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Abstract

This thesis presents the work carried out at the Center for Biological Sequence
Analysis, Technical University of Denmark. The thesis includes four articles
describing large-scale data integration and methods for the prediction of drug
side-effects.

Chapter 2 presents ChemProt, a novel disease chemical biology database.
ChemProt integrates different chemical-protein annotation resources for
disease-associated proteins and protein—protein interaction data. ChemProt
is developed to assist in silico evaluation of environmental chemicals, nat-
ural products and approved drugs, as well as to aid the selection of new
compounds based on their activity profiles against biological targets. The
latest update of ChemProt database includes a new visual interface, which
enables easy navigation through the pharmacological space. Additionally,
new search methods for chemical, protein, disease and side-effect data have
been implemented.

Chapter 3 presents two articles that showcase the application of systems
chemical biology approaches to understand and model drug side-effect data.
The first approach applies machine learning methods to cluster side-effects,
drugs, proteins and clinical outcomes in networks. This work demonstrates
the power of a strategy that uses clinical data mining in association with
chemical biology in order to reduce the search space and aid identification of
novel drug actions. The second article described in chapter 3 outlines a high
confidence side-effect—drug interaction dataset.

We estimated based on the placebo-controlled studies from DailyMed that
only approximately 20% of the drug-side-effect associations are significant.
With the ChemProt database we linked drugs with their biological targets
and applied a scoring function in order to capture frequently encountered
side-effect—protein associations. We then built a computational chemical
biology model, which revealed side-effect predictive capabilities for 55% of
the 133 drugs in the SIDER database. Further validation was performed on
withdrawn drugs stored in DrugBank and many side-effects were confirmed
through literature search. This work demonstrates the importance of us-
ing high-confidence drug-side-effect data in deciphering the effect of small
molecules in humans.

In summary, this thesis presents computational systems chemical biology
approaches that can help identify clinical effects of small molecules through
large-scale data integration. These approaches also serve to pave the way into
a variety of chemogenomics, polypharmacology and systems chemical biology
studies.
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Dansk resumé

Denne afhandling praesenterer arbejde udfgrt pa Center for Biologisk Se-
kvens Analyse, Danmarks Tekniske Universitet. Athandlingen indeholder fire
artikler, der beskriver integration af store data meengder samt metoder til
forudsigelse af bivirkninger.

Kapitel 2 praesenterer ChemProt, en ny sygdom-kemikalie-biologi data-
base. ChemProt integrerer forskellige kemikalie-protein annotations resourcer
for sygdoms associerede proteiner og protein-protein interaktions data. Chem-
Prot er udviklet til at assistere in silico evaluering af miljo kemikalier, natur
produkter og godkendte leegemidler, samt understgtte udveelgelsen af nye ke-
miske stoffer baseret pa deres aktivitets profiler imod biologiske targets. Den
seneste opdatering af ChemProt databasen inkluderer en ny visuel interface,
som muligggr let navigering i det farmakologiske rum. Ydermere, er der im-
plementeret nye sggemetoder for kemikalie, protein, sygdom og bivirknings
data.

Kapitel 3 praesenterer to artikler, der fremviser anvendelsen af system
kemisk- biologiske tilgange til at forstd og modelere bivirknings data. Den
forste tilgang anvender automatiske leerings metoder til at gruppere bivirk-
ninger, kemiske stoffer, proteiner og kliniske resultater i netveerk. Dette ar-
bejde demonstrerer styrken i en strategi der anvender klinisk data mining i
samarbejde med kemikalie biologi for at reducere sgge mulighederne og stotte
identificeringen af nye virkemidler. Den anden artikel beskrevet i kapitel 3
skitserer et hgj confidens bivirkning-medikament interaktions dataseet.

P& baggrund af placebo kontrollerede studier fra DailyMed estimerede
vi at kun ca. 20% af leegemiddel bivirkningerne er signifikante. Ved hjeelp
af ChemProt databasen parrede vi kemiske stoffer med deres biologiske
targets og paferte en scoring funktion for at fange de hyppigt forekommende
bivirkning-protein associationer. Derefter lavede vi en kemisk biologisk mo-
del, som kunne forudsige bivirkninger hos 55% af de 133 leegemidler I SIDER
databasen. Yderligere validering blev udfgrt pa tilbagetrukne leegemidler fra
DrugBank og mange af deres bivirkninger blev bekraeftet gennem litteratur
sggning. Dette arbejde demonstrerer vigtigheden af at anvende hgj confidens
leegemiddel- bivirknings data til at decifrere sma molekylers effekt pa men-
nesker.

Opsummeret, denne athandling praesenterer system kemisk biologiske til-
gange som kan stgtte identificeringen af sma molekylers kliniske effekter via
integration af store data maengder. Disse tilgange er ogsad med til at bane
vejen for en reekke studier indenfor kemogenomik, polyfarmakologi og system
kemisk biologi.
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Chapter 1

Introduction

1.1 The paradigm in drug discovery

The one-drug-one-target reductionistic approach has been the paradigm in
drug discovery for almost a century. However, this approach has reached
its limits and is increasingly considered inadequate in the drug industry,
especially in cancer drug research [1]. Today, the development of new drugs
takes 10-12 years and costs a pharmaceutical company an average of $850
million dollars. The investment in research and development (R&D) has been
increasing since the millennium, while the number of new molecular entities
(NMEs) approved by the USA Food and Drug Administration (FDA) has
remained almost constant at 25 compounds a year (Figure 1.1) [2].

The high cost of drug development is mostly associated with the failure
of a large number of promising drug candidates during the final phases of
the clinical trails, which is often due to unwanted effects and serious side-
effects. A paradigm shift towards a more systems-level approach is therefore
warranted in the pharmaceutical industry.

1.2 From systems biology to systems chemical biology

Since the year 2000, the number of articles within systems biology has
grown exponentially [3]. Work done within systems biology has led to great
advances in our understanding of the biology of complex diseases. It has
pushed us away from the ’'reductionist approach’ where effects of single
genes, proteins or phenotypes are studied, and has moved us towards a more
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Figure 1.1. Statistic from 1997 to 2011 showing the total number of new
molecular entities (NMEs) for each year. From [2]

"holistic approach’ where the effects of multiple genes, proteins or phenotypes
are studied simultaneously. Even though thousands of genes for human dis-
eases have been discovered using the ‘reductionist approach’, this approach
fails to target complex diseases such as cancer, hypertension, diabetes and
mental disorders. Such diseases, due to their inherent multifactorial nature,
therefore need to be studied in a systems manner. This involves deciphering
and modeling entire networks at, for example, genomic, metabolic or cell
signaling networks levels and analyzing them in their totality at different
levels of complexities—from molecules to organism [4, 5].

Although the term ‘systems biology’ has been widely used in life sci-
ences, there is no clear definition of the methods and concepts belong-
ing to it. Instead, it can be regarded as a mixture of interdisciplinary
tools/techniques and computational modeling to omics (such as genomics,
proteomics, metabolomics) data [3].

Within the last few years, chemical biology has led to the generation
of large amounts of data on genes, proteins and their modulation by small
molecules. Combining these data types and systems biology approaches
allows investigation of the effect of small molecules on the biological system
[6]. A new field has thus emerged as a consequence of integrating chemical
biology with systems biology, and is described in the literature as systems
chemical biology [7], systems pharmacology [8], systems medicine [9], or
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systems polypharmacology [10]. Although the names are different, they
all focus on a systematic understanding of the impact of small molecules
on the biological system [2]. Chemoinformatics, a field which initially was
introduced in 1995 [11] and now is well integrated in drug discovery [2], is
used to retrieve and analyze small molecules from databases.

Combining chemoinformatics tools with biological databases and systems
biology methods provides a possibility to understand the complex relationship
between chemicals and their effects on living systems.

1.3 Representation and retrieval of chemical
compounds

Chemical compounds can be represented in multiple ways, for example, either
by trivial names (e.g., Aspirin) or by chemical names (e.g., 2-acetoxybenzoic
acid). When using chemical names, chemical nomenclature rules are used to
generate systematic names, normally by following the standards defined by
the International Union of Pure and Applied Chemistry (IUPAC).

2D graphical representation is the most common mode for chemists
to represent a chemical compound. Here, individual atoms are depicted
by atomic symbols and the bonding electrons depicted as lines. The 2D
graphical representation is a very simplified representation of the molecule;
it only explains the topology of the molecule, i.e., which atoms are connected
and through which bond types. For more complex representation of the
molecules, 3D arrangement (topography) can be used; this requires addi-
tional information about the position, angle and distance between each atom.
To make it even more complex, electrostatic potential could be added to 3D
chemical representations. This type of description is important to depict the
region of the chemical significant for its reactivity (Figure 1.2). Such modes
of representing chemicals, however, are not computationally suitable for
searching through databases and comparing millions of compounds. Instead,
standards like SMILES, InChl and Fingerprints, just to mention some of the
most common ones, are used to describe the chemical structure information
in a highly compressed and simplified notation. SMILES (Simplified Molec-
ular Input Line Entry Specification) was created by David Weininger in 1986
[12] and is now used for comprehensive chemical nomenclature.

The SMILES nomenclature follows 6 basic rules:

1. Atoms are shown by their atomic symbols (C for Carbon, O for Oxygen,
ete).

2. Hydrogens are omitted.



6 CHAPTER 1. INTRODUCTION

Neighboring atoms are next to each other.

- W

Double and triple bonds are shown by “=" and “#”, respectively.

ot

Branches are shown by parentheses.

6. Cyclic structures are described by allocating digits to the two “con-
necting” ring atoms.

Figure 1.2. Different ways of representing a chemical with different contents
of structural information. From Chemoinformatics [13]

Many different SMILES strings can be written for the same structure.
This is a major disadvantage when comparing chemicals. For example,
Figure 1.3 shows the 2D structure of Aspirin and two SMILES for the same
structure. Furthermore, a special extension of SMILES, called USMILES or
“Unique SMILES” created by Daylight [14] uses an algorithm independent
of the internal atomic numbering and always ensures the same canonical®

ICanonicalization is to standardize and make rules for numbering of atoms in the chem-
ical to ensure uniqueness. Otherwise, the numbering of the same molecule, in principle,
could be in n! different combinations
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Figure 1.3. Two different ways to write a SMILE string for the 2D chemical
structure of Aspirin.

representation of the structure. However, not all chemical databases that
include SMILES use the same algorithm, and this can lead to a duplication
of the chemical when integrating different databases. The uniqueness of the
chemicals can be ensured if their 3D structures are available. 3D coordinates
are included in SDF files, but considerable computing power and time would
be required to compare thousands of compounds based on their SDF? data.
Therefore, when dealing with large database integration, another simple
representation of the chemicals is needed to make the comparison feasible in
a reasonable amount of time.

The TUPAC organization, with an aim to standardize the nomenclature
in chemistry, has provided a standard way of encoding molecular informa-
tion in a textual identifier called InChI (International Chemical Identifier),
which is now maintained by the non-profit organization InChl Trust [15].
InChlI contains more information about the chemical compared to SMILES
and it ensures that every chemical structure is given a unique InChl string
via a three-step process: mnormalization (remove redundant information),
canonicalization and serialization (generating the string of characters). The
InChI can be compressed down to a fixed length of 25 characters referred to
as the InChIKey.

The InChl and InChIKey both contain different blocks of information
about the chemical. The first block (14 letters) in InChIKey contains the
connectivity information for the chemical. The second block contains the
stereochemistry and isotopes information (8 letters), followed by the flag

28DF stands for Structure-Data File and contains each structure in Molfile format with
information about the atoms, bonds, connectivity and coordinates.
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Aspirin OH
OY
0]

InChl=1S/C9HB04/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h2-5H, 1H3,(H,11,12)

First block (14 letters) Second block (8 letters) -
encodes molecular encodes stereochemistry Character indicating the
skeleton (connectivity) and isotopes number if protons

\ (*N” means neutral)

InChlKey=BESYNRYMUTXBXSQ-UHFFFAOYSA-N

Flag character (“S") indicates Fagleharactar o
standard InChiKey (produced from e e

standard InChI) for version |

Figure 1.4. InChi and InChiKey representation of Aspirin. Figure from
IUPAC [16]

character for the InChl type and version number. The last character indi-
cates the number of protons, where “N” stands for neutral (Figure 1.4).

InChIKey is, to date, the most optimal way to search through a large
number of chemicals very quickly while ensuring that the compounds are
unique. This is a necessary feature when dealing with large chemical database
integration.

Evaluation of chemical similarity

Virtual screening of large databases requires a different representation of the
chemicals so as to enable fast comparison between chemicals. Fingerprints
is an ambiguous way of representing chemical structures and is a widely
used method for efficient search of similar compounds. Fingerprints uses a
fragment library of chemical structures and features, where each fragment
can be presented as a binary string of “1” and ”0”, indicating presence or
absence of the fragment in the chemical structure, respectively (Figure 1.5).
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Figure 1.5. Fingerprint representation of Aspirin. Benzene ring and C=0
group present in the fragment library indicated with number 1 in the finger-
print string.

The binary string can vary depending on the type of fingerprint and has a
typical length between 150-2500 bits. The MACCS fingerprint is a popular
2D structure based fingerprint with a length of 166-bits developed by MDL
Information System [17]. As it only has 166 features in the fragment library,
it describes the chemicals in a general way. This enables it to capture many
similar compounds using a high similarity score. The more features there
are in the fingerprint the more specific the search will be, thus depending on
the similarity score.

Several similarity measures are available for comparing fingerprints. The
Tanimoto coefficient (Tc) is a commonly used measure. The Tc for two
binary fingerprints, A and B, is calculated as follows:

Nap
Tc(A,B) = NiT N Nag (1.1)
where, N p is the number of bits that both fingerprints have in com-
mon, and N4 and Np correspond to the number of bits set in A and B,
respectively. A Tanimoto coefficient of 1 indicates that the two compounds
have identical fingerprints. This suggests that the compounds are identical

or very similar. A Tanimoto coefficient of 0 corresponds to non-overlapping
fingerprints i.e., very dissimilar compounds.

Based on the principle that similar compounds have similar properties
[18] and exhibit similar biological activity, identification of similar com-
pounds is widely used in virtual screening.
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The general consensus is that when using a Tanimoto coefficient larger
than 0.85 (at least for MACCS fingerprint) as a threshold for considering two
compounds as similar, they are very likely to show similar biological activities.
This assumption has shown only to be validated in 30% of the cases studied
by Martin et al. [19]. However, these results still have great importance for
the concept of chemical network biology, where chemicals are linked together
based on structure similarity to infer the same biological activity profile.

Similarity ensemble approach (SEA)

SEA is a new approach that relates proteins based on chemical similarity
between their ligands. Hundreds of ligand sets can be derived by creating
networks of similar compounds linked together based on a tanimoto thresh-
old. The similarities among ligand sets may reveal the pharmacological
relationships of the protein targets they modulate. To approximate the
similarity between two ligand sets, the similarity scores of the ligand pairs
across the sets are summed up. The similarity between two ligand sets
returns a raw score which is corrected by the Tanimoto threshold determined
by fitting the raw scores to an extreme value distribution. The raw scores
are then converted to an E-value that describes the probability of the scores
compared to random scores. The smaller the E-values, the more likely the
compounds are active against the protein targets [20].

Alternative approaches also exist for comparing chemicals and, in partic-
ular, drugs. Drugs are classified according to the Anatomical Therapeutic
Chemical (ATC) classification system, which is controlled by WHO Col-
laborating Centre for Drug Statistics Methodology (WHOCC) [21]. A
single drug can have multiple ATC codes assigned to it. The ATC code
consists of 5 different levels. The first level indicates the anatomical main
group (organ or system); the second, the therapeutic main group; the
third, the therapeutic-pharmacological subgroup; the fourth, the chemi-
cal/therapeutic/pharmacological subgroup; the final fifth level indicates the
chemical substance.

