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Thirty Years with EoS/GE ModelsWhat Have We Learned?
Georgios M. Kontogeorgis* and Philippos Coutsikos

Centre for Energy Resources Engineering (CERE), Department of Chemical and Biochemical Engineering,
Technical University of Denmark, DK-2800, Lyngby, Denmark

ABSTRACT: Thirty years of research and the use of EoS/GE mixing rules in cubic equations of state are reviewed. The most
popular approaches are presented both from the derivation and application points of view and they are compared to each other.
It is shown that all methods have significant capabilities but also limitations which are discussed. A useful approach is presented
for analyzing the models by looking at the activity coefficient expression derived from the equations of state using various mixing
rules. The size-asymmetric systems are investigated in detail, and an explanation is provided on how EoS/GE mixing rules should
be developed so that such asymmetric mixtures are adequately represented.

1. INTRODUCTION
Approximately 30 years have passed since the publication of the
Huron−Vidal mixing rule.1 Since then numerous models have
appeared which can be classified under the so-called EoS/GE

terminology. These models are mixing rules for the energy (and
covolume) parameters of cubic equations of state (EoS) by
incorporating an activity coefficient model, often a local
composition (LC) model like Wilson,2 NRTL,3 UNIQUAC,4

or UNIFAC.5 The objective with the use of EoS/GE models is
two-fold. First of all, these mixing rules have enhanced
dramatically the range of applicability of cubic EoS to include
high pressure vapor−liquid equilibria VLE (and sometimes
other types of phase equilibria) for mixtures of compounds of
wide complexity and asymmetry in size and energies. An
additional objective is, sometimes, to reproduce at low
pressures the incorporated activity coefficient models, thus
permitting the use of existing interaction parameters of local
composition models, including group contribution models
(UNIFAC). In brief, the EoS/GE mixing rules, proposed over
the last 30 years, combine the “advantages” (but also often
carry along the shortcomings) of cubic EoS and of the LC
activity coefficient models incorporated. In some cases,
however these mixing rules may result in superior EoS models,
compared to the EoS and gE models used in their derivation
(although this may be coincidental). Nevertheless, the starting
point of many but not all EoS/GE mixing rules is the equality
of excess Gibbs energies (gE) or the excess Helmholtz energies
(aE) from the cubic EoS and the external activity coefficient
model (denoted as M), such as a LC model. This equality is
stated at some suitable reference pressure P:
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The gE and aE expressions from Soave−Redlich−Kwong
(SRK)6 and Peng−Robinson (PR),7 the two cubic EoS which
are widely used today in practice, are shown in Table 1. For

comparison, the expressions from the van der Waals8 EoS are
also given. The expressions shown in Table 1 require no mixing
rules as they are derived from the fundamental equations:
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Moreover, the expressions of Table 1 are written in such a form
so that the contributions related to excess entropy (SE), excess
volume (VE), and excess internal energy (UE) are identified
since:
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Under some conditions, eq 1 can be solved with respect to the
energy parameter and a mixing rule can be derived. The most
known reference pressures which have led to widely used
mixing rules are the infinite pressure and the zero pressure.
The infinite pressure was the assumption used by Huron and
Vidal1 starting from eq 1a and 13 years later it was also used by
Wong and Sandler9 based on eq 1b. The zero reference
pressure was introduced by Mollerup10 and Michelsen11,12 and
leads to one exact formulation (under some assumptions) and
to useful general but “approximate zero” reference pressure
mixing rules like MHV1, MHV2 (modified Huron−Vidal first
and second order) by Dahl and Michelsen,13 and the PSRK
(predictive SRK) model by Gmehling and co-workers.14 There
have been also presented useful EoS/GE models which are not
derived directly from eqs 1a or 1b. One of the most successful
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such models is LCVM (linear combination of Vidal and
Michelsen mixing rules) proposed in 1994 by Tassios and
co-workers.15 LCVM and other models in this family were
introduced in order to solve some problems of the
previously presented approaches, especially for size-asym-
metric mixtures like gases with heavy hydrocarbons. In our
view, LCVM is the last one of the models offering a
significant advance in the topic of EoS/GE mixing rules. This
does not mean that there are no other successful EoS/GE

approachesindeed there are many and they will be
discussed in this review. We feel, however, that most
successful EoS/GE mixing rules can be categorized as those
following the infinite or zero reference pressure assumption
and those not having a specific reference pressure (like
LCVM), which were developed having especially the
asymmetric systems in mind. Finally, it may be expected
that any EoS and any gE model could be combined in the
EoS/GE mixing rules. This is partially true but there are
exceptions (both theoretical and practical ones), as will be
explained later.
In the 30 years that have elapsed since the Huron−Vidal

mixing rules, much has been learned on the capabilities and
limitations of the EoS/GE mixing rules. The scientific interest is
significant (see Table 2) but it has somewhat declined over the
recent years. This is partly attributed to the fact that we have
now a rather mature technology with significant potential,
impressive results, though, regrettably, also some serious
theoretical and practical limitations.
These limitations have become the source of intense

discussions in the scientific community and have possibly led

to some misconceptions and misunderstandings. It is the
purpose of this review to outline the capabilities and limitations
of the major EoS/GE approaches, when compared against
experimental data and when compared against each other and
the theory used in their derivation. The review reflects the
authors’ own opinion, which may not always coincide with the
developers’ point of view. Section 2 discusses the five major
approaches previously mentioned (Huron−Vidal, Wong−
Sandler, “exact” zero reference pressure, approximate zero
reference pressure and LCVM). Some of their numerous
variations will also be presented. In this section, mostly VLE
(original scope of these models) including gas solubilities will
be discussed (from the application point of view), while

Table 1. gE and aE Expressions from Three Cubic Equations of State
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Table 2. Citations of Major EoS/GE Developments (Source:
Web of Science, 11/7/2011)a

article citations citations/year

Huron and Vidal, 19791 538 16

Michelsen, exact, 199011 256 12

Dahl and Michelsen, 1990 (MHV1, MHV2)13 226 11

Gmehling, 1991 (PSRK)14 305 15

Wong and Sandler, 19929 496 25

LCVM (Tassios, 1994)15 154 9
aIn the PPEPPD conferences 1995 and 1998 (as published in Fluid
Phase Equilibria, volumes 116−117 and 158−160) about 20 articles
are published related to EoS/GE mixing rules, while fewer than 10 are
published in the subsequent PPEPPD conferences 2001, 2004, 2007,
and 2010. Similar trends are observed in other conferences, for
example, ESAT.
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other properties (LLE, solid−gas equilibria, thermal) will be
briefly considered in section 3, where a comparative
discussion and evaluation of all mixing rules will also be
presented. The review closes with the conclusions and
assessment of the status of EoS/GE methodology, about 30
years after its conception.

2. CAPABILITIES AND LIMITATIONS OF THE FIVE
MAJOR EOS/GE APPROACHES

Table 3 presents the five major EoS/GE approaches as applied
to SRK and PR in their usual form (deviations from this form
are explained in this section). We will present the Huron−Vidal
and Wong−Sandler models first, due to their similarities

(infinite pressure models) and the zero reference pressure
models will follow (exact and approximate versions). The
section will end with a presentation of LCVM and related
models.

2.1. The Huron−Vidal Approach. The starting point is eq
1a at infinite pressure where it can be assumed that the volume
is equal to the covolume (limP→∞V = b and limP→∞Vi = bi). It
can be easily shown that this assumption eliminates the excess
entropy (−SE/R) term of the gE expression of cubic EoS like
SRK and PR, which corresponds to the term reflecting size/
shape differences between the mixture components, the so-
called “combinatorial/free-volume” term. The second assump-
tion is that the linear mixing rule is used for the covolume

Table 3. The Five Major EoS/GE Approaches. Note That α = a/(bRT)
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aAlternative mixing rules for the co-volume are possible.
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(b = ∑ixibi), see Table 3, which eliminates the excess volume
term at infinite pressure. Thus at infinite pressure:
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Equation 4, also shown in Table 3, is the Huron−Vidal
mixing rule.1 It is clear that the linear mixing rule for the
covolume is used in its derivation and no other mixing rules for
the covolume can be used in order to arrive to eq 4 when eq 1a
is the starting point for the derivation.
Another important remark is that, in general, gE,EoS,∞P ≠

gE,EoS,low,P, thus the existing parameter tables from activity
coefficient models which are obtained from low pressure data
cannot be used in eq 4.
It is also quite interesting to note that since at infinite

pressure SE = VE = 0 and gE= UE then the gE,EoS,∞P is essen-
tially an ”energetic” or ”residual” (in the activity coefficient
terminology) excess Gibbs energy contribution, and only such
activity coefficient models should be used in connection with
the Huron−Vidal approach. Examples of such models are
NRTL and the residual part of UNIQUAC or UNIFAC.
Indeed, Huron and Vidal1,26 combined SRK with NRTL and

they presented excellent correlation results for the VLE of
acetone/water, methanol/CO2, methanol/propane, and other
complex mixtures. The performance of SRK with the Huron−
Vidal mixing rules is better than when SRK is used with the
van der Waals one fluid mixing rules (a = ∑i = 1

n ∑j = 1
n xixjaij

b = ∑i = 1
n ∑j = 1

n xixjbij). Good predictions are also obtained for
multicomponent VLE.
It should be noted that Huron and Vidal used an NRTL

version which, under certain assumptions for the parameter
values, can result in the vdW1f mixing rules for nonpolar
compounds. In this way, the SRK EoS can be used for mixtures
of polar and nonpolar compounds, using the classical
interaction parameters in cross a12 or the Huron−Vidal
parameters. This permits reusing the interaction parameter
tables for kij (correction in the geometric mean rule for the
cross energy parameter) available for SRK for mixtures with
nonpolar compounds.
The Huron−Vidal mixing rule has been widely used both in

academia and industry. It has been shown16−20 (in its SRK/
NRTL formulation) to be an excellent correlation tool even for
highly complex VLE, LLE, and VLLE for a variety of mixtures
including those containing water, alcohols, or glycols and
hydrocarbons and for both binary and multicomponent
mixtures. Parameters obtained from correlating binary data
can be used to predict phase equilibria for multicomponent
systems (see also the discussion in section 3).
Feroiu, Geana, and co-workers21−24 have shown that SRK/

