Davies et 
al., Nature 2002; Songyang et al., Nature 1995], hence underlining the importance of being able to observe 
these mutant variants. 
 
Additionally, we sought to investigate mutations hitting the region surrounding observed phosphorylation 
sites. In total, we identified 30 mutated peptides with confidently localized phosphorylation sites using our 
genome-specific database (Online Supplementary Table 4). In order to assess the ‘systems effect’ of 
identifying these genome-specific phosphorylation events, we reconstructed a signaling network model 
containing all HT-29 phosphorylation sites that would have been missed had we not used a genome-specific 
proteomics approach. By computational modeling of the upstream kinases using NetworKIN [Linding et al., 
Cell 2007, Linding et al., NAR 2008] (Figure 3), it seems that several PKC-family members interact with a 
number of proteins harboring a mutation, indicating a potential involvement in transcriptional regulation and 
cell migration [Masur et al, Mol Bio Cell 2001]. Additionally, cell cycle related kinases such as PLK1, PLK4 
and several CDK-family members seem to interact with a subset of mutated proteins, suggesting these 
mutations may affect cell cycle or mitosis related signaling in this cell line. These results seem to confirm 
previous observations of HT-29 being sensitive to Polo Box domain expression levels and responsive to 
PLK1 inhibition [Fink et al., Mol. Canc. Ther., 2007, Rödel et al., Am J. Pathol, 2010]. 
 
In this study, we have provided proof-of-concept of the importance of integrating different types of ‘omics 
data, in order to obtain an accurate foundation for the reconstruction of cellular signaling networks. Due to 
recent advances in MS technology, it is now possible to obtain deep coverage of the proteome and phospho-
proteome, which can be complemented by exome-wide deep sequencing data. While custom MS databases 
for specific applications have been used in the past [Cheung et al., NBT 2012], we have here generalized 
and extended the concept of taking into account genome-specific protein sequence information, allowing the 
identity and dynamics of the mutant proteome to be investigated. In order to assess the functional impact of 
mutations at a systems level, MS is a key technology, as it allows the analysis of tens of thousands of 
proteins and phosphorylation sites from a single sample. Considering the ever improving dynamic range in 
mass spectrometry, the number of observed mutant peptides, while currently relatively modest though 
significant, will increase in future studies. We demonstrate that conducting genome-specific proteomics 
experiments is now feasible, even in an un-targeted, global MS setting. It is likely that additional benefits 
could be gained by deploying a targeted MS approach. Targeted proteomics such as SRM [Picotti et al., Cell 
2009, Wolf-Yadlin et al., PNAS 2007] may be the best proteomics strategy to monitor mutant peptides and 
proteins, as global approaches can currently not guarantee that this specific part of the proteome will be 
represented in the MS results due to the inherent dynamic range limitation. This is also likely to explain why 
a large proportion of the mutations reported by the sequencing data could not be observed in the global MS 
results. 
 
Based on our comparison of experimentally observed wild-type versus mutant peptides, the total number of 
possibly observable mutant peptides can be up to 30-fold higher than reported in this study. Given the rapid 
progression in MS and NGS technology, the need for, and benefit of this method is likely to increase 
significantly in future personalized network medicine studies [Pawson & Linding, FEBS Lett 2008, Creixell et 
al., Nat Biotech. 2012, Vogelstein et al., Science 2013], where patient samples can undergo NGS and MS 
experiments to study a disease from the genomic and proteomic perspective, in order to guide the best 
possible therapeutic strategies. Additionally, it will most likely prove useful in distinguishing between key 
mutations driving a given disease state, or mutations arising sporadically. In conclusion, through the method 
described here, we can use the knowledge gained from NGS experiments in order to improve the sensitivity 
and accuracy of MS experiments, rendering the two technologies a very powerful combination for 
investigating complex diseases such as cancer, diabetes and neurological illnesses.  
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FIGURE LEGENDS 
FIG.1 
A & B) Limitations of unspecific MS  
A) Conceptual overview of how a mutated protein is identified as a wild-type protein in an unspecific 
database search. Due to the lack of the mutated peptide in the reference database, only wild-type peptides 
are used for matching to the parent protein. B) Only when a genome-specific database is used, can the 
mutated peptide be matched to its parent sequence and is the correct variant of the protein identified. 
 
C & D) Example of genome-specific mutant peptide identified with our approach.  
MS spectra of wild-type (E) and mutant (F) versions of the same peptide. The mutant peptide becomes 
identifiable due to using an HT-29-specific database for conducting the MS data search. 
 
E & F) Unspecific versus Genome-specific MS approach. 
As opposed to previous unspecific MS approaches (C), our genome-specific approach (D) allows for a 
sample-specific search of MS data by exome sequencing the sample and generating a specific database. 
This approach allows the identification of mutant proteins that would otherwise be hidden and avoids the 
mismatching of spectra caused by the absence of a given mutant gene in standard reference databases. 
 
FIG.2 
A) Quantification of newly identified proteins and phosphorylation sites. 
Pie charts showing the number of proteins and phosphorylation sites identified by searching our MS data 
using the standard approach or our genome-specific approach. 
B) Comparison of reads reporting a mutant allele and MS observability. 
As can be observed in this graph, the higher the fraction of reads that report a mutation, the higher the 
likelihood that this mutant peptide is observed in the MS data. 
C) Density plot of overall MS observability. 
Almost 8% of all wild-type tryptic peptides are experimentally observed in the Mass Spectrometer. 
 
FIG. 3 
Hidden (phospho-) proteome 
Signaling network that became apparent only when using the genome-specific approach. Genome specific 
phosphorylated proteins are represented in red, phosphorylating kinases and binding SH2 domains predicted 
by NetworKIN are represented in blue and green, respectively. 
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ONLINE METHODS 
 
Sample preparation for sequencing and data analysis. HT-29 cells were grown to 80% confluency in a T-
75 flask, and DNA extraction was performed using reagents and instructions provided with the Qiagen 
QIAamp DNA Mini kit. 5 ug of purified DNA were sent to Roche Nimblegen for full exome sequencing using 
the SeqCap EZ Human Exome Library v3.0 capture kit. High-quality reads, with > 80x mean coverage and > 
95% of exome bases at 10x coverage, were obtained from sequencing and aligned to the NCBI37 reference 
human genome (version GRCh37) using the Burrows–Wheeler Alignment Tool. The alignment was refined 
by means of quality score recalibration and around indel realignment using Genome Analysis ToolKit 
package. SNP calling was performed with SAMtools package using default settings. Next, results were 
further filtered with VCFtools using standard default settings as well as a minimum 10x sequencing depth 
threshold set for SNP calling. The data was further analyzed with the help of SAMtools and BEDtools 
packages and custom-written Perl and Python scripts. Finally, fasta files for both wild-type and mutant 
protein sequences were generated using the Variant Effector Predictor (VEP) package from Ensembl.  
 
Sample preparation for (phospho-)proteomics. HT-29 cells (obtained from ATCC and regularly checked 
for mycoplasma contamination) were grown to ~80% confluency in 15cm dishes to provide enough starting 
material for the phospho peptide enrichment in duplicate (24mg per repeat). Synchronized cells were lysed 
with ice-cold modified RIPA buffer supplemented with Roche complete protease inhibitor cocktail tablets and 
ß-glycerophosphate (5mM), NaF (5mM), Na-orthovanadate (1mM, activated). Lysates were sonicated on ice 
and spun down at 4,400xg for 20mins at 4°C. Proteins were precipitated over-night in ice cold Acetone at -
20°C, and dissolved in 6M Urea, 2M Thiourea, 10mM HEPES pH 8.0. Proteins were reduced with 1mM DTT 
for 1hr, and alkylated with 5.5mM Chloroacetamide for 1hr, after which they were pre-digested with Lysyl 
Endopeptidase (Wako) at a 1:200 enzyme-to-protein ratio for 4hrs at room temperature (RT). Lysates were 
diluted 1:4 with 50mM Ammonium Bicarbonate, after which Trypsin (MS grade, Sigma) was added at a 1:200 
enzyme-to-protein ratio and left rotating over-night at RT. Enzymatic activity was quenched by adding TFA to 
a final concentration of 2%, after which the samples were clarified by spinning down at 2,000xg for 5 minutes 
and desalted using 360mg SepPak columns (Waters WAT020515). Peptides were eluted using 2x 2mL of 
40% AcN, 0.1% TFA, and 1x 2ml of 60% Acetonitrile, 0.1% TFA. For the global, Titanium Dioxide (TiO2) 
based phospho peptide enrichment, the eluent was directly subjected to SCX fractionation, where peptides 
were separated over a 0-30% Buffer B gradient in 60 minutes at a 1ml/min flowrate (Buffer A: 5mM 
potassium dihydrogen phosphate, 30% Acetonitrile, pH2.7; Buffer B: 5mM potassium dihydrogen phosphate, 
30% Acetonitrile, 350mM potassium chloride, pH2.7). The resulting fractions were pooled according to their 
chromatography into 11 final samples, which were enriched for phosphorylated peptides. Six aliquots were 
taken at this point for the global proteome analysis. The TiO2 enrichment was conducted similarly to [Olsen 
et al., MSPP 2009], with several adjustments. For the TiO2 loading solution, 0.02g/ml dihydrobenzoic acid 
was dissolved in 30% Acetonitrile and 4% TFA, and the TiO2 beads were incubated in this solution for 15 
minutes prior to peptide enrichment. Each pooled SCX fraction was enriched with 1.5mg of TiO2 beads 
suspended in 6ul of TiO2 loading solution, and left to rotate end-over-end for 30 minutes at RT. The flow-
through (early eluting fractions) was enriched three times consecutively, whereas the single SCX 
chromatography peak peptide samples were enriched twice. Samples were spun at 2000xg for 5 minutes 
(RT), and pelleted beads were washed with 100ul SCX Buffer B. Subsequently, beads were pelleted again 
(2000xg, 5minutes, RT) and washed with 100ul 40% Acetonitrile, 0.25% acetic acid, 0.5% TFA. Finally, 
pelleted beads were re-suspended in 50ul 80% Acetonitrile, 0.5% acetic acid, and transferred to separate in-
house packed C8 StageTips [Rappsilber et al., Nat Protoc 2007]. Liquid was spun through at 3000 rpm for 1 
minute, after which the phosphorylated peptides were eluted with 1x 20ul 5% Ammonia and 1x 20ul 10% 
Ammonia, 25% Acetonitrile into a 96-well PCR plate, containing 20ul of 1% TFA, 5% Acetonitrile solution. 
Peptides were lyophilized to a total volume of 10ul, and acidified with 40ul of 1% TFA, 5% Acetonitrile, after 
which they were desalted on in-house packed C18 StageTips prior to LC-MS analysis.  
 
For LC-MS analysis, peptides were eluted from the StageTip with 2x 20ul 80% Acetonitrile, 0.1% Formic 
acid, and lyophilized to 5ul final volume. The eluent was acidified with 1% TFA, 2% Acetonitrile and loaded 
onto a 50cm C18 EasySpray column (Thermo, ES803), using the Thermo EasyLC 1000 UHPLC system and 
the column oven operating at 45°C. Peptides were eluted over a 250 minute gradient, ranging from 6-60% of 
80% Acetonitrile, 0.1% Formic acid, and the Q Exactive (Thermo) was run in a DD-MS2 top10 method. Full 
MS spectra were collected at a resolution of 70,000, with an AGC target of 3e6 or maximum injection time of 
20ms and a scan range of 300-1750 m/z. The MS2 spectra were obtained at a resolution of 17,500, with an 
AGC target value of 1e6 or maximum injection time of 80ms. Dynamic exclusion was set to 20s, and ions 
with a charge state < 2 or unknown were excluded. For the proteome samples, the settings were the same, 
except for a gradient time of 230mins, maximum MS2 injection time of 60ms and dynamic exclusion of 45s. 
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The phospho-tyrosine samples were analyzed over a 360 and 480-minute gradient to maximize sample 
coverage. 
  
For the pTyr specific phospho peptide enrichment, the SepPak eluent (equating to 24mg of peptides) was 
dried down overnight in a Thermo Express 250 concentrator and stored at -80°C. pTyr specific enrichment 
was conducted with the novel pTyr-1000 antibody from CST, using the protocols provided by the 
manufacturer, and the samples were run as technical duplicates on the LC-MS. 
 
Computational analysis of MS data. In order to investigate the effect of using the HT-29-specific FASTA 
file as the MaxQuant (Version 1.2.7.4) search engine database, we performed the raw data searches in three 
ways: 1) standard Ensembl v.68 human FASTA, 2) standard Ensembl v.68 human FASTA + all possible 
single mutant proteins, and 3) all single possible mutant proteins only. The mass spectrometry proteomics 
data have been deposited to the ProteomeXchange Consortium 
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [Vizcaino et al., NAR 2013] 
with the dataset identifier PXD000267. Variable modifications were set as Methionine oxidation, Protein N-
term acetylation and Serine/Threonine/Tyrosine phosphorylation, and Cysteine carbamidomethylation was 
set as a fixed modification. FDR rates were set to 1%, and the ‘match between runs’ functionality was 
activated. 
Results from the three independent searches were stored in a MySQL database, and all further analysis was 
done using scripts written in-house on our “CoreFlow” platform, based on the R statistical package, MySQL 
and Python. All code and data will be released to the public upon request. Search results filtering was based 
on phosphorylation localization probability >= 0.75 and a minimum MaxQuant peptide ID score of 50, in order 
to only use high confidence identifications.  
Peptide observability was calculated based on all possibly observable tryptic peptides originating from an in 
silico digest (minimum peptide length of 5 amino acids); the percentage of peptides observed was calculated 
using the following: peptides observed / total # of peptides observable x 100. For the percentage of Peptides 
Observed, the data size per bin of Fraction of Reads Reporting a Variant Allele was between 8 and 97 with 
an average of 21, and the average of total peptides with possible mutation per bin was 800. We considered 
the data size to be sufficient for the estimation of the percentage of observed peptides. For the MS 
observability of the non-mutated peptides, we used sampling of the appropriate size from the set of all  `in-
silico` digested peptides. The sample size was equal to the size of the data set of MS observability of the 
mutated peptides. To test for statistical significance of the difference in MS observability between the mutant 
and wild-type peptides, we applied a Wilcoxon statistical test, which does not rely on the assumption of 
normality or independence between data sets. 
The NetworKIN modeling was based using an in-house up-to-date version of NetworKIN v3.0, and the 30 
high confidence phosphorylation sites with a surrounding mutation were analyzed. Subsequently, kinase and 
SH2 domain predictions were filtered to only include predictions with a score of 0.1 and higher in order to 
reduce false positives. The results were plotted in Cytoscape (http://www.cytoscape.org) [Shannon et al., 
Gen. Res., 2003] for visual representation. 
 

 