Figure 1.6 shows a disease-disease network, based on drugs grouped
together using second level ATC codes, combined with disease information.
The disease information was obtained from PharmGKB [22] and the ATC
codes from DrugBank [23] and WHOCC [24]. The disease-disease network
shows a strong association of schizophrenia with “tobacco use disorder” (see
magenta nodes in Figure 1.6). It has also been observed in a number of other
studies that people with schizophrenia tend to have a significantly higher
consumption of tobacco than the general population [25, 26]. One of these
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Figure 1.6. Kjaerulff et al. unpublished results presented at QSAR confer-
ence, Rhodes 2010. Disease-disease network based on ATC code grouping of
drugs. Nodes colored according to ATC classes.

associations is due to nicotine, the addictive substance in tobacco, and has
been reported to affect both schizophrenia and antipsychotic medication [27].

Instead of using the therapeutic indication of drugs, like the ATC code,
other studies have successfully used the drug side-effects as a similarity
method to group drugs [28, 29].

In order to understand the impact that the chemicals have on the bio-
logical system, representing and comparing chemicals, as described in this
section, is the first step before systems biology methods can be applied.
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1.4 Chemical-biological databases

The following section details different chemical-biological databases included
in the ChemProt database described in chapter 2.

ChEMBL is a free, public domain chemical database of bioactive
molecules from the European Bioinformatics Institute (EBI). It contains
2D structures, calculated properties (logP, molecular weight, Lipinski pa-
rameters), and bioactivities (e.g., binding constants, pharmacology, and
ADMET data). The bioactivities data are manually curated to ensure nor-
malized uniform sets of end-points and units. ChEMBL version 14 contains
9003 targets, > 1.3 million compounds, and > 10 million activities [30].

DrugBank is a free, publicly available database from University of
Alberta. It combines information on drugs (chemical structure, pharma-
cokinetics data, pharmacological mode of action and pharmaceutical details)
with information on drug-targets (target sequence and structure, pathway,
splice variants, etc.). The database contains 6711 drug entries including
1447 FDA-approved small molecule drugs along with 4227 non-redundant
proteins linked to the drug entries. Each drug entry (DrugCard) contains
more than 150 fields of data which cover information on drug/chemical and
drug-target/protein interaction [23].

The PDSP Ki database is a free, publicly available resource for psy-
choactive compounds and their functional activity on cloned CNS receptors,
channels and transporters of human or rodent origin. The user interface
provides customized data mining tools (Ki graphs, receptor and ligand se-
lectivity mining), and is cross-linked with PubChem and PubMed. Other
searchable fields include: receptor name, species name, tissue source, radio-
labeled and tested ligands, bibliographic references as well as Ki (inhibition
constant) value range [31].

WOMBAT and WOMBAT-PK are two commercial databases from
Sunset Molecular Discovery which integrate knowledge from target-driven
medicinal chemistry with clinical pharmacokinetics data. WOMBAT version
2012.1 contains > 330000 entries with 1966 unique targets. The information
is curated from more than 15000 papers published in medicinal chemistry
journals between 1975 and 2009. Additional experimental properties and
calculated descriptors are available along with a comprehensive set of key-
words related to biology and experimental protocols [32].

BindingDB is a free, public-domain database of measured binding affini-
ties. It focuses chiefly on the interactions of proteins, considered to be
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drug-targets, with small drug-like molecules. BindingDB contains more than
900000 binding data, for 6263 protein targets and > 370000 small molecules.
The data are extracted from scientific literature and focus on drug-target
or candidate drug-target proteins that have their 3D structures deposited in
the Protein Data Bank [33].

PharmGKB is a free, public-domain pharmacogenomics database which
contains clinical information including dosing guidelines and drug labels, po-
tential clinically actionable gene—drug associations and genotype—phenotype
relationships. The annotated genetic variants and gene—drug—disease rela-
tionships are extracted from a review of scientific literature. PharmGKDBs
interface tries to integrate clinical interpretations with gene, drug and disease
information in a user-friendly layout [22].

PubChem is a free, public-domain database of compounds and their
biological activities. The database is maintained by National Center for
Biotechnology Information (NCBI). The database includes records for 85
million substances containing 30 million unique chemical structures, and
2.1 million of these substances have bioactivity data in at least one of the
504000 PubChem BioAssays. The database is searchable using text queries
as well as structural queries based on chemical SMILES, formulas or chemical
structures provided in a variety of formats [34].

The International Union of Basic and Clinical Pharmacology (IUPHAR)
database, IUPHAR-DB, is a free, public-domain database providing detailed
and expert-driven annotation of human and rodent receptors and other drug
targets, along with the substances that act on them. The database includes
information on 646 genes from four major protein classes (G protein-coupled
receptors, nuclear hormone receptors, voltage- and ligand-gated ion channels)
and around 3180 bioactive chemicals that interact with them [35].

The Comparative Toxicogenomics Database (CTD) is a free, public-
domain resource that provides information on the interaction of environmen-
tal chemicals with gene products, and their effects on human health. The
chemical-gene, chemical-disease and gene—disease relationships are manu-
ally extracted from scientific literature. The database contains 1.4 million
chemical-gene—disease data points. The web interface includes features like
GeneComps and ChemComps which find comparable genes and chemicals
that share toxicogenomic profiles [36].

STITCH (search tool for interactions of chemicals) is a free, public-
domain resource that allows exploration of known and predicted interactions
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between chemicals and proteins. Chemicals are linked to other chemicals and
proteins through evidence derived from pathway and experimental databases
and from the literature. The STITCH database contains interactions for
more than 300000 chemicals and 2.6 million proteins from 1133 organisms.
A confidence score is assigned to the interaction to reflect the level of signif-
icance [37].

1.5 Side effects

Side-effects are unintended effects of a drug that are secondary to its ther-
apeutic effect. Normally, side-effects are undesired effects, but they can
sometimes also be beneficial. These beneficial effects can often be exploited
for drug repurposing. One of the most famous examples of drug repurposing
is Pfizer’s sildenafil (Viagra) which originally was under development for the
treatment of hypertension. A side-effect of the drug was observed in the form
of enhancement of penile erections and was found to be caused by the inhi-
bition of ¢cGMP specific phosphodiesterase type 5 (PDE5). This side-effect
then became the focus of the study for the treatment of erectile dysfunction
[38].

Side-effects may occur either due to the involvement of a single drug tar-
get in multiple cellular functions or due to the effect of the drug on multiple
drug targets. A study by Brouwers et al. [39] shows that 64% of side-effect
similarities were related to overlapping drug targets, while 5.8 % of side-effect
similarities were due to protein targets that were closer together in the hu-
man protein-protein networks. Protein networks are ”small world networks”,
which means that any two random proteins would be connected via paths of
only a few protein interactions. This is important for a fast communication
between proteins and also for making the network more resilient (i.e., robust)
to changes in the external conditions [40]. With an exception of anti-cancer
drugs, it is crucial during drug development to avoid targeting proteins with
several interactions (also called protein-hubs) to avoid unwanted side effects
[41]. A study by Wang et al. [42] shows that too short a distance between
drug-targets and disease-genes in human signaling networks can cause signif-
icantly more side-effects and lead to more drugs being withdrawn.

The detection of side-effects by experimental methods requires screening
of a large number of potential off-targets, which is both time consuming and
costly. However, side-effects can be predicted by network-based methods.
A number of side-effect networks and drug-target—side-effect networks have
been constructed in the last few years. Campillos et al. [28] constructed
a side-effect similarity network of drugs and used this network to identify
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novel drug-targets for known drugs. Yang et al. [43] constructed a drug-
target—side-effect network using 162 drugs, each causing at least one serious
side-effect, and their binding strengths among 845 protein targets. The ana-
lysis showed a similar target profile for similar serious side-effects. They con-
firmed the protein MHC I as the possible target for the sulfonamide-induced
side-effect of toxic epidermal necrolysis . Oprea et al. [44] used deep data
mining of drug-target interactions combined with text mining of drug pack-
age inserts/online repositories to construct side-effect networks with clinical
compound profiles. Mizutani et al. [45] used correlation analysis of drug-
target binding profiles and side effect profiles to show that the calculated
and correlated sets were significantly enriched with proteins that were in-
volved in same biological pathways. In another study, Lounkine et al. [46]
constructed a drug-target—side-effect network from chemical similarity based
predictions of off-target and side-effects. The network was used to predict
the activity of 656 marketed drugs on 73 unintended side-effect targets.
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Chapter 2

Chemical biology data
integration

Large-scale data integration is not a trivial task especially when dealing
with different sources that have different standardization. The problem
appears when dealing with SMILES, as described in section 1.3, where there
are different ways of writing SMILES notation. To ensure uniqueness, we
converted all available chemical structures into an InChIKey ID. When the
chemical structures were not available, for example as an SDF file, we had to
rely on other ways of converting the chemical information to our ID. Here,
we relied on mapping the chemical nomenclature, common name or drug
name to our ID via other database IDs such as the PubChem ID (CID),
DrugBank ID, or PharmGKB ID.

Uniqueness of the chemicals is not the only problem in chemical biology
data integration. There are also problems concerning protein and gene IDs.
Mapping gene ID to protein ID is not a one-to-one relationship. Genes can
encode for multiple proteins by the means of alternative splicing [47]. In
cases where we only had gene IDs that were mapped to multiple proteins,
we only included the gene ID. However, whenever possible, we mapped both
gene and protein IDs.

In the following chapter 2, we describe ChemProt, a database service that
integrates large-scale chemical biology data with complex disease networks
and is a resource for annotated and predicted chemical-protein interactions.
ChemProt not only allows elucidation of the effects of a compound on the
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disease networks, but also can be useful in identification of genes that may
play a role in modulating the chemical response to that compound.

The usefulness of our work can be seen in table 2.2, where 4 articles have
cited the use of ChemProt server in their analyses. As of November 2012,
ChemProt has also been cited by 14 other articles.

We present an update of the ChemProt database in article 2, where we
describe the addition of a new interface that allows visualiztion of the inter-
actions in a heatmap. Other important features added in this update are new
search options, interactive complex disease network, SEA implementation
and an option to download the extracted data for further analysis. Together,
these new features provide a user-friendly interface for data extraction.

Table 2.1 shows the update statistics from ChemProt version 1 to
ChemProt version 2. An overview for each database with measurements,
interactions, compounds, uniprot and ensembl numbers.

2.1 Protein-Protein Interaction data

Biological research at cell, molecular, structural, biochemistry, and bio-
physical levels has, for decades, produced indispensable information about
functions and properties of individual proteins. These are now stored in
extensively curated databases like the Universal Protein Resource (UniProt)
[48]. As proteins rarely act alone but rather as complexes of proteins,
it is necessary to study these protein-protein interactions (PPIs) in order
to understand some of the complex molecular relationships within living
organisms. A complete set of PPIs that can occur in a living organism is
termed the interactome [49]. An understanding of interactomes would be
helpful in revealing protein functions and also in gaining an understanding
of phenotypes and complex diseases.

The most commonly used experimental methods to identify PPIs are
yeast two-hybrid system (Y2H) [50] and tandem affinity purification (TAB)
followed by mass spectrometry (MS) [51].

The human interactome [52], maintained at CBS, combines protein-
protein interaction network experiments from both human and model or-
ganisms (49), and includes data extracted from databases such as MINT
[53], BIND [54], GRID [55], HPRD [56], IntAct [57], DIP [58], PDZbase [59],
Reactome [60], and KEGG [61]. False positives in the PPIs are common
due to the error-prone nature of the high-throughput experiments used for
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their detection. Therefore, all data in the CBS interactome has been given
scores and validated against a gold standard to remove such false-positive
interactions [62].

Human disease complexes

Human disease complexes were created by mining for disease-related proteins
from GeneCards, a database of human genes that provides genomic related
information on all known and predicted human genes [63] and OMIM, an
open source database focusing on the relationship between genotype and
phenotype [64]. Subsequently PPIs were applied from the CBS interactome
[65]. Lage et al. [52] generated 1524 disease-associated protein complexes
and analyzed them through 5 different sources of information. They calcu-
lated p-values associated with each disease, which represents the enrichment
of proteins from this disease in the particular complex. In BioAlma [66],
the relevance scores are based on the co-occurrence (in Medline documents)
of complex-related disease-terms with the genes in the complex. The more
the gene—disease-term pair co-occurrences observed, the higher the "weights”
value. GO (gene ontology) biological process and GO cellular component
sources were used to ensure that the complexes were biologically relevant
entities. The enrichment of GO terms (biological process and cellular com-
ponent) was compared to randomly generated complexes. Human Protein
Atlas (HPA) [67] source was used to enrich the proteins co-occurring in the
same tissues and was determined using high quality manually curated im-
munohistochemistry data. The enrichment was again compared to randomly
generated complexes. Finally, mRNA expression was used to map complexes
to tissues using the expression data from 73 non-diseased tissues from the
Novartis research foundation gene expression database [68]. The higher the
z-score, the more the tissue affected by the complex of proteins.
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BindingDB BindingDB CTD CTD DrugBank DrugBank IUPHARJdD
ChemProt Ver. New Old New Old New Old New
Measurements 651042 62172 30243 33555 13384 10431 3969
Interactions 530981 53966 30243 33555 13384 10431 3037
Compounds 296887 33212 3810 2014 5680 4037 1451
Uniprot 3766 619 2633 3759 3874 4038 201
Ensembl 2314 352 3731 7772 1846 1153 202

KiDB KiDB PharmGKB PharmGKB STITCH STITCH ‘Wombat
ChemProt Ver. New Old New Old New New Old
Measurements 22626 16204 1608 1615 374661 813100 423261
Interactions 14890 7805 1608 1615 361641 811015 319176
Compounds 3305 1141 383 386 187233 45216 179733
Uniprot 201 295 565 566 4929 12709 2780
Ensembl 229 181 581 582 3576 14575 1760

Wombat ChEMBL ChEMBL PubChem PubChem Total Total
ChemProt Ver. New New Old New Ol1d
Measurements 174258 4332258 1389637 2459931 63652 5369210 2563828
Interactions 70444 3433626 940416 2276126 63652 3970866 1932618
Compounds 60281 777776 353249 383974 43700 1157925 729986
Uniprot 755 5656 4444 598 136 15290 18697
Ensembl 415 3621 2088 477 106 8205 15836

Table 2.1. A comparison between version 1 and 2 for the ChemProt database.
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Ref. Acticle title Comment

[69] Application of Computational Systems Biology to They extracted chemical-protein
Explore Environmental Toxicity Hazards association networks for each DDT

isomer and its metabolites using
ChemProt.

[70] Analysis of Commercial and Public Bioactivity —Cited
Databases.

[71]  Assessing Drug Target Association Using Seman-  Cited
tic Linked Data

[44] Associating Drugs, Targets and Clinical Out- Cited
comes into an Integrated Network Affords a New
Platform for Computer-Aided Drug Repurposing

[72] Association between chemical pattern in breast The top significant chemicals were
milk and congenital cryptorchidism: modelling of computationally screened against
complex human exposures. ChemProt

[73] Back to the Roots: Prediction of Biologically Ac- The chemical space of Ayurveda
tive Natural Products from Ayurveda Traditional NPs with known biological activity
Medicine was captured by mapping the com-

pounds against ChemProt

[74] Chemical structural novelty: on-targets and off- Cited
targets.

[75] Identifying Novel Drug Indications through Auto-  Cited
mated Reasoning.

[76] DrugLogit: Logistic Discrimination Between Cited
Drugs and Non-drugs Including Disease-

Specificity by Assigning Probabilities Based
on Molecular Properties.

[77] Mapping the genome of Plasmodium falciparum Information on chemical-protein
on the drug-like chemical space reveals novel anti- interactions was extracted from
malarial targets and potential drug leads ChemProt

[78] Novel computational approaches to polypharma-  Cited
cology as a means to define responses to individual
drugs.

[79] Ranking Transitive Chemical-Disease Inferences Cited
Using Local Network Topology in the Compar-
ative Toxicogenomics Database.

2] Structure and dynamics of molecular networks: A Cited
novel paradigm of drug discovery. A comprehen-
sive review.

[80] Systems chemical biology and the Semantic Web:  Cited
what they mean for the future of drug discovery
researc.h

[81] The impact of network biology in pharmacology  Cited
and toxicology.