Huron−Vidal coupled with the residual term of UNIQUAC
and parameters obtained from infinite dilution data can
correlate/predict CO2-alcohols VLE and VLLE over extensive
temperature ranges. It should be emphasized that for obtaining
good results over broad temperature ranges, (linearly)

temperature dependent interaction parameters are needed in
the local composition model. Note that, in agreement to the
previous discussion, the combinatorial term of UNIQUAC is
dropped.
Vidal himself in a series of publications25−27 proposed

combining the Huron−Vidal mixing rule in SRK or PR using
the residual term of UNIQUAC or UNIFAC, in the latter case
for developing a predictive model. Of course, in both cases new
interaction parameters (molecular or group ones) should be
determined based on experimental data. Later, Soave and co-
workers28−34 continued this work proposing an SRK/Huron−
Vidal model with the residual term of UNIFAC and applied the
derived model (UNIFEST) with success to some polar
mixtures containing ethers, alcohols, ketones, esters, and
alkanes or light gases. More work was in progress28,29 but to
the knowledge of the authors this group contribution SRK/
Huron−Vidal parameter table has not been completed (see,
however, the discussion in section 3 and ref 98). In the first of
these publications28 Soave illustrated (Figure 3 of ref 28) that
the combinatorial term of the external model (UNIFAC)
should be dropped as “calculations have shown that it causes an
excessive decrease of volatility which cannot be compensated in
mixtures of light and heavy hydrocarbons”.28 The test system was
ethane/octane at 25 °C. Soave29 also mentioned that “the
combinatorial term produced over-specif ied coef f icient values”.29

We believe that these conclusions from Soave are correct and
consistent with the derivation of the Huron−Vidal mixing rule,
see eq 4, since the excess Gibbs energy at infinite pressure from
the EoS only corresponds to its “energetic” or “residual” part.
Thus, in the case of the Huron−Vidal mixing rule, eq 1a implies
equating the energetic gE from the EoS (right-hand side of eq 4)
and from an explicit activity coefficient model.
We will further elucidate this point by looking at the activity

coefficient equation derived from SRK using the Huron−Vidal
and classical mixing rules. Following the discussion by
Kontogeorgis and co-workers16,35,37 and Sacomani and
Brignole36 we will analyze the Huron−Vidal mixing rule by
looking at the activity coefficient equation, which unlike the gE

expression, depends on the mixing rule. To simplify things, we
limit our discussion to infinite dilution conditions, zero values
of the interaction parameters and binary systems. Under these
conditions, and using the linear mixing rule for the covolume
parameter, the expressions for the activity coefficient are for
SRK with the various mixing rules given in eqs 5a−5d (note
that ∞ indicates infinite dilution here).

SRK with vdW1f mixing rules:
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SRK using the simplified mixing rule a/b = ∑ixiai/bi
(this form of the equation corresponds to using only
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the combinatorial/free-volume contribution of the cubic
EoS):

γ = γ =
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SRK using the Huron−Vidal mixing rule (using an external
activity coefficient without or with an explicit combinatorial
term):
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where M is the external activity coefficient model such as
NRTL. We use the symbol “res,M” to emphasize that only
the residual term of an activity coefficient model or a purely
energetic model should be used in the Huron−Vidal model.
Nevertheless, if an activity coefficient model having both
combinatorial and residual terms is used, then eq 5d
applies.
By comparing eqs 5a−5c we can see that SRK with the

Huron−Vidal mixing rule essentially modifies only the residual
term of the equation of state (compared to the classical vdW1f
mixing rule). This residual part is, for the vdW1f mixing rules,
represented by the last bracketed term in eq 5a, which is a
regular solution type term. In the case of SRK/Huron−Vidal
this residual term is given by a local composition model (last
term in eq 5c). The SRK EoS with the Huron−Vidal mixing
rule has the same combinatorial-free volume term as SRK with
the vdW1f mixing rules. It is thus clear that the performance
of SRK/Huron−Vidal EoS coupled with NRTL cannot be
identical to that of NRTL, especially for size-asymmetric
systems, even at low pressures. This is because the EoS/GE

model contains a combinatorial term, while the explicit gE

model (NRTL) does not.

Following previous investigations16,35−37 we can claim that
the first term of eqs 5a and 5c (and the full eq 5b) is the
combinatorial-free volume or size term of the EoS. It represents
indeed the term that disappears at infinite pressure (if we set
V = b and Vi = bi), exactly as the SE and VE terms vanish at
infinite pressure. The regular solution terms in eq 5a or γres,M in
eq 5c which do not disappear at infinite pressure are the energy
terms of the EoS. Having said that, how successfully do the
well-known cubic EoS like SRK or PR represent nearly
athermal mixtures with large size differences between the
components which could provide a test for the combinatorial/
free-volume term of cubic EoS ? Mixtures of alkanes offer an
excellent such test as these are considered nearly athermal and,
for example, ln γres,M = 0 from UNIFAC for such systems. The
results shown in refs 16 and 35−37 as well as some typical results
given in Table 4 and Figure 1 illustrate that the combinatorial-free

volume term of cubic EoS does provide qualitatively and in many
cases even quantitatively correct results.
The results in Table 4 and Figure 1 are based on the Peng−

Robinson equation of state for which the equations are similar
to eqs 5a−5c:
PR with vdW1f mixing rules:
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Table 4. Percentage Absolute Deviation between
Experimental and Calculated Activity Coefficients at Infinite
Dilution for n-Butane and n-Heptane in Various Alkanes
Using the PR EoS and Various Mixing Rules. For
Comparison the Deviations with Original and Modified
UNIFAC Combinatorials5,112 Are Also Given

alkane or.UNIFAC mod.UNIFAC

PR−
vdW1f,
eq 6a
(kij = 0)

PR-a/b
or

Vidal,
eqs 6b
or 6c

PR−Vidal,
eq 6d (using
or.UNIFAC
in the external

model)

n-Butane

20 39 16 27 0.6 46

22 41 17 32 1.1 50

24 40 13 44 2.0 51

28 43 13 54 2.5 58

32 45 11 68 5.3 63

36 46 10 83 9.3 67

average 42 13 51 3.5 56
n-Heptane

20 21 6.8 15 5.3 31

22 25 9.1 18 11.1 38

24 24 5.2 29 9.3 40

28 26 3.0 45 11.7 47

32 28 1.9 63 15.6 53

36 30 0.2 85 19.3 58

average 26 4.4 43 12 45
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PR using the simplified mixing rule a/b = ∑ixiai/bi:
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PR using the Huron−Vidal mixing rule (using an external
activity coefficient without or with an explicit combinatorial
term):
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In all the above cases:

=
+ +
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(1 2 )i i

i i
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and the function f(b2,V2) is the same as f(b1,V1), with change of
subscripts.
We note that the results with the cubic EoS combinatorial/

free-volume activity coefficient (or simply the a/b mixing rule)

are as good as those with the modified UNIFAC,112 which is a
very successful model for alkane mixtures. Moreover, the results
are better than those with original UNIFAC. On the other
hand, cubic EoS using the vdW1f mixing rules yield erroneous
results which are even qualitatively wrong (positive deviations
from Raoult’s law). Equally poor results are obtained (last
columns in Table 4; see also Figure 1) if, erroneously, the “full”
UNIFAC model is used in the Huron−Vidal mixing rule
i.e. use of eq 6d. A large overcorrection is resulted which yields
activity coefficients exhibiting extreme negative deviations from
Raoult’s law. Although being qualitatively correct (negative
deviations from Raoult’s law), the results are in this case as
poor as when the vdW1f mixing rules are used.
It is, thus, clear that inclusion of “additional” combinatorial

free-volume terms would yield poorer results for alkanes. These
“additional” terms appear in the SRK/Huron−Vidal model if
we introduce a combinatorial term from an external activity
coefficient model, that is, when we use eqs 5d or 6d. Including
“erroneously” such an extra combinatorial term would eliminate
the good performance of the combinatorial/free-volume part of
the EoS. Moreover, this conclusion is in full agreement with the
findings of Soave, Vidal, Feoiou et al., and others who have
used the Huron−Vidal mixing rule using exclusively NRTL
or the residual term of UNIQUAC or UNIFAC. The above
analysis shows that especially for size-asymmetric systems,
correlations of SRK/Huron−Vidal using Wilson or the full
version of UNIQUAC or UNIFAC may not result in
satisfactory results, even when interaction parameters are fitted
to data.
It is interesting to note that the similarities between SRK and

PR are not seen in the simpler van der Waals equation of state,
for which the activity coefficient expressions at infinite dilution
are shown in eqs 7a and 7b.

vdW with van der Waals one fluid mixing rules:
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vdW using the Huron−Vidal mixing rule:

γ = γ + γ
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Upon comparing eq 7a with either 5a or 6a we can see that
the vdW EoS generated activity coefficient does not include in
the combinatorial-free volume contribution the following two
terms, for example, for SRK
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This is an important omission. The vdW’s combinatorial/
free-volume term (first three terms in eqs 7a and 7b) resembles

Figure 1. Experimental and predicted with PR and various mixing
rules activity coefficients of pentane in alkanes of different chain
length. The original UNIFAC5 model is used in LCVM.
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indeed activity coefficient models suitable for polymer
solutions, like Flory−Huggins113 or Entropic-FV.114 However,
using EoS-generated volumes, this term alone results to activity
coefficients only slightly below unity for alkane mixtures. These
activity coefficient values are in the right trend qualitatively in
agreement to the experimental data (negative deviations from
Raoult’s law) but quantitatively they deviate significantly from
the experimental values, as shown by Kontogeorgis et al.38

In conclusion, the Huron−Vidal mixing rule is an excellent
correlative tool for low and high pressure VLE of complex
systems and it is important to employ an energetic activity
coefficient model in the mixing rule, for example, NRTL. The
parameters must be refitted to data using the EoS and the
mixing rule meaning that existing parameters cannot be used
due to the infinite pressure assumption in the mixing rule
derivation. There is another significant “double limitation”. The
derivation of eq 4 is based on the linear mixing rule for the
covolume. This is indeed the most widely used mixing rule for
the covolume in cubic EoS, and often good results are obtained.
Moreover, using this combining rule, the combinatorial/free-
volume contribution to the activity coefficient has the form of
eqs 5 or 6, which results to satisfactory but not perfect results
(for nearly athermal mixtures). The mixing rule for the
covolume affects the liquid-phase properties especially for size-
asymmetric systems and as shown by Kontogeorgis et al.38 a
single interaction parameter [bij = ((bi + bj)/2))(1 − lij)] can
improve dramatically the results of cubic EoS (see also later,
after eq 43). The lij parameter can effectively modify the
combinatorial/free-volume contribution in the right direction
and even adjust accordingly the energetic term of EoS, as the
mixing rule for the covolume appears in all terms of cubic EoS-
generated activity coefficients. Kontogeorgis et al.38 showed for
example that by using a single lij equal to about 0.02 accurate
results are obtained with the PR EoS for mixtures of ethane
with alkanes varying from decane to C44. The same is not
possible with a single kij interaction parameter. However,
the derivation of the Huron−Vidal mixing rule restricts the
cubic EoS of the possibility of employing this extra degree of
freedom, as a linear mixing rule for the covolume is imper-
ative in its derivation. Moreover, the SRK using Huron−
Vidal mixing rule violates the imposed by statistical thermo-
dynamics quadratic composition dependency of the second
virial coefficient:

∑ ∑=B x x B
i j

i j ij
(8)

The second virial coefficient from cubic EoS like vdW, SRK,
and PR is given as

= −B b
a

RT (9)

Even though cubic EoS do not give good second virial
coefficients for pure compounds, it might be of interest to
satisfy the theoretically correct limit of eq 8. Vidal1,39 was
aware of this limitation but he and others have stated that it is
difficult to establish what importance should be attributed to
this limitation and what is to gain by satisfying eq 8 for practical
applications. Vidal39 writes: “we have never observed practical
problems attributable to this defect”. Note that the classical
vdW1f mixing rules do satisfy this theoretical limit. Wong and
Sandler proposed in 19929 in a truly novel way a modification
of the Huron−Vidal mixing rule which addresses several of its

limitations, permitting the use of existing interaction parameter
databases, utilization of the extra degree of freedom by
modifying the mixing rule for the covolume parameter and sat-
isfaction of eq 8. Some other issues have been raised however.
We discuss the Wong−Sandler mixing rule next.