SUPPLEMENTARY REFERENCES: 
Olsen, J et al., High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Mass 
Spectrometry of Proteins and Peptides, Volume 492, Chapter 7 (2009) 
Rappsilber et al., Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for 
proteomics using StageTips. Nature Protocols 2 (8), 1896-906 (2007) 
Shannon et al., Cytoscape: a software environment for integrated models of biomolecular interaction 
networks. Genome Research 13(11):2498-504 
Vizcaino JA, et al. The Proteomics Identifications (PRIDE) database and associated tools: status in 2013. 
Nucleic Acids Res. 41(D1):D1063-9 (2013) 
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Ensembl_Prot_Id Ensembl_Gene_Id Gene0Name Aminoacid0Mutation Mutation0Ratio0Bin Tryptic0pept0original Original0Found0in0WT Position0in0pept0mut Triptic0aa0start0mut Tryptic0pept0mut Position0in0pept0mut0alt Tryptic0pept0mut0alt Razor0Proteins max0of0Scores
ENSP00000170168 ENSG00000079313 REXO1 S759P 1 TLAASGSQSSNGPEPGGQQLK 9 R TLAASGSQPSNGPEPGGQQLK 9 ENSP00000170168 30.88
ENSP00000216780 ENSG00000100889 PCK2 Q121P 1 DTVQLPPGGAR 4 R DTVPLPPGGAR 4 ENSP00000216780 30.87
ENSP00000221233 ENSG00000077348 EXOSC5 T5M 1 MEEETHTDAK 5 MEEEMHTDAK 5 ENSP00000221233 84.31
ENSP00000221957 ENSG00000105355 PLIN3 V275A 1 AQEALLQLSQVLSLMETVK 11 R AQEALLQLSQALSLMETVK 11 ENSP00000221957 102.37
ENSP00000225740 ENSG00000108602 ALDH3A1 P329A 1 YIAPTILTDVDPQSPVMQEEIFGPVLPIVCVR 15 R YIAPTILTDVDPQSAVMQEEIFGPVLPIVCVR 15 ENSP00000225740 63.08
ENSP00000229854 ENSG00000112118 MCM3 E777K 1 DSEEPFSSVEIQAALSK 3 R DSKEPFSSVEIQAALSK 3 ENSP00000229854 119.23
ENSP00000242108 ENSG00000122547 EEPD1 S343N 1 AVVAEKPSSQLQK 9 K AVVAEKPSNQLQK 9 ENSP00000242108 117.79
ENSP00000252137 ENSG00000100056 DGCR14 A423V 1 ASYTPSPAR 8 R ASYTPSPVR 8 ENSP00000252137 129.54
ENSP00000254508 ENSG00000132182 NUP210 A755V 1 LTLAPVYTSPQLDMSCPLLQQNK 4 R LTLVPVYTSPQLDMSCPLLQQNK 4 ENSP00000254508 89.03
ENSP00000254508 ENSG00000132182 NUP210 R786L 1 NPRLDLAAYDQEGR 3 R NPLLDLAAYDQEGR 3 ENSP00000254508 57.8
ENSP00000255194 ENSG00000132842 AP3B1 V585E 1 QLIVPNVK 7 R QLIVPNEK 7 ENSP00000255194 60.91
ENSP00000258654 ENSG00000136152 COG3 N747S 1 VNDLAATAYK 2 K VSDLAATAYK 2 ENSP00000258654 104.52
ENSP00000259008 ENSG00000136492 BRIP1 S919P 1 YSTSPYLLEAASHLSPENFVEDEAK 4 K YSTPPYLLEAASHLSPENFVEDEAK 4 ENSP00000259008 33.54
ENSP00000259951 ENSG00000204642 HLAZF P272S 1 WAAVVVPPGEEQR 8 K WAAVVVPSGEEQR 8 ENSP00000366002 88.55
ENSP00000263635 ENSG00000115183 TANC1 N251S 1 DGNLRLGVQK 3 K DGSLR 3 DGSLRLGVQK ENSP00000263635 64.55
ENSP00000263657 ENSG00000115946 PNO1 R11G 1 MESEMETQSARAEEGFTQVTR 11 MESEMETQSAGAEEGFTQVTR 11 ENSP00000263657 125.88
ENSP00000263791 ENSG00000128829 EIF2AK4 E556G 1 MPLVEQSPEDSEGQDYVETVIPSNR 12 K MPLVEQSPEDSGGQDYVETVIPSNR 12 ENSP00000263791 151.34
ENSP00000263867 ENSG00000042493 CAPG H335R 1 MQYAPNTQVEILPQGHESPIFK 16 R MQYAPNTQVEILPQGRESPIFK 16 ENSP00000263867 116.38
ENSP00000264848 ENSG00000114529 C3orf52 G144S 1 LTDVYSTSPSLGR 12 R LTDVYSTSPSLSR 12 ENSP00000264848 59.19
ENSP00000267884 ENSG00000140319 SRP14 P124A 1 AAAAAAAAAPAAAATAPTTAATTAATAAQ 17 K AAAAAAAAAPAAAATAATTAATTAATAAQ 17 ENSP00000267884 95.83
ENSP00000268097 ENSG00000213614 HEXA I436V 1 DFYIVEPLAFEGTPEQK 4 K DFYVVEPLAFEGTPEQK 4 ENSP00000268097 114.56
ENSP00000268150 ENSG00000140545 MFGE8 L76M 1 CVEPLGLENGNIANSQIAASSVR 7 K CVEPLGMENGNIANSQIAASSVR 7 ENSP00000268150 33.02
ENSP00000280333 ENSG00000150760 DOCK1 A1857T 1 QASVDSGIVQ 2 K QTSVDSGIVQ 2 ENSP00000280333 55.57
ENSP00000285039 ENSG00000167306 MYO5B K781N 1 GWLQKVK 5 R GWLQNVK 5 ENSP00000285039 60.15
ENSP00000293217 ENSG00000161533 ACOX1 I312M 1 HQSEIKPGEPEPQILDFQTQQYK 5 R HQSEMKPGEPEPQILDFQTQQYK 5 ENSP00000293217 39.65
ENSP00000294309 ENSG00000162341 TPCN2 G734E 1 DILEEPGEDELTER 7 R DILEEPEEDELTER 7 ENSP00000294309 42.21
ENSP00000295971 ENSG00000163694 RBM47 M565V 1 NAAAAAAMYGGYAGYIPQAFPAAAIQVPIPDVYQTY 8 K NAAAAAAVYGGYAGYIPQAFPAAAIQVPIPDVYQTY 8 ENSP00000295971 73.92
ENSP00000297135 ENSG00000164597 COG5 F330L 1 ASFWTNMEK 3 R ASLWTNMEK 3 ENSP00000297135 55.65
ENSP00000300648 ENSG00000089154 GCN1L1 Y2155D 1 IIIEYLLEATR 5 R IIIEDLLEATR 5 ENSP00000300648 75.69
ENSP00000301286 ENSG00000167676 PLIN4 V124A 1 EVVSSGVTGAMDMAK 2 K EAVSSGVTGAMDMAK 2 ENSP00000301286 56.48
ENSP00000315013 ENSG00000095321 CRAT L372M 1 SPLVPLPMPK 3 R SPMVPLPMPK 3 ENSP00000315013 77.68
ENSP00000315775 ENSG00000103051 COG4 T162I 1 SEDYEQAAAHTHR 11 R SEDYEQAAAHIHR 11 ENSP00000315775 51.84
ENSP00000321746 ENSG00000163110 PDLIM5 A345T 1 SMPESLDSPTSGRPGVTSLTAAAAFKPVGSTGVIK 21 R SMPESLDSPTSGRPGVTSLTTAAAFKPVGSTGVIK 21 ENSP00000321746 44.96
ENSP00000321746 ENSG00000163110 PDLIM5 S492N 1 ILGEVISALK 7 K ILGEVINALK 7 ENSP00000321746 79.97
ENSP00000323063 ENSG00000180574 EIF2S3L S313P 1 SIFSK 5 K LMCKPIFSK 5 ENSP00000253039,ENSP00000323063 95.5
ENSP00000326603 ENSG00000101596 SMCHD1 V708I 1 LSVTWPEGDELLPNEVRPAGTPIGALR 16 R LSVTWPEGDELLPNEIRPAGTPIGALR 16 ENSP00000326603 57.58
ENSP00000328062 ENSG00000136051 KIAA1033 V901I 1 LGVTPEGQSYLDQFR 3 K LGITPEGQSYLDQFR 3 ENSP00000328062 57.8
ENSP00000330930 ENSG00000182319 PRAGMIN R402Q 1 CLGLTGEPQPPAHPREATQPEPIYAESTK 15 R CLGLTGEPQPPAHPQEATQPEPIYAESTK 15 ENSP00000330930 62.24
ENSP00000333283 ENSG00000185504 C17orf70 T817A 1 MQTMVTEQATQGSSAPDLR 10 R MQTMVTEQAAQGSSAPDLR 10 ENSP00000333283 54.29
ENSP00000341597 ENSG00000055147 FAM114A2 G122S 1 AETSLGIPGPSEISTEVK 9 K AETSLGIPSPSEISTEVK 9 ENSP00000341597 98.51
ENSP00000344818 ENSG00000150991 UBC S190P 1 EGIPSDQQR 5 K EGIPPDQQR 5 ENSP00000272317,ENSP00000344818 128.38
ENSP00000345445 ENSG00000100347 SAMM50 I345V 1 FYLGGPTSIR 9 R FYLGGPTSVR 9 ENSP00000345445 72.01
ENSP00000346634 ENSG00000054118 THRAP3 A201V 1 DSRPSQAAGDNQGDEAK 16 K DSRPSQAAGDNQGDEVK 16 ENSP00000346634 165.16
ENSP00000347046 ENSG00000138735 PDE5A A93V 1 ADNSAPGTPTR 5 R ADNSVPGTPTR 5 ENSP00000347046 33.84
ENSP00000352584 ENSG00000198074 AKR1B10 N313D 1 ACNVLQSSHLEDYPFNAEY 16 R ACNVLQSSHLEDYPFDAEY 16 ENSP00000352584 90.71
ENSP00000352995 ENSG00000104880 ARHGEF18 Q701R 1 QLGSANGQAEDGGSSTGPPR 1 R RLGSANGQAEDGGSSTGPPR 1 ENSP00000352995 36.86
ENSP00000358262 ENSG00000131778 CHD1L A885S 1 SAVLHAQSSSSSSR 6 K SAVLHSQSSSSSSR 6 ENSP00000358262 192.24
ENSP00000358832 ENSG00000147403 RPL10 N202S 1 YIPNRGPLDK 4 K YIPSR 4 YIPSRGPLDK ENSP00000358832 72.36
ENSP00000360828 ENSG00000124228 DDX27 G766S 1 AGPSFEER 2 R ASPSFEER 2 ENSP00000360828 87.57
ENSP00000361883 ENSG00000131236 CAP1 S256A 1 SSLFAQINQGESITHALK 2 R SALFAQINQGESITHALK 2 ENSP00000361883 143.02
ENSP00000366453 ENSG00000119139 TJP2 D482E 1 YQEDPPAPQPK 4 R YQEEPPAPQPK 4 ENSP00000366453 90.05
ENSP00000366934 ENSG00000162408 NOL9 S58A 1 LLQAQASGVDWR 7 R LLQAQAAGVDWR 7 ENSP00000366934 63.73
ENSP00000369814 ENSG00000198610 AKR1C4 Q250R 1 QTPALIALR 1 K RTPALIALR 1 ENSP00000369927 53.68
ENSP00000371419 ENSG00000102699 PARP4 M936T 1 HITSNTMAAEFIMSATPTMGNTDFWK 7 K HITSNTTAAEFIMSATPTMGNTDFWK 7 ENSP00000371419 35.66
ENSP00000372221 ENSG00000206075 SERPINB5 I319V 1 GVALSNVIHK 8 K GVALSNVVHK 8 ENSP00000372221 72.93
ENSP00000374447 ENSG00000136141 LRCH1 S234P 1 VLPQELVDLSLVK 10 K VLPQELVDLPLVK 10 ENSP00000374447 70.62
ENSP00000375681 ENSG00000129451 KLK10 L149P 1 LARPVVLGPR 7 K LARPVVPGPR 7 ENSP00000375681 73.99
ENSP00000375872 ENSG00000085978 ATG16L1 T300A 1 SVSSFPVPQDNVDTHPGSGK 14 R SVSSFPVPQDNVDAHPGSGK 14 ENSP00000375872 232.59
ENSP00000376965 ENSG00000066427 ATXN3 V212M 1 VLEANDGSGMLDEDEEDLQR 1 R MLEANDGSGMLDEDEEDLQR 1 ENSP00000376965 108.71
ENSP00000378438 ENSG00000167173 C15orf39 G491D 1 EGARPPSSPPMPVIDNVFSLAPYR 2 K EDARPPSSPPMPVIDNVFSLAPYR 2 ENSP00000378438 45.01
ENSP00000378907 ENSG00000108599 AKAP10 I588V 1 MIVSDIMQQAQYDQPLEK 6 K MIVSDVMQQAQYDQPLEK 6 ENSP00000378907 95.35
ENSP00000379133 ENSG00000149089 APIP C76Y 1 IQPEDMFVCDINEK 9 R IQPEDMFVYDINEK 9 ENSP00000379133 76.26
ENSP00000383365 ENSG00000184470 TXNRD2 I370T 1 EATSVPHIYAIGDVVEGRPELTPIAIMAGR 24 R EATSVPHIYAIGDVVEGRPELTPTAIMAGR 24 ENSP00000383365 146.57
ENSP00000385444 ENSG00000099889 ARVCF R900Q 1 DVIPMDALGPDGYSTVDRR 18 R DVIPMDALGPDGYSTVDQR 18 ENSP00000385444 87.85
ENSP00000395249 ENSG00000144567 FAM134A P419Q 1 LSSPLHFVNTHFNGAGSPPDGVK 19 R LSSPLHFVNTHFNGAGSPQDGVK 19 ENSP00000395249 180.42
ENSP00000395772 ENSG00000163938 GNL3 V367M 1 NSLEFFTVLAQR 8 R NSLEFFTMLAQR 8 ENSP00000395772 76.52
ENSP00000396937 ENSG00000185627 PSMD13 N13S 1 DVPGFLQQSQNSGPGQPAVWHR 11 K DVPGFLQQSQSSGPGQPAVWHR 11 ENSP00000396937 131.18
ENSP00000398131 ENSG00000103342 GSPT1 V100A 1 GPAAPPPPVGGAANNHGAGSGAGGR 9 R GPAAPPPPAGGAANNHGAGSGAGGR 9 ENSP00000398131 80.3
ENSP00000400410 ENSG00000204525 HLAZC S48A 1 FISVGYVDDTQFVR 3 R FIAVGYVDDTQFVR 3 ENSP00000366002 86.29
ENSP00000402060 ENSG00000073008 PVR I340M 1 EGPPSEHSGISR 10 K EGPPSEHSGMSR 10 ENSP00000402060 36.3
ENSP00000404217 ENSG00000105963 ADAP1 G175S 1 FHYLQVAFPGAGDADLVPK 12 R FHYLQVAFPGASDADLVPK 12 ENSP00000404217 49.05
ENSP00000404251 ENSG00000144560 VGLL4 I38M 1 IQTLPVASALSSHR 1 R MQTLPVASALSSHR 1 ENSP00000404251 55.21
ENSP00000409879 ENSG00000011638 TMEM159 E178D 1 SAEFEGLYQE 3 K SADFEGLYQE 3 ENSP00000409879 46
ENSP00000414051 ENSG00000123485 HJURP R158G 1 ISRKSPGDPAKPASSPR 3 R ISGK 3 ISGKSPGDPAKPASSPR ENSP00000414051 117.38
ENSP00000427867 ENSG00000174093 RP11Z1407O15.2 I238L 1 FAIEVAAK 3 K FALEVAAK 3 ENSP00000320324 73.25
ENSP00000429829 ENSG00000153317 ASAP1 I142V 1 QEEIDESDDDLDDKPSPIK 18 R QEEIDESDDDLDDKPSPVK 18 ENSP00000429829 112.58
ENSP00000432556 ENSG00000109861 CTSC I110T 1 VGTASENVYVNIAHLK 12 K VGTASENVYVNTAHLK 12 ENSP00000432556 102.38
ENSP00000443772 ENSG00000256950 RP11Z87C12.2 V17A 1 QSGGSSQAGVVTVSDVQELMR 10 R QSGGSSQAGAVTVSDVQELMR 10 ENSP00000443772 56.06
ENSP00000445789 ENSG00000129347 KRI1 G135R 1 YVDEENSDGETSNHR 9 K YVDEENSDRETSNHR 9 ENSP00000445789 153.86
ENSP00000253108 ENSG00000130811 EIF3G F282L 1 GFAFISFHR ENSP00000253108 2 K GLAFISFHR 2 ENSP00000253108 92.062
ENSP00000353114 ENSG00000185567 AHNAK2 E2503A 1 SIEASVDVSAPK ENSP00000353114 3 K SIAASVDVSAPK 3 ENSP00000353114 28.806
ENSP00000374370 ENSG00000070182 SPTB S439N 1 ETWLSENQR ENSP00000349259 5 R ETWLNENQR 5 ENSP00000349259 158.87
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Leading(Razor(Protein(Short Ensembl_Gene_Id HGNC(Symbol Aminoacid(Mutations Mutation(Position Mutation(Ratios SIFT(predictions PolyPhen(Scores Tryptic(pepts(mut Tryptic(pepts(mut(alt MUT(MS(Sequences MUT(MS(Sequence(Flags
ENSP00000269194 ENSG00000264886 T44A 44 1 tolerated 0.003 SNPATPASK SFVSTLKSNPATPASK Mutated
ENSP00000378438 ENSG00000167173 C15orf39 G491D 491 1 tolerated 0 EDARPPSSPPMPVIDNVFSLAPYR EDARPPSSPPMPVIDNVFSLAPYR Mutated
ENSP00000263791 ENSG00000128829 EIF2AK4 E556G 556 1 tolerated 0 MPLVEQSPEDSGGQDYVETVIPSNR MPLVEQSPEDSGGQDYVETVIPSNR Mutated
ENSP00000239165 ENSG00000120087 HOXB7 T9A 9 0.692308 tolerated 0 MSSLYYANALFSK MSSLYYANALFSKYPASSSVFATGAFPEQTSCAFASNPQR,SSLYYANALFSK Mutated
ENSP00000445789 ENSG00000129347 KRI1 G135R 135 1 tolerated 0 YVDEENSDRETSNHR YVDEENSDRETSNHR Mutated
ENSP00000366365 ENSG00000204695 OR14J1 M7T 7 0.611111 tolerated 0.002 MVNLTSTSGFLLMGFSDER MVNLTSTSGFLLMGFSDER,MVNLTSTSGFLLMGFSDERK,VNLTSTSGFLLMGFSDER Mutated
ENSP00000350447 ENSG00000163535 SGOL2 G9D 9 0.235294 tolerated 0.027 MECPVMETDSLFTSGIK ECPVMETDSLFTSGIK,ECPVMETDSLFTSGIKR,MECPVMETDSLFTSGIK Mutated