[82] The importance of integrating SNP and chemin-  Cited
formatics resources to pharmacogenomics.

[83] The role of computational methods in the identi-  Cited
fication of bioactive compounds.

[84]  Virtual Interactomics of Proteins from Biochemi-  Cited
cal Standpoint.

Table 2.2. As of November 2012 18 articles have cited the ChemProt

database, of which 4 papers have used information in their analysis
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Abstract

Systems pharmacology is an emergent area that studies drug action across
multiple scales of complexity, from molecular and cellular to tissue and organ-
ism levels. There is a critical need to develop network-based approaches to
integrate the growing body of chemical biology knowledge with network biol-
ogy. Here, we report ChemProt, a disease chemical biology database, which is
based on a compilation of multiple chemical-protein annotation resources, as
well as disease-associated protein— protein interactions (PPIs). We assembled
more than 700.000 unique chemicals with biological annotation for 30.578
proteins. We gathered over 2 million chemical-protein interactions, which
were integrated in a quality scored human PPI network of 428.429 interac-
tions. The PPI network layer allows for studying disease and tissue specificity
through each protein complex. ChemProt can assist in the in silico evalu-
ation of environmental chemicals, natural products and approved drugs, as
well as the selection of new compounds based on their activity profile against
most known biological targets, including those related to adverse drug events.
Results from the disease chemical biology database associate citalopram, an
antidepressant, with osteogenesis imperfect and leukemia and bisphenol A,
an endocrine disruptor, with certain types of cancer, respectively. The server
can be accessed at http://www.cbs.dtu.dk/ services/ChemProt/.

Introduction

The old drug design paradigm, i.e. drugs interact selectively with one or
two targets (proteins), resulting in treatment and prevention of disease, is
now challenged by several studies that show most drugs interacting with
multiple targets (‘polypharmacology’) [85, 86]. For example, celecoxib, often
considered a selective cyclooxygenase-2 non-steroidal anti-inflammatory drug
(NSAID), has been documented to be active on at least two additional tar-
gets, namely carbonic anhydrase II and 5-lipoxygenase [87]. Rosiglitazone,
which has been used for the treatment of type II diabetes mellitus, not only
stimulates the peroxisome proliferator activated receptor g, but also blocks in-
terferon gamma-induced chemokine expression in Graves disease or ophthal-
mopathy [88]. Polypharmacology is not always beneficial, as it often causes
side effects: Cisapride, which acts as a serotonergic 5-HT4 receptor agonist,
as well as astemizole, which blocks histamine H1 receptors (H1Rs), have both
been withdrawn from all markets due to the risk of fatal cardiac arrhythmia
associated with their blockade of the hERG potassium ion channel, an unan-
ticipated and undesirable ‘anti-target’ associated to QT prolongation and
‘torsades de pointes’ [89]. However, ‘target’ and ‘anti-targets’ are dynamic
attributes, as exemplified by the case of HIR antagonists and their (in)ability
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to achieve clinically significant levels in the brain, influenced by the ATP-
binding cassette transporter ABCB1 (also known as P-glycoprotein), which
effluxes some of these drugs from the brain [90]. Acquiring knowledge of the
complete pharmacology profile has inspired new strategies to predict and to
characterize drug-target associations in order to improve the success rates
of current drug discovery paradigms, i.e. increase the efficacy and reduce
toxicity and adverse effects [86].

As large-scale chemical bioactivity databases are being assembled, the
polypharmacology (i.e. high affinity bioactivity across related targets) and
promiscuity (i.e. low affinity across multiple families) of chemicals are ex-
panding the chemical space for druggable targets [32]. These studies are
often focused on specific protein families, such as G-protein coupled recep-
tors [91], nuclear receptors [92] and kinases [93], but global pharmacology
profiles of chemicals are considered as well [85, 20]. Recent chemoinformatics
advances support the development of polypharmacology data mining, e.g. via
iPHACE, an integrative web-based tool that enables pharmacological space
navigation for small molecule drugs [94] or based on a Similarity Ensemble
Approach (SEA) to relate protein pharmacology by ligand chemistry [20].
Biological information can also be retrieved for a large set of chemical com-
pounds through PubChem [95], CheBI and ChEMBL [96].

Two conceptual developments support polypharmacology: systems phar-
macology, aimed at drug actions in the context of regulatory networks [8];
and systems chemical biology [7], which introduces chemical awareness in
systems biology. Since proteins rarely operate in isolation inside and outside
cells, but rather function in highly interconnected cellular pathways, interac-
tome networks have been developed by data integration. Yildirim et al. [97]
combined FDA-approved drugs with a human protein—protein interaction
(PPI) network (human interactome) in order to analyze the interrelation-
ships between drug targets and disease—gene products i.e. disease—proteins.
Similar work has been based on PubChem bioassays as source of polyphar-
macology [98]. The use of side-effect similarity has been proposed on the
assumption that drugs with similar side-effects are likely to interact with
similar target proteins [99]. Recent advances include a protein—protein asso-
ciation network based on the chemical toxicology of environmental chemicals
[100] and a human disease network linking disorders and disease genes to
various known phenotypes [101].

Our goal in the present work was to develop a disease chemical biology
server, called ChemProt, based on the integration of chemical-protein anno-
tation resources that are now accessible from large repositories, and curated
disease-linked PPI data [65]. ChemProt is designed to assist the elucidation
of drug actions in the context of cellular and disease networks. Further to
that, it allows the identification of additional genes that may play major roles
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in modulating chemical response i.e. to drugs, environmental chemicals and
natural products, thus leading to new options in drug discovery and environ-
mental chemical evaluation. Lastly, the ChemProt server could contribute
to drug repurposing as well as to the investigation of chemicals related to
anti-targets and adverse drug events.

2.2 Implementation

Data sources

We first gathered chemical-protein interaction data from different open
source databases i.e. ChEMBL (version chembl 05) [96], BindingDB [33],
PDSP Ki Database [31], DrugBank (version 2.5) [102], PharmGKB [103] and
two commercial databases, WOMBAT (version 2009) and WOMBAT-PK
(version 2008) [32]. Active compounds from the PubChem bioassay (2010)
have been collected as well [95]. We considered only active compounds from
‘confirmatory’ assays in order to capture high-confidence chemical-protein
annotations from PubChem. These databases provide experimental evidence
of chemical-protein interactions. Drug-target in- formation was collected
from DrugBank and PharmGKB. In addition, we integrated chemical-protein
associations from CTD (version 2009) [104] and STITCH (version STITCH
2.0) [105]. These last two databases consider the effect or modulation (posi-
tive or negative) of a chemical on proteins, other than that defined as bind-
ing activity. Examples include gene expression or pathway data, where the
deregulation of a gene by a chemical may be not due to a physical interac-
tion between the two entities but a response at a cellular level. Duplicate
chemicals from the multiple databases were found by using InChI keys and
were merged into a single ChemProt ID. However, the biological informa-
tion associated to each chemical was conserved for users looking on selective
databases. Overall, the final database contains 700000 distinct molecules
annotated for 30578 proteins.

Descriptors and similarity measurement

The chemical structure of the molecules was encoded using two rather dif-
ferent types of fingerprints. The 166 MACCS keys, encode the presence or
absence of predefined substructural or functional groups [17]. On the other
hand, a more complex 3-point pharmacophore fingerprint (GpiDAPH3) is
based on an expansion of the PATTY pharmacophore feature recognition
scheme of a 2D structure [106]. This scheme assigns one or more phar-
macophore feature types to all atoms in a molecule using a predefined list
of SMART queries. The list of pharmacophore feature types comprises:
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hydrogen-bond donor (D), hydrogen-bond acceptor (A), polar (P) and hy-
drophobic (H). In addition, an extra label (p or pi) is added to each feature
if the originating atom or group is sp2-hybridized or planar for other rea-
sons. The GpiDAPH3 pharmacophore feature scheme is expressed in 2D as
triplet feature combinations with a graph based inter-atom distance binning
scheme. Both fingerprints are implemented in the Molecular Operating Envi-
ronment (MOE, version 2008.10) [107]. The similarity between two molecules
is measured using the Tanimoto coefficient (Tc), a method of choice for the
computation of fingerprint-based similarity [108]. The Tc is defined as the
number of bits in common divided by the total number of used bits in both
molecules. For any pair of chemicals, Tc assumes values between 0 and 1. A
high Tc represents high similarity.

PPI network

The human interactome used is an in-house protein—protein interaction net-
work inferred from experiments in both humans and model organisms [65].
Using an elaborate scoring scheme, all interactions have been validated
against a gold standard [62]. The current interactome contains 428.429
unique protein—proteins interactions derived from source databases such as
BIND [54], GRID [109], MINT [110], dip__full [58], HPRD [111], intact [112],
mppi [113], MPact [114], Reactome [115] and KEGG [116]. Data are trans-
ferred between organisms by using the Inparanoid orthology database [117].
In total the human interactome comprises 22.997 genes.

Human disease genes and complexes

Based on a previous study [52], disease-associated protein complexes were
associated to the chemical-protein annotation by mining OMIM [118] and
GeneCards [63], two data resources for genes association to diseases, we col-
lected a list of 2227 unique disease-related proteins and mapped the com-
plexes of genes to disease. Similarly, complexes of genes were mapped to
Gene Ontology (GO) terms [119] and tissues by using the expression data
from 73 non-disease tissues from the Novartis Research Foundation Gene
Expression Database (GNF) [68] and Human Protein Atlas [120]. Users of
ChemProt can thus retrieve gene complexes that are related to a query chem-
ical and visualize the annotations of each complex.

2.3 Applications

Chemical—protein interactions

Chemicals can be searched using a common name, SMILES and by draw-
ing the 2D structure, or retrieved through their annotation to a protein.
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Users can then choose the descriptor space and the Tc threshold to be used
for similarity search. Following a successful query, hits grouped by species
will be returned, together with computed physico-chemical properties such
as Molecular Weight, LogP, the number of hydrogen bond donors and ac-
ceptors, the number of rigid bonds and the number of rings, based on the
Marvin applet from Chemaxon [121]. Hits are provided separately for known
annotations, and for prediction of small molecule bioactivity, respectively.
The biochemical and pharmacological effects of a chemical, e.g. substrate,
inhibitor, agonist or antagonist, are provided if such information is avail-
able, together with hyperlinks to UniProt and Ensembl, which lead to more
information on protein sequence and function, respectively.

From chemical—protein interactions to complex
protein—disease associations

The unique feature of ChemProt is that it offers the user the possibility to
get information at a cellular level, by linking chemically-induced biological
perturbations to specific tissues and phenotypes. Proteins that are both af-
fected by a chemical and participate in one or more protein complexes are
highlighted in the results table of the ChemProt server. By clicking on the
protein, the user is redirected to the ‘Disease complexes’ server and has to
choose which complex to visualize. On the ‘Disease complexes’ server, size
and illustrations of the protein network are provided. Additionally, enrich-
ment analysis results of the proteins in the complex are shown, with respect
to disease association (OMIM, BioAlma), GO terms (biological process, cel-
lular component) and tissue specificity (Human Protein Atlas, GNF). To
ensure that the complexes were biologically relevant entities, the enrichment
of the biological terms (OMIM, GO,..) was compared to randomly generated
complexes (1.0e6). The significances were calculated using a hyper-geometric
test and the P-value for the most significant enriched term for each of the
data types was calculated as previously described [52]. The table present-
ing the OMIM enrichment results is interactively linked with an illustration
of the protein complex where proteins associated with the selected disease
are colored yellow. Output of the chemical-proteins interactions and disease
complexes can be downloaded from the ChemProt website. In addition, the
‘Reflect’ service provides further information on chemicals and genes [122].
‘Reflect’ tags gene, protein and small molecule names in text and offers the
opportunity to quickly view additional information on the ChemProt results,
including synonyms, protein sequences, domains, 3D structures and subcel-
lular location.
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Examples

With the integration of several databases, ChemProt not only provides phar-
macological information, but also includes biological data associated to en-
vironmental chemicals and natural products. As seen in the examples be-
low, ChemProt can be queried for drugs as well as environmental chemicals.
A search for citalopram, an antidepressant, illustrates the complementar-
ity of the integrated databases within ChemProt (Figure 2.1). Marketed as
a selective serotonin reuptake inhibitor (SSRI) (DrugBank), this drug dis-
plays bioactivity on seven human proteins (ChEMBL). Via ChemProt, four
other proteins (DRD3, 5HT1B, 5HT3, ADRA2A) are retrieved from the Ki
database. Additional information on drug-target associations is provided by
STITCH and CTD. From the first annotation to the D4 dopamine receptor
(DRD4), the disease term (under Disease Complexes) is highlighted, indicat-
ing that protein—protein interaction information for this protein is available.
Using the link to the Disease Complexes server, one finds that DRD4 in-
teracts with three proteins (SRC, GRB2 and NCK1). According to OMIM,
this protein network is associated to osteogenesis imperfecta and leukemia
and, according to BioAlma, to several psychotic disorders. GO enrichment
indicates significant association of the protein complex to signal complex for-
mation and vesicle membrane. Furthermore, tissue annotation suggests that
this complex is mainly expressed in follicle and non-follicle cells (HPA) and
dentritic cells (GNF). Although it might be surprising to see a connection
between antidepressant and leukemia, it has been shown recently that antide-
pressants such as chlomipramine and fluoxetine reduce the growth of B-cell
malignancies in leukemia [123].

The second query, ‘bisphenol A’ (BPA), is an environmental pollutant
used as plasticizer [124]. BPA has biological activity on the estrogen recep-
tor a (ESR1), the androgen receptor (AR) and the estrogen related receptor
gamma (ERR3). However, several other proteins are retrieved from CTD and
STITCH based on association data with this chemical. Looking at ESR1 in
the Disease Complexes server, a complex of 17 proteins is depicted (complex
265) with significant associations to Li-FRAUMENI syndrome, breast cancer
and neoplasms. Enrichment analysis indicates that the complex is found in
the nucleus (GO cellular component), involved in the regulation of metabolic
processes and transcriptionally regulated by the RNA polymerase II pro-
moter (GO biological process). Furthermore, data from immunohistochem-
istry studies suggest that the complex is mainly located in the endometrium
and the cerebral cortex (HPA). The disease chemical biology network for BPA
indicates that, under certain conditions, this chemical may be associated with
certain types of cancers.

We have illustrated that ChemProt integrates molecular, cellular and phe-
notypic data associated to small molecules, which can lead to novel links and
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suggest new avenues for research. We envisage that the ChemProt server
will find applications within a variety of chemogenomics, polypharmacology
and systems chemical biology studies. ChemProt will be updated once a year
with new compounds, new interactions and more sophisticated descriptors.
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Abstract

ChemProt-2.0 (http://www.cbs.dtu.dk/services/ChemProt/ChemProt-2.0)
is a public available compilation of multiple chemical-protein annotation
resources integrated with diseases and clinical outcomes information. The
database has been updated to more than 1.15 million compounds with 5.32
millions bioactivity measurements for 15,290 proteins. Each protein is linked
to quality-scored human protein-protein interactions (PPI) data based on
more than half a million interactions, for studying diseases and biological
outcomes (diseases, pathways and GO terms) through protein complexes. In
ChemProt-2.0, therapeutic effects as well as adverse drug reactions have been
integrated allowing for suggesting proteins associated to clinical outcomes.
New chemical structure fingerprints were computed based on the Similar-
ity Ensemble Approach (SEA). Protein sequence similarity search was also
integrated to evaluate the promiscuity of proteins, which can help in the
prediction of off-target effects. Finally, the database was integrated into a
visual interface that enables navigation of the pharmacological space for small
molecules. Filtering options were included in order to facilitate and to guide
dynamic search of specific queries.