2.2. The Wong−Sandler Mixing Rule. The Wong−
Sandler mixing rule is, like Huron−Vidal, also based on the
infinite reference pressure but with significant modifications
compared to that in Huron−Vidal:

i First of all, the starting point is not eq 1a but eq 1b
(at infinite pressure). Thus, by equating the excess
Helmholtz energies, the excess volume term is eliminated
(see eq 3b and Table 1).

ii Wong and Sandler assumed that the following is
approximately true:

≈ ≈ ≈∞a a a gmodel
E

P
E

lowP
E

lowP
E

(10)

The middle equality of the excess Helmholtz energy
at infinite pressure with the excess Gibbs energy at
low pressure is based in the empirical finding40 of the relative
insensitivity of the excess Helmholtz energy with pressure,
whereas it is well-known that gE is highly dependent on
pressure. Wong et al.42 justified also numerically this equality
for the system methanol/benzene.

iii Having now the possibility for an additional degree of
freedom, Wong and Sandler9 choose to satisfy eq 8, thus:
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The Wong−Sandler mixing rule is derived from statements
i−iii and eq 1b as follows. First, from statements i and ii,
expressions identical to Huron−Vidal mixing rule are obtained
(see also Table 3). In the case of Peng−Robinson we get
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Substituting eq 12 in eq 11 we get, for the PR EoS,

=
∑ ∑ −

+ − ∑

( )
b

x x b

x1

i j i j
a

RT ij

g
RT i i

a
b RT0.6232

i

i
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(13)

similar to SRK (see Table 3). So, the covolume parameter can
be calculated from eq 13, and then the mixing rule for the
energy parameter can be obtained from eq 12. In this way an
excess Gibbs energy model with existing low-pressure obtained
parameters gE,M can be in principle used. The Wong−Sandler
mixing rule is defined by eqs 12 and 13 together with an
expression for the cross virial coefficient. This last point is not a
trivial issue and indeed, as explained later, the cross virial
coefficient term plays a major role in the Wong−Sandler
model. This is the case because of the uncertainty about which
combining rule should be used for the cross virial coefficient.
Moreover, Wong and Sandler9 (and most subsequent
investigators) have employed an interaction parameter kij in
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the model. The following choices for the cross virial coefficient
have been reported:
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(The possibility of using kij = 0 in eq 14a results in a linear
mixing rule for the second virial coefficient, but this possibility
has not been tested for the Wong−Sandler mixing rule).
Wong and Sandler9 determined kij from experimental VLE

data at one temperature and x = 0.5, while Orbey et al.41,43

fitted kij to UNIFAC-obtained infinite dilution activity
coefficients at x = 0.5, thus rendering the model fully predictive.
It is evident from the aforementioned discussion that, despite

the apparent similarities, there are fundamental differences
between the Huron−Vidal and Wong−Sandler approaches.
Great successes have been reported for the Wong−Sandler

mixing rule. For example, Wong et al.42 using van Laar as the gE

model with parameters estimated from low pressure data and
kij = 0.326 predicted VLE for 2-propanol/water in the range 150−
275 °C and up to 100 bar with excellent results. Similar very
satisfactory results were obtained for acetone/pentane, ethanol/
water, and other systems, using either NRTL or van Laar as the
activity coefficient model incorporated. These examples, further
verified and elaborated in subsequent publications, illustrate
the key success of the Wong−Sandler mixing rule, namely to
predict VLE using existing low pressure parameters from
activity coefficient models over very extensive temperature and
pressure ranges, thus extrapolating successfully far beyond gE

models alone could ever do on their own! Successful results
have been obtained also for ternary and multicomponent VLE
(and in some cases also VLLE), using binary system generated
parameters. This great success made the Wong−Sandler mixing
rules the object of many investigations from numerous
researchers who applied the methodology also to liquid−liquid
equilibria, excess enthalpies, solid−gas equilibria, even surfac-
tants and polymers. Some of these applications are discussed in
section 3.
Following the discussion with the Huron−Vidal mixing rule,

the use of the “energetic” van Laar and NRTL models is
consistent with the infinite pressure derivation of the model (as
SE = 0 in the model development). Still, the Wong−Sandler
rule has been used even with UNIQUAC and UNIFAC
which contain an external combinatorial term. This may be the
cause of problems for size-asymmetric systems, as discussed
below. Indeed, despite the significant success, there is a well-
documented criticism regarding the Wong−Sandler mixing
rules which mostly lies in the following four directions:
(1) Even if we do not consider the kij of eq 14 as an

additional adjustable parameter but as a parameter that can
be obtained from the incorporated gE model, there is an
uncertainty on how this parameter should be estimated, on
which combining rule should be preferred for the cross second
virial coefficient (eqs 14a or 14b or other) and on what exactly
kij represents in the model (see also point 4 later). Can kij be
estimated in a reliable way from cross second virial coefficient
data?
(2) Equation 13 introduces a temperature dependent

covolume parameter. Such temperature-dependent covolumes

are for good reasons avoided in cubic EoS, as discussed by
Michelsen and Mollerup44 and Satyro and Trebble.45,46 This is
because they may result in negative heat capacities at certain
high pressure conditions. Thus, can the fulfillment of one
correct physical behavior (eq 8) lead to unphysical behavior for
another property?
(3) The good extrapolation capabilities of Wong−Sandler

mixing rules may not necessarily be associated with the
reproduction of the correct composition dependency of the
mixture second virial coefficient. As Michelsen and Heide-
mann47 showed, the PR/Wong−Sandler model results to rather
large excess enthalpies which are closer to the experimental data
compared to the values produced by the incorporated gE model
of the mixing rule. Can the extrapolation success of Wong−
Sandler mixing rules be, as Heidemann,48 writes “derived from
this fortunate cancellation of errors?” We should point out,
however, that Michelsen and Heidemann used the Wilson
model in their analysis of the Wong−Sandler mixing rules. This
is a gE model with a combinatorial term (Flory−Huggins) and
should not be preferred when an infinite reference pressure
model is used. Their analysis would have been more convincing
if, for example, the NRTL model was used instead.
(4) Coutsikos et al.49 published a systematic investigation of

the role of kij on the Wong−Sandler mixing rule and whether a
unique kij value can be used. A summary of their results is
provided in Table 5. They find that it is possible to use a single

kij value and that PR/Wong−Sandler performs best for
(size)symmetric systems. As the asymmetry increases (in either
size or energy), for example, water/heavy alcohols or alkane
mixtures, then one kij value cannot represent satisfactorily the
phase behavior, and the kij should be considered composition
dependent. Such dependency “destroys” the concept of this
mixing rule. Moreover, they attribute this problem to the fact
that kij must compensate for the errors introduced by the
assumption a∞P

E ≈ alowP
E and conclude that this equality does not

hold in the general case, especially for asymmetric systems.
Thus, these authors make the bold statement that the basic
assumption behind the Wong−Sandler mixing rule, that is, eq
10, fails for asymmetric systems. While their analysis is
convincing the authors used UNIQUAC in their Wong−
Sandler mixing rule. For this reason at least part of the
problems seen for asymmetric systems, esp. when kij values
must be fitted, could be related to the fact that a combinatorial
term is used in the gE model (UNIQUAC). This is not con-
sistent with the infinite pressure derivation of the Wong−Sandler

Table 5. Summary of the Analysis of the Wong−Sandler (WS)
Mixing Rule. Based on the Results from Coutsikos et al.,
199549

system
(1)/(2)

ratio of
covolumes
b1/b2

ratio of
infinite
dilution
activity

coefficients

difference in
percentage AAD

in pressure
between WS and

gamma-phi
approach

difference in vapor
phase mole

fraction × 100
between WS and

gamma-phi
approach

methanol/
water

2.2 1.2 0.38 0.2

butane/
methanol

1.8 0.6 2.9 10.4

hexane/C32 0.11 1.5

butanol/
water

4.3 13.1 2.9 18.1

hexanol/
water

5.9 64.3 14.2 17.2
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mixing rule. Again, as in point 3, the analysis would have been
more convincing if the NRTL or van Laar models were used
instead.
Finally, we should mention a practical problem of the

Wong−Sandler mixing rule. As with Huron−Vidal, and the
other models discussed later, parameters for gas-containing
systems should be fitted separately in connection with these
models. This is because such parameters are not available in
activity coefficient models like NRTL and UNIFAC. Wong−
Sandler rules have found so far limited applicability to gas-
containing systems and extensive gas-containing tables are not
available. Furthermore, the predictive approach of obtaining
the kij-parameters (using UNIFAC) is not applicable to gas-
containing systems.
2.3. The “Exact” Zero Reference Pressure Mixing Rule.

The idea behind the use of the Wong−Sandler mixing rule was
to use an external excess Gibbs energy model, gE,M, with existing
parameters obtained from low pressure phase equilibrium data.
An alternative approach to using eq 1b as a starting point the
way Wong and Sandler did is to start with eq 1a and use a zero
reference pressure. This would always ensure reproduction of
the incorporated gE model when a mathematical solution can be
obtained for the energy parameter. The zero reference pressure
models appeared in early 90s, chronologically prior to the
Wong−Sandler ones. The idea was put forward by Mollerup10

and Heidemann and Kokal50 but the mathematical problem
was, essentially, solved in a tractable way by Michelsen,11,12

who in 1990 presented the so-called “exact” model, shown in
Table 3. This is an exact zero reference pressure mixing rule,
ensuring full reproduction of the gE model incorporated.
Unfortunately, the mixing rule is implicit with respect to the
energy parameter. Moreover, the mixing rule is not always
obtainable, but only when a liquid solution is available at zero
pressure, that is, for values above the limiting values shown
in Table 3. This can be easily understood as illustrated here
for SRK which at zero pressure and reduced variables (α =
a/(bRT) and u0= V/b at P = 0) is written as

−
− α

+
=

u u u
1

1 ( 1)
0

0 0 0 (15)

The liquid volume solution at zero reference pressure is

= α − − α − α +
u

( 1) 6 1
20

2

(16)

but evidently it exists only for αlim > 3 + 2√2 (Table 3 gives
the PR limiting value).
When the liquid volume at zero pressure does exist, then the

fugacity coefficient from SRK,

φ =

= − − + − − +⎜ ⎟
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

f
P

P V b
RT

PV
RT

a
bRT

V b
V

ln ln

ln
( )