ENSP00000362285 ENSG00000198246 SLC29A3 R18G 18 0.736842 tolerated 0.003 MAVVSEDDFQHSSNSTYGTTSSSLR AVVSEDDFQHSSNSTYGTTSSSLR Mutated
ENSP00000368215 ENSG00000157625 TAB3 W394R 394 1 tolerated 0 SPSPISNQPSPRNQHSLYTATTPPSSSPSR SPSPISNQPSPR Mutated
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Ensembl_Prot_Id Ensembl_Gene_Id Gene0Name Aminoacid0Mutation Position0in0pept0mut Triptic0aa0start0mut Tryptic0pept Tryptic0pept0mut Position0in0pept0mut0alt Tryptic0pept0mut0alt MS0Sequences Razor0Proteins MS0Modified0Sequences0Count MS0evidence0Count Razor0Proteins0Count min0Score max0Score
ENSP00000005226 ENSG00000006611 USH1C E819D 11 K IVTDYTLAEAEAALQK IVTDYTLAEADAALQK 11 IVTDYTLAEADAALQK ENSP00000005226 1 3 1 53.403 93.51
ENSP00000181839 ENSG00000065883 CDK13 T500A 3 K GNTETSASASQTNHVK GNAETSASASQTNHVK 3 GNAETSASASQTNHVK ENSP00000181839 1 1 1 0 34.094
ENSP00000199764 ENSG00000086548 CEACAM6 G239V 14 R SDPVTLNVLYGPDGPTISPSK SDPVTLNVLYGPDVPTISPSK 14 SDPVTLNVLYGPDVPTISPSK ENSP00000199764 1 3 1 0 164.98
ENSP00000215587 ENSG00000099817 POLR2E S44F 3 K AQSGDKPSEGRPR AQFGDKPSEGRPR 3 AQFGDKPSEGRPR ENSP00000215587 1 4 1 0 120.14
ENSP00000216129 ENSG00000100304 TTLL12 V297M 8 K LPLDINPVVHPHGHIFK LPLDINPMVHPHGHIFK 8 LPLDINPMVHPHGHIFK ENSP00000216129 1 1 1 0 22.803
ENSP00000216181 ENSG00000100345 MYH9 I1626V 6 K DLEAHIDSANK DLEAHVDSANK 6 DLEAHVDSANK ENSP00000216181 1 10 1 0 213.16
ENSP00000216780 ENSG00000100889 PCK2 Q121P 4 R DTVQLPPGGAR DTVPLPPGGAR 4 DTVPLPPGGAR ENSP00000216780 1 1 1 30.872 30.872
ENSP00000220325 ENSG00000103966 EHD4 V154I 4 K SISVIDSPGILSGEK SISIIDSPGILSGEK 4 SISIIDSPGILSGEK ENSP00000220325 1 4 1 56.482 110.77
ENSP00000221233 ENSG00000077348 EXOSC5 T5M 5 MEEETHTDAK MEEEMHTDAK 5 MEEEMHTDAK ENSP00000221233 1 2 1 70.977 84.31
ENSP00000221418 ENSG00000104823 ECH1 E41A 9 R LTGSSAQEEASGVALGEAPDHSYESLR LTGSSAQEAASGVALGEAPDHSYESLR 9 LTGSSAQEAASGVALGEAPDHSYESLR ENSP00000221418 1 2 1 0 184.29
ENSP00000221957 ENSG00000105355 PLIN3 V275A 11 R AQEALLQLSQVLSLMETVK AQEALLQLSQALSLMETVK 11 AQEALLQLSQALSLMETVK ENSP00000221957 1 3 1 0 102.37
ENSP00000225740 ENSG00000108602 ALDH3A1 P329A 15 R YIAPTILTDVDPQSPVMQEEIFGPVLPIVCVR YIAPTILTDVDPQSAVMQEEIFGPVLPIVCVR 15 YIAPTILTDVDPQSAVMQEEIFGPVLPIVCVR ENSP00000225740 1 1 1 63.085 63.085
ENSP00000227868 ENSG00000110435 PDHX V326L 1 K VSVNDFIIK LSVNDFIIK 1 LSVNDFIIK ENSP00000227868 1 4 1 0 113.22
ENSP00000229854 ENSG00000112118 MCM3 E777K 3 R DSEEPFSSVEIQAALSK DSKEPFSSVEIQAALSK 3 DSKEPFSSVEIQAALSK ENSP00000229854 1 4 1 0 119.23
ENSP00000232607 ENSG00000114491 UMPS I446V 4 R GSDIIIVGR GSDVIIVGR 4 GSDVIIVGR ENSP00000232607 1 2 1 0 55.549
ENSP00000236959 ENSG00000138363 ATIC T116S 8 K TVASPGVTVEEAVEQIDIGGVTLLR TVASPGVSVEEAVEQIDIGGVTLLR 8 TVASPGVSVEEAVEQIDIGGVTLLR ENSP00000236959 1 7 1 0 81.922
ENSP00000242108 ENSG00000122547 EEPD1 S343N 9 K AVVAEKPSSQLQK AVVAEKPSNQLQK 9 AVVAEKPSNQLQK ENSP00000242108 1 3 1 0 117.79
ENSP00000252137 ENSG00000100056 DGCR14 A423V 8 R ASYTPSPAR ASYTPSPVR 8 ASYTPSPVR ENSP00000252137 1 4 1 76.588 129.54
ENSP00000252999 ENSG00000130702 LAMA5 V889M 14 R LELEEAATPEGHAVR LELEEAATPEGHAMR 14 LELEEAATPEGHAMR ENSP00000252999 1 2 1 0 48.704
ENSP00000254508 ENSG00000132182 NUP210 A755V 4 R LTLAPVYTSPQLDMSCPLLQQNK LTLVPVYTSPQLDMSCPLLQQNK 4 LTLVPVYTSPQLDMSCPLLQQNK ENSP00000254508 1 5 1 0 89.028
ENSP00000254508 ENSG00000132182 NUP210 R786L 3 R NPRLDLAAYDQEGR NPLLDLAAYDQEGR 3 NPLLDLAAYDQEGR ENSP00000254508 1 2 1 40.025 57.804
ENSP00000255194 ENSG00000132842 AP3B1 V585E 7 R QLIVPNVK QLIVPNEK 7 QLIVPNEK ENSP00000255194 1 1 1 0 60.91
ENSP00000256707 ENSG00000134313 KIDINS220 Q1608H 19 R SSESSPNHSLHNEVADDSQLEK SSESSPNHSLHNEVADDSHLEK 19 SSESSPNHSLHNEVADDSHLEK ENSP00000256707 4 6 1 10.399 61.112
ENSP00000257829 ENSG00000135372 NAT10 R705H 8 K LNERPAERLDYLGVSYGLTPR LNERPAEHLDYLGVSYGLTPR 8 LNERPAEHLDYLGVSYGLTPR ENSP00000257829 1 1 1 0 49.089
ENSP00000258654 ENSG00000136152 COG3 N747S 2 K VNDLAATAYK VSDLAATAYK 2 VSDLAATAYK ENSP00000258654 1 2 1 39.917 96.015
ENSP00000259008 ENSG00000136492 BRIP1 S919P 4 K YSTSPYLLEAASHLSPENFVEDEAK YSTPPYLLEAASHLSPENFVEDEAK 4 YSTPPYLLEAASHLSPENFVEDEAK ENSP00000259008 1 3 1 28.443 33.544
ENSP00000259951 ENSG00000204642 HLAZF P272S 8 K WAAVVVPPGEEQR WAAVVVPSGEEQR 8 WAAVVVPSGEEQR ENSP00000366002 1 4 1 0 88.552
ENSP00000260197 ENSG00000137642 SORL1 A528T 11 K TNVYISSSAGAR TNVYISSSAGTR 11 TNVYISSSAGTR ENSP00000260197 1 3 1 0 42.789
ENSP00000260227 ENSG00000137673 MMP7 R77H 13 K FFGLPITGMLNSRVIEIMQKPR FFGLPITGMLNSHVIEIMQKPR 13 FFGLPITGMLNSHVIEIMQKPR ENSP00000260227 1 1 1 0 23.726
ENSP00000262265 ENSG00000104872 PIH1D1 P287L 10 K QLMVAMPLLPVPS QLMVAMPLLLVPS 10 QLMVAMPLLLVPS ENSP00000262265 1 1 1 0 72.652
ENSP00000263026 ENSG00000103319 EEF2K H23R 3 R AGHDGDSDGDSDDEEGYFICPITDDPSSNQNVNSK AGRDGDSDGDSDDEEGYFICPITDDPSSNQNVNSK 3 AGRDGDSDGDSDDEEGYFICPITDDPSSNQNVNSK ENSP00000263026 1 3 1 18.837 43.728
ENSP00000263657 ENSG00000115946 PNO1 R11G 11 MESEMETQSARAEEGFTQVTR MESEMETQSAGAEEGFTQVTR 11 MESEMETQSAGAEEGFTQVTR ENSP00000263657 3 5 1 0 125.88
ENSP00000263791 ENSG00000128829 EIF2AK4 E556G 12 K MPLVEQSPEDSEGQDYVETVIPSNR MPLVEQSPEDSGGQDYVETVIPSNR 12 MPLVEQSPEDSGGQDYVETVIPSNR ENSP00000263791 3 11 1 0 151.34
ENSP00000263867 ENSG00000042493 CAPG H335R 16 R MQYAPNTQVEILPQGHESPIFK MQYAPNTQVEILPQGRESPIFK 16 MQYAPNTQVEILPQGRESPIFK ENSP00000263867 2 4 1 38.746 116.38
ENSP00000264848 ENSG00000114529 C3orf52 G144S 12 R LTDVYSTSPSLGR LTDVYSTSPSLSR 12 LTDVYSTSPSLSR ENSP00000264848 1 1 1 0 59.185
ENSP00000265562 ENSG00000076201 PTPN23 F161L 3 R EHFPQAYSVDMSR EHLPQAYSVDMSR 3 EHLPQAYSVDMSR ENSP00000265562 1 1 1 0 24.964
ENSP00000267884 ENSG00000140319 SRP14 P124A 17 K AAAAAAAAAPAAAATAPTTAATTAATAAQ AAAAAAAAAPAAAATAATTAATTAATAAQ 17 AAAAAAAAAPAAAATAATTAATTAATAAQ ENSP00000267884 1 11 1 0 95.834
ENSP00000268097 ENSG00000213614 HEXA I436V 4 K DFYIVEPLAFEGTPEQK DFYVVEPLAFEGTPEQK 4 DFYVVEPLAFEGTPEQK ENSP00000268097 1 3 1 0 114.56
ENSP00000268150 ENSG00000140545 MFGE8 L76M 7 K CVEPLGLENGNIANSQIAASSVR CVEPLGMENGNIANSQIAASSVR 7 CVEPLGMENGNIANSQIAASSVR ENSP00000268150 1 1 1 0 33.024
ENSP00000276689 ENSG00000147684 NDUFB9 P146S 8 K QLQEETPPGGPLTEALPPAR QLQEETPSGGPLTEALPPAR 8 QLQEETPSGGPLTEALPPAR ENSP00000276689 1 4 1 126.84 236.16
ENSP00000279907 ENSG00000111647 UHRF1BP1L T283I 11 K SMAPEPTQSSTVVASAQQVK SMAPEPTQSSIVVASAQQVK 11 SMAPEPTQSSIVVASAQQVK ENSP00000279907 1 1 1 0 24.594
ENSP00000280333 ENSG00000150760 DOCK1 A1857T 2 K QASVDSGIVQ QTSVDSGIVQ 2 QTSVDSGIVQ ENSP00000280333 1 1 1 55.567 55.567
ENSP00000281828 ENSG00000116120 FARSB V585I 14 K FELTMPCSSLEINVGPFL FELTMPCSSLEINIGPFL 14 FELTMPCSSLEINIGPFL ENSP00000281828 1 1 1 0 26.365
ENSP00000285039 ENSG00000167306 MYO5B K781N 5 R GWLQKVK GWLQNVK 5 GWLQNVK ENSP00000285039 1 1 1 0 60.151
ENSP00000290541 ENSG00000159377 PSMB4 I234T 3 R FQIATVTEK FQTATVTEK 3 FQTATVTEK ENSP00000290541 1 3 1 0 103.88
ENSP00000291634 ENSG00000160256 FAM207A V212L 5 R ASPLVAIGQTLAR ASPLLAIGQTLAR 5 ASPLLAIGQTLAR ENSP00000291634 1 1 1 26.124 26.124
ENSP00000293217 ENSG00000161533 ACOX1 I312M 5 R HQSEIKPGEPEPQILDFQTQQYK HQSEMKPGEPEPQILDFQTQQYK 5 HQSEMKPGEPEPQILDFQTQQYK ENSP00000293217 1 1 1 0 39.647
ENSP00000293350 ENSG00000161618 ALDH16A1 T127S 10 R LLWTLESLVTGR LLWTLESLVSGR 10 LLWTLESLVSGR ENSP00000293350 1 3 1 0 52.555
ENSP00000294309 ENSG00000162341 TPCN2 G734E 7 R DILEEPGEDELTER DILEEPEEDELTER 7 DILEEPEEDELTER ENSP00000294309 1 1 1 42.209 42.209
ENSP00000295373 ENSG00000163214 DHX57 N587S 14 K TTQIPQFILDDSLNGPPEK TTQIPQFILDDSLSGPPEK 14 TTQIPQFILDDSLSGPPEK ENSP00000295373 1 3 1 27.924 77.39
ENSP00000295971 ENSG00000163694 RBM47 M565V 8 K NAAAAAAMYGGYAGYIPQAFPAAAIQVPIPDVYQTY NAAAAAAVYGGYAGYIPQAFPAAAIQVPIPDVYQTY 8 NAAAAAAVYGGYAGYIPQAFPAAAIQVPIPDVYQTY ENSP00000295971 1 3 1 0 73.919
ENSP00000297135 ENSG00000164597 COG5 F330L 3 R ASFWTNMEK ASLWTNMEK 3 ASLWTNMEK ENSP00000297135 1 1 1 0 55.649
ENSP00000297185 ENSG00000113013 HSPA9 S639F 5 R QAASSLQQASLK QAASFLQQASLK 5 QAASFLQQASLK ENSP00000297185 1 5 1 0 222.25
ENSP00000300107 ENSG00000166855 CLPX I488T 3 R DLIEFGMIPEFVGR DLTEFGMIPEFVGR 3 DLTEFGMIPEFVGR ENSP00000300107 1 1 1 0 68.83
ENSP00000300648 ENSG00000089154 GCN1L1 Y2155D 5 R IIIEYLLEATR IIIEDLLEATR 5 IIIEDLLEATR ENSP00000300648 1 2 1 0 75.695
ENSP00000301286 ENSG00000167676 PLIN4 A668V 3 K GAAQTGVDTAK GAVQTGVDTAK 3 GAVQTGVDTAK ENSP00000301286 1 1 1 61.344 61.344
ENSP00000301286 ENSG00000167676 PLIN4 M802T 5 K GAVQMGVDTAK GAVQTGVDTAK 5 GAVQTGVDTAK ENSP00000301286 1 1 1 61.344 61.344
ENSP00000301286 ENSG00000167676 PLIN4 V124A 2 K EVVSSGVTGAMDMAK EAVSSGVTGAMDMAK 2 EAVSSGVTGAMDMAK ENSP00000301286 1 2 1 0 56.482
ENSP00000303511 ENSG00000124587 PEX6 P939Q 10 R VHDLEEGLEPGSSALMLTMEDLLQAAAR VHDLEEGLEQGSSALMLTMEDLLQAAAR 10 VHDLEEGLEQGSSALMLTMEDLLQAAAR ENSP00000303511 1 2 1 0 27.89
ENSP00000304327 ENSG00000172301 C17orf79 S43G 17 R GAPPSPEAGFATADHSSQER GAPPSPEAGFATADHSGQER 17 GAPPSPEAGFATADHSGQER ENSP00000304327 1 3 1 0 98.121
ENSP00000305193 ENSG00000118960 HS1BP3 V260M 13 K LSPQDPSEDVSSVDPLK LSPQDPSEDVSSMDPLK 13 LSPQDPSEDVSSMDPLK ENSP00000305193 1 1 1 27.496 27.496
ENSP00000305918 ENSG00000169925 BRD3 P149A 13 K VAQMPQEEVELLPPAPK VAQMPQEEVELLAPAPK 13 VAQMPQEEVELLAPAPK ENSP00000305918 1 2 1 21.841 28.956
ENSP00000306105 ENSG00000121289 CEP89 R194W 32 R NQVPLLHEVNSEDDENISHQDGFPGSPPAPQRTQQK NQVPLLHEVNSEDDENISHQDGFPGSPPAPQWTQQK 32 NQVPLLHEVNSEDDENISHQDGFPGSPPAPQWTQQK ENSP00000306105 1 2 1 21.275 24.869
ENSP00000307288 ENSG00000166508 MCM7 T415S 8 R GSSGVGLTAAVLR GSSGVGLSAAVLR 8 GSSGVGLSAAVLR ENSP00000307288 1 1 1 0 82.069
ENSP00000308413 ENSG00000175634 RPS6KB2 A420V 1 R APVSPLK VPVSPLK 1 VPVSPLK ENSP00000308413 1 1 1 0 90.629
ENSP00000310448 ENSG00000175467 SART1 G485A 18 R VENMDISDEEEGGAPPPGSPQVLEEDEAELELQK VENMDISDEEEGGAPPPASPQVLEEDEAELELQK 18 VENMDISDEEEGGAPPPASPQVLEEDEAELELQK ENSP00000310448 1 8 1 28.068 187.96
ENSP00000311572 ENSG00000106853 PTGR1 A27S 2 K TAELPPLK TSELPPLK 2 TSELPPLK ENSP00000311572 1 3 1 0 71.379
ENSP00000311648 ENSG00000174607 UGT8 I368M 15 K AFLSHGGLNSIFETIYHGVPVVGIPLFGDHYDTMTR AFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTR 15 AFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTR ENSP00000311648 1 2 1 0 26.268
ENSP00000312143 ENSG00000136205 TNS3 I1132F 23 R SLGSVSPSSSGFSSPHSGSTISIPFPNVLPDFSK SLGSVSPSSSGFSSPHSGSTISFPFPNVLPDFSK 23 SLGSVSPSSSGFSSPHSGSTISFPFPNVLPDFSK ENSP00000312143 10 16 1 0 120.47
ENSP00000315013 ENSG00000095321 CRAT L372M 3 R SPLVPLPMPK SPMVPLPMPK 3 SPMVPLPMPK ENSP00000315013 1 2 1 73.985 73.985
ENSP00000315775 ENSG00000103051 COG4 T162I 11 R SEDYEQAAAHTHR SEDYEQAAAHIHR 11 SEDYEQAAAHIHR ENSP00000315775 1 1 1 0 51.841
ENSP00000321746 ENSG00000163110 PDLIM5 A345T 21 R SMPESLDSPTSGRPGVTSLTAAAAFKPVGSTGVIK SMPESLDSPTSGRPGVTSLTTAAAFKPVGSTGVIK 21 SMPESLDSPTSGRPGVTSLTTAAAFKPVGSTGVIK ENSP00000321746 1 1 1 0 44.317
ENSP00000321746 ENSG00000163110 PDLIM5 S136F 9 K APRPFGSVSSPK APRPFGSVFSPK 9 APRPFGSVFSPK ENSP00000321746 1 4 1 0 84.718
ENSP00000321746 ENSG00000163110 PDLIM5 S492N 7 K ILGEVISALK ILGEVINALK 7 ILGEVINALK ENSP00000321746 1 3 1 65.347 79.974
ENSP00000323063 ENSG00000180574 EIF2S3L S313P 5 K SIFSK LMCKPIFSK 5 LMCKPIFSK ENSP00000253039 1 3 1 0 85.676
ENSP00000323687 ENSG00000175931 UBE2O A1150T 9 R IESWLETHALLEK IESWLETHTLLEK 9 IESWLETHTLLEK ENSP00000323687 1 1 1 27.409 27.409