Keywords: systems pharmacology / disease chemical biology / clinical out-
comes/ network biology / chemoinformatics /translational informatics

2.4 Introduction

In recent years there has been a shift from the traditionally secret experimen-
tal data kept by the pharmaceutical industry to a more open access culture
in relation to data sharing [125]. For this reason we have been witnessing
a steady increase of public repositories of bioactive small molecules such as
ChEMBL [30] and PubChem [34]. However, as public repositories of bioac-
tive small molecules have only just recently been made available, the problem
of how to handle chemical entities is still largely unsolved. Pooling data from
small molecule databases poses special problems. Even though standards
have been widely adopted to describe genes and proteins (eg. Ensembl ID,
Entrez ID for genes, UniProt ID for proteins), small molecule identifiers, as
well as measures for properties such as biological activities, are not necessarily
standardized across different resources [126].

One could claim that the bottleneck in understanding how small molecules
perturb biological systems is no longer in the generation, gathering and avail-
ability of experimental data but in their organization, presentation and vi-
sualization; in other words, in the development of centralized systems that
would better enable their exploitation. The problem is not only how to ex-
tract data from different (federated) resources, it is also important to provide
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solutions that facilitate provenance tracking, visualization, uniform and sys-
tematic description of data and their integration in ways that can preserve
the semantic relationships between the different entities.

Furthermore, the number of failures of drug candidates in advanced stages
of clinical trials has increased and the number of submissions for FDA ap-
proval has decreased in the last decade. One of the reasons may be our re-
ductionist approach to discovery, whereby a complex system, namely a drug
and its metabolites interacting with many proteins across multiple cellular
compartments and tissues over time, is reduced to a simplistic ligand-target
interaction model. This is probably too crude and emphasizes the need to
look at the effects of compounds on global systems aided by the integration
of multiple biological and temporal data sources.

With the emerging fields of chemogenomics [127], systems pharmacology
[128] and systems chemical biology [7, 80], it becomes feasible to investigate
the drug action at different levels from molecular to pathway, cellular, tissues
and clinical outcomes [129]. For example, it has become apparent that many
common diseases such as cancer, cardiovascular diseases and mental disorders
are much more complex than initially anticipated, as they are caused by
multiple molecular and cellular dysfunctions rather than being the result
of a single defect. Therefore, network-centric therapeutic approaches that
consider entire pathways rather than single proteins must be investigated
[130].

Among the recent advances in the field of systems chemical biology,
servers supporting drug profiling such as STITCH [37], DisGENET [29] or
the new database PROMISCUOQOUS [131] should be mentioned. STITCH3
provides confidence scores that reflect the level of confidence and significance
of compound-protein interactions. PROMISCUOQOUS is a resource focused on
drug compounds, including withdrawn and experimental, containing drug-
protein interaction and side-effect information. DisGENET is a comprehen-
sive gene-disease association database focused on the current knowledge of
human genetic diseases including Mendelian, complex and environmental dis-
eases.

We have previously reported the development of ChemProt, a disease
chemical biology database [132]. Compared to other approaches, ChemProt
1.0 offered a high level of integration of chemical and biological data, in-
cluding internally curated disease-associated PPIs [65]. Here we present
the second release of ChemProt, a resource of annotated and predicted
disease chemical biology interactions. ChemProt-2.0 can be accessed at
http://www.cbs.dtu.dk/services/ChemProt-2.0/. The present release con-
tains a compilation of over 1,100,000 unique chemicals with biological activity
for more than 15,000 proteins. We have added a visual interface that sup-
ports user-friendly navigation through the data, biological activities and dis-
ease associations. ChemProt-2.0 now enables the user to query the database
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not solely by chemicals or proteins, but also through therapeutic effects, ad-
verse drug reactions and diseases. The Similarity Ensemble Approach (SEA)
developed by Keiser et al. [20] has also been implemented, so that protein
sequence similarity can be used when examining chemical promiscuity. With
these updates, ChemProt-2.0 offers an integrative approach to understand the
impact small molecules on biological systems, and contribute to the investi-
gation of molecular mechanisms related to diseases and clinical outcomes. A
workflow of the implementation is shown on Figure 2.2.

2.5 Implementation

Data sources

Chemical protein interactions data was gathered in June 2012 from updated
open source databases ChEMBL (version 14), BindingDB [33], PDSP Ki
database [31], DrugBank (version3.0) [23], PharmGKB [22], active com-
pounds from the PubChem bioassay (2012) targeting human proteins and
the two commercial databases, WOMBAT (version 2011) and WOMBAT-
PK (version 2011) [32]. The IUPHAR-DB database [35] was also integrated
in the new version of ChemProt. Chemical-protein annotations that lack ex-
plicit bioactivity data might be of interest in the mining of a large and diverse
integrated database. Therefore, we included also data from CTD [36] and
STITCH [37]. CTD extract literature data about environmental chemicals
and how they modulate gene expression, whereas STITCH provides chemical-
protein relationships from text mining the co-occurrence of a chemical term
and a protein (gene) term in MEDLINE abstracts. Clinical outcomes were
of special interest in this version and we decided to include information from
the Anatomical Therapeutic Chemical (ATC) Classification System [133] de-
veloped by the World Health Organization (WHO), as well as side effect data
from Dailymed (http://dailymed.nlm.nih.gov/dailymed/).

From a biological perspective, we updated our internal human interactome
platform to reach 14,421 genes interacting through 507,142 unique PPIs. The
updated version of OMIM [64], GeneCards [134], KEGG [61], Reactome [60]
and Gene Ontology [48] databases was also downloaded (June 2012), curated
and integrated in ChemProt-2.0. Also, the human disease network developed
by Goh et al. [101] was integrated, allowing association of proteins to disease
categories.

Predictions methods

Based on the assumption that compounds sharing similar structure have
potential similar bioactivities, we encoded the chemical structure with two
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different types of fingerprints, the 166 MACCS key which encode the pres-
ence or absence of some predefined substructural or functional groups [17]
and the FP2 fingerprints computed with OpenBABEL [135]. Chemical simi-
larity between two compounds is quantitatively assessed using the Tanimoto
coefficient. By including the SEA method [20], one can also predict potential
new targets for a compound. For the internal development of SEA, com-
pounds with an activity value lower than 100 M were considered (only IC50,
EC50, Potency, AC50, Ki values were used). Furthermore, to complete the
set of active protein ligands, annotated compound-protein interactions from
CTD, DrugBank and PharmGKB were also included, together with anno-
tated protein-compound in the STITCH database. For this dataset, the raw
similarity score, i.e. the sum of ligand pair wise Tanimoto coefficients based
on the FP2 fingerprint, is 0.44. All proteins with more than five bioactive
ligands were considered.

In addition, for all protein targets we operated under the assumption of
promiscuity, i.e. proteins with high sequence similarity may share similar
functions and may be targeted by the same compound (likely with different
bioactivities). Protein sequences were obtained from Uniprot [48] , and se-
quence comparisons were computed using BLASTP [136]. The similarity of
two sequences was assessed using an E-score, an expectation value related to
the probability that sequence similarity between two proteins is not achieved
by random chance [136]. We filtered the output and proteins with an E-value
lower than 10e-10 (as default) are depicted.

With respect to side effects (SE), 988 small molecule drugs were matched
against 174 SE as described [44]. Term frequency vectors compiled from
Dailymed were integrated in ChemProt-2.0 and proteins associated to each
drug are then depicted.

2.6 Visual interface

In ChemProt 2.0, a visual interface was implemented to facilitate the vi-
sualization of the results using HTML 5 and JavaScript. The core of the
interface has been designed in the form of a heatmap. The chemical-protein
associations are depicted in a pie-chart heatmap where each pie corresponds
to the database from which we gathered the information. Hovering over the
pie charts with the pointer, activity values are then displayed. The user can
select different display settings (Circles, Fill and Rectangles). A valuable
feature is the handling of multiple activities that have been gathered for a
given compound-target pair by selecting “All” values. A color spectrum from
blue (low activity) to red (strong activity) is used to indicate the activity
(Figure 2.3). It is also possible to select a specific database or/and a specific
activity type and define a range of activities (threshold) of interest in order
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to optimize the query. Results from the SEA approach are also integrated in
the “Activity Type”.

The compound query is always shown in the first column followed by
similar compounds (sorted in descending order of similarity) whereas the
protein queried is depicted in the first row. To optimize the display, the
heatmap is limited to a section of 100 rows x 100 columns. If the chemical-
protein matrix is larger, we have included an arrow feature (—) that allows
the user to upload the next 100 data items for both axes. The user has still
the possibility to view the data in a table format and to download the results
in flat-file format. In the table format, display mode the user can dynamically
sort and group the activities according to compound, target, species, activity
type, etc.

A second heatmap that depicts protein-disease categories is also inte-
grated, which suggests proteins that may be involved in diseases. Next to
it, the “Diseases” link redirects the user to the disease-associated proteins
complex around the selected protein. A new, dynamic interface has been
implemented, where the proteins associated to a biological term are shown
when highlighting the term of interest (Figure 2.4).

2.7 Applications

The ChemProt-2.0 database interface is accessible freely online. In addition
to the chemical and protein search that was previously implemented, the user
can search by diseases, ATC codes and side effects. For example, the query
“epilepsy” returns 2,662 compounds active on 13 proteins associated to this
disease. Similarly, looking for the side-effect “hallucinations”, 15 drugs (with
the term frequency associated to it) active on 470 proteins are displayed.
Some of these drugs (ropinirol, pergolide, amantadine, pramipexole) are used
for the treatment of Parkinson diseases, by affecting the dopaminergic and
serotonergic systems. Interestingly, visual hallucinations are symptoms of
the Parkinson’s disease and perturbing the serotonergic system could help
to alleviate these symptoms [137]. Another interesting aspect is that these
drugs affect several proteins associated to “Bone” and osteoporosis disease.
For example, there is a possible association between the polymorphism of
the serotonin transporter (HTT) and the development of osteoporosis [138].
Some of these drugs bind to HT'T and could thus be potentially investigated
for drug repurposing.

Many diseases seem not to be the result of a single defect but are rather
caused by multiple molecular and cellular abnormalities. Therefore, observa-
tions of a drug not only at the molecular level, but also at cellular and sys-
tems levels should guide therapeutic strategies for the development of better



41

2.7. APPLICATIONS

‘urejoxd ® 01 PoIRIDOSSE SOSRASIP JO
Ioquunu o1 SJueseIdol 9[oIId 9] SPISUL dNfeA oY ], ‘UP)0Id © 01 PajejouurR SOLIOGS)RD 9SRISIP 1) 9(LIOSOP JYSLI oY) uo deuryesy
oL, "(08¢£9D)) 10310dsuer) aururedop oY) Ioj o[durexs I0J UMOYS ST 1] "OIIID oY) OPISUl pajuasaidal ST s10[00 oY) Jo AJISULIUI
‘uor)oRIeIUl U9J0Id-[edIIaTD SuIes d1[) I0] PAINSRIUl Uad( dART] ®)ep SUIPUIQ [RIoAds JT "AIATIOR o) juesaidal o) pasn st (YS1Y)
po1 03 (Mmof) onjq woIj wnIyoads 10100 Y ‘sixe & ot} ul sutejord o) pue sixe Y oy ul (yuid ur) spunodwiod Ie[rus A[[eIn)oniis
pue (enyq ur) punoduwod ndur oY) 10J PaIoyyes SoIIIAIIOROI( oY) JuesaIdal 33o] o) uo dewyest] o], 'ssuryyeg Aefdsig oy Suisn
A1onb o) AJods wed osn ‘doj o) u() ‘Arenb punodwos e uo peseq jndino soejroqur eorydeid oy jo ojdwrexy ‘gz 9InSrg

| 1@ OoOoECO00000EO00000 = e
upmg -vddey, majny
@ uPmy g
] Ty aojdasar unpnsap
@fno snwponaian adi-g1
e @ @ urwmgg | weoud-ausordy adi-amdaaoy
& my N
JEULOJuL JAGLNT ON) upwng ‘ndduy sstaaiiod NG
@ upnmg (g ady 1ydasar surgoways 30
@ uRmE 102391 PIOATIOI0N]T
eng] PG oidenat SUROWIRE K0
@ @ @ uBng sndoaas uaSonsy
uptng f sondacas sunumdAnAxepdy-¢
uptmg | sdononor ‘ioidasa: MmN
wy | 7 maqtmdsoa mEmuampy
Gemg] b oideoas aunoways 50 [
[ TS | TPUOpEAN | [omopoiewag [p anssn aapseuuns | I
T o oo | e s \
= Samoopa oy | T
I SR | Tesdorg | saoq | e
I T a ] womp sone | (NN I LT e e . I 4 1
salI0da)e)) asBAsIQ (57) spunoduio))  fr——|
S]NSal PEO[UAO(] | MATA 9[EL | ~ 6FS0000 punoduwod 3y} I0] S)NSay
T T T T T T ]
68—T0  pl 88 zo | uonigmup O !
, ” | FARWS( JO A)jsI2ATN) [EOpURY, | S8I
| OBPT < PEL 4 8l vEL L Ammoy O -
Wmmmoﬁ —698E 9 BEEOT | BOBE oy O ! SI[NSA - IBAIIG ()' T 101Uz
| 0001F—0 O[T 000l [0 0so1 O ! ,
TEU6B €90 g9 gves  (eva || Kaumog O ! -
| 00STE<O0  gee |ooseE o m ™o N N - Y —— : o
| agumey  mop  YeW W odAL WQ: EHOuIEd Goqami® () wegdual  |(66) qiupnE @ T Emn Y v e | soom o
sspElg .Eu:unhuw auoN I w (ST HOIILS®  |(gp) wayDqng & (#9) lequog, & (#9€) TANEYD B do1 wo spunodwoy @ : mu—__nl soomog!
{

SanEA KAV 15301005 EE(, :s3urpag Aeidsiq)



CHAPTER 2. CHEMICAL BIOLOGY DATA INTEGRATION

42

Disease Complexes

ChemProt 2.0 Server - Technical University of Denmark
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Figure 2.4. Example of the disease complexes network representation for the dopamine receptor D2 (DRD2). 25 proteins
interact directly to the protein DRD2 and pointing the cursor to “Schizophrenia”, 7 genes are associated to this disease.
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and safer drugs. ChemProt-2.0 offers the possibility of interrogating multi-
ple layers of information by linking chemically-induced biological perturba-
tions to disease and phenotype. We believe with the advances in proteomics,
metabolomics and other —omics sciences, combined with next generation se-
quencing technologies, we will no longer evaluate the bioactivity profile of a
chemical solely at the molecular level, but rather we will investigate biomed-
ical knowledge with the integration of genetic polymorphisms and clinical
effects [139].






Chapter 3

Predicting side effects

In the previous chapter we described the importance of large data integra-
tion in relation to chemical biology. In this chapter and the two articles
included herein, we demonstrate how these data types can be combined
with side-effect information to explore and predict the relationship between
side-effect, drugs, proteins and clinical outcomes. The following two articles
describe two different approaches to explore these relationships.

In the first article we used text-mining techniques to extract as much
information as possible from DailyMed records. Thereafter, we applied
principal component analysis (PCA) to reduce the dimensionality of the
drug-ADR (drug-adverse drug reaction) data followed by application of
self-organizing map (SOM) in order to cluster the high-order ADR-drug
interactions.

SOM is a type of artificial neural network (ANN), which projects the high
dimensional data down to a low-dimensional (e.g. 2D) representation (map)
of the input data. The method is an unsupervised learning method that tries
to find hidden structures in unlabeled data without any prior knowledge of
data grouping. It generates a 2D map of the input data space. The most
popular method of displaying SOMs is through a unified distance matrix or
U-matrix. It represents the maps as a grid of neurons, where the distance
between the adjacent neurons is presented in different colors. Normally
black and white colors are used, where a dark color between the neurons
corresponds to a large distance and light color indicates close clustering [140].

45
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The second article used the same ADR-drug source, DailyMed. However,
only information regarding ADR-drug with placebo-controlled studies were
extracted. A high-confidence drug-ADR dataset was created by calculat-
ing the significant association between drug and ADR taking into account
placebo frequencies and number of cases and controls in groups.