1 ln

(17a)

can be equivalently written as

− = α

= − − − − α
+⎛

⎝⎜
⎞
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f

P
b q

u
u

u
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1 ln( 1) ln
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e0

0
0

0 (17b)

Then, from the equation

∑ ∑= φ − φ = −
g
RT

x
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RT
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RT
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i
i i

i
i

iE
0 0,

(18)

and using eq 1a, the expression for the mixing rule is obtained:

∑ ∑= + α − α
⎛
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⎞
⎠
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⎛
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(19)

Michelsen12 showed that SRK coupled with Wilson and eq
19 provided good results ensuring full reproduction of the
Wilson results at low pressures.
It must be appreciated that eq 19:

• is mathematically correct at zero pressure without
assumptions (other than the need for a liquid volume
at zero pressure)

• ensures full reproduction of the gE from the external
activity coefficient model at zero pressure. Any gE model
can be used including models with or without
combinatorial terms like Wilson, UNIQUAC or NRTL

• can be used with any low pressure activity coefficient
models with existing interaction parameters obtained
from low pressure VLE or other data, for example, the
parameters available in the Dechema or UNIFAC tables
can be used

• does not involve any assumption for the mixing rule for
the covolume parameter; linear, quadratic, or other
mixing rules for the covolume parameter can be used

There are limitations, however. Besides its nonanalytical
character (need for iterative procedure for obtaining the energy
parameter), unlike the Huron−Vidal and Wong−Sandler
mixing rules, the serious practical limitation of the “exact
mixing rule” is that it is not defined for reduced temperatures
Tr > 0.9 due to the limiting value for the energy parameter
mentioned above. This limitation essentially excludes gas
solubilities. Since a very large number of high pressure systems
where EoS using the EoS/GE approach would be useful involve
gas+polar (or nonpolar) compounds, excluding gas solubilities
is an important practical limitation of the “Exact” mixing rule. A
counter-argument (Michelsen, 2010, private communication) is
that for such gas-containing systems, existing gE models could
not be used since these low pressure activity coefficient models
do not have interaction parameters for gases. Such parameters
for systems containing gases must be estimated using the EoS
and the specific EoS/GE mixing rule. Nevertheless, such
estimation of interaction parameters cannot be done via eq
19 and this brought up the need for models like MHV1,
MHV2, and PSRK which are discussed next. For reasons that
will become clear later we will call these as “approximate zero
reference pressure models”.

2.4. The Approximate Zero Reference Pressure
Models. To extend the applicability of the zero reference
pressure approach to energy values lower than the limiting
value mentioned above (after eq 16) and thus also to be able to
use the zero reference pressure approach to gas-containing
mixtures, approximations must be introduced. Dahl and
Michelsen13 noticed that the q-function of eq 17b can be
approximated either as a first- or a second-order degree
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equation with respect to the (reduced) energy parameter. In
the linear case, if equation

α ≈ + αq q q( ) o 1 (20a)

is introduced in eq 19, an explicit mixing rule is obtained,
known as MHV1 (modified Huron−Vidal first order), due to
its similarity to the Huron−Vidal mixing rule (see in Table 3):

∑ ∑α = + + α
⎛

⎝
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⎞
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RT
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1

ln
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i i
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(20b)

or

∑α = − + α
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where the second term in parentheses is a Flory−Huggins
(FH) type combinatorial term stemming from the equation of
state and based on covolumes:

∑=
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RT
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b

ln
i

i
i
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(20d)

The significance of writing the MHV1 mixing rule in the
equivalent form of eq 20b will be shown later.
If a quadratic equation for the q-function:

α ≈ + α + αq q q q( ) o 1 2
2

(20e)

is combined with eq 19, the MHV2 mixing rule is obtained
(modified Huron−Vidal second order):
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The q1 and q2 values are obtained by fitting the q − α equation
and thus these values depend on the EoS used and the range
of fitting. Various proposals have been made. Dahl and
Michelsen13 proposed using for SRK q1 = −0.593 fitted in
the range 10 < α < 13 (or 8−18 for MHV2). Gmehling14

proposed again for SRK q1 = −0.64663 fitted in the range 20 <
α < 25. This has resulted to the so-called PSRK mixing rule.
Slightly different values have been reported for other cubic EoS
such as q1 = −0.53 for PR.
It is instructive and helpful in the subsequent discussion to

see that eq 20 (MHV1 and PSRK models) can be derived in
an alternative way as shown by Mollerup,10 Gmehling,54 and
Fischer55 as well as by Sandler and co-workers.51−53 This
alternative derivation is based on the assumption of a constant
packing fraction u = V/b for all compounds and for the mixture.
Recall that at infinite pressure the packing fraction is unity but
for real fluids10,54,55 we would expect that V > b in most cases,
with packing fractions on the order of 1.1−1.2.

Consider, for example, SRK and the use of the packing
fraction concept: the gE shown in Table 1 can be written as

∑ ∑
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Equation 22 can be simplified if we assume that the packing
fraction of all compounds and of the mixture is the same. This
appears to be a drastic assumption but at liquid-like conditions
most compounds have similar packing fractions, as discussed
by, among others, Fischer and Gmehling.54,55 Under these
conditions, eq 22 can be written as

∑ ∑= + α − α
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g
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Equation 23 is remarkably similar to eq 20a and eq 20b and can
be rearranged to read

∑ ∑α = + + α
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u
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ln
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Thus, eqs 20 and 23 or 24 are identical when q1 and A are
related as shown in eq 25. A similar expression is valid for PR.
The relationship between q1 and A provides an alternative way
to estimate q1 from the knowledge of the packing fraction value.
Alternatively, the packing fraction values which correspond to
previously published q1 values can be calculated, for example,
q1 = −0.59313 corresponds to u = 1.234 and q1 = −0.6466314
corresponds to u = 1.1. Other researchers such as Novenario et
al.56 proposed a value u = 1.15 for PR based on a large number
of fluids and liquid volumes at 0.5, 1, and 2 bar. Tochigi et al.57

have used in the MHV1 version a range of u-values for different
liquids (calculated at Tr = 0.4), all being in the range 1.09−1.1.
Numerous publications, for example, in references 13 and 58,

have illustrated the success of approximate zero reference
pressure models like MHV2 in reproducing low pressure data
of the incorporated gE model and most importantly in
predicting high pressure VLE of polar mixtures like acetone/
water and ethanol/water over very extensive temperature and
pressure ranges (up to 700 K and 200 bar). The deviations
reported13 for five polar mixtures are less than 4% in pressure
and 2 (×100) in vapor phase mole fraction using MHV2
coupled with SRK and the Lyngby version of modified
UNIFAC.112 Very good results have also been reported for
gas solubilities,58 using estimated group contribution parame-
ters for gases, also for multicomponent VLE.59 In the PSRK
model by Ghemling et al.14,5460 the MHV1 mixing rule is
combined with the Dortmund version of modified UNIFAC.115

Despite these successes, several limitations have been
reported:
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(1) The results are (or should) inevitably (be) bounded by
how well the gE model performs at low pressures. This means
that in principle (if the mixing rule fully reproduces the gE

model incorporated) we should not expect better results than
the gE model used. For example, the EoS/GE and the activity
coefficient model incorporated should give very similar results
for low pressure VLE and LLE. It is established that local
composition models do exhibit problems in, for example,
predicting multicomponent LLE for difficult systems like
water−alcohol−hydrocarbons. These problems should be in
principle inherited by the EoS/GE models. Of course the same
limitation is expected for the “exact” and the Wong−Sandler
mixing rules as well.
(2) Approximate zero reference pressure models (and the

“exact”) do not satisfy the quadratic dependency for the second
virial coefficient imposed by statistical mechanics if the linear
mixing rule is used for the covolume, as often done. However,
unlike the Huron−Vidal mixing rule, this assumption is not a
necessary one in, for example, MHV1 and MHV2. One could
have chosen to develop a mixing rule for the covolume which
satisfies eq 8. This has been done for MHV1 by some
researchers.56,57,61,62 Tochigi et al.61,62 have compared MHV1
coupled with either the linear mixing rule for the covolume or a
mixing rule which satisfies eq 8. They found no difference in
the two cases for the few systems tested under the assumption
that kij (in eq 14a) is zero (which implies a linear mixing rule
for the second virial coefficient).
(3) As shown by many investigators, for example, in refs 63,

64, and 92, MHV1, PSRK, and MHV2 perform very poorly for
(size) asymmetric mixtures like those containing gases (N2,
CO2, ethane, or methane) with hydrocarbons of different size.
Even though a new interaction parameter is estimated, for
example, for the group interaction CO2/−CH2− (in the case of
CO2/alkanes), these investigations clearly show that a single
group parameter cannot describe gas solubilities over
extensive size asymmetries. The deviations are very high and
increase systematically with increasing size difference of the
mixture compounds (see also Figure 4). Boukouvalas et al.15

and Gmehling65 report that for ethane/dodecane the
percentage deviation in pressure is about 12−14% with either
PSRK or MHV2 but it increases to over 30% for ethane/
eicosane and beyond. Similarly, for CO2/alkanes, the deviations
in pressure are higher than 30% for CO2/eicosane and above.
For methane/alkane mixtures, we have a similar picture. In this
case, already for methane/nonane and beyond, the deviation in
pressure is above 30% for MHV2 and in the case of PSRK for
methane/hexadecane and beyond the deviation is also above
30%. These are very disappointing results for the approximate
zero reference pressure models.
(4) It became soon apparent15,63,64,92 that even for low

pressure systems, such as mixtures of alkanes, the approximate
zero reference pressure models do not fully reproduce the gE

model used in their derivation. The reproduction is satisfactory
for mixtures of similar “size and energy” values, but as the
asymmetry increases the reproduction of gE and especially of
the activity coefficient is very poor. This topic was analyzed by
Kalospiros et al.67 who showed that the difference between the
gE model (and the activity coefficient expression) obtained from

the EoS using the EoS/GE mixing rules and from the external gE

model (called here gE,M) is
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From eqs 26 and 27 it is clear that the results especially for
the activity coefficients are very sensitive not only to the correct
reproduction of the q function, but also its derivative with
respect to the reduced energy parameter. Especially the
reproduction of this derivative is very poor from the
approximate zero reference pressure models. Kalospiros et al.67

concluded that in terms of the EoS/GE models, symmetric
systems should be considered those with similar reduced
energy values and only in this case can we expect good
reproduction of the underlying gE model. When the reduced
energy values from the two compounds are different and
especially as their difference increases, then we can expect poor
reproduction of the gE,M by mixing rules like MHV1, MHV2,
and PSRK. In reality, thus, we are talking about approximate
zero reference pressure models, that is, the the actual reference
pressure for these mixing rules (e.g., MHV1 and PSRK) is not
exactly zero.67

The same conclusion can be reached in another way.
Following Michelsen and Mollerup,44 who start from the
fundamental equation,