ENSP00000323837 ENSG00000163798 SLC4A1AP P139T 10 R SLQEEQSRPPTAVSSPGGPAR SLQEEQSRPTTAVSSPGGPAR 10 SLQEEQSRPTTAVSSPGGPAR ENSP00000323837 3 4 1 0 121.56
ENSP00000323889 ENSG00000121060 TRIM25 P358L 4 R LQEPTPSSGDPGEHDPASTHK LQELTPSSGDPGEHDPASTHK 4 LQELTPSSGDPGEHDPASTHK ENSP00000323889 1 2 1 0 48.824
ENSP00000326603 ENSG00000101596 SMCHD1 V708I 16 R LSVTWPEGDELLPNEVRPAGTPIGALR LSVTWPEGDELLPNEIRPAGTPIGALR 16 LSVTWPEGDELLPNEIRPAGTPIGALR ENSP00000326603 1 2 1 0 57.578
ENSP00000328062 ENSG00000136051 KIAA1033 V901I 3 K LGVTPEGQSYLDQFR LGITPEGQSYLDQFR 3 LGITPEGQSYLDQFR ENSP00000328062 1 1 1 0 57.804
ENSP00000328251 ENSG00000170854 MINA A386T 17 K DHIVLTVLPDQDQSDEAQEK DHIVLTVLPDQDQSDETQEK 17 DHIVLTVLPDQDQSDETQEK ENSP00000328251 1 2 1 0 80.638
ENSP00000330836 ENSG00000108010 GLRX3 P123S 9 R HASSGSFLPSANEHLK HASSGSFLSSANEHLK 9 HASSGSFLSSANEHLK ENSP00000330836 2 5 1 0 113.35
ENSP00000330930 ENSG00000182319 PRAGMIN R402Q 15 R CLGLTGEPQPPAHPREATQPEPIYAESTK CLGLTGEPQPPAHPQEATQPEPIYAESTK 15 CLGLTGEPQPPAHPQEATQPEPIYAESTK ENSP00000330930 1 1 1 62.237 62.237
ENSP00000331983 ENSG00000079691 LRRC16A G1202S 17 K LGNDAVSQDSSSPALSGVER LGNDAVSQDSSSPALSSVER 17 LGNDAVSQDSSSPALSSVER ENSP00000331983 1 1 1 0 50.883
ENSP00000333283 ENSG00000185504 C17orf70 T817A 10 R MQTMVTEQATQGSSAPDLR MQTMVTEQAAQGSSAPDLR 10 MQTMVTEQAAQGSSAPDLR ENSP00000333283 1 2 1 30.428 54.288
ENSP00000338093 ENSG00000185418 TARSL2 A96G 15 R QATLESAELEAAQEAGAQPPPSQSQDK QATLESAELEAAQEGGAQPPPSQSQDK 15 QATLESAELEAAQEGGAQPPPSQSQDK ENSP00000338093 1 1 1 28.665 28.665
ENSP00000341597 ENSG00000055147 FAM114A2 G122S 9 K AETSLGIPGPSEISTEVK AETSLGIPSPSEISTEVK 9 AETSLGIPSPSEISTEVK ENSP00000341597 1 2 1 96.666 98.507
ENSP00000344818 ENSG00000150991 UBC S190P 5 K EGIPSDQQR EGIPPDQQR 5 EGIPPDQQR ENSP00000272317 1 3 1 49.418 128.38
ENSP00000345445 ENSG00000100347 SAMM50 I345V 9 R FYLGGPTSIR FYLGGPTSVR 9 FYLGGPTSVR ENSP00000345445 1 1 1 0 72.006
ENSP00000346634 ENSG00000054118 THRAP3 A201V 16 K DSRPSQAAGDNQGDEAK DSRPSQAAGDNQGDEVK 16 DSRPSQAAGDNQGDEVK ENSP00000346634 1 4 1 0 165.16
ENSP00000347046 ENSG00000138735 PDE5A A93V 5 R ADNSAPGTPTR ADNSVPGTPTR 5 ADNSVPGTPTR ENSP00000347046 1 1 1 0 33.842
ENSP00000347719 ENSG00000141556 TBCD M617T 12 R LLSMTLSPDLHMR LLSMTLSPDLHTR 12 LLSMTLSPDLHTR ENSP00000347719 1 2 1 0 49.929
ENSP00000348828 ENSG00000114790 ARHGEF26 V29L 8 R SIPQPHQVLGR SIPQPHQLLGR 8 SIPQPHQLLGR ENSP00000348828 1 1 1 0 24.343
ENSP00000350896 ENSG00000196411 EPHB4 T775M 12 R FLEENSSDPTYTSSLGGK FLEENSSDPTYMSSLGGK 12 FLEENSSDPTYMSSLGGK ENSP00000350896 7 12 1 0 268.21
ENSP00000351740 ENSG00000197712 FAM114A1 L116P 11 R SEIPLQEQNYLAVDSPPSGGGWAGWGSWGK SEIPLQEQNYPAVDSPPSGGGWAGWGSWGK 11 SEIPLQEQNYPAVDSPPSGGGWAGWGSWGK ENSP00000351740 1 1 1 0 30.352
ENSP00000351947 ENSG00000163104 SMARCAD1 S247N 15 R LDHGEESNESAESSSNWEK LDHGEESNESAESSNNWEK 15 LDHGEESNESAESSNNWEK ENSP00000351947 3 7 1 0 119.97
ENSP00000352248 ENSG00000109511 ANXA10 M71L 6 R DLIGDMR DLIGDLR 6 DLIGDLR ENSP00000352248 1 1 1 0 45.312
ENSP00000352447 ENSG00000182795 C1orf116 R94W 10 R ALPITQPTPRGGPEETITQQGR ALPITQPTPWGGPEETITQQGR 10 ALPITQPTPWGGPEETITQQGR ENSP00000352447 1 3 1 27.61 95.195
ENSP00000352584 ENSG00000198074 AKR1B10 N313D 16 R ACNVLQSSHLEDYPFNAEY ACNVLQSSHLEDYPFDAEY 16 ACNVLQSSHLEDYPFDAEY ENSP00000352584 1 2 1 0 90.714
ENSP00000352995 ENSG00000104880 ARHGEF18 Q701R 1 R QLGSANGQAEDGGSSTGPPR RLGSANGQAEDGGSSTGPPR 1 RLGSANGQAEDGGSSTGPPR ENSP00000352995 1 1 1 0 36.856
ENSP00000353114 ENSG00000185567 AHNAK2 P2014S 9 R SIEASVDVPAPK SIEASVDVSAPK 9 SIEASVDVSAPK ENSP00000353114 1 1 1 0 28.806
ENSP00000354045 ENSG00000125844 RRBP1 S766L 4 R EHTSHLEAELEK EHTLHLEAELEK 4 EHTLHLEAELEK ENSP00000354045 1 3 1 0 84.718
ENSP00000354086 ENSG00000116221 MRPL37 C366S 16 R VFHFLVFQLNTTDLDCNEGVK VFHFLVFQLNTTDLDSNEGVK 16 VFHFLVFQLNTTDLDSNEGVK ENSP00000354086 1 2 1 0 60.564
ENSP00000354511 ENSG00000093010 COMT V158M 7 R MVDFAGVK MVDFAGMK 7 MVDFAGMK ENSP00000354511 2 6 1 0 107.9
ENSP00000354532 ENSG00000198805 PNP G51S 10 K LTQAQIFDYGEIPNFPR LTQAQIFDYSEIPNFPR 10 LTQAQIFDYSEIPNFPR ENSP00000354532 1 4 1 0 84.874
ENSP00000355541 ENSG00000119285 HEATR1 N1694S 15 K NFGAENPDPFVPVLNTAVK NFGAENPDPFVPVLSTAVK 15 NFGAENPDPFVPVLSTAVK ENSP00000355541 1 1 1 0 91.475
ENSP00000355583 ENSG00000143674 RP5Z862P8.2 C784G 12 R SASPPTSLPSTCGEASSPPSLPLSSALGILSTPSFSTK SASPPTSLPSTGGEASSPPSLPLSSALGILSTPSFSTK 12 SASPPTSLPSTGGEASSPPSLPLSSALGILSTPSFSTK ENSP00000355583 2 7 1 14.816 50.545
ENSP00000355672 ENSG00000181873 IBA57 G211S 14 R LLTQDEGPALVPGGR LLTQDEGPALVPGSR 14 LLTQDEGPALVPGSR ENSP00000355672 1 4 1 0 56.482
ENSP00000357535 ENSG00000127884 ECHS1 T75I 1 K TFEEDPAVGAIVLTGGDK IFEEDPAVGAIVLTGGDK 1 IFEEDPAVGAIVLTGGDK ENSP00000357535 1 6 1 0 186.23
ENSP00000358262 ENSG00000131778 CHD1L A885S 6 K SAVLHAQSSSSSSR SAVLHSQSSSSSSR 6 SAVLHSQSSSSSSR ENSP00000358262 3 8 1 0 192.24
ENSP00000359024 ENSG00000166197 NOLC1 S456P 4 K AALSLPAK AALPLPAK 4 AALPLPAK ENSP00000359024 1 2 1 38.962 58.917
ENSP00000359295 ENSG00000117505 DR1 E171D 41 R QQQAELAQQEWLQMQQAAQQAQLAAASASASNQAGSSQDEEDDDDI QQQAELAQQEWLQMQQAAQQAQLAAASASASNQAGSSQDEDDDDDI 41 QQQAELAQQEWLQMQQAAQQAQLAAASASASNQAGSSQDEDDDDDI ENSP00000359295 2 4 1 19.611 69.143
ENSP00000360540 ENSG00000138180 CEP55 T99A 5 R YSTTTLLEQLEETTR YSTTALLEQLEETTR 5 YSTTALLEQLEETTR ENSP00000360540 1 1 1 22.803 22.803
ENSP00000360771 ENSG00000148396 SEC16A T819A 17 K ANHSSHQEDTYGALDFTLSR ANHSSHQEDTYGALDFALSR 17 ANHSSHQEDTYGALDFALSR ENSP00000360771 1 3 1 90.316 147.53
ENSP00000360771 ENSG00000148396 SEC16A V884A 6 R AQQELVPPQQQASPPQLPK AQQELAPPQQQASPPQLPK 6 AQQELAPPQQQASPPQLPK ENSP00000360771 2 12 1 0 170.5
ENSP00000360828 ENSG00000124228 DDX27 G766S 2 R AGPSFEER ASPSFEER 2 ASPSFEER ENSP00000360828 1 6 1 45.879 87.568
ENSP00000361883 ENSG00000131236 CAP1 S256A 2 R SSLFAQINQGESITHALK SALFAQINQGESITHALK 2 SALFAQINQGESITHALK ENSP00000361883 1 19 1 0 143.02
ENSP00000361892 ENSG00000101109 STK4 V312M 2 R EVDQDDEENSEEDEMDSGTMVR EMDQDDEENSEEDEMDSGTMVR 2 EMDQDDEENSEEDEMDSGTMVR ENSP00000361892 4 15 1 0 148.87
ENSP00000364986 ENSG00000116771 AGMAT R140Q 1 R RIQEAYEK QIQEAYEK 1 QIQEAYEK ENSP00000364986 1 1 1 0 89.355
ENSP00000366002 ENSG00000206503 HLAZA F33S 3 R YFFTSVSRPGR YFSTSVSRPGR 3 YFSTSVSRPGR ENSP00000366002 1 1 1 0 73.067
ENSP00000366002 ENSG00000206503 HLAZA N151K 6 K DYIALNEDLR DYIALKEDLR 6 DYIALKEDLR ENSP00000366002 1 2 1 0 52.79
ENSP00000366453 ENSG00000119139 TJP2 D482E 4 R YQEDPPAPQPK YQEEPPAPQPK 4 YQEEPPAPQPK ENSP00000366453 2 4 1 0 90.05
ENSP00000366453 ENSG00000119139 TJP2 M668I 4 R AEQMASVQNAQR AEQIASVQNAQR 4 AEQIASVQNAQR ENSP00000366453 1 2 1 72.958 93.011
ENSP00000366620 ENSG00000049239 H6PD R453Q 16 R LFGSPLSDYYAYSPVRER LFGSPLSDYYAYSPVQER 16 LFGSPLSDYYAYSPVQER ENSP00000366620 1 1 1 0 47.568
ENSP00000366927 ENSG00000137124 ALDH1B1 R107L 4 R LLNRLADLVER LLNLLADLVER 4 LLNLLADLVER ENSP00000366927 1 4 1 0 57.836
ENSP00000366934 ENSG00000162408 NOL9 S58A 7 R LLQAQASGVDWR LLQAQAAGVDWR 7 LLQAQAAGVDWR ENSP00000366934 1 1 1 63.727 63.727
ENSP00000367263 ENSG00000124942 AHNAK M1572V 4 K MPSMNIQTHK MPSVNIQTHK 4 MPSVNIQTHK ENSP00000367263 1 2 1 0 50.284
ENSP00000369814 ENSG00000198610 AKR1C4 Q250R 1 K QTPALIALR RTPALIALR 1 RTPALIALR ENSP00000369927 1 3 1 36.424 53.683
ENSP00000371419 ENSG00000102699 PARP4 M936T 7 K HITSNTMAAEFIMSATPTMGNTDFWK HITSNTTAAEFIMSATPTMGNTDFWK 7 HITSNTTAAEFIMSATPTMGNTDFWK ENSP00000371419 1 1 1 0 35.66
ENSP00000371419 ENSG00000102699 PARP4 S1459Y 10 R GFGSYHPSASSPFHFQPSAASLTANLR GFGSYHPSAYSPFHFQPSAASLTANLR 10 GFGSYHPSAYSPFHFQPSAASLTANLR ENSP00000371419 1 1 1 22.533 22.533
ENSP00000372221 ENSG00000206075 SERPINB5 I319V 8 K GVALSNVIHK GVALSNVVHK 8 GVALSNVVHK ENSP00000372221 1 4 1 0 63.283
ENSP00000374447 ENSG00000136141 LRCH1 S234P 10 K VLPQELVDLSLVK VLPQELVDLPLVK 10 VLPQELVDLPLVK ENSP00000374447 1 2 1 0 70.622
ENSP00000375681 ENSG00000129451 KLK10 L149P 7 K LARPVVLGPR LARPVVPGPR 7 LARPVVPGPR ENSP00000375681 1 3 1 0 73.985
ENSP00000375829 ENSG00000159166 LAD1 K323E 7 K NLPSLAKQGASDPPTVASR NLPSLAEQGASDPPTVASR 7 NLPSLAEQGASDPPTVASR ENSP00000375829 1 8 1 0 162.65
ENSP00000375872 ENSG00000085978 ATG16L1 T300A 14 R SVSSFPVPQDNVDTHPGSGK SVSSFPVPQDNVDAHPGSGK 14 SVSSFPVPQDNVDAHPGSGK ENSP00000375872 2 9 1 0 232.59
ENSP00000376802 ENSG00000197249 SERPINA1 V237A 12 K DTEEEDFHVDQVTTVK DTEEEDFHVDQATTVK 12 DTEEEDFHVDQATTVK ENSP00000376802 1 1 1 0 29.341
ENSP00000376965 ENSG00000066427 ATXN3 V212M 1 R VLEANDGSGMLDEDEEDLQR MLEANDGSGMLDEDEEDLQR 1 MLEANDGSGMLDEDEEDLQR ENSP00000376965 2 2 1 0 108.71
ENSP00000377845 ENSG00000070669 ASNS V210E 2 R DVPLHALYDNVEK DEPLHALYDNVEK 2 DEPLHALYDNVEK ENSP00000377845 1 5 1 0 96.591
ENSP00000378438 ENSG00000167173 C15orf39 G491D 2 K EGARPPSSPPMPVIDNVFSLAPYR EDARPPSSPPMPVIDNVFSLAPYR 2 EDARPPSSPPMPVIDNVFSLAPYR ENSP00000378438 1 4 1 0 45.011
ENSP00000378907 ENSG00000108599 AKAP10 I588V 6 K MIVSDIMQQAQYDQPLEK MIVSDVMQQAQYDQPLEK 6 MIVSDVMQQAQYDQPLEK ENSP00000378907 1 1 1 0 95.347
ENSP00000379133 ENSG00000149089 APIP C76Y 9 R IQPEDMFVCDINEK IQPEDMFVYDINEK 9 IQPEDMFVYDINEK ENSP00000379133 1 3 1 0 76.262
ENSP00000379392 ENSG00000066654 THUMPD1 E311D 7 K NNQQVPENTEELGQTKPTSNPQVVNEGGAKPELASQATEGSK NNQQVPDNTEELGQTKPTSNPQVVNEGGAKPELASQATEGSK 7 NNQQVPDNTEELGQTKPTSNPQVVNEGGAKPELASQATEGSK ENSP00000379392 1 8 1 50.645 146.78
ENSP00000380466 ENSG00000214026 MRPL23 R11Q 8 R NVVYPLYRLGGPQLR NVVYPLYQLGGPQLR 8 NVVYPLYQLGGPQLR ENSP00000380466 1 3 1 0 59.185
ENSP00000381607 ENSG00000084207 GSTP1 I105V 2 K YISLIYTNYEAGK YVSLIYTNYEAGK 2 YVSLIYTNYEAGK ENSP00000381607 1 2 1 37.998 47.621
ENSP00000382241 ENSG00000060749 QSER1 N1018S 6 R SISGENATSESEFTLGGDDSGVSMNPAR SISGESATSESEFTLGGDDSGVSMNPAR 6 SISGESATSESEFTLGGDDSGVSMNPAR ENSP00000382241 1 1 1 0 22.096
ENSP00000383365 ENSG00000184470 TXNRD2 A66S 2 K VAVVDYVEPSPQGTR VSVVDYVEPSPQGTR 2 VSVVDYVEPSPQGTR ENSP00000383365 1 5 1 0 71.692
ENSP00000383365 ENSG00000184470 TXNRD2 G384S 3 R LFGGSSDLMDYDNVPTTVFTPLEYGCVGLSEEEAVAR LFSGSSDLMDYDNVPTTVFTPLEYGCVGLSEEEAVAR 3 LFSGSSDLMDYDNVPTTVFTPLEYGCVGLSEEEAVAR ENSP00000383365 1 1 1 0 36.467
ENSP00000383365 ENSG00000184470 TXNRD2 I370T 24 R EATSVPHIYAIGDVVEGRPELTPIAIMAGR EATSVPHIYAIGDVVEGRPELTPTAIMAGR 24 EATSVPHIYAIGDVVEGRPELTPTAIMAGR ENSP00000383365 1 3 1 0 146.57
ENSP00000383851 ENSG00000162522 KIAA1522 M291V 19 R VSLQALEAEAEAGAETEAMLQR VSLQALEAEAEAGAETEAVLQR 19 VSLQALEAEAEAGAETEAVLQR ENSP00000383851 1 2 1 0 74.748
ENSP00000385444 ENSG00000099889 ARVCF R900Q 18 R DVIPMDALGPDGYSTVDRR DVIPMDALGPDGYSTVDQR 18 DVIPMDALGPDGYSTVDQR ENSP00000385444 2 4 1 0 87.85
ENSP00000395249 ENSG00000144567 FAM134A P419Q 19 R LSSPLHFVNTHFNGAGSPPDGVK LSSPLHFVNTHFNGAGSPQDGVK 19 LSSPLHFVNTHFNGAGSPQDGVK ENSP00000395249 4 6 1 24.207 180.42
ENSP00000395772 ENSG00000163938 GNL3 V367M 8 R NSLEFFTVLAQR NSLEFFTMLAQR 8 NSLEFFTMLAQR ENSP00000395772 1 3 1 0 76.522
ENSP00000396937 ENSG00000185627 PSMD13 N13S 11 K DVPGFLQQSQNSGPGQPAVWHR DVPGFLQQSQSSGPGQPAVWHR 11 DVPGFLQQSQSSGPGQPAVWHR ENSP00000396937 1 3 1 32.797 131.18
ENSP00000397925 ENSG00000064270 ATP2C2 M466L 17 K NAVMGQPTEGALMALAMK NAVMGQPTEGALMALALK 17 NAVMGQPTEGALMALALK ENSP00000397925 1 1 1 26.146 26.146
ENSP00000398131 ENSG00000103342 GSPT1 V100A 9 R GPAAPPPPVGGAANNHGAGSGAGGR GPAAPPPPAGGAANNHGAGSGAGGR 9 GPAAPPPPAGGAANNHGAGSGAGGR ENSP00000398131 1 13 1 0 80.303
ENSP00000399168 ENSG00000234745 HLAZB I218V 8 K THVTHHPISDHEATLR THVTHHPVSDHEATLR 8 THVTHHPVSDHEATLR ENSP00000397867 1 5 1 0 160.81