The significance of the drug-ADR associations was calculated based on
chi-squared test for a 2x2 contingency table. The chi-squared test gives ac-
curate p-values provided that the number of expected observation is greater
than 5. If this is not true, the Fisher’s exact test should be used instead
[141]. The drug-ADR dataset used in this paper is considered as “large
samples” and therefore the chi-squared test can be used. Even though, the
p-values calculated are only an approximation of the Fisher’s exact test, the
approximation provides more than enough confidence for our analysis.

In the first paper we concluded that, at least in part, side effect oc-
currences can be explained by drug compartmentalization, i.e. the drug is
more likely to cause side effects in organ/tissue where it is more likely to
accumulate. Based on this observation and from other studies [29, 142], we
constructed a ADR-tissue dictionary based on tissue annotations from Hu-
man Protein Atlas and side effect terms from MedDRA classification in order
to map side effect to tissue.
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Abstract

Finding new uses for old drugs is a strategy embraced by the pharmaceutical
industry, with increasing participation from the academic sector. Drug re-
purposing efforts focus on identifying novel modes of action, but not in a sys-
tematic manner. With intensive data mining and curation, we aim to apply
bioand cheminformatics tools using the DRUGS database, containing 3837
unique small molecules annotated on 1750 proteins. These are likely to serve
as drug targets and antitargets (i.e., associated with side effects, SE). The
academic community, the pharmaceutical sector and clinicians alike could
benefit from an integrated, semantic-web compliant computer-aided drug re-
purposing (CADR) effort, one that would enable deep data mining of associ-
ations between approved drugs (D), targets (T), clinical outcomes (CO) and
SE. We report preliminary results from text mining and multivariate statis-
tics, based on 7684 approved drug labels, ADL (Dailymed) via text mining.
From the ADL corresponding to 988 unique drugs, the “adverse reactions”
section was mapped onto 174 SE, then clustered via principal component
analysis into a 5x5 selforganizing map that was integrated into a Cytoscape
network of SE-D-T-CO. This type of data can be used to streamline drug re-
purposing and may result in novel insights that can lead to the identification
of novel drug actions.

3.1 Computer-Aided Drug Repurposing

The pharmaceutical industry is subject to an “innovation deficit” [143], which
is often expressed as the widening gap between productivity (new molecu-
lar entities, NMEs, approved each year) and the annual R&D budget. The
number of NMEs approved has declined from mid-40s in the early nineties
[144], to under 15 in recent years. The price of drug innovation estimates
[145] place the cost of a new drug anywhere between $500 million to over
$2 billion, depending on the therapy area and the developing firm [146].
These trends indicate a sharp decline in research productivity across the en-
tire pharmaceutical sector, with the exception of biologics. Currently, major
pharmaceutical houses seek to increase short-term profitability via mergers
and acquisitions, drastic reductions in research personnel and an increased
outsourcing effort. It is therefore not surprising that the National Institutes
of Health (NIH) is emerging as a leader not only in the arena of early drug dis-
covery via MLI, the Molecular Libraries Initiative, [147] but also in the area
of translational medicine via the Clinical and Translational Science Awards
(CTSA) initiative [148]. Academic investigators are now more effective in
“de-risking” compounds of industrial interest [149].
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Examples

Genomics, pharmacovigilance and side-effects evaluation [150, 151], screen-
ing drug libraries against neglected diseases [152], data mining for drug side-
effects [28] and finding novel targets using in silico tools [86] are equally valid
strategies to identify novel uses for old drugs. The concept of drug repur-
posing [153] is not novel to the pharmaceutical industry: One of the oldest
semi-synthetic drugs, acetylsalicylic acid, an anti-inflammatory drug formu-
lated as 500-mg tablets launched in 1896 as Aspirin, was recently repositioned
as daily-dose “baby Aspirin” (75-mg tablets in Europe, 81-mg tablets in the
US), for cardiovascular disease prevention [154]. Pfizer combines cetirizine,
a histamine H1 receptor antago-nist (approved in 1987 as Zyrtec) with pseu-
doephedrine (a sympathomimetic approved in 1975 as Novafed, now discon-
tinued) as a new drug, “Zyrtec-D 12 hour” (launched in 2001), which contains
cetirizine 5 mg and pseudoephedrine 120 mg per tablet, for the symptomatic
relief of seasonal allergies [155]. Caffeine, a naturally-occurring CNS stimu-
lant [156] used in combination with multiple API to increase alertness and
diuresis, [157] was approved as “Calfcit ” (caffeine citrate, injection for intra-
venous administration) in 2000 by the U.S. Food and Drug Administration
(FDA), and in 2007 by the European Medicines Agency (EMA) for the short-
term treatment of apnea of prematurity in newborn infants between 28 and
33 weeks gestational age [158]. Other examples, including duloxetine and
thalidomide, are reviewed elsewhere [153].

Critical Barriers

escribed in section 505(b)(2)[159] of the Federal Food, Drug, and Cosmetic
Act, the process of drug repurposing is made possible by the Drug Price
Competition and Patent Term Restoration Act of 1984 (also known as the
Hatch-Waxman Amendments[160]), which enables the applicant for a new
drug application (NDA) to reference investigations of safety and effective-
ness where at least some of the information required for approval comes from
studies not conducted by or for the applicant and for which the applicant has
not obtained a right of reference. Section 505(b)(2) offers patent protection
(hence market monopoly) for NMEs, new dosage forms (e.g., “baby Aspirin”),
new administration routes (e.g., oral vs. intra-venous caffeine citrate), new
indications, and for new NME combinations (e.g., Zyrtec-D). While the ex-
pectation is that fewer clinical studies are required for repositioning a drug,
this has no impact when the drug is repurposed for a medical condition that
previously lacked drug therapy. The burden is even higher when therapeutic
agents already exist, i.e., the petitioner needs to prove the therapeutic ad-
vantage offered by repurposed drugs. Although the process is expected to
last considerably less compared to an all-new NME effort [153], the applicant
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must nevertheless conduct clinical trials with respect to efficacy (e.g., for new
indications), as well as safety (e.g., for higher doses). This financial burden
blocks drug repurposing efforts because clinical research can quickly reach
the multi-year, multi-million dollar range.

CTSA

Having recognized the gap between basic and clinical science, the NIH
launched efforts to bridge the repurposing “valley of death” by fostering trans-
lational research via the CTSA (Clinical and Translational Science Awards)
initiative [148]. CTSA has an online collection of research volunteers[161],
an index of CTSA technologies and intellectual properties [162], as well as
a portal partnering academics and pharmaceutical companies for no-longer
developed molecules [163].

Viability

Against the backdrop of increased difficulties in taking NMEs into the clinic,
one ought to consider the merits of “drug repurposing” (also termed drug
repositioning, or drug re-profiling) as a viable option. First, our level of
knowledge in the polypharmacology [85, 97] of drugs has reached a good
degree of maturity [164], because of an increased in-depth profiling effort,
in particular for novel drugs. More importantly, our level of knowledge,
addressing data completeness gaps [87], is increasing for the older drugs as
well: This is, to a large extent, due to the availability of screening data in
public sources such as PubChem [165] for out-of-patent drugs, as incorporated
for example in the Prestwick Chemical Library [166].

Approach

We envision a computer-aided drug repurposing (CADR) platform as being a
semantic-web service that would rely on factual associations between drugs,
targets and clinical outcomes. The CADR platform would provide in-depth
integration for these four categories :

o drugs (D), i.e., the active pharmaceutical ingredients (API) and their
active metabolites, with initial focus on small molecule APIs;

« targets (T), macromolecules perturbed by API that lead to a clinical
outcome;

 positive clinical outcomes (CO), i.e., the intended therapeutic effects
of drugs, as specified on the approved drug labels (ADL) under “Indi-
cations”
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o negative clinical outcomes, often referred to as “adverse events” or drug
side effects, SE.

To establish such factual associations, a two-pronged approach is needed: (i)
deep data mining of D-T interactions, including indexing, cross-referencing,
processing and curation of the molecular, pharmacological and biochemical
aspects of drug-target interactions; and (ii) text mining of ADL and clinical
research documents using controlled vocabularies, which would be used to
extensively process the “adverse events” and “indications” sections of medical
package inserts or on-line repositories such as DailyMed[167]. This approach
is conceptually built on prior work, which inferred novel drug targets starting
from a combination of chemical and phenotypic side-effect similarities[28].

Potential

The CADR platform, while built upon open-access resources such as
DrugBank[168] and DailyMed, can provide improvements in two directions:
(i) Semantic web[169] compliance, which aims to provide structured drug-
related information (D-T-CO and D-T-SE relationships), with associated
sets of inference rules in the form of RDF (Resource Description Frame-
work) triples that computers will use to conduct automated reasoning; and
(ii) systematic mapping of SE (at the symptom level wherever possible) with
targets and antitargets [170], that would overlap symptoms related to unmet
clinical needs (e.g., for rare and neglected diseases[149]) with SE and CO
relationships. As it increases its coverage, the CADR platform may lead to
systemic analyses of both clinical and basic science data, and may reduce
the impact of the accidental discovery (i.e., serendipity). This prospective
review describes preliminary steps taken towards assembling the requisite
elements for a viable CADR platform: First, we address efforts in devel-
oping an exhaustive knowledge base for D-T interactions. Then we discuss
preliminary results based from SE data modeling, as extracted from ADL.
Finally, network-based associations between D-T pairs and clinical outcomes
are evaluated from the perspective of side-effect inter-relationships.

3.2 Data Collection and Analysis

Small Molecule API Interaction Annotations (D-T)

With the final goal being data completeness [87], we identified and curated
information from multiple databases referring to API in order to create a
comprehensive repository of drugs, beginning with small molecules. The fo-
cus of the DRUGS database is to capture and integrate target bioactivity
information for all small molecule drugs, i.e., unique API that have obtained
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marketed drug status for human use, regardless of country of approval. In its
current form, DRUGS has 3837 unique chemicals (December 2010). DRUGS
was primarily built using data from WOMBAT-PK,[32] PDSP[171] and
DrugBank, with additional information collected from publications.[172, 173]
DRUGS stores accurate chemical structures which were independently veri-
fied across several sources including ADL and SciFinder [174], generic names
and common synonyms. Chemical structures were subject to standardiza-
tion (salt removal, charge neutralization, and aromatization) prior to identity
searching. For unique targets, we used UniProt [48] identifiers and ontologies
to uniquely map the proteins in DRUGS, observing compatibility with the
disease chemical biology approach, ChemProt.[175] As of December 2010,
DRUGS had 3837 unique API, 19 593 D-T interactions, and 1750 unique
targets.

Numerical Values

However, not all of the D-T are ascertained to be clinically relevant, nor
have the D-T values been validated for having an affinity that is linked to
a clinical outcome. Because massive amounts of D-T interaction data are
sometimes available from on-line resources such as ITUPHAR-DBJ[176, 177],
ChEMBL[178], PDSP and PubChem, in particular for older drugs, this may
result in a plurality of information that is sometimes contradictory : e.g. , the
same API is indexed on the same target from the same species, but numerical
values differ by 2 orders of magnitude or more. Furthermore, numerical
values attributed to biological activities are also subject to “temporal drift”:
For example, in the 1960s propranolol had an affinity of 31 nM for the
betaadrenergic receptor[179] (only one was known), but is now annotated
with affinities of 2 nM, 5 nM and 600 nM for the bl, b2 and b3 adrenergic
receptors, respectively [176], in addition to the serotonergic 5-HT1A receptor
(30 nM) [32]. Both accuracy of detection and our understanding of targets
improve with time.

Therefore, we have implemented a process to eliminate duplicated D-T-
bioactivity pairs, giving higher priority to expert-curated (e.g., IUPHAR-DB
or “PDSP certified”) data wherever possible. Median values for bioactivity
data (excluding highest and lowest value) were used wherever 5 or more
values for the same biological end-point were available. A confidence score
(e.g., 1.0 for highly trusted sources, and 0.5 for lack of numerical data) was
implemented. For the purpose of this report, the DRUGS database relied on
data from TUPHAR-DB, PDSP and WOMBAT-PK, which were converted
into a format amenable for further processing via in-house data conversion
and cheminformatics tools (i.e. , JChem[180] and OpenEye[181] software).
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Visual Mapping

Earlier efforts resulted in the integration of 739 molecules (out of 2300)
from TUPHAR-DB into iPHACE [94, 182], a webbased tool built around in
extenso pharmacological annotations from [IUPHAR-DB and PDSP that has
the capability to visualize the interaction on many drugs on many targets
(Figure 3.1). The ITUPHAR website has linked individual records back into
iPHACE [183]. This technology, currently extended to DRUGS, will help us
evaluate the complexity of data parsing and extraction as well as the degree
of automation achievable for future updates.

Approved Drug Labels Availability

There are currently a number of on-line resources that contain relevant in-
formation related to package inserts and ADL: DailyMed and the (related)
U.S. FDA [184], the EMA [185], the World Health Organization, WHO [186],
the Australian Therapeutic Goods Authority, TGA[187] — which are open ac-
cess, as well as the for-fee resources Physician Desk Reference, PDR [188],
Martindale,[189] and the American Hospital Formulary Service (AHFS) [190],
among others. The process of deep data mining for ADL starts with data
capture and mapping for API indexed in DRUGS. Priority is given to “clin-
ical pharmacology”, “indications and usage”, “contraindications”, “adverse
reactions” and “description”. However, as other sections may contain perti-
nent information, they are typically stored (unprocessed) for later use. Par-
ticular care needs to be given to standardize, catalog and process clinical
outcomes and drug side effects via extensively annotated vocabularies. Com-
patibility with the side-effect resource (SIDER)[99] is likely to build on SE
frequency for the available D-SE pairs. The CADR platform is likely to take
advantage of this D-SE mapping to enable inferences combining drug and
target information over an enormous, presently sparsely mapped space of
drug-target-clinical outcome assertions that would not otherwise be possible.

ADL Text Mining

We processed all Dailymed (XML format) records (May 2010 version) in order
to evaluate (i) the number of unique drugs present and (ii) the relationship
between these drugs and SE. Dailymed entities contain a surprising number of
APT duplicates, e.g., over 90 drug entries contain “estradiol”. We performed
de-duplication in order to simplify, structure and streamline this dataset. We
flagged duplicates both at the API level, e.g., where API names are identical,
and at the generic drug name level. De-duplication by active moiety can be
illustrated for gentamicin: while its correct chemical name is “gentamicin C1
sulfate”, the following synonyms were identified in DailyMed: “Gentamicin
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Sulfate in Sodium Chloride”, “Gentamicin Sulfate in Sodium Chloride Injec-
tion”, “GENTAK”, “Isotonic Gentamicin Sulfate”, “Gentamicin Sulfate” and
“GENTAMICIN SULFATE”. These trade names are listed in DailyMed as
separate drugs (which they are), but cannot be easily mapped onto a unique
API

Our two-step procedure reduced the dataset from 7684 to 1768 unique
entities, or 77% reduction. We further removed 261 animal drug products
as well as allergenic therapeutics lacking specific chemical API information
(e.g. “Cat pelt” and other animal extracts). This process yielded 1329 en-
tries. After manual curation, the dataset was found to include 1021 small
molecules, of which 20 were duplicates not detected via automation (e.g.,
“acetate hydrocortisone” and “hydrocortisone acetate”); 243 small molecule
mixtures (e.g., simvastatin and niacin), 3 undefined mixtures (omega-3-acid
ethyl esters, perflutren and sinecatechins), 28 proteins, 26 monoclonal an-
tibodies, three non-drugs with therapeutic use (sodium acetate, sodium bi-
carbonate and tromethamine), one parasite extract (Trichophyton) and one
insect extract (Sitotroga), respectively.

The final XML files for 988 small molecule drugs (which is what DailyMed
contains) were processed with the Python xml.dom.minidom package for SE
word frequency and association using the text mining TM package from the
R statistical software[191]. Term-frequency vectors, term-document matri-
ces, and distance matrices were generated and used to analyze SE similarity
and groupings. In particular, we subjected the frequency matrix containing
174 SE columns for 988 rows (drugs) to PCA, principal component analysis
PCAJ192] using the Simca package.[193] Data were then visualized using a
self-organizing map[140] via Spotfire [194]. Each SE was manually associated
with a specific tissue or organ, wherever possible (see also Figure 3.2).