∫− =
g
RT

g
RT

V
RT

Pd
E,P E,0

0

P E

(28)

it can be shown that at if we set P as infinite, then an almost
exact expression can be obtained for the difference of gE at
infinite and zero pressure:
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This expression can be compared to the equivalent expression
which is obtained from the difference of infinite pressure and
approximate zero reference pressure models. In the case of
SRK, the difference between the Huron−Vidal and MHV1 or
PSRK mixing rules is
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(since the terms −ln 2 and −q1 almost cancel each other esp.
for PSRK).
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Upon comparing eqs 30, that is, the approximate difference
between infinite and zero pressure models, and 29, which
corresponds to a more or less exact difference between the gE

values at infinite and zero pressure, we see that the term

∑ α
α

x ln
i

i
i

is missing in eq 30. This term is eliminated or diminished when
the reduced energies of the compounds are similar, which is in
accordance to the terminology of “symmetric” systems of
Kalospiros et al.67 The inspection of eqs 29 and 30 provides
thus an additional proof of the approximate zero reference
pressure character of models like MHV1, PSRK, and the like.
Commenting on the four limitations discussed above,

possibly little can be done about the first one, while the
practical importance of the second limitation is somewhat
unclear. On the other hand, limitations 3 and 4 are very
important and appear interconnected, although we will see that
this is not always the case. This has led to a number of models,
starting with LCVM, which aim to extend the applicability of
EoS/GE mixing rules to asymmetric systems. This topic has led
to many discussions in the literature both with respect to these
models’ capabilities and the explanation of their performance.
We discuss in the coming section LCVM and some models
which followed, and we present a general explanation of their
performance for asymmetric systems.
2.5. LCVM and Related Models. The first model which

addressed specifically the limitation of size-asymmetric systems
is LCVM (linear combination of Vidal and Michelsen mixing
rules) was proposed by Tassios and co-workers15 in 1994. The
authors have presented the LCVM mixing rule for the energy
parameter of the PR EoS as
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with AV = −0.623, AM = q1 = −0.52 and λ = 0.36 [original
UNIFAC], is a universal value obtained from ethane/alkane
VLE data. The translated PR and original UNIFAC are used,
and the λ value depends on the specific choice of EoS and gE

model.
LCVM was criticized in the literature41,47,48,51,52,54 due to its

apparent empirical nature:

• The model cannot be derived from the usual starting
point of EoS/GE models, neither from eq 1a nor from eq
1b.

• Being a combination of infinite and approximate zero
reference pressure models, it appears not to have a
specific reference pressure itself. Thus it is uncertain
whether a UNIFAC parameter table with parameters
estimated based on low pressure data can be used.

• It contains an additional parameter, which though
universal, seems to be connected to the specific cubic
EoS and gE model used by the authors, thus it is not
certain that the mixing rule can be used with EoS and gE

models other than those employed in its development.
• The whole approach appears rather empirical, for

example, why should this specific λ value be used? No
theoretical explanation was originally offered.

Despite these limitations, Tassios and co-workers have
shown in a series of publications15,63,66−74 that the LCVM

model can be used highly successfully for size asymmetric
systems such as methane, CO2, nitrogen, H2S, ethane with
hydrocarbons of different sizes, as well as with polar com-
pounds (alcohols, water, acids, etc), for predicting Henry’s law
constants, solid−gas equilibria, gas condensates and infinite
dilution activity coefficients of mixtures containing alkanes. In
addition, the results for polar (symmetric and asymmetric) high
pressure systems are at least as good as those of MHV2 and the
WS mixing rules. Other researchers75 have also applied LCVM
with success, for example, in high pressure wax formation for
petroleum fluids. Soon it became apparent that the success of
LCVM could not be attributed to coincidence or cancellation of
errors. Some explanation should exist. Following the analysis
presented by Kontogeorgis and co-workers,16,37,76 further veri-
fied by Li et al.,65 we briefly outline below a phenomenological
explanation which can justify the success of both LCVM and
several of the subsequent models.
First, it can be shown that LCVM can be written in a form

equivalent to eq 31 as
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where

= λ + − λ
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The FH combinatorial is given in eq 20d and for λ = 0.36 ⇒
C2/C1 = 0.68 “comb” and “res” are the combinatorial and
residual terms of the external activity coefficient model used, for
example, UNIFAC.
The MHV1 model, eq 20, can also be written in a similar way

when an external gE model like UNIQUAC and UNIFAC is
used which has separate combinatorial and residual terms:
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In most cases we can ignore the Staverman−Guggenheim
contribution to the combinatorial term as it typically
contributes little to the activity coefficient value, when physical
values are used for the van der Waals volume and area. Then,
the combinatorial contributions to the excess Gibbs energy
from UNIQUAC/UNIFAC and the various versions of
modified UNIFAC are expressed as the following:
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Original UNIFAC/UNIQUAC
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Modified UNIFAC (x = 2/3 for Lyngby version and x = 3/4 for
Dortmund version)
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Thus, it can be seen that the combinatorial terms from the
external activity coefficient model, for example, eqs 34a and
34b, and from the FH-type one stemming from the EoS at the
approximate zero reference pressure (eq 20c) are similar in
functionality. But are they similar in magnitude as well? Ideally,
and for the purpose of obtaining a purely energetic parameter
especially when new interaction parameters are estimated, this
“difference of combinatorial terms” from the EoS and from the
external activity coefficient model should be zero. “The two
combinatorials should cancel”, as stated by Mollerup10 more
than 20 years ago. In this way, eq 1a, in the case of approximate
zero reference pressure models, could be written as
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Notice that in the case of Huron−Vidal and Wong−Sandler
mixing rules, eqs 1a and 1b reduce essentially to eq 35b, as
explained previously.
Unfortunately, as shown by Kontogeorgis and Vlamos76 and by

Li et al.65 this “difference of combinatorials” does not cancel out. It
is small for systems with similar asymmetry but as the size and

energy differences between the mixture components increase, then
this difference of the combinatorial terms (i.e., the combinatorial
contribution to the activity coefficient from EoS minus that from
the external gE model) increases as well, as shown in the above-
mentioned publications.76,65 In the same references76,65 the
following are also shown: (i) The LCVM with the correction
factor C2/C1 = 0.68 minimizes the combinatorial difference
between the FH term from the EoS and the original UNIFAC
combinatorial. A correction factor C2/C1 = 0.3 (corresponding to λ
equal to 0.7) minimizes again the combinatorials’ difference when
the combinatorial term of the modified UNIFAC is used.
Interestingly, this λ-value for a modified UNIFAC has been
already recommended by Boukouvalas et al.15 in the original
publication of LCVM (without explanation). (ii) PSRK with fitted
van der Waals volume (r) parameters can also minimize the
combinatorial difference between the combinatorial term in eq 34b
and the FH term.
Additional evidence is provided by the results shown in

Table 6 as well as Figures 2 and 3 for mixtures of alkanes with

different chain length. These are the same systems as shown in
Table 4 and in Figure 1 but now the results of MHV1 and

Table 6. Percentage Absolute Deviation between Experimental and Calculated Activity Coefficients at Infinite Dilution for
n-Butane and n-Heptane in Various Alkanes Using the PR EoS and the MHV1 and LCVM Mixing Rules. For Comparison the
Deviations with Original and Modified UNIFAC Combinatorials5,112 Are Also Given

alkane Or.UNIFAC Mod.UNIFAC PR-MHV1 with Or.UNIFAC PR-MHV1 with modified UNIFAC PR-LCVM (PR-a/b rule)

n-Butane
20 39 16 39 98 0.9 (0.6)
22 41 17 50 120 0.6 (1.1)
24 40 13 64 150 5.8 (2.0)
28 43 13 77 187 5.3 (2.5)
32 45 11 95 234 7.0 (5.3)
36 46 10 113 285 8.4 (9.3)
average 42 13 73 179 4.7 (3.5)

n-Heptane
20 21 6.8 15 50 4.0 (5.3)
22 25 9.1 17 46 7.0 (11.1)
24 24 5.2 26 63 3.4 (9.3)
28 26 3.0 38 88 2.0 (11.7)
32 28 1.9 50 114 1.7 (15.6)
36 30 0.2 62 144 0.3 (19.3)
Average 26 4.4 35 83 3.1 (12.0)

Figure 2. Experimental and predicted with PR and various mixing
rules activity coefficients of hexane in alkanes of different chain length.
The original UNIFAC5 model is used in LCVM.
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LCVM are also shown and are compared to those of explicit
activity coefficient models (original and modified UNIFAC).
The following can be observed: (i) None of the two EoS/GE

models reproduce the results of the activity coefficient model
used in their derivations which are the original UNIFAC for
LCVM and the modified UNIFAC for MHV1. (ii) MHV1 with
an “additional to that of the EoS” combinatorial/free-volume
term (the bracketed term in eq 39) performs very poorly. The
results are as poor as those of the EoS using the vdW1f mixing
rules, resulting to positive deviations from Raoult’s law. (iii)
LCVM eliminates approximately the double combinatorial, thus
resulting to very good results as for these systems they are close
to those obtained using the a/b mixing rule or equivalently the
Huron−Vidal model. Notice that the results with LCVM are
much better than those of the incorporated activity coefficient
model (original UNIFAC) and comparable to modified
UNIFAC, which is known to perform well for alkane mixtures.
(iv) An extreme case of asymmetry is represented by activity
coefficients of heavy alkanes in small ones, as shown for one
example in figure 3.The results with PR/vdW1f are extremely
poor. The other models show qualitatively correct results.
Quantitatively LCVM performs best, followed by PR using the
a/b rule.
LCVM and PSRK with Li et al.65 parameters were shown to

perform very well for size asymmetric systems, for example,
ethane or CO2 with alkanes of different sizes. Naturally, if the
purpose of the EoS/GE model is to reproduce the incorporated
gE model at low pressures and low asymmetries with existing
parameters the difference between the two combinatorial terms
will be small and play a very small role in the calculations. This
explains why the problems of approximate zero reference
pressure models remained unnoticed when MHV2 and PSRK
were used, for example, for acetone/water, ethanol/water, or
CO2/methanol. What constitutes, however, the real problem of
MHV1/MHV2/PSRK and similar models is the case of gas-
containing mixtures such as methane, ethane, or CO2 with
alkanes, as shown in Figure 4. Then a new parameter must be
fitted, for example, CO2/CH2, and subsequently used to predict
phase behavior for all CO2/alkane mixtures. This increasing

with size “combinatorials’ difference” is added to the activity
coefficient (and the EoS) making it essentially impossible for
the regression to arrive to a single group parameter which can
represent these mixtures of extensive asymmetries, as shown in
the literature. When this combinatorials’ difference is
eliminated, as done, for example, in LCVM, the problem
disappears and these models can indeed be used for asymmetric
systems. It is worth noticing in Figure 4 that LCVM performs
well for ethane/alkanes even in the absence of any interaction
parameters. This is in essence identical in using only the
combinatorial/free-volume term of the equation of state, in
agreement to the previous discussion.
In agreement to these conclusions, more models appeared

which in a similar way eliminate the “double combinatorial
problem”. It is worth mentioning the GCVM by Coniglio et
al.77 and the corrected Huron−Vidal (CHV) by Sandler:52
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For PR and UNIFAC VLE the ratio is C2/C1 = 0.715

CHV52
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− δ = −1 0.64 0.7
The above values for CHV have been proposed for original
UNIFAC VLE. Similar values (around 0.715) have been
suggested by Zhong and Masuoka.78

Figure 3. Experimental and predicted with PR and various mixing
rules activity coefficients of heavy alkanes of different chain length in
heptane. The logarithm of the infinite dilution activity coefficient is
presented in order to best compare the various models. The original
UNIFAC5 model is used in LCVM. The modified UNIFAC of Larsen
et al.112 is used.