ENSP00000400410 ENSG00000204525 HLAZC S48A 3 R FISVGYVDDTQFVR FIAVGYVDDTQFVR 3 FIAVGYVDDTQFVR ENSP00000366002 1 6 1 0 86.291
ENSP00000402060 ENSG00000073008 PVR I340M 10 K EGPPSEHSGISR EGPPSEHSGMSR 10 EGPPSEHSGMSR ENSP00000402060 1 2 1 0 36.303
ENSP00000402935 ENSG00000131374 TBC1D5 I718V 12 R GQGQSVQMSGAIK GQGQSVQMSGAVK 12 GQGQSVQMSGAVK ENSP00000402935 1 1 1 79.633 79.633
ENSP00000404217 ENSG00000105963 ADAP1 G175S 12 R FHYLQVAFPGAGDADLVPK FHYLQVAFPGASDADLVPK 12 FHYLQVAFPGASDADLVPK ENSP00000404217 1 4 1 0 49.049
ENSP00000404251 ENSG00000144560 VGLL4 I38M 1 R IQTLPVASALSSHR MQTLPVASALSSHR 1 MQTLPVASALSSHR ENSP00000404251 1 1 1 55.213 55.213
ENSP00000409879 ENSG00000011638 TMEM159 E178D 3 K SAEFEGLYQE SADFEGLYQE 3 SADFEGLYQE ENSP00000409879 1 1 1 0 46.001
ENSP00000415430 ENSG00000075218 GTSE1 W525R 13 R SSGPAPQSLLSAWR SSGPAPQSLLSARR 13 SSGPAPQSLLSARR ENSP00000415430 1 3 1 0 19.819
ENSP00000417229 ENSG00000144895 EIF2A T97S 11 K NTVLATWQPYTTSK NTVLATWQPYSTSK 11 NTVLATWQPYSTSK ENSP00000417229 1 5 1 0 65.805
ENSP00000423463 ENSG00000248672 LY75ZCD302 D807E 8 K TPDWYNPDR TPDWYNPER 8 TPDWYNPER ENSP00000423463 1 2 1 42.001 53.683
ENSP00000425809 ENSG00000013375 PGM3 D494N 6 R VISTTDAER VISTTNAER 6 VISTTNAER ENSP00000425809 1 2 1 53.756 55.461
ENSP00000427687 ENSG00000071127 WDR1 I185V 3 K FTIGDHSR FTVGDHSR 3 FTVGDHSR ENSP00000427687 1 5 1 0 152.63
ENSP00000427867 ENSG00000174093 RP11Z1407O15.2 I238L 3 K FAIEVAAK FALEVAAK 3 FALEVAAK ENSP00000320324 1 2 1 51.995 73.248
ENSP00000429829 ENSG00000153317 ASAP1 I142V 18 R QEEIDESDDDLDDKPSPIK QEEIDESDDDLDDKPSPVK 18 QEEIDESDDDLDDKPSPVK ENSP00000429829 2 6 1 0 112.58
ENSP00000431794 ENSG00000160710 ADAR K379R 17 R NTNSVPETAPAAIPETKR NTNSVPETAPAAIPETRR 17 NTNSVPETAPAAIPETRR ENSP00000431794 1 2 1 31.818 50.653
ENSP00000432556 ENSG00000109861 CTSC I110T 12 K VGTASENVYVNIAHLK VGTASENVYVNTAHLK 12 VGTASENVYVNTAHLK ENSP00000432556 1 3 1 0 102.38
ENSP00000432692 ENSG00000204922 C11orf83 G89S 11 K NWMVGGEGGAGGR NWMVGGEGGASGR 11 NWMVGGEGGASGR ENSP00000432692 2 5 1 0 113.24
ENSP00000433999 ENSG00000023191 RNH1 R188H 15 K ELTVSNNDINEAGVRVLCQGLK ELTVSNNDINEAGVHVLCQGLK 15 ELTVSNNDINEAGVHVLCQGLK ENSP00000433999 1 1 1 0 109.89
ENSP00000436337 ENSG00000227184 EPPK1 T1507A 8 R QVVSAVTTLVEAAER QVVSAVTALVEAAER 8 QVVSAVTALVEAAER ENSP00000436337 1 1 1 27.208 27.208
ENSP00000439093 ENSG00000130779 CLIP1 S941P 6 K MSGDNSSQLTK MSGDNPSQLTK 6 MSGDNPSQLTK ENSP00000439093 1 2 1 58.172 113.61
ENSP00000443772 ENSG00000256950 RP11Z87C12.2 V17A 10 R QSGGSSQAGVVTVSDVQELMR QSGGSSQAGAVTVSDVQELMR 10 QSGGSSQAGAVTVSDVQELMR ENSP00000443772 1 5 1 0 56.055
ENSP00000444408 ENSG00000105281 SLC1A5 V512L 10 K SELPLDPLPVPTEEGNPLLK SELPLDPLPLPTEEGNPLLK 10 SELPLDPLPLPTEEGNPLLK ENSP00000444408 1 7 1 0 123.55
ENSP00000445789 ENSG00000129347 KRI1 G135R 9 K YVDEENSDGETSNHR YVDEENSDRETSNHR 9 YVDEENSDRETSNHR ENSP00000445789 2 6 1 0 153.86
ENSP00000454639 ENSG00000172137 CALB2 A110T 7 R QHVGSSAEFMEAWR QHVGSSTEFMEAWR 7 QHVGSSTEFMEAWR ENSP00000454639 1 3 1 0 67.275
ENSP00000459354 ENSG00000126602 TRAP1 D186E 7 R GVVDSEDIPLNLSR GVVDSEEIPLNLSR 7 GVVDSEEIPLNLSR ENSP00000459354 1 5 1 0 151.54
ENSP00000459354 ENSG00000126602 TRAP1 R98G 3 K DVREWQHEEFYR DVGEWQHEEFYR 3 DVGEWQHEEFYR ENSP00000459354 1 7 1 0 131.13
ENSP00000263635 ENSG00000115183 TANC1 N251S 3 K DGNLR DGSLR 3 DGSLRLGVQK DGSLRLGVQK ENSP00000263635 1 1 1 64.55 64.55
ENSP00000358832 ENSG00000147403 RPL10 N202S 4 K YIPNR YIPSR 4 YIPSRGPLDK YIPSRGPLDK ENSP00000358832 1 3 1 0 66.962
ENSP00000414051 ENSG00000123485 HJURP R158G 3 R ISRK ISGK 3 ISGKSPGDPAKPASSPR ISGKSPGDPAKPASSPR ENSP00000414051 2 5 1 0 117.38
ENSP00000170168 ENSG00000079313 REXO1 S759P 9 R TLAASGSQSSNGPEPGGQQLK TLAASGSQPSNGPEPGGQQLK 9 TLAASGSQPSNGPEPGGQQLK ENSP00000170168 1 1 1 30.882 30.882
ENSP00000216181 ENSG00000100345 MYH9 I1626V 6 K DLEAHIDSANK DLEAHVDSANK 6 DLEAHVDSANK ENSP00000216181 1 7 1 0 186.46
ENSP00000220325 ENSG00000103966 EHD4 V154I 4 K SISVIDSPGILSGEK SISIIDSPGILSGEK 4 SISIIDSPGILSGEK ENSP00000220325 1 3 1 65.092 110.77
ENSP00000221418 ENSG00000104823 ECH1 E41A 9 R LTGSSAQEEASGVALGEAPDHSYESLR LTGSSAQEAASGVALGEAPDHSYESLR 9 LTGSSAQEAASGVALGEAPDHSYESLR ENSP00000221418 1 1 1 0 184.29
ENSP00000227868 ENSG00000110435 PDHX V326L 1 K VSVNDFIIK LSVNDFIIK 1 LSVNDFIIK ENSP00000227868 1 1 1 0 113.22
ENSP00000236959 ENSG00000138363 ATIC T116S 8 K TVASPGVTVEEAVEQIDIGGVTLLR TVASPGVSVEEAVEQIDIGGVTLLR 8 TVASPGVSVEEAVEQIDIGGVTLLR ENSP00000236959 1 5 1 0 81.922
ENSP00000252137 ENSG00000100056 DGCR14 A423V 8 R ASYTPSPAR ASYTPSPVR 8 ASYTPSPVR ENSP00000252137 1 3 1 0 129.54
ENSP00000252999 ENSG00000130702 LAMA5 V889M 14 R LELEEAATPEGHAVR LELEEAATPEGHAMR 14 LELEEAATPEGHAMR ENSP00000252999 1 1 1 0 48.704
ENSP00000254508 ENSG00000132182 NUP210 A755V 4 R LTLAPVYTSPQLDMSCPLLQQNK LTLVPVYTSPQLDMSCPLLQQNK 4 LTLVPVYTSPQLDMSCPLLQQNK ENSP00000254508 1 4 1 0 89.028
ENSP00000256707 ENSG00000134313 KIDINS220 Q1608H 19 R SSESSPNHSLHNEVADDSQLEK SSESSPNHSLHNEVADDSHLEK 19 SSESSPNHSLHNEVADDSHLEK ENSP00000256707 3 5 1 0 61.112
ENSP00000258654 ENSG00000136152 COG3 N747S 2 K VNDLAATAYK VSDLAATAYK 2 VSDLAATAYK ENSP00000258654 1 2 1 0 104.52
ENSP00000259008 ENSG00000136492 BRIP1 S919P 4 K YSTSPYLLEAASHLSPENFVEDEAK YSTPPYLLEAASHLSPENFVEDEAK 4 YSTPPYLLEAASHLSPENFVEDEAK ENSP00000259008 1 2 1 33.044 33.544
ENSP00000259951 ENSG00000204642 HLAZF P272S 8 K WAAVVVPPGEEQR WAAVVVPSGEEQR 8 WAAVVVPSGEEQR ENSP00000366002 1 3 1 0 88.552
ENSP00000262265 ENSG00000104872 PIH1D1 P287L 10 K QLMVAMPLLPVPS QLMVAMPLLLVPS 10 QLMVAMPLLLVPS ENSP00000262265 1 1 1 72.652 72.652
ENSP00000263791 ENSG00000128829 EIF2AK4 E556G 12 K MPLVEQSPEDSEGQDYVETVIPSNR MPLVEQSPEDSGGQDYVETVIPSNR 12 MPLVEQSPEDSGGQDYVETVIPSNR ENSP00000263791 3 12 1 0 151.34
ENSP00000267884 ENSG00000140319 SRP14 P124A 17 K AAAAAAAAAPAAAATAPTTAATTAATAAQ AAAAAAAAAPAAAATAATTAATTAATAAQ 17 AAAAAAAAAPAAAATAATTAATTAATAAQ ENSP00000267884 1 9 1 0 47.331
ENSP00000268097 ENSG00000213614 HEXA I436V 4 K DFYIVEPLAFEGTPEQK DFYVVEPLAFEGTPEQK 4 DFYVVEPLAFEGTPEQK ENSP00000268097 1 2 1 0 114.56
ENSP00000276689 ENSG00000147684 NDUFB9 P146S 8 K QLQEETPPGGPLTEALPPAR QLQEETPSGGPLTEALPPAR 8 QLQEETPSGGPLTEALPPAR ENSP00000276689 1 3 1 0 151.57
ENSP00000293217 ENSG00000161533 ACOX1 I312M 5 R HQSEIKPGEPEPQILDFQTQQYK HQSEMKPGEPEPQILDFQTQQYK 5 HQSEMKPGEPEPQILDFQTQQYK ENSP00000293217 1 1 1 39.647 39.647
ENSP00000293350 ENSG00000161618 ALDH16A1 T127S 10 R LLWTLESLVTGR LLWTLESLVSGR 10 LLWTLESLVSGR ENSP00000293350 1 2 1 45.915 52.555
ENSP00000295373 ENSG00000163214 DHX57 N587S 14 K TTQIPQFILDDSLNGPPEK TTQIPQFILDDSLSGPPEK 14 TTQIPQFILDDSLSGPPEK ENSP00000295373 1 2 1 53.779 77.39
ENSP00000295971 ENSG00000163694 RBM47 M565V 8 K NAAAAAAMYGGYAGYIPQAFPAAAIQVPIPDVYQTY NAAAAAAVYGGYAGYIPQAFPAAAIQVPIPDVYQTY 8 NAAAAAAVYGGYAGYIPQAFPAAAIQVPIPDVYQTY ENSP00000295971 1 2 1 0 73.919
ENSP00000297185 ENSG00000113013 HSPA9 S639F 5 R QAASSLQQASLK QAASFLQQASLK 5 QAASFLQQASLK ENSP00000297185 1 4 1 0 222.25
ENSP00000300648 ENSG00000089154 GCN1L1 Y2155D 5 R IIIEYLLEATR IIIEDLLEATR 5 IIIEDLLEATR ENSP00000300648 1 1 1 75.695 75.695
ENSP00000301286 ENSG00000167676 PLIN4 A668V 3 K GAAQTGVDTAK GAVQTGVDTAK 3 GAVQTGVDTAK ENSP00000301286 1 1 1 0 61.344
ENSP00000301286 ENSG00000167676 PLIN4 M802T 5 K GAVQMGVDTAK GAVQTGVDTAK 5 GAVQTGVDTAK ENSP00000301286 1 1 1 0 61.344
ENSP00000306105 ENSG00000121289 CEP89 R194W 32 R NQVPLLHEVNSEDDENISHQDGFPGSPPAPQRTQQK NQVPLLHEVNSEDDENISHQDGFPGSPPAPQWTQQK 32 NQVPLLHEVNSEDDENISHQDGFPGSPPAPQWTQQK ENSP00000306105 1 1 1 0 24.869
ENSP00000311648 ENSG00000174607 UGT8 I368M 15 K AFLSHGGLNSIFETIYHGVPVVGIPLFGDHYDTMTR AFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTR 15 AFLSHGGLNSIFETMYHGVPVVGIPLFGDHYDTMTR ENSP00000311648 1 1 1 0 26.268
ENSP00000312143 ENSG00000136205 TNS3 I1132F 23 R SLGSVSPSSSGFSSPHSGSTISIPFPNVLPDFSK SLGSVSPSSSGFSSPHSGSTISFPFPNVLPDFSK 23 SLGSVSPSSSGFSSPHSGSTISFPFPNVLPDFSK ENSP00000312143 9 17 1 0 120.47
ENSP00000315013 ENSG00000095321 CRAT L372M 3 R SPLVPLPMPK SPMVPLPMPK 3 SPMVPLPMPK ENSP00000315013 1 3 1 0 77.677
ENSP00000321746 ENSG00000163110 PDLIM5 A345T 21 R SMPESLDSPTSGRPGVTSLTAAAAFKPVGSTGVIK SMPESLDSPTSGRPGVTSLTTAAAFKPVGSTGVIK 21 SMPESLDSPTSGRPGVTSLTTAAAFKPVGSTGVIK ENSP00000321746 1 2 1 0 44.955
ENSP00000321746 ENSG00000163110 PDLIM5 S136F 9 K APRPFGSVSSPK APRPFGSVFSPK 9 APRPFGSVFSPK ENSP00000321746 1 3 1 0 84.718
ENSP00000323063 ENSG00000180574 EIF2S3L S313P 5 K SIFSK LMCKPIFSK 5 LMCKPIFSK ENSP00000323063 1 3 1 0 95.502
ENSP00000326603 ENSG00000101596 SMCHD1 V708I 16 R LSVTWPEGDELLPNEVRPAGTPIGALR LSVTWPEGDELLPNEIRPAGTPIGALR 16 LSVTWPEGDELLPNEIRPAGTPIGALR ENSP00000326603 1 1 1 0 57.578
ENSP00000330930 ENSG00000182319 PRAGMIN R402Q 15 R CLGLTGEPQPPAHPREATQPEPIYAESTK CLGLTGEPQPPAHPQEATQPEPIYAESTK 15 CLGLTGEPQPPAHPQEATQPEPIYAESTK ENSP00000330930 1 2 1 27.89 62.237
ENSP00000344818 ENSG00000150991 UBC S190P 5 K EGIPSDQQR EGIPPDQQR 5 EGIPPDQQR ENSP00000344818 1 2 1 121.64 128.38
ENSP00000346634 ENSG00000054118 THRAP3 A201V 16 K DSRPSQAAGDNQGDEAK DSRPSQAAGDNQGDEVK 16 DSRPSQAAGDNQGDEVK ENSP00000346634 1 3 1 0 165.16
ENSP00000350896 ENSG00000196411 EPHB4 T775M 12 R FLEENSSDPTYTSSLGGK FLEENSSDPTYMSSLGGK 12 FLEENSSDPTYMSSLGGK ENSP00000350896 7 11 1 0 268.21
ENSP00000351947 ENSG00000163104 SMARCAD1 S247N 15 R LDHGEESNESAESSSNWEK LDHGEESNESAESSNNWEK 15 LDHGEESNESAESSNNWEK ENSP00000351947 3 8 1 0 119.97
ENSP00000352447 ENSG00000182795 C1orf116 R94W 10 R ALPITQPTPRGGPEETITQQGR ALPITQPTPWGGPEETITQQGR 10 ALPITQPTPWGGPEETITQQGR ENSP00000352447 1 2 1 53.779 95.195
ENSP00000353114 ENSG00000185567 AHNAK2 D3793N 14 K LDSAQLEGDLSLADK LDSAQLEGDLSLANK 14 LDSAQLEGDLSLANK ENSP00000353114 1 1 1 0 41.092
ENSP00000353114 ENSG00000185567 AHNAK2 P3336L 11 K SIQASVDVSAPK SIQASVDVSALK 11 SIQASVDVSALK ENSP00000353114 1 1 1 0 42.976
ENSP00000354511 ENSG00000093010 COMT V158M 7 R MVDFAGVK MVDFAGMK 7 MVDFAGMK ENSP00000354511 1 3 1 0 107.9
ENSP00000354532 ENSG00000198805 PNP G51S 10 K LTQAQIFDYGEIPNFPR LTQAQIFDYSEIPNFPR 10 LTQAQIFDYSEIPNFPR ENSP00000354532 1 3 1 0 84.874
ENSP00000355672 ENSG00000181873 IBA57 G211S 14 R LLTQDEGPALVPGGR LLTQDEGPALVPGSR 14 LLTQDEGPALVPGSR ENSP00000355672 1 1 1 0 56.482
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ENSP00000358262 ENSG00000131778 CHD1L A885S 6 K SAVLHAQSSSSSSR SAVLHSQSSSSSSR 6 SAVLHSQSSSSSSR ENSP00000358262 3 9 1 0 192.24
ENSP00000360771 ENSG00000148396 SEC16A T819A 17 K ANHSSHQEDTYGALDFTLSR ANHSSHQEDTYGALDFALSR 17 ANHSSHQEDTYGALDFALSR ENSP00000360771 1 2 1 90.316 147.53
ENSP00000360771 ENSG00000148396 SEC16A V884A 6 R AQQELVPPQQQASPPQLPK AQQELAPPQQQASPPQLPK 6 AQQELAPPQQQASPPQLPK ENSP00000360771 2 13 1 0 170.5
ENSP00000360828 ENSG00000124228 DDX27 G766S 2 R AGPSFEER ASPSFEER 2 ASPSFEER ENSP00000360828 1 2 1 81.017 87.568
ENSP00000361883 ENSG00000131236 CAP1 S256A 2 R SSLFAQINQGESITHALK SALFAQINQGESITHALK 2 SALFAQINQGESITHALK ENSP00000361883 1 17 1 0 143.02
ENSP00000361892 ENSG00000101109 STK4 V312M 2 R EVDQDDEENSEEDEMDSGTMVR EMDQDDEENSEEDEMDSGTMVR 2 EMDQDDEENSEEDEMDSGTMVR ENSP00000361892 3 12 1 0 148.87
ENSP00000366002 ENSG00000206503 HLAZA F33S 3 R YFFTSVSRPGR YFSTSVSRPGR 3 YFSTSVSRPGR ENSP00000366002 1 1 1 73.067 73.067
ENSP00000366365 ENSG00000204695 OR14J1 M7T 7 MVNLTSMSGFLLMGFSDER MVNLTSTSGFLLMGFSDER 7 MVNLTSTSGFLLMGFSDER ENSP00000366365 2 2 1 0 4.9784