Associating Drugs, Targets and Clinical Outcomes

The D-SE sparse matrix (29263 SE occurrences, or 16.81 % occupancy)
yielded a 10-dimensional model (missing data were attributed a 0 value).
The cumulative fraction of the variation of the X variables explained by the
10-PC model, R?*V X (cum) = 0.365, with a cross-validated cumulative pre-
dicted fraction of the variation of the X variables, Q*V X (cum) = 0.171.
Additional principal components produced eigen values under the 5% toler-
ance limit and were therefore not considered. Although clearly incomplete
in terms of SE coverage, we wanted to examine the biomedi-cal relevance of
the potential D-SE associations uncovered by this model. The PCA model
is graphically summarized in Figure 3.2, color-coded by tissue or organ: 14
such categories, plus “systemic” were added to the set, but not used in the
PCA model.
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Self-organizing map (SOM) for 174 SE, based on the 10-PCA model derived from frequency of occurrence in
DailyMed ADL from 988 small molecule drugs; the SOM clustering was mapped onto 25 cells. Colors encode tissue information;
most frequent are skin-mucosa (brown; 27), CNS (azure blue; 17), digestive tract (black; 15), “metabolic imbalances” (magenta;

15), respiratory (pink, 13) and vascular (dark purple; 11). SE labels are representative of each cluster.
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The emerging clusters indicate that ADL co-occurrence is far from ran-
dom. For example, rhinitis, sinusitis and infection are related (column 1, row
4, or “cluster_1 4”); ulcer, hematuria, angina and bleeding (cluster 4 4)
are close to “death” (the singleton cluster_3_4), which in turn neighbors
alopecia, cancer and toxicity (cluster_3 5). Yet other members of clus-
ter_3 5, e.g., stomatitis, fever and lacrimation, relate to some members of
cluster_2 5, such as itching, connectivitis, eruptions and itching, or to the
more severe asthma and allergic. Toxic and immunotoxic reactions that man-
ifest on the dermal and mucosal layers or in the digestive tract include nau-
sea, diarrhea, vomiting, angioedema, rashes, dyspepsia and flatulence, and
are co-clustered with joint-and-muscular pain symptoms such as arthralgia,
myal-gia, headache, pain, as well as cough (cluster_5_1). Cardiovascular and
respiratory SE associations include arrhythmia, bradycardia, tachycardia, fib-
rillation, hypotension and phlebitis, and bronchospasm, wheezing and apnea,
respectively, as well as sedation (cluster_3_3). All eight blood-located SE
are in the bottom row (except thrombosis, row 4), whereas most of the CNS
and mental SE are on the top left part of this SOM.

Two of the three ophthalmic SE, diplopia (double vision) and photophobia
respectively, but not lacrimation, co-occur with CNS and mental SE, namely
coma, paralysis, convulsions, amnesia, confusion and ataxia (cluster_1_1).
While clinically associated with the eye organ, diplopia and photophobia are
not really ophthalmic dysfunctions; rather, it is our perception that is altered;
therefore, their clustering association to the CNS/mental neighborhood is
quite appropriate. Though based on a limited data set, we conclude that, at
least in part, SE occurrences can be explained by drug compartmentalization,
i.e., the drug is more likely to cause side effects in the organ/tissue where it
is more likely to accumulate. This result, albeit intuitive, is quite surprising,
since it stems from a generic text analytics tool that lacks medical context.
It matches observations from co-occurrence pharmacovigilance processing of
electronic health records for seven drugs [195].

Limitations of the PCA Model

For all its potential merit, this SE-based PCA model is by no means directly
usable within the CADR platform: First, automated text mining yielded a
rather limited (174) set of adverse reactions, which is significantly smaller
than the side effects from SIDER [99]. Second, the PCA model covers only
36.5 % of the relationship between these adverse events and the drugs in-
cluded in this model, based on an already sparse matrix. Finally, the rela-
tionship between drugs and side effects depends on dosage, which requires
more in-depth analysis of ADL data. Some of these aspects (SE incidence,
dosage and relative risk) were detailed elsewhere [76]. Despite its limitations,
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Figure 3.3. The SE-based D-T-CO network, showing the inter-dependence between drugs, targets and clinical outcomes.
Color codes are as follows: Blood, red; CNS, blue; connective tissue, green; digestive tract, yellow; eye, medium purple; heart,
dark red; mental, light blue; metabolic, dark cyan; muscular, olive; nervous system, cyan; respiratory, orange; skin and mucosa,
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Figure 3.4. The mental-CNS-deficiency network based on SE (inner layer),
the associated drugs (inner middle layer), their confirmed targets (outer mid-
dle layer), and intended clinical outcomes (outer layer). Edge thickness in
this network is proportional with the strength of the DT interaction. Color
codes are discussed in Figure 3.3.

the SE drug matrix allows us to conclude that text occurrences from the ADL
“adverse reactions” section co-emerge in clusters by (possible) mechanism of
action and topicality (i.e., organ or tissue where the effect occurs).

Exploring the SE-D-T-CO Relationship

The availability of tools that enable biomedical data visualization such as
Cytoscape,[196, 197] can be used to associate D-SE data with target infor-
mation via biological network analyses. Through its plug-in architecture, we
extended Cytoscape to display and analyze SE-D-T-CO networks for small
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Figure 3.5. The CNS-mental-disorder network, which includes non-CNS
acting drugs in addition to CNS drugs. Layer position and edges are similar
to Figure 3.4. Color codes are discussed in Figure 3.3.

molecule API. Integrating the results from the ADL-based D-SE PCA, we
generated a comprehensive network, where each D-SE cluster (shown in Fig-
ure 3.2) was related to the other clusters based on the inter-cluster relation-
ship given by p-scores (from PCA), and by using available D-T-CO infor-
mation from WOMBAT-PK. This Cytoscape visualization was intentionally
designed to maintain the organ-based topicality observed earlier, while at the
same time highlighting the possible associations between often-unrelated (at
least from a clinical standpoint) drugs and their modes of action.
Knowledge mining of D-T-CO data requires controlled and structured in-
formation, where drugs and targets can be nouns, their relationship can be
described as immediate interactions, and pharmacokinetics and pharmaco-
dynamics can be described via more comprehensive associations (i.e., clinical
outcomes). The complexity of this interdependence is conceptualized in Fig-
ure 3.3 Each node of this Cytoscape plot is a network in itself, and nodes
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are maintained separated for visual clarity. The network visualized here is
based on 307 drugs, which were selected based on their high affinity (better
than 1 mM) for each of the targets within the network node. Two of these
nodes are shown in Figures 3.4 and 3.5, and discussed further. Cytoscape
session files, complete with network images for each node given in Figure 3.5,
as well as instructions on how to upload them in Cytoscape, are available
as Supporting Information. The complexity of these relationships is further
illustrated in Figure 3.4, which shows the SE-D-T-CO network based on
Cluster_1_1, focused on drugs associated with diplopia (e.g. , lamotrigine,
zonisamide, phenythoin, pregabalin and topiramate). This network primarily
includes drugs and targets associated with anticonvulsant, antiparkinsonian
and nootropic activities, further supporting the earlier observation that drug-
induced diplopia is not an eye-related dysfunction.

Another CNS-related association, given in Figure 3.5, shows the SE-D-
T-CO network based on Cluster 3 1, which includes CNS-related SE for
non-CNS drugs (anti-inflammatory, antidiuretic, immunosuppressant, anti-
allergic, etc.). This network associates insomnia, dizziness and somnolence
with tremor, restlessness, agitation and nervousness, respectively. Although
having opposite clinical meaning, it is likely that these SE derive from inter-
actions with the same targets, and that non-CNS drugs penetrate (at least
to some extent) the blood-brain barrier.

3.3 Conclusions

In this report we illustrated some of the inherent difficulties in developing the
required elements for a viable CADR platform. These steps are necessary, but
not sufficient: First, we discussed our efforts in developing a comprehensive
evidence-based system for D-T interactions; the DRUGS database attempts
to collect public knowledge detailing biochemical and pharmacological inter-
actions between drugs and (potential) targets. Then we discussed our first
foray into automated text mining for side effects, one that strictly looks at
word associations; these results offer some insight, supported by our 10-PC
model and the SE associations.

Although in its early stages, the CADR platform illustrates how knowl-
edge can evolve given deep data mining and tight integration. We showed
that content related to clinical (e.g. , DailyMed) and chemogenomic data
(e.g. , DRUGS) can be seamlessly processed and evaluated. Our preliminary
PCA model mapped 988 unique drug ADL from DailyMed onto 174 SE. We
concluded that adverse reactions can be explained by compartmentalization,
i.e., the drug is more likely to cause side effects in the organ/tissue where
it accumulates. Carefully associated DT-CO and DT-SE networks are likely
to morph into RDF-based knowledge mining, perhaps via Cytoscape. These
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RDF triples can further lead to computer assertions, i.e., computer-aided
drug repurposing. This may be accomplished via Chem2Bio2RDF, a seman-
tic framework developed for linking drug-target information,[198] or perhaps
via deep knowledge mining processing systems [199]. Even at this preliminary
stage, we have showed how D-T pairs and clinical outcomes can be associ-
ated within a recursive network-of-networks system. Such recursive system
flexibility is likely to be required within the RDF framework itself: the “DT”
triple (“drug A inhibits target X”) is in itself the subject of another triple,
“A-inhibiting-X” causes “CO/SE”, which is probably the RDF equivalent of
a phrase.

When developing DT-CO associations, evidence-based examples, where
drug “A” binds to targets X;...X,, resulting in clinical outcomes CO;...CO,,
(this is rarely a 1 : 1 relationship) will need to be given priority, since this
allows computer assertions with relative ease. STITCH,[200, 201] an online
tool for the exploration of biological networks, does exactly that, i.e., it ranks
D-T interactions based on scoring literature co-occurrence data starting with
chemical-protein interactions. The ChemProt server[132] can also serve as D-
T validation tool. However, many of these relationships are likely to require a
certain degree of manual intervention. Tissue location, the presence of active
metabolites and additional information related to CO and SE needs to be
used for complex cases.

These are likely to result in novel insights that may lead to the identi-
fication and assertion of novel “off-target” or “off-label” drug actions. As
knowledge bases asymptotically approach completeness, the CADR platform
will become more amenable to deep knowledge mining and systemic analy-
ses, integrating basic and translational science with clinical data, which may
reduce the impact of the accidental discovery. It will provide to the scien-
tific community, basic scientists and clinicians alike, a new tool to map the
clinical, biological and medicinal chemistry space for small molecule drugs,
effectively bridging often separate knowledge domains in a multi-disciplinary
manner.

Are the factual associations assembled via the CADR platform enough to
build a strong case for drug repurposing? With the expectation that it could
automatically lead to an NDA, the answer is most likely negative. Such a
system could rank with higher priority those cases that are more likely to
result in clinically beneficial applications. However, the CADR platform is
unlikely to serve as an automated drug repurposing tool in the immediate
future. The plethora of DT-CO and DT-SE associations can be mined via
automated reasoning, which will narrow down the search space. Yet, humans
will remain center stage: Toxicity, efficacy and dosage, as well as alternate
therapies (e.g., surgery) are likely to require individual decisions.
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Abstract

Adverse drug reactions (ADRs) are a major problem both for patients and
the pharmaceutical industry. An understanding of the underlying mecha-
nisms behind these will, therefore, benefit both. Here, we present a novel
method for associating ADRs to drugs and their protein targets. First, we
created a high-confidence drug—ADR dataset by calculating significance of
the associations between drugs and ADRs based on placebo-controlled stud-
ies stored in DailyMed. From this, we determined that only approximately
20% of the drug—ADR associations in DailyMed are significant. Subsequently,
we linked drugs with their biological targets through ChemProt-2.0 database
and applied a scoring function to capture frequently encountered ADR—target
associations. Based on these associations, we developed a model for the pre-
diction of ADRs for drugs and drug candidates. We validated the model on
a set of 133 drugs from the SIDER 2 database and successfully predicted the
highest ADR frequencies for 55% of the dataset. Further validation was per-
formed on withdrawn drugs stored in DrugBank and we were able to confirm
many predictions through the published literature. Our work demonstrates
the importance of using high-confidence drug-ADR data in the development
of methods that aim to elucidate, at the molecular level, the emergence of
ADRs and in prediction of ADRs for existing and future drugs.

3.4 Introduction

The occurrence of adverse drug reactions (ADRs) is a huge problem for both
pharmaceutical companies and patients, with an estimated cost of several
billion dollars every year [202, 203]. As high as 30% of all drug candidates
fail during clinical trails due to toxicity and other unwanted drug reactions
[204]. Understanding the underlying mechanisms behind these unwanted
drug reactions will help reduce the costs for both pharmaceutical compa-
nies and patients alike. As many drugs interact with multiple proteins and
thereby perturbe the protein networks [128], there is a need for system-wide
approaches to capture the effects that the drugs have on the system.

In recent years, researchers have proposed a variety of methods for link-
ing side effects to drug actions. The commonly used approach is based on
correlating chemical structure information with side effects using different
frameworks [205, 206, 207, 208]. These methods have proven successful to
some extent; these, however, lack the biological interpretation of side effect
emergence, due to their sole reliance on chemical similarity. Unrelated chem-
ical structures have also been shown to share similar side effects by sharing
the same off-targets [209]. Campillos et al., [28] proposed a method to use
side effect similarity to predict drug pairs with common protein targets. By
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adopting a systems biology approach, Fliri et al., [210] showed that drugs
with similar bioactivity profiles tend to cause similar side effects. In a more
recent study, Bauer—Mehren et al., [29] integrated data from multiple sources,
however the causality relationship between the drug and the ADR can only
be judged by experts after reading the full text article in order to determine
the correctness and significance of the associations.

The most common method to represent the ADR profile of a drug is
to use a binary association matrix, where “1” denotes presence and “0” de-
notes absence of an ADR term. Representing ADR—-drug interactions as
a binary association matrix together with machine learning techniques has
proven successful in many studies [208, 211, 45, 44]. Campillos et al., [28§]
took into account that side effects vary greatly in their abundance and are
not always independent of each other, and based on this, they weighted the
side effects to identify drug-targets based on side effect similarity. Lounkine
et al., [46] developed an enrichment score that associated targets with ADRs
based on the likelihood of the target—ADR pairs co-occuring as compared to
random and then applied the SEA method [20] to predict new ADR-targets.
Garcia-Serna and Mestres [76] assigned a strength score between drug and
ADR depending on the reporting frequency among the five ADR, sources used
in the study, where “1” denoted presence of ADR in all sources and “0.2”
denoted presence in only one source.

Detection of significant drug—ADR associations in large datasets that in-
clude adverse event reports (e.g., from postmarketing surveillance) is prone
to factors such as the reporting rate of ADRs or subject selection bias [212].
Tatonetti et al., [212] therefore, proposed an adaptive data-driven approach
to correct the different factors in cases where the covariates are either not
measured or are unknown.

In this article, we present a novel method for associating ADRs to proteins
and for the prediction of potential ADRs based on their targets. This method
uses statistically significant drug—ADR associations derived from placebo-
controlled drug trials [167] and drug targets from ChemProt 2.0 database
[213]. We developed a scoring scheme to weigh the interactions between
ADR~drugs and drug—protein targets in order to associate ADRs to proteins.
We validated the method using drug-ADR pairs from SIDER 2 [99]. A set
of withdrawn drugs from DrugBank [23] were used to further validate the
method.