Figure 4. Vapor−liquid equilibrium calculations for ethane/alkane
mixtures. Average absolute deviation between experimental and
predicted bubble point pressures with the MHV2, PSRK and LCVM
models (the latter with and without interaction parameters (zero IP)).
The original UNIFAC5 model is used in LCVM. Adapted from ref 15.
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The similarity of eqs 36 and 37 to LCVM, eq 32, is
striking! Even the correction coefficients are similar,
illustrating further in agreement with the double combina-
torial difference concept, that this correction coefficient is
more related to which gE model is used (e.g., original or
modified UNIFAC) rather than which cubic EoS (since
both SRK and PR at approximate zero reference pressure
include the FH-type term).
An additional evidence of the above explanation on the role

of the “double combinatorial” can be offered by looking at the
activity coefficient equation from LCVM and the related
models, for example, GCVM and CHV.
For CHV (and similarly also for the other models) using

SRK, the infinite dilution activity coefficient of a compound in a
binary system is

γ = γ + γ =
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As compared to the expression under the same conditions for
MHV1:
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Upon comparing eqs 38 and 39 with eqs 5a−5c, we note
that the residual term is the same as for the SRK/Huron−
Vidal. Moreover, the combinatorial/free-volume terms of
cubic EoS using the various mixing rules differ only by the
bracketed terms in eqs 38 and 39 included in MHV1 and
CHV. This is what we have indicated as the combinatorial
terms’ difference. Indeed, as can be expected based on what
we discussed previously, if this combinatorials’ difference is
small, then the combinatorial/free-volume part of the cubic
EoS performs quite well for athermal mixtures like for
activity coefficients with alkane systems. As shown before,
the combinatorial/free-volume of cubic EoS (SRK and PR)
describes satisfactorily (at least qualitatively, often also
quantitatively) the size/shape effects of alkane mixtures (in

this case, recall that the residual term is zero). For CHV,
LCVM, and GCVM the bracketed terms (difference of
combinatorials) are close to zero, while the corresponding
bracketed term of MHV1 is not zero. Moreover, the
combinatorials’ difference in MHV1 increases with size
asymmetry, thus explaining why MHV1 and related models
result in unphysical high (even above unity) activity
coefficients for alkane mixtures (see also the results in Table 6
and Figures 2 and 3).
It appears that LCVM, GCVM, CHV and related models

obey in reality eq 35a, that is, they reproduce the gE,comb of the
incorporated model, or in reality they “correct” the
combinatorial activity coefficient of the incorporated gE

model. In this way the residual (energetic) term of EoS is
allowed to “do the remaining job”, that is, to describe phase
behavior for complex mixtures using interaction parameters,
either via existing (e.g., UNIFAC) or new interaction
parameters (for gas-containing mixtures).
The approach of eliminating the “double combinatorial” has

resulted in a new trend in the development of EoS/GE models
making them suitable also for asymmetric systems. Two more
recent approaches have been developed which essentially rely
on the same principle as outlined above.
The first approach by Gmehling and co-workers79−87 is to

develop a new type of PSRK as well as an EoS/GE based on
a translated PR (called VTPR) both of which eliminate
the double combinatorial in eq 33 from the start. Thus, the
resulting mixing rule resembles the one obtained at infinite
pressure with two differences: the q1 value corresponds to the
zero reference pressure models and a nonlinear mixing rule is
used for the covolume:
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(the above q1 is for PSRK, for VTPR q1 = −0.53087) with
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Similarly, Voutsas et al.88−91 proposed the UMR-PR model, an
EoS/GE mixing rule similar to VTPR but keeping the
Staverman−Guggenheim (SG) part of the combinatorial term
and they have used a slightly different expression for the
covolume:
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It may appear somewhat surprising that the authors have not
eliminated the full difference of the combinatorials but chose to
keep part of the combinatorial contribution, the one that usually
has the least effect. Otherwise the approach is similar to the one of
Gmehling and co-workers for VTPR. Nevertheless, unlike VTPR,
in the UMR-PR the existing UNIFAC parameters can be used.
New parameters are fitted for the group interactions in VTPR.
A similar model to UMR-PR but coupled with SRK has been

recently proposed by Chen et al.92 using a 2/3 exponent in the
b’s in eq 41b. Equally satisfactory results as for UMR-PR are
obtained for gas/alkanes.
The second approach is to introduce an lij parameter in the

covolume combining rule and maintain the same form for the
mixing rule for the energy parameter as for the approximate
zero reference pressure models. For example, Gani and co-
workers64,92 used the MHV1 model with

=
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A constant lij = 0.3 could describe well a series of asymmetric
systems of CO2 and fatty acid esters.
The use of a combining rule differing from the linear one for the

covolume and the role of lij (correction to the covolume mixing
rule) may be significant, as discussed by Kontogeorgis et al.38 They
showed that using an lij = 0.02 (and kij = 0) PR can correlate
ethane/alkanes using the vdW1f mixing rules very well.
The inspection of the general equation for the activity coefficient

expression from cubic EoS provides some insight on the
significance of the mixing rule for the covolume parameter. For PR,
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Equation 43 is simplified if a linear mixing rule is used for the
covolume:
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At infinite dilution, eq 44a can be written as
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Upon comparing eqs 43 and 44, it can be seen that the
mixing rule for the covolume parameter appears in all terms of
the EoS expression for the activity coefficient. This may justify
why the use of an lij or a combining rule other than the
arithmetic mean for the covolume parameter can effectively
“correct” both the combinatorial and the residual contributions
of the equation of state.

3. DISCUSSION
A general discussion on the capabilities and limitations of EoS/
GE mixing rules is offered in this section, supported by some
additional references. Table 7 shows a comparative presentation
of the characteristics of some of the most well-known mixing
rules.
The most important conclusions from the investigations on

EoS/GE mixing rules can be summarized as follows:
(1) Huron−Vidal mixing rules combined with a cubic EoS

(SRK or PR) constitute an excellent fitting tool, both for
correlating phase behavior (including LLE and VLLE) of
mixtures of complex compounds and for predicting multiphase
behavior for multicomponent mixtures. In particular the NRTL
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version proposed by Huron and Vidal which can be used
together with the vdW1f mixing rules is very useful. Excellent
results with SRK/HV have been presented recently even for
highly associating mixtures like those containing water/
hydrocarbons and multicomponent mixtures of water, glycols
(MEG, TEG), and hydrocarbons (including methane) as well
as for reservoir fluids with polar chemicals.93−95,107,16 The
results for these complex mixtures and others, for example,
CO2/water/dimethyl ether and mixtures with polar chemicals16

(aniline, sulfolane) are satisfactory and comparable to those
obtained with association models like those belonging to the
SAFT family. Table 8 summarizes some results with SRK/
Huron−Vidal and CPA for several binary and multicomponent
mixtures containing polar compounds. Compared to SAFT-
type approaches such as CPA and PC-SAFT, SRK/HV requires
more adjustable parameters (at least three per binary, five if
they are temperature-dependent) but nevertheless the perform-
ance for multicomponent systems is often satisfactory.
Temperature-dependent interaction parameters are needed
for demanding systems, for example, for describing the
solubilities of all compounds over extensive temperature-ranges
for CO2−water−methane.96 Still, association models also
exhibit difficulties for such mixtures. The Huron−Vidal mixing
rule has been recently combined with an association model
(CPA) in order to improve the performance of the association
model for water−acetic acid VLE.97 It is important to
emphasize that the most successful results with the SRK/
Huron−Vidal model are obtained when a “purely energetic”
activity coefficient model is used, for example, NRTL or the
residual term of UNIQUAC, UNIFAC, or ASOG, as also
illustrated recently by Soave98 in a successful SRK/HV model
using the residual term of the UNIFAC/ASOG models. We
have demonstrated in section 2 that this choice of activity
coefficient model is consistent with the Huron−Vidal
derivation. It is of interest to state that the Huron−Vidal
mixing rule is equivalent to the van der Waals one fluid mixing
rule if a van Laar type gE model is incorporated in the Huron−
Vidal mixing rule. This issue has been discussed by Soave and
Jaubert in recent publications.98,160

(2) A serious problem of most EoS/GE approaches is their
inability to reproduce the underlying activity coefficient model.
This problem has been shown to be partially responsible for the
problems of EoS/GE approaches for size-asymmetric systems.
Nevertheless, a full reproduction of a model like original
UNIFAC would not do very good for alkane mixtures. As seen
in Figures 1−3 and Tables 4 and 6 the combinatorial/free-
volume term of cubic EoS performs actually better than
UNIFAC’s combinatorial term. In this way, it is more suitable
for the EoS/GE models to retain the combinatorial term of the

EoS itself (rather than of the external model) and this is what is
done in LCVM and related models which perform successfully
for size-asymmetric systems. As Kalospiros et al.67 write: “it
may be better to sacrifice the underlying gE in order to obtain

Table 7. Comparative presentation of some of the well-known EoS/GE models (Y = yes, N = no)

mixing rule
can existing gE model
parameters be used ?

satisfying mixing rule for
second virial coefficient

successful for size-
asymmetric systems

full reproduction of
incorporated gE

extensive table/application for
gas-containing systems

Huron−Vidal N N Y (possibly- not clearly
shown?)

N Na

Wong Sandler Y Y N (few applications) N N
MHV1/PSRK
MHV2

Y N (?) N N Y

“Exact” Y N (?) N Y N
LCVM Y N (?) Y N Y
PSRK-new,
VTPR

N N Y N Y

aThe mixing rule has been used for gas-containing systems but no extensive parameter table or applications have been reported.