ENSP00000366453 ENSG00000119139 TJP2 D482E 4 R YQEDPPAPQPK YQEEPPAPQPK 4 YQEEPPAPQPK ENSP00000366453 1 3 1 0 90.05
ENSP00000367263 ENSG00000124942 AHNAK M1572V 4 K MPSMNIQTHK MPSVNIQTHK 4 MPSVNIQTHK ENSP00000367263 1 1 1 50.284 50.284
ENSP00000367727 ENSG00000157881 PANK4 A6G 6 MAECGASGSGSSGDSLDK MAECGGSGSGSSGDSLDK 6 MAECGGSGSGSSGDSLDK ENSP00000367727 1 1 1 10.838 10.838
ENSP00000372221 ENSG00000206075 SERPINB5 I319V 8 K GVALSNVIHK GVALSNVVHK 8 GVALSNVVHK ENSP00000372221 1 4 1 0 72.928
ENSP00000376965 ENSG00000066427 ATXN3 V212M 1 R VLEANDGSGMLDEDEEDLQR MLEANDGSGMLDEDEEDLQR 1 MLEANDGSGMLDEDEEDLQR ENSP00000376965 1 1 1 0 108.71
ENSP00000377845 ENSG00000070669 ASNS V210E 2 R DVPLHALYDNVEK DEPLHALYDNVEK 2 DEPLHALYDNVEK ENSP00000377845 1 3 1 0 96.591
ENSP00000378438 ENSG00000167173 C15orf39 G491D 2 K EGARPPSSPPMPVIDNVFSLAPYR EDARPPSSPPMPVIDNVFSLAPYR 2 EDARPPSSPPMPVIDNVFSLAPYR ENSP00000378438 1 3 1 0 45.011
ENSP00000379133 ENSG00000149089 APIP C76Y 9 R IQPEDMFVCDINEK IQPEDMFVYDINEK 9 IQPEDMFVYDINEK ENSP00000379133 1 1 1 0 76.262
ENSP00000383365 ENSG00000184470 TXNRD2 A66S 2 K VAVVDYVEPSPQGTR VSVVDYVEPSPQGTR 2 VSVVDYVEPSPQGTR ENSP00000383365 1 4 1 46.964 71.692
ENSP00000385444 ENSG00000099889 ARVCF R900Q 18 R DVIPMDALGPDGYSTVDRR DVIPMDALGPDGYSTVDQR 18 DVIPMDALGPDGYSTVDQR ENSP00000385444 1 1 1 0 87.85
ENSP00000395249 ENSG00000144567 FAM134A P419Q 19 R LSSPLHFVNTHFNGAGSPPDGVK LSSPLHFVNTHFNGAGSPQDGVK 19 LSSPLHFVNTHFNGAGSPQDGVK ENSP00000395249 3 5 1 0 180.42
ENSP00000395772 ENSG00000163938 GNL3 V367M 8 R NSLEFFTVLAQR NSLEFFTMLAQR 8 NSLEFFTMLAQR ENSP00000395772 1 2 1 0 76.522
ENSP00000398131 ENSG00000103342 GSPT1 V100A 9 R GPAAPPPPVGGAANNHGAGSGAGGR GPAAPPPPAGGAANNHGAGSGAGGR 9 GPAAPPPPAGGAANNHGAGSGAGGR ENSP00000398131 1 10 1 0 80.303
ENSP00000399168 ENSG00000234745 HLAZB I218V 8 K THVTHHPISDHEATLR THVTHHPVSDHEATLR 8 THVTHHPVSDHEATLR ENSP00000399168 1 5 1 0 160.81
ENSP00000400410 ENSG00000204525 HLAZC S48A 3 R FISVGYVDDTQFVR FIAVGYVDDTQFVR 3 FIAVGYVDDTQFVR ENSP00000366002 1 5 1 0 86.291
ENSP00000404217 ENSG00000105963 ADAP1 G175S 12 R FHYLQVAFPGAGDADLVPK FHYLQVAFPGASDADLVPK 12 FHYLQVAFPGASDADLVPK ENSP00000404217 1 3 1 0 49.049
ENSP00000417229 ENSG00000144895 EIF2A T97S 11 K NTVLATWQPYTTSK NTVLATWQPYSTSK 11 NTVLATWQPYSTSK ENSP00000417229 1 3 1 0 65.805
ENSP00000417498 ENSG00000145113 MUC4 P4263S 4 K METPGMTTPSLK METSGMTTPSLK 4 METSGMTTPSLK ENSP00000417498 1 1 1 14.561 14.561
ENSP00000423463 ENSG00000248672 LY75ZCD302 D807E 8 K TPDWYNPDR TPDWYNPER 8 TPDWYNPER ENSP00000423463 1 1 1 53.683 53.683
ENSP00000427687 ENSG00000071127 WDR1 I185V 3 K FTIGDHSR FTVGDHSR 3 FTVGDHSR ENSP00000427687 1 1 1 0 152.63
ENSP00000431794 ENSG00000160710 ADAR K379R 17 R NTNSVPETAPAAIPETKR NTNSVPETAPAAIPETRR 17 NTNSVPETAPAAIPETRR ENSP00000431794 1 1 1 0 50.653
ENSP00000432556 ENSG00000109861 CTSC I110T 12 K VGTASENVYVNIAHLK VGTASENVYVNTAHLK 12 VGTASENVYVNTAHLK ENSP00000432556 1 1 1 0 102.38
ENSP00000432692 ENSG00000204922 C11orf83 G89S 11 K NWMVGGEGGAGGR NWMVGGEGGASGR 11 NWMVGGEGGASGR ENSP00000432692 1 4 1 0 113.24
ENSP00000433999 ENSG00000023191 RNH1 R188H 15 K ELTVSNNDINEAGVRVLCQGLK ELTVSNNDINEAGVHVLCQGLK 15 ELTVSNNDINEAGVHVLCQGLK ENSP00000433999 1 1 1 109.89 109.89
ENSP00000443772 ENSG00000256950 RP11Z87C12.2 V17A 10 R QSGGSSQAGVVTVSDVQELMR QSGGSSQAGAVTVSDVQELMR 10 QSGGSSQAGAVTVSDVQELMR ENSP00000443772 1 4 1 0 56.055
ENSP00000444408 ENSG00000105281 SLC1A5 V512L 10 K SELPLDPLPVPTEEGNPLLK SELPLDPLPLPTEEGNPLLK 10 SELPLDPLPLPTEEGNPLLK ENSP00000444408 1 6 1 0 92.307
ENSP00000445789 ENSG00000129347 KRI1 G135R 9 K YVDEENSDGETSNHR YVDEENSDRETSNHR 9 YVDEENSDRETSNHR ENSP00000445789 1 5 1 0 153.86
ENSP00000454639 ENSG00000172137 CALB2 A110T 7 R QHVGSSAEFMEAWR QHVGSSTEFMEAWR 7 QHVGSSTEFMEAWR ENSP00000454639 1 2 1 0 67.275
ENSP00000459354 ENSG00000126602 TRAP1 D186E 7 R GVVDSEDIPLNLSR GVVDSEEIPLNLSR 7 GVVDSEEIPLNLSR ENSP00000459354 1 5 1 49.31 151.54
ENSP00000459354 ENSG00000126602 TRAP1 R98G 3 K DVREWQHEEFYR DVGEWQHEEFYR 3 DVGEWQHEEFYR ENSP00000459354 1 6 1 0 131.13
ENSP00000358832 ENSG00000147403 RPL10 N202S 4 K YIPNR YIPSR 4 YIPSRGPLDK YIPSRGPLDK ENSP00000358832 1 2 1 0 72.365
ENSP00000414051 ENSG00000123485 HJURP R158G 3 R ISRK ISGK 3 ISGKSPGDPAKPASSPR ISGKSPGDPAKPASSPR ENSP00000414051 2 4 1 0 117.38
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Mutated'Peptide Original'Peptide Ensembl_Prot_Id Ensembl_Gene_Id Gene'Name Aminoacid'Mutation Modified'Sequences Phospho'site'Positions Leading'Proteins
ADNSVPGTPTR ADNSAPGTPTR ENSP00000347046 ENSG00000138735 PDE5A A93V _ADNS(ph)VPGT(ph)PTRK_ 92,96 ENSP00000347046:map.4/120528327/A:p.A93V:n.C598T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.001
ANHSSHQEDTYGALDFALSR ANHSSHQEDTYGALDFTLSR ENSP00000360771 ENSG00000148396 SEC16A T819A _ANHSSHQEDTY(ph)GALDFALSR_ 813 ENSP00000360771:map.9/139369079/C:p.T819A:n.A2489G:c.Acc/Gcc:SIFTprediction.tolerated:PolyPhenScore.0.793
AQQELAPPQQQASPPQLPK AQQELVPPQQQASPPQLPK ENSP00000360771 ENSG00000148396 SEC16A V884A _AQQELAPPQQQAS(ph)PPQLPK_ 891 ENSP00000360771:map.9/139368883/G:p.V884A:n.T2685C:c.gTg/gCg:SIFTprediction.tolerated:PolyPhenScore.0.002
ASPSFEER AGPSFEER ENSP00000360828 ENSG00000124228 DDX27 G766S _AS(ph)PSFEER_ 766 ENSP00000360828:map.20/47859217/A:p.G766S:n.G2305A:c.Ggc/Agc:SIFTprediction.deleterious:PolyPhenScore.0.667
ASYTPSPVR ASYTPSPAR ENSP00000252137 ENSG00000100056 DGCR14 A423V _ASYT(ph)PS(ph)PVR_ 421,419 ENSP00000252137:map.22/19121872/A:p.A423V:n.C1312T:c.gCa/gTa:SIFTprediction.tolerated:PolyPhenScore.0.002
DGSLRLGVQK DGNLR ENSP00000263635 ENSG00000115183 TANC1 N251S _DGS(ph)LRLGVQK_ 251 ENSP00000263635:map.2/160019863/G:p.N251S:n.A989G:c.aAc/aGc:SIFTprediction.tolerated:PolyPhenScore.0
DSRPSQAAGDNQGDEVK DSRPSQAAGDNQGDEAK ENSP00000346634 ENSG00000054118 THRAP3 A201V _SSS(ph)KDSRPSQAAGDNQGDEVK_,'_DSRPSQAAGDNQGDEVKEQTFS(ph)GGTSQDTK_ 207,184 ENSP00000346634:map.1/36752433/T:p.A201V:n.C826T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.066
DVIPMDALGPDGYSTVDQR DVIPMDALGPDGYSTVDRR ENSP00000385444 ENSG00000099889 ARVCF R900Q _SLEGEKT(ph)GS(ph)RDVIPMDALGPDGYSTVDQR_ 881,879 ENSP00000385444:map.22/19959473/T:p.R900Q:n.G2699A:c.cGg/cAg:SIFTprediction.tolerated:PolyPhenScore.0.001
EMDQDDEENSEEDEMDSGTMVR EVDQDDEENSEEDEMDSGTMVR ENSP00000361892 ENSG00000101109 STK4 V312M _EMDQDDEENS(ph)EEDEMDSGTMVR_ 320 ENSP00000361892:map.20/43629135/A:p.V312M:n.G1029A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.003
FLEENSSDPTYMSSLGGK FLEENSSDPTYTSSLGGK ENSP00000350896 ENSG00000196411 EPHB4 T775M _FLEENSSDPT(ph)YMSSLGGK_,'_FLEENS(ph)SDPTY(ph)MSSLGGK_ 769,773,774 ENSP00000350896:map.7/100404997/A:p.T775M:n.C2793T:c.aCg/aTg:SIFTprediction.deleterious:PolyPhenScore.0.999
GAPPSPEAGFATADHSGQER GAPPSPEAGFATADHSSQER ENSP00000304327 ENSG00000172301 C17orf79 S43G _GAPPS(ph)PEAGFATADHSGQERETEK_ 31 ENSP00000304327:map.17/30183857/C:p.S43G:n.A265G:c.Agt/Ggt:SIFTprediction.tolerated:PolyPhenScore.0
GNAETSASASQTNHVK GNTETSASASQTNHVK ENSP00000181839 ENSG00000065883 CDK13 T500A _ASNTST(ph)PTKGNAETSASASQTNHVK_ 494 ENSP00000181839:map.7/40027484/G:p.T500A:n.A2103G:c.Acg/Gcg:SIFTprediction.tolerated:PolyPhenScore.0.073
ISGKSPGDPAKPASSPR ISRK ENSP00000414051 ENSG00000123485 HJURP R158G _ISGKS(ph)PGDPAKPASSPR_ 160 ENSP00000414051:map.2/234750831/C:p.R158G:n.A472G:c.Aga/Gga:SIFTprediction.tolerated:PolyPhenScore.0
LDHGEESNESAESSNNWEK LDHGEESNESAESSSNWEK ENSP00000351947 ENSG00000163104 SMARCAD1 S247N _TRLDHGEES(ph)NES(ph)AESSNNWEK_,'_TRLDHGEES(ph)NES(ph)AES(ph)SNNWEK_ 239,242,245 ENSP00000351947:map.4/95170839/A:p.S247N:n.G914A:c.aGt/aAt:SIFTprediction.tolerated:PolyPhenScore.0
LSPQDPSEDVSSMDPLK LSPQDPSEDVSSVDPLK ENSP00000305193 ENSG00000118960 HS1BP3 V260M _KLS(ph)PQDPSEDVSSMDPLK_ 249 ENSP00000305193:map.2/20824498/T:p.V260M:n.G804A:c.Gtg/Atg:SIFTprediction.tolerated:PolyPhenScore.0.003
LSSPLHFVNTHFNGAGSPQDGVK LSSPLHFVNTHFNGAGSPPDGVK ENSP00000395249 ENSG00000144567 FAM134A P419Q _LSS(ph)PLHFVNTHFNGAGSPQDGVK_ 403 ENSP00000395249:map.2/220046975/A:p.P419Q:n.C1392A:c.cCa/cAa:SIFTprediction.tolerated:PolyPhenScore.0.002
MPLVEQSPEDSGGQDYVETVIPSNR MPLVEQSPEDSEGQDYVETVIPSNR ENSP00000263791 ENSG00000128829 EIF2AK4 E556G _MPLVEQS(ph)PEDS(ph)GGQDYVETVIPSNR_ 551,555 ENSP00000263791:map.15/40265799/G:p.E556G:n.A1710G:c.gAa/gGa:SIFTprediction.tolerated:PolyPhenScore.0
MQYAPNTQVEILPQGRESPIFK MQYAPNTQVEILPQGHESPIFK ENSP00000263867 ENSG00000042493 CAPG H335R _MQYAPNTQVEILPQGRES(ph)PIFK_ 337 ENSP00000263867:map.2/85622059/C:p.H335R:n.A1254G:c.cAt/cGt:SIFTprediction.tolerated:PolyPhenScore.0
QEEIDESDDDLDDKPSPVK QEEIDESDDDLDDKPSPIK ENSP00000429829 ENSG00000153317 ASAP1 I142V _QEEIDES(ph)DDDLDDKPS(ph)PVK_ 131 ENSP00000429829:map.8/131124559/C:p.I142V:n.A422G:c.Atc/Gtc:SIFTprediction.tolerated:PolyPhenScore.0.068
QSGGSSQAGAVTVSDVQELMR QSGGSSQAGVVTVSDVQELMR ENSP00000443772 ENSG00000256950 RP11`87C12.2 V17A _(ac)S(ph)DEEARQSGGSSQAGAVTVSDVQELMR_ 2 ENSP00000443772:map.12/122326812/C:p.V17A:n.T121C:c.gTc/gCc:SIFTprediction.tolerated:PolyPhenScore.0.001
QTSVDSGIVQ QASVDSGIVQ ENSP00000280333 ENSG00000150760 DOCK1 A1857T _KQTS(ph)VDSGIVQ_ 1858 ENSP00000280333:map.10/129249662/A:p.A1857T:n.G5678A:c.Gca/Aca:SIFTprediction.tolerated:PolyPhenScore.0
SAVLHSQSSSSSSR SAVLHAQSSSSSSR ENSP00000358262 ENSG00000131778 CHD1L A885S _SAVLHSQSS(ph)SSSSR_ 888 ENSP00000358262:map.1/146767149/T:p.A885S:n.G2673T:c.Gca/Tca:SIFTprediction.tolerated:PolyPhenScore.0
SELPLDPLPLPTEEGNPLLK SELPLDPLPVPTEEGNPLLK ENSP00000444408 ENSG00000105281 SLC1A5 V512L _STEPELIQVKS(ph)ELPLDPLPLPTEEGNPLLK_ 503 ENSP00000444408:map.19/47278859/G:p.V512L:n.G2154C:c.Gtc/Ctc:SIFTprediction.tolerated:PolyPhenScore.0.001
SLGSVSPSSSGFSSPHSGSTISFPFPNVLPDFSK SLGSVSPSSSGFSSPHSGSTISIPFPNVLPDFSK ENSP00000312143 ENSG00000136205 TNS3 I1132F _SLGSVS(ph)PSSSGFSS(ph)PHSGSTISFPFPNVLPDFSK_ 1123 ENSP00000312143:map.7/47342611/A:p.I1132F:n.A3752T:c.Atc/Ttc:SIFTprediction.deleterious:PolyPhenScore.0.983
SSESSPNHSLHNEVADDSHLEK SSESSPNHSLHNEVADDSQLEK ENSP00000256707 ENSG00000134313 KIDINS220 Q1608H _SSES(ph)S(ph)PNHSLHNEVADDSHLEK_ 15,931,594 ENSP00000256707:map.2/8871342/A:p.Q1608H:n.G5006T:c.caG/caT:SIFTprediction.tolerated:PolyPhenScore.0.003
SVSSFPVPQDNVDAHPGSGK SVSSFPVPQDNVDTHPGSGK ENSP00000375872 ENSG00000085978 ATG16L1 T300A _S(ph)VSSFPVPQDNVDAHPGSGK_ 287 ENSP00000375872:map.2/234183368/G:p.T300A:n.A1155G:c.Act/Gct:SIFTprediction.tolerated:PolyPhenScore.0
VENMDISDEEEGGAPPPASPQVLEEDEAELELQK VENMDISDEEEGGAPPPGSPQVLEEDEAELELQK ENSP00000310448 ENSG00000175467 SART1 G485A _VENMDIS(ph)DEEEGGAPPPAS(ph)PQVLEEDEAELELQK_ 474,486 ENSP00000310448:map.11/65735174/C:p.G485A:n.G1546C:c.gGg/gCg:SIFTprediction.tolerated:PolyPhenScore.0.132
VPVSPLK APVSPLK ENSP00000308413 ENSG00000175634 RPS6KB2 A420V _VPVS(ph)PLK_ 423 ENSP00000308413:map.11/67202156/T:p.A420V:n.C1304T:c.gCc/gTc:SIFTprediction.tolerated:PolyPhenScore.0.01
VSLQALEAEAEAGAETEAVLQR VSLQALEAEAEAGAETEAMLQR ENSP00000383851 ENSG00000162522 KIAA1522 M291V _VS(ph)LQALEAEAEAGAETEAVLQR_ 274 ENSP00000383851:map.1/33235651/G:p.M291V:n.A941G:c.Atg/Gtg:SIFTprediction.tolerated:PolyPhenScore.0
YVDEENSDRETSNHR YVDEENSDGETSNHR ENSP00000445789 ENSG00000129347 KRI1 G135R _YVDEENS(ph)DRETSNHR_ 133 ENSP00000445789:map.19/10672493/T:p.G135R:n.G403A:c.Ggg/Agg:SIFTprediction.tolerated:PolyPhenScore.0
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Chapter 6