3.5 Results

We created a high-confidence drug—ADR dataset using a novel methodology.
The workflow of our strategy is presented in Figure 3.6.
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Figure 3.6. Workflow for dataset development, model generation and
validation. DATA: Drug — side-effects data were extracted from Daily-
Med®. Only x? significant (p-value < 0.05) drug-ADR associations were
used further. Drug—target association data were integrated from ChemProt-
2.0 database with an activity filter of pAct > 4 (where pAct is the drug-target
activity value). The target proteins are labeled P1- P3. MODEL GENER-
ATION: An ADR is associated with Drugs A, B and C which bind proteins
P1-P4. Protein P2 is indirectly associated to ADR; and ADR; via inter-
actions with other drugs (not shown in the figure). The score between this
ADR and P2 is calculated as shown in the formula, where P} is the p-value
of the ADR-Drug A association, pAct is the drug—target activity value, Ny
is the number of targets Drug A and Drug B share, and Ns is the total num-
ber of ADRs connected to P2. VALIDATION: For a given protein a list of
ADRs and an association score are obtained. For a given drug, its targets are
looked up in the list, the ADR score is multiplied with the bioactivity and the
product is summed for each ADR. Lastly, the ADRs are ranked according to
the final score.
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Threshold Number Number Number of Percent
p-value of drugs of ADRs Drug-ADRs %

pairs
1 183 615 4515 100 %
<0.05 142 303 908 20 %
placebo (<0.05) 34 53 78 2%

Table 3.1. The number of drugs, ADRs, and drug-ADR pairs with different
levels of significance. The first row summarizes all the interactions. The
second row shows the significant drug-ADR association with a p-value <
0.05. The last row shows special cases where the placebo frequencies are
greater than the drug frequencies and thus significant with a p-value < 0.05.

3.6 Dataset

Drug-ADR associations

183 drugs with 615 ADRs were extracted from DailyMed which contains
information on placebo-controlled trials. Applying x? statistics on the 2x2
contingency table for drug and placebo allowed us to calculate the statistical
significance of the drug-ADR associations (see Materials and Methods section
for details). Applying the significance level of < 0.05 to the dataset as a filter,
we were able to reject 80% of the total 4515 drug-ADR pairs, which reduced
the number of ADRs from 615 to 303 and the number of drugs from 183 to
142 (Table 3.1)

Quite surprisingly we also identified that 2% of all associations were sig-
nificant ADR-placebo associations (Table 3.1), which means that in these
cases the placebo caused more ADRs compared to the drug. We determined
78 significant ADR-placebo associations from 34 drugs and 53 ADRs. The
most frequent side effects from these interactions were headache, somnolence,
nausea and fatigue. Table 3.2 shows some examples of filtering associations
by p-value where the placebo resulted in higher incidence of ADRs than the
drug itself. For example, use of placebo showed a significantly higher inci-
dence of cardiac chest pain as an ADR as compared to the drug Pravastatin,
a cholesterol-lowering agent used for hypercholesterolemia to reduce the risk
of cardiovascular disease. Cardiac chest pain is a pharmacologically indicated
ADR for Pravastatin. Similar was the case with Terazosin, a drug used for
treatment of benign prostatic hyperplasia (BPH), an ADR of which can in-
crease the risk of urinary tract infections. We noted again that there was a sig-
nificantly higher incidence of urinary tract infections in people taking placebo
as compared to those taking Terazosin. Such significant ADR-placebo as-
sociations indicated that filtering by p-value using drug—placebo information
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Figure 3.7. A. Negative logarithm of p-value vs. the total number of cases
and controls. The linear correlation is 0.09. B. Negative logarithm of p-value
vs. the frequencies of the ADRs. The graph shows a correlation of 0.32.

resulted in meaningful associations. This highlights the importance of taking
into account placebo effects.

It was important to rule out any bias due to an unequal number of partic-
ipants in each drug-placebo trial. We therefore plotted the p-value of ADR
against the total number of patients in the trials (Figure 3.7A). The plot
shows the linear correlation coefficient to be only 0.09, which indicated that
the size of the trials had not biased our model. A positive correlation co-
efficient of 0.32 is obtained between the ADR frequencies and the p-values
(Figure 3.7B), which indicated that the higher frequencies, to some extent,
lead to more significant p-values.

Table 3.3 shows the correlation between the top 15 ADR frequencies for
a drug and the significance of the ADRs with a threshold of p-value < 0.05.
For example, the highest ADR frequency was found to be significant with a
p-value < 0.05 in 88 of 183 (48%) drugs. The second highest ADR frequency
was found to be significant in 40% of all drugs. There was a clear indication
that the highest frequencies were also significant for each drug. The signif-
icance dropped below 20% at the 8th highest frequency, which is the same
significance as the overall interactions (with p-value < 0.05) calculated in
Table 3.1.
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m DB00175 Pravastatin Cardiac chest pain Hypercholesterolemia 1.6E-07

@ DB01162 Terazosin Urinary tract infection Benign Prostatic Hyperplasia (BPH) 7.8E-03

ot DB00177 Valsartan Dizziness Hypertension 3.2E-34
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o3 bromide tract infection

M DB00472 Fluoxetine Anxiety An antidepressant agent 6.3E-04

& nervousness 3.2E-02

M DB00482  Celecoxib Headache Pain 2.5E-03

mhu DB00590 Doxazosin Hypotension micturition Mild to moderate hypertension and uri-  2.5E-02
frequency nary obstruction symptoms caused by

70

Table 3.2. Examples of ADRs significantly associated with the placebo treatment
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Top ranking Number of Percent %
ADR frequencies significant drugs
(p-value < 0.05)

1 88 48
2 74 40
3 60 33
4 54 30
5 49 27
6 46 25
7 40 22
8 35 19
9 28 15
10 21 11
11 21 11
12 27 15
13 23 13
14 25 14
15 21 11

Table 3.3. Rank list of ADR frequencies ordered by highest for each drug. A
total of 183 drugs. The ranking ADR frequency within each drug is significant
with a p-value < 0.05 in 88 of 183 drug (48%). The second highest ADR
frequency within each drug is significant in 40% of all drugs.

Drug-target associations

We integrated data from 8 different databases in ChemProt and enriched the
number of drug-targets based on drug—target annotations to a total of 6494
associations with an activity < 100 uM. Figure 3.8 shows the enrichment
from each database.

Model generation and comparison

First, we filtered ADR-drug associations by calculating the p-value be-
tween drug—placebo, and then we combined the drug targets obtained with
drug—ADR pairs and developed a quantitative score that associated proteins
with ADRs (Figure 3.6; for details see Materials and Methods section). We
generated different models by changing the ADR-drug p-value threshold and
by categorizing the ADR into organ/tissue compartment and thereby only
allowing proteins expressed in the same organ/tissue as the ADR. Table 3.4
shows the comparison between 14 different models thus generated. As we
were interested in finding the models with high performances within the
highest ADR frequencies, Using comparison of the highest predicted ADR
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Figure 3.8. Drug-target cumulative enrichment from the 8 databases. A
total of 6494 drug-target interactions from 142 drugs. We removed PubChem
database from ChEMBL to clearly see the contribution from each database.

score to the top 10 ADR frequencies iteratively for each drug, we evaluated
the performance of the models.

Effect of p-value

Model_0.5 gave the best performance with 76% correctly classified ADRs
(Table 3.4). This model used a threshold of 0.5 for ADR-drug interaction
and included all the top 10 frequencies. From the top 10th frequency in
Table 3.3, we inferred that as many as 89% of ADR-drug pairs could be
non-significant associations. Therefore, this model was not deemed suitable
for validation against ADR frequencies and only Model 0.001 seemed to
be the best candidate, since it had the best performance over the top 6
frequencies at a threshold of 0.001. We chose the model that validated against
the frequencies within the top 4 because at this level at least 30% of the
ADR~drug pairs would be significant as seen from the significance ranks in
Table 3.3 (the model is marked with blue color in Table 3.4). We found that
this model could correctly classify 55% of the drugs using the top predicted
ADR compared to the 4th highest ADR frequencies within each drug.

Model evaluation

To evaluate the significance of the model performance we randomized the
drug-targets and ran the model 10000 times to estimate the p-value of the
performance. An asterisk in Table 3.4 indicates significant performances.
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Effect of tissue specificity

Applying tissue filter to the data, only 5 models out of 70 were found to be
significant, whereas 52 models were found to be significant without the use of
tissue filter. Applying the tissue filter, thus, reduced the number of proteins
in the model by a factor of 3.z

3.7 Validation

We validated the models using information on drug-ADR associations ex-
tracted from package inserts from the SIDER 2 database, [28]. We extracted
316 drugs where we could get ADR-drug frequencies and removed the 183
drugs that were in our training set, thus ending up with a set of 133 drugs.
Furthermore, we removed 2 drugs which we could not associate any proteins
to via ChemProt database and 7 other drugs as they did not have a single
ADR within our training set. A total of 124 drugs were used for the valida-
tion of the models. Table 3.5 shows the evalidation results for these 124 drugs
using ADR—drug frequencies from SIDER. Overall, we saw the same trend
that using tissue filter gives lower numbers of correctly classified associations
compared to not using it. The selected model Model 0.001 (blue) from the
comparison in Table 3.4 was able to classify 54.9% of the interactions cor-
rectly. This model was, however, the second best when compared to 4th
highest ADR frequencies. The best model was Model_5e-05 with 55.7% cor-
rectly classified. It is worth noting that the best performer from the model
comparison, Model 0.5, which used all 10 highest frequencies, could only
classify 57.4% which is less than the Model_0.001 that only included the 5th
highest frequencies (Table 3.5).

Examples of withdrawn drugs from DrugBank

We further validated our model on the withdrawn drugs deposited in Drug-
Bank and searched for their protein targets in the ChemProt 2 server using
< 100 uM as an activity filter. We obtained 68 withdrawn drugs from Drug-
Bank of which 51 drugs had protein targets and were not used to build
our model. None of these drugs were mentioned in DailyMed or the SIDER
database and therefore all the predicted ADRs had to be validated from liter-
ature instead. Using the best model from our last validation we found several
ADRs associated with Cisapride (Table 3.6) that was withdrawn due to long
QTs and arrhythmias in patients [214]. Somnolence, dry mouth and nausea,
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74

Top frequencies Significant p-values Include non-significant p-values
of ADRs Model__5e-05 Model__1le-04 Model_0.001 Model _0.05 Model 0.1 Model_0.5 Model 1.0
g 1 0.225* 0.218* 0.239* 0.218 * 0.211* 0.183* 0.204*
2 2 0.444* 0.430* 0.437* 0.380 * 0.345* 0.296* 0.310*
& 3 0.514* 0.514* 0.437* 0.486 * 0.451 * 0.444* 0.423*
m 4 0.592% 0.577* 0.592%* 0.556 * 0.521%* 0.535%* 0.514*
4 5 0.627 0.620 0.620* 0.606 * 0.542* 0.577* 0.599*
ﬂ 6 0.655 0.662 0.641* 0.669 * 0.641 * 0.662* 0.655*
3 7 0.704 0.718 0.683 0.697 * 0.704* 0.690* 0.690*
M 8 0.711 0.732 0.718 0.725% 0.711 * 0.732* 0.711*
= 9 0.718 0.732 0.732 0.739 * 0.725* 0.761* 0.718*
10 0.725 0.739 0.739 0.746* 0.732* 0.761* 0.732*
1 0.246* 0.225%* 0.218* 0.134 0.120 0.120 0.127
5 2 0.387 0.345 0.394 0.268 0.246 0.239 0.254
m 3 0.465 0.451 0.493* 0.338 0.303 0.275 0.296
© 4 0.542 0.528 0.556* 0.423 0.380 0.338 0.338
m 5 0.570 0.563 0.606 0.465 0.437 0.408 0.387
& 6 0.585 0.585 0.627 0.521 0.486 0.444 0.430
= 7 0.613 0.620 0.662 0.549 0.514 0.486 0.458
W 8 0.641 0.634 0.669 0.563 0.528 0.507 0.486
9 0.648 0.641 0.683 0.599 0.577 0.563 0.521
10 0.648 0.641 0.683 0.627 0.613 0.592 0.549

Table 3.4. Comparing models. Models were split depending on whether tissue filter was used or not. These included 4
significant p-values (5e-05,1e-04,1e-03 and 0.05) and 3 non-significant p-values (0.1,0.5 and 1.0). Each of these models was tested
against 1 to 10 highest frequencies. An asterisk (*) indicates significant model based on permutation test. Best significant
models are indicated with number in bold font and number in bold blue font indicates the optimal model



(0]

3.7. VALIDATION

seTouenbaIy 1seYS3IY (T [[8 Posh IoAeMOY TDIYM ‘SYOY PoIdIpald A[1001100 94¢° 79 Yiim
GO'0 [PPOJN Sem [opour edweuriojrad 3seq 9soysy oy, *(IU0} ploq oniq) % ¢'FG 1o1paid pnos Sururery mo wolj ppow reurrydo
oY, "oseqeiep YIS oY} Wolf sSNIp FgT jsureSe pajepries sem 4as SUrUrer} oy} I0j [9pOuW Yoer] "UOIIePI[eA [OPOIN ‘G°€ 9[qeL

€6€°0 657°0 01¥°0 00¢°0 0650 994°0 99¢°0 0T
€6¢°0 €vv0 co0r'0 670 996°0 99¢°0 99¢°0 6
69€°0 9¢v°0 LLE°0 GLY°0 L8G°0 6¥4°0 L89°0 8 M
¥e0 01%°0 69€°0 L97°0 £€€9°0 17<°0 6%5°0 L ol
8¢E0 LLE0 8¢€°0 Yev'o 916°0 17<°0 %<0 9 ml
0L2°0 ¥e0 02e0 01v°0 804°0 91¢°0 91¢°0 g Z
¥4¢°0 11€°0 0L2°0 G8¢€'0 ¥87°0 ¥87°0 ¥87°0 ¥ quou
1¢¢’0 ¥4¢0 ¥4¢0 cse0 L97°0 657°0 1670 € =
¥91°0 L6T°0 681°0 920 19€°0 G8¢€°0 €6€°0 ¢ -
¢80°0 L0T°0 L0T°0 ¥o1°0 681°0 L61°0 G020 T
*6¥5°0 P22y *G8G°0 x€29°0 879°0 ¥99°0 ¥99°0 01
*x67G°0 *V,.G°0 %790 % €890 879°0 999°0 949°0 6 m
x80G°0 *675°0 * L9970 xL09°0 1€9°0 949°0 949°0 8 =
*L97°0 x00G°0 *I7G°0 * 6890 1€9°0 6€9°0 6€9°0 L m
*EV7°0 *GL7°0 * 667°0 * LGS0 +G19°0 G190 86570 9 =
*817°0 *697°0 *GL7°0 * 006°0 x065°0 £09°0 865°0 g 73
*V¥e0 *G8€°0 *G8€°0 * V8Y°0 *675°0 *674°0 *xL99°0 ¥ g
*8C€°0 19€°0 * C9€°0 * 9¢V°0 *GL7°0 *GL7°0 *GL7°0 € =
*8€¢°0 *V49C°0 x0L2°0 * 69€°0 *VEV'0 *81V°0 *9¢V°0 4 m
*G1T°0 *G1T°0 %x860°0 * V91°0 x08T°0 x0€2°0 x502°0 T
0'T [PPOIN S0 [PPOIN  T'0° IPPOIN  S0°0 [PPOIN  T00°0 [PPOIN  ¥#0-2T [PPOIN  S0-°S [°PPOIN syav jo
sonea-d juedyrudis-uou apnjouy sonea-d juedoyrudig serouenbaay doj,




76 CHAPTER 3. PREDICTING SIDE EFFECTS

DrugBank  Drug name Score ADR Liter-
ID ature
DB00604 Cisapride 21.85 somnolence yes
21.54 dry mouth yes
16.66 nausea yes
14.30 Dyskinesias no
(20 ADRs)
DBO01107 Methyprylon 1.01 somnolence yes
0.95 headache yes
(2 ADRs)
DB00901 Bitolterol 1.43 bradycardia yes
1.32 fatigue yes
1.14 Constipation no
0.97 nausea yes
(4 ADRs)
DB04815 Clioquinol 3.36 nausea yes
2.65 exfoliation yes™*
2.34 diarrhea yes
1.86 Tremors no
1.77 Skin warm yes
1.76 Burning sensation yes
1.55 dry mouth yes
(15 ADRs)
DB04817 Dipyrone 1.29 abdominal pain yes
1.21 Flatulence yes
0.98 dyspepsia yes
(3 ADRs)

Table 3.6. Predicting ADRs from withdrawn drugs from DrugBank. Among
the predicted ADRs some are supported by literature, which highlight the
usefullness of the model

the three top scoring ADRs that are associated with Cisapride are described
in the literature [215, 216]. We were not able to predict these ADRs, because
they were not part of the high confidence drug-ADR dataset.