Table 8. Comparison between CPA and SRK/Huron−Vidal
(SRK/HV) for Various Polar Systems.a

water/hydrocarbons VLLE (11 systems, C3−C10, BTEX, hexene and decene)

concentration of SRK/Huron−Vidal CPA

water in liquid phase 41 7
hydrocarbon in liquid phase 24 30
water in vapor phase 6 4

MEG and TEG/hydrocarbons LLE (seven systems)

concentration of SRK/Huron−Vidal CPA

hydrocarbon in glycol phase 3 7
glycol in hydrocarbon phase 27 8

MEG−water−aromatic HCs (benzene, toluene) LLEtwo ternary systems at
two temperatures (298, 323 K)

polar phase, HC phase

SRK/Huron−Vidal CPA SRK/Huron−Vidal CPA

MEG 2 2 47 16
water 1 1 23 12
HC 21 20 0 0
MEG−water−C1−C3 (283−311 K, 69−210 bar) VLE, and MEG−water−

C1−toluene VLLE (275−323 K, 69 bar)

liquid phase or
liquid HC water phase vapor phase

SRK/HV CPA SRK/HV CPA SRK/HV CPA

MEG 18 8 0 0 135 17
water 13 12 0 0 30 27
methane 23 17 19 18 0 0
C3 or toluene 72 33 59 14 3 2
VLLE of MEG−water−C1−C3−toluene and MEG−water−C1−C3−C7 in

the range 283−311 K and 69−205 bar.

liquid HC phase water phase vapor phase

SRK/HV CPA SRK/HV CPA SRK/HV CPA

MEG 157 26 0 0 98 48
water 46 31 0 0 23 40
methane 18 8 32 35 0.5 0.7
propane 4 6 140 88 6 6
toluene or C7 10 8 >100 28 12 18

aThe numbers are % AAD deviations between experimental and
calculated mole fractions. From Folas, Ph.D. work94 (adapted). CPA
has one interaction parameter per binary, while SRK/HV has three
binary interaction parameters. The multicomponent results are
predictions and are based solely on binary interaction parameters
estimated from binary data.
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overall good results”. While we recognize that some may
disagree with this, the capabilities of the combinatorial/free-
volume term of the EoS support this statement.
(3) We have provided in section 2 several references and

arguments which underline the importance of eliminating the
double combinatorial term in the approximate zero reference
pressure models so that the resulting EoS/GE approaches can
be used successfully for size-asymmetric systems. Indeed
models like CHV and LCVM perform best for such systems.
The literature is rich with such approaches, for example, Zhong
and Masuoka78 have proposed the following mixing rule:

∑α = + − + α
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q

f
g
RT

g
RT

x
1

(1 )
i

i i
1

E,M E,FH

(45)

Although in eq 45 the correction factor is included in the
external model term rather than in the FH term, the
significance is the same and the average value reported ( f =
0.36) is equivalent to the corrections factors used in the other
models. Zhong and Masuoka78 present also correlations of the
f-parameter with the carbon number for some gas/alkane
families.
Neau and co-workers102,103 have recently proposed an

EoS/GE mixing rule which, though not clearly stated as such,
again uses the principle of the elimination of the double
combinatorial. They employ PR with a generalized (group-
based) NRTL that includes a combinatorial term based on
segment fractions (van der Waals volumes). This is identical
with the combinatorial term that is included in the mixing rule
they propose:

∑ ∑α = − + α
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Thus, the two combinatorial terms are eliminated and the
resulting model has the same combinatorial/free-volume term
as the EoS itself. The resulting PR-NRTL is in essence a
Huron−Vidal type mixing rule. Thus, while we agree with the
authors’ statement that the final model accounts for the
entropic effects correctly this does not happen because of the
new version of NRTL that the authors use. It is rather due to
the elimination of the double combinatorial in eq 46. Neau et
al.99,100 show that their new model gives good results, which we
expect that they will be similar to those of other EoS/GE

models with the same qualitative characteristics. It is interesting
to note that their model can represent the minimum of the
hydrocarbon solubility in water with temperature which, as it
has been shown,19 it can be also described by the Huron−Vidal
mixing rule in general. A similar model presented earlier by the
same authors101−104 is again based on a variation of eq 46 using
the generalized NRTL. In those earlier works MHV1 is used
with covolumes which are estimated via the van der Waals
volumes (instead of the critical properties). The result is again
essentially an elimination of the double combinatorial. An
additional indication for the “double combinatorial” problem
for size-asymmetric systems can be extracted from the work of
Lermite and Vidal25,26 who used an MHV1 (constant-packing
based) approach but (possibly inspired by the Huron−Vidal

mixing rule) kept only the residual term of UNIQUAC or
UNIFAC, thus their mixing rule is

∑α = − + α
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New interaction parameters are fitted but, as might be expected,
the results are not satisfactory for asymmetric gas-containing
mixtures. This conclusion is again in agreement with the
“double combinatorial” explanation. In this case we have a
single “extra (to that of the EoS)” combinatorial term. It is the
FH-term (originated from the constant packing fraction
assumption) which is added to the combinatorial/free-volume
term of EoS and results to an overcorrection of the
combinatorial/free-volume term from the EoS. On the other
hand, the same authors27,39 used correctly in combination with
the Huron−Vidal mixing rule:

∑α = + α
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the residual term of UNIQUAC or UNIFAC. Equation 48 is
the Huron−Vidal mixing rule and essentially also the mixing
rule used in PSRK-new and VTPR. The results are satisfactory
for a variety of mixtures including size-asymmetric ones (new
parameters must be fitted but they can be group-based ones).
Finally, we should mention that PSRK-new, VTPR, and

UMR-PR are quite similar models. All three models essentially
eliminate the double combinatorial and use a different than the
usual arithmetic mean mixing rule rule for the covolume
parameter. As shown by Chen et al.,79 the importance of this
combining rule (eq 40b) over the arithmetic mean one is rather
small and it is the elimination of the double combinatorial
which is the main reason for the successful results for size-
asymmetric systems. Voutsas (2010, private communication)
verified that by indicating that the new combining rule for the
covolume (eq 41b) is particularly important for polymeric
systems, otherwise a linear mixing rule could as well be used.
New parameters are regressed in VTPR while UMR-PR
employs the existing UNIFAC interaction parameters.
There are many studies in the literature that indicate that

combining rules other than the linear one for the covolume can
result in improved results for polymer mixtures. For example,
Zhong and Masuoka105 used the simple form of SRK/Huron−
Vidal shown in eq 48 without any residual term. This means
that they used essentially the a/b mixing rule together with the
Wong−Sandler mixing rule for the second virial coefficient, that
is, eqs 11 and 14a. They showed (and it was verified by Louli
and Tassios106) that excellent correlation results are obtained
for polymer−solvent VLE using a single kij per system. The
performance is better than with other mixing rules. The success
was considered surprising in the articles by Zhong−Masuoka105

and Louli−Tassios106 but we believe it can be explained by the
fact that the a/b mixing rule isolates and illustrates that the
combinatorial/free volume contribution from cubic EoS is
represented adequately, as shown by the results for mixtures
with alkanes differing significantly in size (see Figures 1−3 and
Tables 4 and 6).
(4) Liquid−liquid equilibrium studies using the EoS/GE

models have been presented by several authors110,111,117−124

and particularly interesting are the investigations by Escobedo−
Alvarado and Sandler110 and Knudsen et al.111 It is shown in
these works that EoS/GE mixing rules such as MHV2 and
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Wong−Sandler, especially when combined with molecular-
based local composition models (NRTL, UNIQUAC) can
correlate well LLE of complex mixtures. The results are
satisfactory for high pressure LLE based on low pressure
obtained parameters. In this sense and also because of their
better temperature dependency (which permits more successful
extrapolations) EoS/GE models are superior to the underlying
gE model.110,122 For strongly hydrogen bonding systems,
however, such as 2-butanol/water and 2-butoxyethanol/water
a significant number of adjustable parameters is needed for
describing the observed closed loop behavior and its depend-
ency on temperature and pressure. Predictions for multi-
component systems based solely on binary data are not
satisfactory.111

(5) Compared to the large number of studies on phase
behavior, relatively few investigations have been published for
thermal properties (heat of mixing, heat capacities). Djordjevic
et al.136 in their review article discuss particularly the
performance of several EoS/GE mixing rules for enthalpies
and heat capacities. Their most important conclusion is, that for
all mixing rules, the need of temperature dependent adjustable
parameters is crucial for describing accurately thermal proper-
ties. In general, as Ghosh135 discusses, the excess enthalpies
produced from the EoS/GE mixing rules are more positive
than those obtained from the incorporated activity coefficient
models.
More specifically, both the PSRK and VTPR models have

been tested to both enthalpies and heat capacities and
qualitatively good results have been reported by Gmehling
and co-workers,79,81,82,84,86,87 especially for VTPR. This can be
partially attributed to the good temperature dependency of the
interaction parameters and the inclusion of thermal data in the
UNIFAC parameter estimation. Deviations between 4 and 8%
have been reported for the new PSRK of Chen et al.79 for
the excess enthalpies of alkanes with alkanes, ketones and
methanol. Moreover, VTPR is shown to perform clearly better
than PSRK for excess enthalpies for a wide range of families
(alkanes+aromatics, alkanes+ketones, aromatics+ketones, esters
+alkanes, esters+aromatics).
Good excess enthalpies have been presented with UMR-PR89

for a few systems using temperature dependent interaction
parameters. Detailed studies on excess enthalpies with the
Wong−Sandler and MHV1 mixing rules have been presented
by Sandler and co-workers,125,126 Zhong and Masuoka,127 and
Ohta.128 Zhong and Masuoka127 showed that MHV1 cannot
reproduce the excess enthalpies of the incorporated activity
coefficient model but a modification similar to eq 45 performed
much better both for asymmetric systems VLE and for excess
enthalpies. Good excess enthalpies have been reported with this
modified MHV1 model for a wide range of alcohol−
hydrocarbon, alcohol−water, and alcohol−ketone systems.
The results are comparable to those of modified UNIFAC.
Ohta128 compared MHV1 and Wong−Sandler rules and found
acceptable and similar excess enthalpies (& VLE) for a number
of systems, including a few ternary excess enthalpies, using
temperature dependent parameters.
Sandler and co-workers125,126 have also studied the MHV1

and Wong−Sandler mixing rules for excess enthalpies. They
found125 that, for four highly nonideal systems, the models can
calculate VLE and excess enthalpies separately but not both.
The best way to regress parameters for these models is by using
simultaneously VLE and excess enthalpy data (and not any of
this type of data alone). Especially excess enthalpy data are

useful for selecting the best set of adjustable parameters.126

Moreover, they showed that simultaneous correlation of VLE
and excess enthalpies at one temperature is possible but
extrapolation at other temperatures did not result in accurate
prediction of either VLE or excess enthalpies. Better results are
obtained for less nonideal systems.126 Because of the pressure
dependency, the Wong−Sandler (and other mixing rules)
should be preferred over the incorporated activity coefficient
model for capturing the pressure dependency of thermal
properties.
(6) Another application of EoS/GE models is in the

prediction of solid−gas equilibria. This is an important type
of phase behavior, crucial in the design of supercritical fluid
extraction. These systems are challenging due to the
asymmetric nature of the gas and the solute, both in terms of
molecular size and intermolecular forces but also because often
the pure component properties (critical properties and vapor
pressures) of solids are not available and their estimations e.g.
from group contribution methods are not always reliable. An
additional issue is the frequent need of cosolvents for increasing
the solubility of the solute in the supercritical fluid, thus the
modeling of supercritical fluid/cocolvent/solute is of impor-
tance. The MHV1, Huron−Vidal, Wong−Sandler, LCVM, and
UMR-PR mixing rules have been used for solid−gas
equilibrium calculations.73,74,89,129−132