Kinome-wide discovery of
network-attacking mutations

Cancer cells acquire their oncogenic phenotype by perturbing signaling networks.
To date, more than one hundred and ĕy thousand distinct cancer somatic mu-
tations have been identiĕed by sequencing. However, functional interpretation of
these mutations is still rare due to our limited knowledge of the sequence-function
intersection on a systematic scale. We have developed an approach, ReKINect, that
successfully predicts the functional impact of mutations on protein kinases and the
oncogenic networks that result from them. ReKINect identiĕes network-attacking
mutations that lead to constitutively active or constitutively inactive kinases as well as
two different types of network rewiring.

6.1 Introduction

edecision-making processes of cancer cells differ signiĕcantly from those of healthy
cells (Creixell et al., 2012; Pawson and Linding, 2008; Vogelstein and Kinzler, 2004;
Hanahan and Weinberg, 2000). Since these processes are encoded in signaling net-
works, it should be expected that mutations accumulate in key components of these
networks, such as protein kinases, to perturb them (Futreal et al., 2004; Greenman
et al., 2007).
In an ever-increasing age of sequencing technologies, genomes of several cancers have
been elucidated (Sjöblom et al., 2006; Wood et al., 2007; Greenman et al., 2007; Ding
et al., 2008; Ley et al., 2008) and the number of different cancer somatic mutations is
continuously increasing and currently in the order of hundreds of thousands (Forbes
et al., 2011; Wong et al., 2011). While the ĕeld is starting to monitor how mutations
accumulate during the evolution of cancer subclones (Nik-Zainal et al., 2012b,a; Ding
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et al., 2012), very few of these mutations are deemed functional (the so-called drivers,
(Stratton et al., 2009)) and for the vast majority, knowledge is lacking about how they
may affect signaling networks and ultimately decision-processes. In other words,
it is still largely unknown how many of these mutations are what we call network-
attacking mutations (Creixell et al., 2012).
is missing piece of the puzzle may prove critical at, just to name some examples,
monitoring the response to treatment (Ding et al., 2012), clustering patients that
while presented with distinct mutations at the nucleotide level may harbour the same
disease signaling networks (Cancer GenomeAtlas ResearchNetwork, 2011) or inform
combinatorial therapeutic strategies (Huang et al., 2007; Schoeberl et al., 2009; Lee
et al., 2012).
While interpretation of how cancer mutations affect protein kinases has been sparse
(Greenman et al., 2007) or limited to speciĕc examples (Wan et al., 2004), evolu-
tionary studies have provided insightful evidence of how perturbed kinase sequences
affect protein function. Pseudokinases, for instance, are living examples of ancestral
protein kinases that have lost their catalytic activity along evolution (Zeqiraj and
van Aalten, 2010). Similar examples, now in cancer, exist of how other mutations
may lead to constitutionally active kinases by hypothetically mimicking their active
phosphorylated state (Davies et al., 2002) or affect peptide speciĕcity (Songyang et al.,
1995). We have integrated these different pieces of information in a single framework
that allows knowledge-based predictions of network-attacking mutations.
Systematically predicting network-attacking mutations that cause changes in kinase
activity and network rewiring represents one of the biggest challenges in our ĕeld.
With the integrative approach that we present and validate in this article we contribute
in closing this gap.

6.2 Results

6.2.1 Network-attacking mutations

As brieĘy introduced earlier, given that the aim is to predict which mutations attack
signaling networks, we ĕrst deĕne one schematic classiĕcation of the different strate-
gies with which a mutations could affect these networks, i.e. the different types of
network-attacking mutations (Fig. 6.1). In essence, mutations can perturb the nodes
of signaling networks by: a) changing their dynamic activity, i.e. the conditions under
which they become active by either keeping them constitutively active or inactive; b)
affecting the structure of signaling networks by, for instance, changing the kinase that
phosphorylates and activates a mutated kinase, or by this mutated kinase recognizing
and phosphorylating new substrates; and, from the substrate perspective, c) generat-
ing new phosphorylation sites or destroying pre-existing phosphorylation sites. As
further detailed in the ĕgure legend, these different types of network perturbations
also have clear relationship with more traditional classiĕcations of mutations (i.e.
hypermorphic or neomorphic gain-of-function and loss-of-function mutations).
Having deĕned conceptually these different types of network-attacking mutations,
our aim can be now focused on identifying whether a given cancer mutation is likely
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to belong to any of these categories.

6.2.2 e ReKINect approach

Our approach, ReKINect, combines information about catalytically essential residues
(Zeqiraj and van Aalten, 2010), phosphorylation sites on protein kinases (Diella et al.,
2004; Hornbeck et al., 2004) and kinase speciĕcity (for further details please refer to
Chapter 7) to predict which and how mutations affect signaling networks by perturb-
ing protein kinases.
As shown in Figure 6.2, aer exome or genome-wide sequencing of tumors, the
algorithm will ĕrst map every mutation to determine the ones hitting kinase do-
mains on protein kinases. Subsequently, cancer mutations hitting essential residues
will be predicted to constitutively inactivate the mutant kinase. We apply strict
knowledge-based rules before labeling a residue as catalytically essential as it should
play a critical role in maintaining a kinase catalytically active (i.e. residues involved
in ATP binding, Mg2+ coordination or phospho-transfer) (Zeqiraj and van Aalten,
2010) and mutations hitting these same residues will have lead to kinase inactivation
(pseudokinases) throughout evolution. Next, ReKINect evaluates whether phospho-
rylation sites around the mutated residues may be affected by mutations. Comparing
which kinase and with which probability is predicted to phosphorylate the wild type
and mutant version of the phosphorylation site using NetworKIN (Linding et al.,
2007) and NetPhorest (Miller et al., 2008), ReKINect can elucidate increased or
decreased phosphorylation propensity or new kinases phosphorylating the site (i.e.
upstream rewiring). Moreover, acidic substitutions in close proximity to activating
phosphorylation events have been suggested to mimic the active phosphorylated state
of the wild type kinase and therefore keep the kinase constitutively active (Davies
et al., 2002). us, ReKINect also includes this possibility and predicts such muta-
tions as causing constitutive activation of the mutant kinase. Finally, using our new
purpose-made algorithm, KINspect (for further details please refer to Chapter 7), our
approach assesses whether the mutated kinase is likely to have its peptide speciĕcity
affected, which could lead to the phosphorylation of new substrates (i.e. downstream
rewiring). Finally, the destruction of phosphorylation sites by integrating data from
known and annotated phosphorylation sites (Diella et al., 2004; Hornbeck et al., 2004)
or possible generation of phosphorylation site is also reported.
Altogether, then, ReKINect is capable of predicting the different types of network-
attacking mutations described in Figure 6.1.

6.2.3 Predictions on publicly-available cancer genome data and four
cancer cell lines

In order to test ReKINect’s predictive capabilities, we accessed publicly-available
cancer genome data from COSMIC (Forbes et al., 2011) and evaluated how many of
these mutations were predicted by ReKINect to be network-attacking mutations (as
deĕned in Fig. 6.1). Moreover, we collected a panel of four cancer cell lines (3 ovarian
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cancer cell lines -ES2, KOC7C and OVAS- and 1 colorectal cancer cell line -HT29-),
on which we performed exome sequencing and global phospho-proteomic analysis,
so that ReKINect predictions could be made and validated for the same samples.
ese predictions are shown in Figure 6.3.

6.2.4 Kinase inactivation predictions

As introduced in Chapter 1, every phosphorylation event is a rather precise and com-
plex process where one kinase domain will 1) become active by being phosphorylated
and changing its structural conformation, 2) bind two critical co-factors of the phos-
phorylation reaction, namely ATP and Mg2+, and 3) recognize and phosphorylate
a substrate by catalyzing the phospho-transfer reaction. As also mentioned above,
in a process similar to the one which results in the appearance of pseudokinases in
evolution (Zeqiraj and van Aalten, 2010), mutations that hit catalytically essential
residues, such as those responsible for binding ATP and Mg2+, will turn the affected
kinase into a constitutively inactive state. In Figure 6.3 we show how ReKINect has
uncovered that a large fraction of mutations that hit the kinase domain (∼4.5%,
much larger than expected by chance alone) hit these residues and would, therefore,
affect the dynamic behavior of the signaling networks these kinases are embedded
within, by constitutively shutting them down. Predictions of kinase inactivation
represent a more precise deĕnition of what would be more generally referred to as
loss-of-function mutations.

As also evident from Figure 6.3, CamK1d E69V represents a typical example of
this type of mutations, as it hits the catalytically essential glutamic acid (E69) that is
critical for stabilizing ATP. us, this mutation is predicted to lead to kinase inacti-
vation.

6.2.5 Kinase hyper-activation predictions

In contrast to inactivating mutations, other mutations will keep the kinase domain
in a constitutive active conformation also affecting signaling networks’ dynamic but
this time by maintaining the signal “on” all the time.

Since kinase domains typically acquire their active conformation by being phos-
phorylated on their active segment (Johnson et al., 1996; Nolen et al., 2004), the
most popular hypothesis of activating mutations in kinase domains are the so-called
phospho-mimicking mutations. In this case, mutations to acidic residues (aspartic
acid -D-, or glutamic acid -E-) on or near the activating phosphorylation site would,
by adding a negative charge, “mimic” the effect of phosphorylation and “convince”
the domain into the active conformation normally only achieved aer phosphoryla-
tion. is hypothesis is largely based on ĕndings made in BRAF (Davies et al., 2002;
Wan et al., 2004), where the commonly found activating mutation V600E is acidic
and adjacent to an activating phosphorylation site (Ser599).
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With ReKINect we have systematically explored the validity of this hypothesis
and identiĕed in several cases the well-established acidic mutation BRAF V600E, in
addition to another mutation that could work under the same mechanism, namely
CHK2 K373E, as the mutation also leads to an acidic substitution and falls adjacent
to a phosphorylation site in the activation segment of the kinase domain (Ser372)
(Fig. 6.3).

Other predictions of acidic mutations could also fall within this category, but they
either fall further away from known phosphorylation sites or are adjacent to tyrosine
phosphorylation (e.g. KIT N822D) which, due to its larger size, one could argue it is
less likely to be mimicked by acidic substitutions.

6.2.6 Upstream rewiring predictions

Mutations around phosphorylation sites may, in addition to constitutively activate
the kinase domain, also promote a different type of network perturbation, namely
upstream rewiring (Fig. 6.2). In this case, mutations to any residue (unlike activating
mutations that should be restricted to acidic mutations) would change the sequence
of the phosphorylation motif to such extent that it would stop being recognized by
the same kinase and would be recognised by a new upstream kinase. us, this
would lead to an activation of the mutated kinase under different conditions and by
a different kinase than in the wild type scenario (Fig. 6.1).

ReKINect redirects mutations hitting phosphorylation motifs to NetworKIN
(Linding et al., 2007) and NetPhorest (Miller et al., 2008) which will predict changes
in phosphorylation propensity and the possibility that a new kinase phosphorylates
the mutated sequence.

As shown in Figure 6.3, the best example of this type of network-attacking mu-
tation is illustrated by EPHB4 T775M, since it hits next to a phosphorylation site in
the activation segment of EPHB4 and it leads to a signiĕcant change in the predicted
upstream kinase for the wild type (Src) and mutant (InsR) peptides.

6.2.7 Downstream rewiring predictions

While there is one example of downstream rewiring following kinase mutation re-
ported in the literature (Songyang et al., 1995), we expect to ĕnd several others once
the KINspect (Chapter 7) approach is completely ĕnalized.

6.2.8 Destruction of phosphorylation sites

In a similar fashion as we did for activating mutation and upstream rewiring mu-
tations, by integrating the mutational data with data about known phosphorylation
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sites from PhosphositePlus (Hornbeck et al., 2004) and PhosphoELM (Diella et al.,
2004), we could model the destruction of phosphorylation sites in cancer.

As illustrated in Figure 6.3, we identiĕed 91 mutations hitting and destroying
phosphorylation sites on kinase domains which, given the importance of phospho-
rylation for kinase regulation, in many cases are likely to affect its activity potential.
MAP2K3 and its mutation T222M is one of the most clear examples found in our
cell lines, as it affects an activating phosphorylation site in the activation segment
of MAP2K3, which is known to be required for its activity (Raingeaud et al., 1996)
(Fig. 6.3). us, while its mechanism is different from standard inactivating muta-
tions that hit catalytically essential residues, by destroying an activating phosphoryla-
tion site, this mutation is in effect acting as an inactivating mutation (Fig. 6.1).

6.2.9 Generation of phosphorylation sites

While this category of network-attacking mutations is difficult to predict precisely,
except if one considers all the mutations into phosphorylatable residues as potential
candidates, aer performing global phospho-proteomic analysis of all our cell lines
followed by a genome-speciĕc MS search as explained in Chapter 5, we had a unique
opportunity to identify new true cancer-speciĕc phosphorylation sites. As shown in
Figure 6.4, six distinct high-conĕdent new mutation-generated phosphorylation sites
were found in two of the cancer cell lines analyzed, indeed demonstrating that this
mechanism occurs in cancer. To the extend of our knowledge, this is the ĕrst time
that the generation of new phosphorylation sites has been reported in cancer cells.
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Figure 6.1. (Continued on the following page.)
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Figure 6.1. Network-attacking mutations. Mutations can affect signaling net-
works by perturbing network dynamics (le), network structure (center) or by dys-
regulating phosphorylation sites (right), and within every category we have two
complimentary perturbation possibilities. Le. Mutations can affect network dy-
namics by constitutively inactivating or constitutively activating a kinase. ese
type of kinase activation and inactivation would fall within the traditional classi-
ĕcation of gain-of-function hypermorphic and loss-of-function mutations. Cen-
ter. Mutations can affect network structure by causing upstream rewiring (where
mutations in the phosphorylation motif of a kinase switches which upstream ki-
nase phosphorylates the mutant kinase) or downstream rewiring (where kinase
speciĕcity is affected and leads to new substrates being phosphorylated). Both of
these mutations would have traditionally been considered as neomorphic gain-of-
function mutations. Right. Finally, mutations on phosphorylation site into non-
phosphorylatable residues will effectively destruct that site and, reversely, muta-
tions into phosphorylatable residues could constitute new phosphorylation sites.
ese mutations could be classiĕed as loss-of-function and neomorphic gain-of-
function mutations, respectively.
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Figure 6.2. e ReKINect approach. Mutations coming from cancer sequenc-
ing efforts are ĕrst mapped to the human kinome and subsequently compared to
known or predicted functional residues (essential residues, regulatory residues and
determinants of speciĕcity) in human kinases. As shown in the third panel of the
ĕgure, depending on the type of mutation and functional residue it hits, a different
signaling network perturbation can be predicted.
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A. Overview of network-attacking mutations predicted

B. Specific cancer signaling networks predicted
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Figure 6.3. ReKINect predictions. A. Aer ĕltering for unique missense muta-
tions that hit the kinase domain, the number of different mutations that could be
predicted by ReKINect are shown for both publicly-available cancer genome data
and cancer cell lines that were part of our panel. Some of the numbers are shown
as unknown (U) due to either the lack of information at the point where this PhD
needed to be submitted (e.g. KINspect predictions - downstream rewiring) or im-
possibility to determine the number with some certainty (e.g. howmanymutations
that become phosphorylatable residues do become phosphorylation sites). B. Spe-
ciĕc examples of each type of network-attacking mutations are represented, with
the wild type and mutant signaling networks shown side-by-side, with the speciĕc
mutant kinase and cell lines harboring the mutation labelled where appropriate.
As in part A, due to the fact that KINspect is still being ĕne-tuned at the point of
submission, no example could be given for downstream rewiring.
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Figure 6.4. Generation of phosphorylation sites. For each of the two cell lines
(OVAS at the top and KOC7C at the bottom), three cancer-speciĕc phosphoryla-
tion sites were identiĕed (three columns), where the new phosphorylatable residue
identiĕed by exome sequence (middle panel) is observed as being phosphorylated
byMass Spectrometry (bottom panel). As illustrated for each case (top part of each
of the six columns), NetworKIN (Linding et al., 2007) predictions indicate themost
likely kinase responsible for the phosphorylation event observed.