We looked at another withdrawn drug, Methyprylon, a sedative used to
treat insomnia which now has been replaced by newer drugs like benzodi-
azepines that have fewer side effects. We could predict ADRs such as som-
nolence and headache, which were also supported by literature [217]. Som-
nolence (drowsiness) is a common side effect for sedative medicines and to
some extent it is also the therapeutic effect of the drug, which indicates that
we captured meaningful interactions. Another interesting finding is the asso-
ciation between Bitolterol (a drug for treatment of asthma) and bradycardia.
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Figure 3.9. Drug-target-ADR network. Prediction of ADR based on the
drug targets.

Bradycardia is an ADR connected to a very slow heart rhythm which may
cause cardiac arrest. This finding is supported by a study [218] which has
shown that Bitolterol could cause cardiac ADRs like rapid heart rate, heart
palpitations and irregular heartbeats, which may also be related to brady-
cardia symptoms.

Case study on Clioquinol

One interesting feature of our models is that it suggests which combination
of proteins would be susceptible to generate an ADR. To illustrate how our
model works, we have created a network for the antifungal and antiprotozoal
drug Clioquinol, its targets and the predicted ADRs associated with it (Figure
3.9). The thickness of the edges between Clioquinol and the targets indicate
the strength of bioactivity while the thickness of the edges between targets
and ADRs indicate strength of their association based on prediction from
the model. The size of the ADR nodes relates to the predicted score and is
the summation of the combined interactions from the contributing targets.
Nausea is the highest predicted ADR in this exampleas illustrated by the
largest node in Figure 3.9, and is caused due to the additive effect from four
targets, namely the androgen receptor (AR), Lamin A/C (LMNA), opioid
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Model Model Model Model Model Model Model
5e-05 1le-04 0.001 0.05 0.1 0.5 1.0

Drugs 44 46 64 125 137 167 171
Protein 126 128 168 280 303 447 485
ADR 24 26 34 101 132 232 258

Prediction 0.549 0549 0549 0484 038  0.385 0.349

Table 3.7. An overview of the different models. Comparing the number of
drug, protein, ADR and the prediction for each models.

receptor (OPRK1), and cytochrome P450 1A2 (CYP1A2). Constipation also
has a relatively high ADR score due to OPRK1 target, but due to the missing
additive effect from other targets and low bioactivity value of Clioquinol on
OPRKI, the total score for the association of this drug to constipation is
lower. Clioquinol is also/now marketed as a lotion that is applied to the skin
to treat infections and could cause burning sensation on the skin, itching,
redness, and swelling [219], which are in our top predicted ADRs (Table 3.6)
with an exception of tremors, diarrhea and nausea. However, tremors could
be related its neurotoxic side effects, due to which Clioquinol was withdrawn.

3.8 Discussion

We propose a novel approach that takes into account that not all drug-ADR
associations are “true” associations. We calculated significant drug—ADR as-
sociations, based on the placebo-controlled trials data from the DailyMed
database, to create a high confidence drug-ADR dataset. We combined
drug-target associations from ChemProt 2 database with the drug-ADR
dataset to build a model that could predict ADRs based on drug targets.
The results from the analysis of withdrawn drugs show the usefulness of our
model in predicting side effects for drugs that are not included in databases
such as DailyMed and SIDER 2. This method could be used to give indica-
tions about possible side effects for a given compound as long as its bioactivity
profile is known.

Our method is, for the moment, limited to the 169 proteins and 35 ADRs
collected from DailyMed (Table 3.7). However based on our dataset and the
validation method we used, we can conclude that including more proteins
with weak bioactivity and non-significant ADRs would only bring more noise
to the model. For example, the model (Model 1.0) with 486 proteins and
259 ADRs only predicted 34.9% associations compared to our optimal model
(Model__0.001) could predict 54.9% associations. To enrich the protein target
space we decided to include cross-species drug-targets from animal studies.
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Using the same model parameters from our previous best model and inte-
grating them with the cross-species drug-targets, we were able to improve
the performance of the model on the validation set by 2.5% (from 0.549 to
0.574). The full comparison is provided in the supplementary material (Table
3.9 and 3.10). However, although integrating extra information does improve
the performance, it also increases the noise in the model, as cross-species
drug-targets do not always reflect the same response in human targets. It is
yet unclear how much would we gain or lose in the overall performance by in-
cluding cross-species data. Data completeness is still a problem in drug target
networks [87]. Our study focused on clinical ADR reports and some ADRs
can be reported after the drug has entered the market. As a perspective,
such postmarket ADRs could be integrated for a more accurate prediction
and better drug safety assessment.

3.9 Materials and Methods

Data set sources

We downloaded all adverse event reports, as of June 4, 2012, in XML for-
mat from DailyMed. XML files were processed using Perl XML and HTML
modules and tables summarizing the frequency of adverse events reported in
the trials were extracted. We only considered tables that contained ADRs
along with placebo frequencies and number of patients used in the trials. We
were able to extract 183 drugs with placebo frequency information. The drug
names were annotated to a DrugBank ID [23]. The ADRs terms were mapped
to MedDRA preferred terms (PT) [220] and to Unified Medical Language Sys-
tem (UMLS) [221]. From version 2 of the ChemProt database, which is a
collection of multiple open source and commercial chemical-protein database
[213], we retrieved 6494 drug targets, using a relatively low binding affinity
threshold (100 pM). The Human Protein Atlas (HPA) version 9.0 [67] was
used to annotate drug targets to human tissues. To validate our method we
used version 2 of SIDER database released on March 16, 2012 [99].

Estimation of statistical significance

We made a 2x2 contingency table for each ADR / placebo pair by converting
the frequencies into a case and a control. We then applied the x?2 statistic
to the 2x2 contingency tables and calculated the p-values. An example is
the drug Carduran, which had a 0.099 (9.9%) frequency of causing headache
(ADR) whereas the control (placebo) showed a frequency of 0.09 (9%). In or-
der to estimate whether Carduran’s association with headache was a chance
event, we also needed to take into account the number of patients that under-
went the trial. In this example there were 665 patients in the case group and



80 CHAPTER 3. PREDICTING SIDE EFFECTS

Headache non-Headache
Carduran 65 600
Placebo 81 819

Table 3.8. A 2x2 contingency table showing Carduran vs. placebo.

900 patients in the control group (Table 3.8). With the calculated p-value of
0.66 which was greater than the highest acceptable significance level of 0.05,
we rejected Carduran’s association with headache .

Estimation of scoring function

We combined the data into a ADR-drug—protein network and applied a
weight scheme for the ADR-protein associations which we defined as:

1 = —log(Py)pActy,
== ’; N (3.1)

where Py is the p-value for the ADR, pAct is the negative logarithm of
the target activity measured in nM, Nd is the number of proteins associated
with the ADR-drug pair and Ns is the total number of ADRs associated
with a protein. The term Nd was introduced to avoid scoring function bias
towards ADR—protein pairs, where multiple drugs have shown activities for
the same target (promisquous targets). The term Ns weighs down the score
when the protein is associated with multiple ADRs.

This scoring function enabled us to score each protein-ADR pair and to
predict proteins related to ADRs. This in turn enabled the creation of a
model that predicted and ranked ADR for a given drug by its bioactivity
profile.

Tissue filter

The tissue filter was constructed using protein—tissue annotation with the
highest confidence score from HPA. We grouped the tissue names from HPA
into 12 main tissue categories using the System Organ Class (SOC) terms
from MedDRA to create an ADR-tissue dictionary (Supplementary Table
3.11). Using this dictionary we filtered the proteins from ADR-drug—protein
associations to sort them into different tissue categories before calculating
the score using Eq. 3.1.
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Optimization of significance and score thresholds

We generated a list of ADR-drug interactions by varying the significance
level of the p-value in the range of 5e-05 to 0.05. For each generated list we
ran the model iteratively over possible scores with a 0.1 increment and saved
the best score that could correctly assign the ADRs to the 142 drugs in the
training set. We created 14 different models: 7 using the tissue filter and 7
without . Each of the models has one of the 4 significant p-values: (5e-5,
le-4, 1e-3 and 0.05) or 3 non-significant p-values: (0.1, 0.5 and 1.0). During
p-value optimization we ran each model 10 times: First, the highest ADR
score was compared to the highest ADR frequency; in the second compari-
son, the highest ADR score was compared to either of the two highest ADR
frequencies; the process was continued until the 10th highest frequency. We
evaluated the performance of the models by comparing the highest predicted
ADR score to highest ADR frequencies within each 142 drugs in the train-
ing set. The model performance was given by the correctly predicted ADRs
out of the total number of drugs. The score threshold was subsequently op-
timized by iterating through the ADR-protein scores to find the one that
gave the best performance. Permutation test was used to evaluate the signif-
icance of the model. The drug-targets were randomized and each model was
run 10000 times to estimate the p-value. An asterisk in Tables 3.4 and 3.5
indicate significant models with a p-value less than 0.05.

Validation

We validated the method using 133 drugs, not included in our dataset, along
with information on ADR frequencies from SIDER, 2 database. For these 133
drugs we extracted the drug-targets from ChemProt 2 database and retrieved
2115 drug—protein pairs with binding affinity < 100 pM. We applied the
optimal score calculated from the training set to each validation model.

Supplementary

Model comparison
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Top highest

Significant p-values

Include non-significant p-values

Frequencies Model_ 5e-05 Model_1le-04 Model 0.001 Model 0.05 Model 0.1 Model 0.5 Model_1.0
g 1 0.225* 0.225* 0.225* 0.268 * 0.211* 0.204 0.225
2 2 0.444* 0.345%* 0.451* 0.430 * 0.359 0.324* 0.352
= 3 0.507* 0.451* 0.549* 0.521 0.472 * 0.472%* 0.458*
m 4 0.599 0.528%* 0.613* 0.585 0.535* 0.563* 0.549
R 5 0.634 0.563* 0.641* 0.655 * 0.592%* 0.606* 0.620
ﬂ 6 0.669 0.585 0.655 0.676 * 0.655 * 0.676* 0.655
3 7 0.704 0.62 0.697 0.690 0.690* 0.704* 0.697*
M 8 0.711 0.634 0.732 0.704* 0.718 * 0.739%* 0.718%
= 9 0.718 0.641 0.746 0.732 0.725% 0.761* 0.732*
10 0.725 0.641 0.754 0.746 0.732 0.761* 0.739*
1 0.246* 0.225% 0.218%* 0.134 0.120 0.120 0.127
5 2 0.387 0.345 0.394 0.268 0.246 0.239 0.254
m 3 0.465 0.451 0.493* 0.338 0.303 0.275 0.296
© 4 0.542 0.528 0.556* 0.423 0.380 0.338 0.338
m 5 0.570 0.563 0.606 0.465 0.437 0.408 0.387
& 6 0.585 0.585 0.627 0.521 0.486 0.444 0.430
= 7 0.613 0.620 0.662 0.549 0.514 0.486 0.458
W 8 0.641 0.634 0.669 0.563 0.528 0.507 0.486
9 0.648 0.641 0.683 0.599 0.577 0.563 0.521
1 0.648 0.641 0.683 0.627 0.613 0.592 0.549

Table 3.9. Comparing models including cross-species protein targets. Models were split between tissue filter and non-tissue
filter. They included 4 significant p-values (5e-05,1e-04,1e-03 and 0.05) and 3 non-significant p-values (0.1,0.5 and 1.0). Each
model were tested against 1 to 10 highest frequencies. An asterisk (*) indicate significant model based on permutation. Best
significant models are indicated with bold number and bold blue number indicate our optimal model.
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SOC HPA
Blood and lymphatic system disor- Blood and immune  system
ders (Hematopoietic)

Cardiac disorders

Congenital, familial and genetic dis-
orders

Ear and labyrinth disorders
Endocrine disorders

Eye disorders

Gastrointestinal disorders

General disorders and administra-
tion site conditions

Immune system disorders

Infections and infestations

Injury, poisoning and procedural
complications
Investigations
Metabolism and nutrition disorders

Musculoskeletal and connective tis-
sue disorders

Neoplasms benign, malignant and
unspecified (incl cysts and polyps)
Nervous system disorders
Psychiatric disorders

Renal and urinary disorders
Reproductive system and breast dis-
orders

Respiratory, thoracic and mediasti-
nal disorders

Skin and subcutaneous tissue disor-
ders

Social circumstances

Surgical and medical procedures
Vascular disorders

Cardiovascular system (Heart and
blood vessels)

Endocrine glands

Digestive tract (GI-tract)

Blood and immune  system
(Hematopoietic) Liver and pancreas
Placenta

Blood and immune  system
(Hematopoietic)
Blood and immune  system
(Hematopoietic)
Blood and immune  system
(Hematopoietic)

Skin and soft tissues

Central nervous system (Brain)
Central nervous system (Brain)
Urinary tract (Kidney and bladder)
Breast and female reproductive sys-
tem (Female tissues) Male reproduc-
tive system (Male tissues)
Respiratory system (Lung)

Skin and soft tissues
Central nervous system (Brain)

Cardiovascular system (Heart and
blood vessels)

Table 3.11. The System Organ Class (SOC) terms from MedDRA grouped
with the 12 main tissue categories from Human Protein Atlas (HPA)



Part 111

Epiloque

85






Chapter 4

Epilogue

In this thesis, I have presented and discussed the integration of chem-
ical-protein annotation resources with complex disease-linked PPI data
and applications of side-effect prediction based on system chemical biology
approaches. In chapter 2, I presented ChemProt, a disease chemical biol-
ogy database that integrates 9 different chemical-protein databases. The
unique feature of ChemProt is an ability to retrieve information at a cellular
level by associating the proteins affected by a chemical to specific tissues
and phenotypes. We improved and updated ChemProt (ChemProt 2.0)
to include helpful visualization tools like heatmap and interactive complex
disease network, which ease the navigation of the pharmacological space for
small molecules. In addition to the chemical search, the users of ChemProt
2.0 can now search by diseases, ATC codes and side-effects and thereby
retrieve annotation for chemicals and proteins associated with these search
queries. All together we hope that this web application framework will assist
researchers’ in-silico evaluation of the effect of small molecules on proteins,
diseases, tissues and adverse drug events.

In chapter 3, I included two articles on side-effect prediction. In the first
article, we presented a computer-aided drug repurposing (CADR) method,
which was centered on side-effects. The CADR method illustrates how
knowledge can evolve from data mining and data integration.

In the second article, we presented a systems chemical biology approach
to predict side-effects, which was based on a high confidence drug-ADR
dataset. We linked drug-ADR with chemical-protein annotation from

87
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ChemProt and built a model to capture frequently encountered ADR-target
associations. We used this model to predict side-effects of withdrawn drugs
stored in DrugBank and confirmed the results from the literature.

Perspectives

New joint project collaboration initiatives between the the pharmaceutical
industry, academia and other small businesses, for example, OpenPHACTS
[222], ¢TOX [223] and INBIOMED [224], have now started to emerge. These
initiatives are the first steps in the right direction for sharing data and
information from an otherwise very protected and closed pharmaceutical
industry, which will help researchers decipher the clinical effects of drugs.

There are numerous ways in which the work in this thesis could continue
as it seems to only scratch the surface of possibilities that could be integrated
in systems chemical biology approaches. Pharmacogenomics and personal-
ized medicine could be the next challenges in large-scale data integration,
genetic variation from single nucleotide polymorphisms (SNPs) and text
mining patient records could reveal useful information.

Data incompleteness of drug-targets is another limiting factor for pre-
diction of novel drug-targets and side-effects [87]. There is a need for full
human protein screening programs where compounds can be tested on the
whole human proteome.

In order to change the drug discovery paradigm where the disease “one-
effect /one-cause/one-target” can be cured by a magic bullet “the drug” we
need to develop and optimize network-aided drug development together with
human creativity and background knowledge [2].
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