Chapter 7

Uncovering determinants of speciĕcity
in the kinase domain

As introduced in Chapter 1 and further detailed in the context of ReKINect in Chap-
ter 6, one of the biggest challenges that we face when modeling how human protein
kinases are perturbed by cancer mutations is the identiĕcation of residues that drive
peptide speciĕcity in the kinase domain, also known as determinants of speciĕcity.

7.1 Introduction

Given this challenge, and aer trying different less-successful approaches includ-
ing mutual information or structural-based methods, here we describe a learning
classiĕer system composed of a genetic algorithm engine combined with a sequence-
to-speciĕcity predictive framework, generated as a “free-style” extension to the more
traditional structural-based pickpocket method. In this chapter, we demonstrate how
this method is capable of ĕnding a quantitative measure of the importance of each
residue to speciĕcity (which will naturally lead to the identiĕcation of determinants
of speciĕcity as those residues that score the highest) and prove the validity of our
ĕnal speciĕcity mask by showing it is enriched in known determinants of speciĕcity
and outperforms the predictive power of previous speciĕcity prediction frameworks.

7.2 Results

7.2.1 e KINspect approach

As shown in Figure 7.1, the KINspect approach consist of different iterative steps
that ensure an optimization of speciĕcity masks (vector with as many positions as the
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Figure 7.1. (Continued on the following page.)

kinase domain alignment used and values between 0.0 -residues with lowest impor-
tance for speciĕcity- and 1.0 -residues with highest importance for speciĕcity-) until
those that present highest predictive power and better represent the contribution of
each amino acid to the peptide speciĕcity of the kinase domain are obtained.

e workĘow is initialized with 100 randomized speciĕcity masks, the predictive
power of which will be tested by trying to predict the PSSM for every kinase with it
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Figure 7.1. KINspect workĘow. e KINspect workĘow is designed to identify
the speciĕcitymask (vector with asmany positions as the kinase domain alignment
used and values between 0.0 -residues with lowest importance for speciĕcity- and
1.0 -residues with highest importance for speciĕcity-) that best describes the im-
portance of the different residue for speciĕcity. For the ĕrst round of KINspect,
the 100 speciĕcity masks are initialized with random values, and the predictive
power of each masks is evaluated as follows. In step 1, for each speciĕcity mask
the system loops over all kinases as query and, using a kinase domain alignment,
compare the query kinase to all other kinases (except those belonging to the same
kinase family -homology reduction- to avoid over-ĕtting) at the sequence level,
generating a similarity vector. is similarity vector is combined with the speci-
ĕcity mask, so that similarity in high-scoring positions of the mask are reinforced
and similarity in low-scoring position of the mask are silenced, effectively produc-
ing a mask-weighted similarity vector and sum score for each kinase. ese values
are subsequently used to integrate the different observed PSSMs into a combined
predicted PSSM for the query kinase, as further explained by equations 7.1, 7.2 &
7.3. In step 2, aer a predicted kinase has been generated for all the kinases in our
set, ĕtness is computed as the median of all the differences between the predicted
and the observed PSSM for all the kinases. In step 3, the best-performing speciĕcity
masks are kept (elite) and new ones are generated by mutation (changing the value
of a given position in the mask) and cross-over of the elite sequences (combining
two segments of two other masks). Once a new set of masks has been generated,
the optimization continues with prediction, ĕtness evaluation and generation of
new masks, until the ĕtness can not be improved any further (convergence).

(step 1). In this ĕrst step, the system loops over all the different kinases, ignoring at
every loop both the kinase selected as query and all the kinases belonging to the same
kinase family (homology reduction) so that over-ĕtting is avoided. Next, the similar-
ity between the query kinase and all the other kinases is computed and weighted by
the speciĕcity score that each residue has according to the selected speciĕcity mask,
following this equation:

Sim(KIN1,KIN2) =

N∑
x=1

S(KIN1x,KIN2x)√
S(KIN1x,KIN1x) · S(KIN2x,KIN2x)

SSx

(7.1)
where x is one position in the kinase domain alignment, S(KIN1x,KIN2x)

would be the similarity score between the residues of KIN1 and KIN2 in this position
x, as determined by a substitution matrix of choice (e.g. BLOSUM (Henikoff and
Henikoff, 1992)) and SSx is the speciĕcity score of position x as determined by the
speciĕcity mask. By incorporating the speciĕcity score, we achieve a reinforcement
of residues deemed important for speciĕcity and dilution of residues deemed as less
being less important for speciĕcity. is part of the method is largely inspired and,
in essence, represents a generalization of the structure-based method Pickpocket
(Zhang et al., 2009).
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Subsequently, a ĕnal mask-weighted similarity is produced by the following equa-
tion:

WKIN1 =
(Sim(KIN1,KIN2))α∑L

KIN1=A(Sim(KIN1,KIN2))α
(7.2)

where L represents all the kinases that will be used to assess KIN2, i.e. all of
them except those belonging to the same kinase family that KIN2 belongs to, and α
represents the parameter that establishes the importance of scoring high similarity
for the contribution towards PSSM prediction, with low values of α meaning a more
democratic contribution of every kinase, regardless of its similarity, and higher values
of α leading to predictions driven by the most similar kinase. e parameter space
of α will typically need to be sampled thoroughly to determine the best value, as it is
difficult to determine the best performing value until several have ben compared to
one another.

Once the ĕnal mask-weighted similarity have been determined, the predicted
PSSM is generated simply as described in this equation:

PSSMPredKIN2 =

L∑
KIN1=A

WKIN1 · PSSMObsKIN1 (7.3)

where PSSMPredKIN2 would be the new predicted Position-Speciĕc Scoring
Matrix (PSSM) and PSSMObsKIN1 represents the observed (i.e. experimentally
determined) PSSM. Over 160 PSSMs experimentally determined that are part of the
NetPhorest repository (Miller et al., 2008) are used in our training.

Upon prediction of PSSMs for all kinases using the 100 masks, the predictive
power of each mask is assessed by comparing the predicted PSSMs to the observed
PSSMs using the Frobenius distance (square root of the difference between every
value in the two matrices squared) as a measure of performance and the median of all
the Frobenius distances as a single ĕtness value for each mask (Fig. 7.1). Masks show-
ing best performance (i.e. lowest Frobenius distance) will be kept (elite population)
and new masks will be generated by mutation and cross-over of these elite masks
as shown in Figure 7.1. is whole procedure of prediction, ĕtness assessment and
generation of new mask population is repeated until the ĕtness can not be improved
further, point at which the masks can be considered deeply optimized and containing
true determinants of speciĕcity (residues important for speciĕcity scoring high in the
mask).

7.2.2 Determinants of speciĕcity identiĕed by KINspect

Since, as described above, the KINspect approach is stochastic in nature and is initial-
ized from random speciĕcitymasks, in order to assess the robustness of our results, we
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ran the whole KINspect pipeline ten times and compared the results obtained for the
different runs. As shown in Figure 7.2, the ten different runs followed a similar path
towards convergence and the speciĕcity masks obtained at the end of the ten runs
were much more similar to one another than the best-performing masks obtained at
the beginning of the process, indicating convergence of the ten runs towards the same
solution. Given the high similarity between different runs, we combined the ten ĕnal
speciĕcity runs into a single consensus speciĕcity mask and observed an enriched
in a set of known determinants of speciĕcity that we curated from the literature
(Brinkworth et al., 2003; Mok et al., 2010) in this mask, which can be considered an
independent benchmarking assessment that demonstrates the selection of true de-
terminants of speciĕcity in our mask. Importantly, in addition to most of the known
determinants of speciĕcity, KINspect identiĕed many new residues that had not been
identiĕed as determinants until today and gives a quantitative approximation to the
contribution of each residue to speciĕcity.

Next, we projected the consensus speciĕcity mask onto the three-dimensional
structure of a kinase domain, so that the structural position and possible long-range
allosteric interactions between the determinants of speciĕcity identiĕed by KINspect
could be appreciated. As shown in Figure 7.3, this representation provides several
pieces of interesting insight into how substrate speciĕcity is encoded in the kinase
domain. First, it is interesting to observe how the small N-lobe of the domain is
largely depleted from determinants of speciĕcity. While, it is to some extend known
that most speciĕcity comes from residues that reside in the large C-lobe of the do-
main, it is still surprising to see that none of the residues that are spatially close to
the substrate and reside in the small N-lobe were selected as being important for
speciĕcity. Secondly, while some of the high-scoring residues (likely determinants of
speciĕcity) are positioned rather far from the active site and substrate, the structure
shows a clear paths of coupled residues that connects these far-distant residues with
the substrate, thus making it likely that allosteric interactions are involved in speci-
ĕcity. Finally, while some of the residues don’t seem to be so well-connected to others
or the substrate (especially at the back-end of the small N-lobe) in the conformation
shown in Figure 7.3, given the high mobility that kinases show transitioning between
“open” and “closed” conformations, we hypothesize that these residues could still
form allosteric interactions in a different conformational state which might be im-
portant for substrate binding.

7.2.3 Predictive power of KINspect

In order to assess the predictive power of KINspect, as it is standard in machine
learning, we used an independent set of PSSMs that was not part of our training set.
In this case, we collected a set of PSSMs that were published as part of the DREAM
4 challenge (Ellis and Kobe, 2011). Using this independent set of PSSMs, we could
compare our predictive power (assessed as the Frobenius distance between predicted
and observed PSSM - lower distance meaning higher predictive power of the method)
and concluded that KINspect outperforms previousmethods (Brinkworth et al., 2003;
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Ellis and Kobe, 2011) in its ability to predict substrate speciĕcity from kinase domain
sequence (Fig. 7.4).

7.3 Fine-tuning

Despite the encouraging results presented in this chapter, we are still ĕnalizing the
ĕne-tuning of KINspect, so that the best parameters, including normalization and the
α parameter, are found before we integrate KINspect with ReKINect and move on to
analyze all our cancer genome data.
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Figure 7.2. (Continued on the following page.)
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Figure 7.2. KINspect results. A. Ten different runs of KINspect are compared in
terms of their ĕtness evolution until convergence (2500 generations) and a similar
ĕtness path can be observed for the different runs which, given the parameters are
kept homogeneous throughout the runs, is likely to reĘect the ĕtness landscape
that is being explored until ĕnding the most predictive solutions. B. In addition
to converging at a similar generation time, by assessing the dissimilarity between
the best performing mask at every iteration for the ten different runs, it can also be
demonstrated that the masks tend to be more similar to one another as generation
time progresses (lower dissimilarity). For clarity, a comparison between the values
of two of the best-performingmasks (from two different runs) is shown in the inset.
is demonstrates that the different runs converge to the same solution. C. By
comparing the distribution of all the residues or a set of residues curated from the
literature to represent knowndeterminants of speciĕcity, we observe an enrichment
(higher score) of these known determinants of speciĕcity in our ĕnal masks.
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Figure 7.3. Structural representation of the determinants of speciĕcity. A. e
three-dimensional structure of the kinase domain of Akt/PKB [PDB code:1O6K]
(in surface representation) bound to a substrate (in cartoon representation and
cyan) is shown with residues scoring above 0.75 colored in a range between orange
and red, red being the highest scoring residues (score of 1.0). For easier perception
of the different interactions between the determinants and the substrate, different
slices of the representation are shown in the smaller panels as shown in the inset
(B, C, D, E, F, G, H).
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Network-attacking mutations driving
resistance to cisplatin in ovarian cancer

101





Chapter 8

Global sequencing and
phospho-proteomic analysis identiĕes
network drivers of drug resistance in
ovarian cancer

While previous chapters have been more focused on “proof-of-principle” type of
predictions and experimental validations, in this chapter we brieĘy introduce a more
recent study where we applied ReKINect to a biological question that is of high rel-
evance to cancer treatment, namely cancer resistance. To this end, we extended our
panel of ovarian cancer cell lines (originally composed of three cell lines and extended
to a total of six cell lines for this project), so that we would have the same number of
cell lines that would be resistant and sensitive to cisplatin – the standard chemothera-
peutic treatment in ovarian clear cell carcinoma. As shown in Figure 8.1, three of our
cell lines were resistant to cisplatin (Es-2, Koc7c and Ovas) and three were sensitive
(Ovise, Ovtoko and Tov-21). In order to study their differences and suggest a net-
work therapeutic strategy that might prevent the development of cisplatin-resistance,
we have performed global exome sequencing combined with ReKINect predictions,
global phospho-proteomic analysis, cell viability assays in response to cisplatin devel-
oped xenogra models in mice for all the cell lines (Fig. 8.2).

In order to generate some initial hypothesis for potential functional mutations
that lead to cisplatin resistance, mutations extracted from exome sequencing of
the different cell lines were analyzed with ReKINect and one functional mutation
in particular, MAP2K3 T222M, was shown to correlate with resistance to cisplatin
(Fig. 8.3). Importantly, as explained in Chapter 6, this mutation destroys an activating
phosphorylation site that resides in the activation segment of this kinase (Raingeaud
et al., 1996) and therefore leads to its constitutive inactivation. MAP2K3 is directly
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Koc7c 1.97 1.67-2.33 9 4
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Tov-21 0.22 0.10-0.50 1 3

Ovise 0.84 0.61-1.15 4 3
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Figure 8.1. Ovarian cell lines cisplatin sensitivity. Actual measurements and
summarizing table with IC50 values, where resistant and sensitive cell lines can be
derived from (IC50 values above and below 1.00).
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Figure 8.2. Experimental pipeline. 4 different experimental approaches are fol-
lowed in the hunt of functional mutations that drive resistance to cisplatin, in-
cluding exome sequencing, global phospho-proteomics, cell viability assays and
xenogra models for each ovarian cancer cell line.

upstream p38, one of its known substrates, the dysregulation of which has already
been suggested as a mechanism that may lead to cisplatin resistance (Galan-Moya
et al., 2011). Despite the fact that p38 (as many other proteins) has already been
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suggested as a mechanism for cisplatin resistance, if we can demonstrate the causal
relationship between the functional relationship between this speciĕc mutation and
cisplatin resistance, this would represent a novel genotype-to-phenotype link in sup-
port of this speciĕc mechanism. us, in addition to the data analysis that is currently
being done to integrate the phospho-proteomic data set generated for all the cell
lines, we are currently validating this hypothesis by generating cell lines that either
over-express MAP2K3 or where MAP2K3 has been knocked down, so that we can
transition from ĕnding a correlation onto demonstrating a causal relationship. If this
is successful, we would complete the study by suggesting a speciĕc network medicine
therapeutic strategy that would be investigated in our xenogra mouse models.

Cisplating MAP2K3

ES-2 Resistant Mutant

Koc7c Resistant Mutant

Ovtoko Sensitive Wild type

Tov-21 Sensitive Wild type

Ovise Sensitive Wild type

Ovas Resistant Mutant

Figure 8.3. MAP2K3 correlation with resistance. All cell lines presenting the
MAP2K3 mutation that leads to a destruction of a phosphorylation site and sub-
sequent inactivation of this kinase are resistant to cisplatin.
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Chapter 9

Concluding remarks

In this thesis, I have focused on the kinase domain, a protein modular domain that
plays critical roles in cellular decision-making processes in healthy cells and is very
oen perturbed in disease. By conceptually describing network perturbation that
may arise in disease, I was able to identify many potential network-attacking muta-
tions. I was also able to propose six speciĕc mechanisms with which these mutations
contribute to oncogenesis, thus effectively closing the genotype to phenotype gap.
As network dynamics, network structure and the presence of post-translational
modiĕcations are not unique to kinases, we are convinced that network-attacking
mutations will be identiĕed for other protein domains and in other diseases. Before
an increase in coverage and in overall computational performance (i.e. predictive
power) is achieved, it will be crucial to extend our knowledge and data about domain
activity, regulation and speciĕcity. For example, it is expected that kinome-wide
speciĕcity data should beneĕt future versions of KINspect and ReKINect.
Another area where we foresee important advances in the near future will be in
the development of more advanced computational approaches to predict speciĕcity
from sequence, as our current understanding of speciĕcity is not only limited by the
amount of data but also by the computational methods used to date, which are not
entirely capable of decoding information encapsulated in higher-order relationships
between residues (e.g. coupling, allostery or epistasis).
Finally, it is clear that, despite the known enrichment of mutations in protein kinases,
a large fraction of cancer mutations hit other parts of the proteome and/or lead to
more complex types of mutations than non-synonymous substitutions, which has
been the main focus of this thesis. Consequently, fusion proteins, genomic rearrange-
ments, large deletions or insertions or truncated proteins should also become part of
ReKINect in the future. Likewise, similarly as has happened with newer versions of
NetworKIN (Linding et al., 2007) and NetPhorest (Miller et al., 2008), new versions
of ReKINect and KINspect should naturally include more data and predictive capa-
bilities for other protein domains.
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Despite this room for improvement, we still believe the frameworks presented in this
thesis represent a step forward in our ability to predict disease signaling networks and
could hopefully contribute to the development of personalized cancer diagnosis and
combinatorial therapeutic treatments in the near future.
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