The applications are not very extensive, mostly CO2 with
aromatic hydrocarbons, acids, and alcohols have been reported,
and there is limited application to cosolvents (mostly for
LCVM and UMR-PR). There are good correlative (semi-
predictive) results and some researchers129,130 have illustrated
that an interaction parameter in the covolume is needed for
obtaining good results. The WS-NRTL is also a good
correlative tool,131 applied also to mixed solids, but there is a
need for high-interaction parameters in the case of cosolvents/
complex solids.
One of the models applied to many solid−gas systems is

LCVM. Good predictions are obtained for CO2 mixtures with
aromatic hydrocabrons, aliphatic acids, and some alcohols.
Satisfactory results are also obtained in some cases for ternary
systems with cosolvents, and LCVM can be used to some
extent for predicting the enhancement and for cosolvent
screening. However, the uncertainty on critical properties
and vapor pressures of the solid may be significant, and poor
results for very complex molecules, for example, naproxen and
cholesterol are obtained.
It appears that the performance of EoS/GE mixing rules for

solid−gas systems is, despite the many efforts, at a preliminary
level; most results are of semicorrelative value and no ”real
winner” among the various models can be identified.
(7) Many EoS/GE models (Huron−Vidal, MHV1, PSRK,

VTPR, Wong−Sandler, LCVM, UMR-PR) have been applied
to polymers and an extensive reference list is available in a
recent monograph.16 In these applications, typically an
activity coefficient suitable model for polymers, such as, Flory−
Huggins113 or Entropic-FV,114 is used in the mixing rule. Most
applications are concerned with vapor−liquid equilibria
including Henry’s law constants and gas solubilities. Good
results are obtained for many polymers, which are comparable
to those obtained by SAFT and other noncubic equations of
state.133 There are, however, two key issues which have not
been fully understood and/or analyzed. The first is common for
all equations of state applied to polymers, that is, not only the
cubic ones. What is the “correct” or “best” way to estimate the
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EoS parameters for polymers? Traditional methods (using
critical and vapor pressure data) can apparently not be used,
and a variety of approaches have been employed (see ref 16),
but there is no consensus on which is the best approach for
practical applications. The second issue is the use of mixing
rule, which may be more important than which “polymer”
activity coefficient model is actually implemented. In particular,
it has been shown105,106,134,150 that the a/b mixing rule (which
we have discussed extensively in this work) has a great potential
in describing polymer and other asymmetric mixtures over a
wide range of temperatures and polymer molecular weights,
either combined with the Wong−Sandler mixing rule or with
the Berthelot rule for the cross association energy. It remains to
be seen what it is the best way to use the a/b mixing rule for
polymers and how it compares to other approaches.
Epilogue. This review of EoS/GE models focused mostly on

methodological aspects and less on applications. Detailed
reviews of these mixing rules are offered in books16,41,108 and
extensive review articles135−137 on cubic equations of state.
We mentioned in the beginning of the article that the interest

in EoS/GE models has somewhat declined during the last years,
possibly due to their maturity. Indeed since Prausnitz et al.155

so wisely predicted, almost 30 years ago, that advanced mixing
rules will be in the future used for extending cubic EoS to
complex mixtures, much has been done. Today, EoS/GE mixing
rules are available in commercial simulators156,157 and they are
extensively used in many industrial applications.156−159 They
are a “working worse”, one of the most useful ones, of modern
applied chemical engineering thermodynamics.
Nevertheless new applications of EoS/GE mixing rules do

appear, for example, on refrigerants,138 fluorocarbons,148

synthetic fluids,149 multicomponent systems.139,140 New
developments have also appeared, for example, the
promising one-parameter EoS/GE model (based on Wong−
Sandler mixing rule) proposed by Ioannidis and Knox151,152 as
well as theoretical investigations153,154 which are, in general
terms, in agreement to the findings of this review, for example,
about the role of “double combinatorial”. Moreover, the EoS/
GE models have inspired successful recent developments of
group contribution methods for predicting the interaction
parameter kij of the cross energy combining rule in the van der
Waals one fluid mixing rules such as the method developed for
PR by J.N. Jaubert and co-workers.141−144 Finally, various
approaches of implementing COSMO-RS in the EoS/GE

framework have recently appeared.145−147 While it may be
early to fully evaluate them, they may in the future extend the
applicability of this successful quantum-chemistry method (one
of the cornerstones of modern thermodynamics) to high
pressures.
Despite the significant capabilities of EoS/GE mixing rules,

there are limitations pointed out over the years, some of which
have found solutions but others are tightly connected to the
incorporated (local composition) activity coefficient models.
Already in 1993 Vidal39 (see also ref 108) pointed out that
asymmetric systems and VLLE for methanol/ethane (and
related systems) are problems not addressed adequately by
cubic EoS even with the EoS/GE mixing rules. We feel and we
have illustrated in this review that up-to-date EoS/GE models
can handle satisfactorily size-asymmetric systems. But we agree
that complex multiphase equilibria is still only partially
addressed by EoS/GE mixing rules and the significant number
of adjustable parameters may constitute a problem in some

cases. For such complex systems, association theories such as
SAFT and CPA often perform better.16,108,109

4. CONCLUSIONS
The significant knowledge accumulated over the last 30 years
for the powerful EoS/GE mixing rules for cubic equations of
state has been reviewed. Models based on the infinite, zero, and
no specific reference pressure have been presented, including
derivation and assessment of their performance. A method to
evaluate and compare mixing rules of cubic equations of state
by looking at the activity coefficient expression derived from
the equation has been utilized throughout this work. It has been
shown that all EoS/GE mixing rules have significant capabilities
but also a number of limitations, beyond those stemming from
the “base” models (EoS and activity coefficient) used in their
derivation. First of all, it is illustrated that the Huron−Vidal
mixing rules constitute an excellent correlation tool, capable of
representing complex mixtures phase behavior, but an
“energetic” activity coefficient model is consistent with the
derivation, for example, NRTL or the residual term of
UNIQUAC or UNIFAC. The resulting model, that is, the
cubic EoS with Huron−Vidal mixing rules and NRTL is
expected to be superior to NRTL even at low pressures, due to
inclusion of the successful combinatorial/free-volume term
from the cubic equation of state. Several of the limitations of
the Huron−Vidal mixing rules are corrected in the Wong−
Sandler mixing rule. However, it is not certain to what extent
the assumptions of the Wong−Sandler mixing rule hold for
asymmetric systems, whether the kij parameter is unique over
the whole concentration range, and what implications the
temperature dependent covolume parameter may have. We
further show that mixing rules like MHV1 and PSRK are only
approximate zero reference pressure models, and particularly
for asymmetric systems they do not reproduce the incorporated
activity coefficient model. This deficiency is partially connected
to a significant problem of several of these mixing rules, namely
their inability to provide good results for size-asymmetric
systems, for example, gases with heavy alkanes. It is shown that
LCVM and subsequently also other models like GCVM and
CHV correct for these deficiencies by eliminating the “double
combinatorial difference,” that is, the difference between the
Flory−Huggins term stemming from the EoS at approximate
zero reference pressure and the combinatorial term from the
incorporated activity coefficient model. This observation is
consistent with the most recent generation of models like the
new version of PSRK, VTPR, UMR-PR, and PR-NRTL all of
which essentially eliminate the difference of the “two
combinatorial terms”.
In brief, all EoS/GE approaches have significant capabilities

and the most modern versions correctly solve for the problems
of earlier approaches for asymmetric systems. The cubic EoS
using the EoS/GE mixing rules are in some respects superior
than the incorporated activity coefficient model, because of the
inclusion of the combinatorial/free-volume term and the
temperature/pressure dependency of the EoS. This is especially
the case for size-asymmetric systems and for enthalpies.
Nevertheless, the performance of the final cubic equation of
state should not be expected, for polar relatively symmetric
systems, to be significantly superior to the underlying activity
coefficient model. Associating mixtures and multiphase
behavior especially for multicomponent systems represent the
limit of these approaches and association models, for example,
those belonging to the SAFT family are expected to perform

Industrial & Engineering Chemistry Research Review

dx.doi.org/10.1021/ie2015119 | Ind. Eng. Chem. Res. 2012, 51, 4119−41424138



better for such difficult systems and with fewer adjustable
parameters.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: gk@kt.dtu.dk.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors are grateful to professor Michael L. Michelsen for
many exciting discussions.

■ REFERENCES
(1) Huron, M. J.; Vidal, J. New mixing rules in simple equations of
state for representing vapor−liquid equilibria of strongly non-ideal
mixtures. Fluid Phase Equilib. 1979, 3, 255.
(2) Wilson, G. Vapor−liquid equilibrium XI. A new expression for
the excess free energy of mixing. J. Am. Chem. Soc. 1964, 86, 127.
(3) Renon, H.; Prausnitz, J. M. Local compositions in thermody-
namic excess functions for liquid mixtures. AIChE J. 1968, 14 (1), 135.
(4) Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of
liquid mixtures−New expression for excess Gibbs energy of partly or
completely miscible systems. AIChE J. 1975, 21 (1), 116.
(5) Fredenslund, A.; Jones, R.; Prausnitz, J. M. Group-contribution
estimation of activity coefficients in non-ideal liquid mixtures. AIChE J.
1975, 21, 1086.
(6) Soave, G. Equilibrium constants from a modified Redlich−
Kwong equation of state. Chem. Eng. Sci. 1972, 1197.
(7) Peng, D.-Y.; Robinson, D. B. New two-constant equation of state.
Ind. Eng. Chem. Fundam. 1976, 15 (1), 59.
(8) Van der Waals, J. D. On the continuity of the gas and liquid state.
Doctoral Dissertation, Leiden, 1873.
(9) Wong, D. S. H.; Sandler, S. I. A theoretically correct mixing rule
for cubic equations of state. AIChE J. 1992, 38 (5), 671.
(10) Mollerup, J. A note on the derivation of mixing rules from
excess Gibbs energy models. Fluid Phase Equilib. 1986, 25, 323.
(11) Michelsen, M. L. A method for incorporating excess Gibbs
energy models in equations of state. Fluid Phase Equilib. 1990, 60, 47.
(12) Michelsen, M. L. A modified Huron−Vidal mixing rule for cubic
equations of state. Fluid Phase Equilib. 1990, 60, 213.
(13) Dahl, S.; Michelsen, M. L. High-pressure vapor-liquid
equilibrium with a UNIFAC-based equation of state. AIChE J. 1990,
36 (12), 1829.
(14) Holderbaum, T.; Gmehling, J. PSRKA group contribution
equation of state based on UNIFAC. Fluid Phase Equilib. 1991, 70,
251.
(15) Boukouvalas, C.; Spiliotis, N.; Coutsikos, P.; Tzouvaras, N.;
Tassios, D. P. Prediction of vapor−liquid equilibrium with the LCVM
modelA linear combination of the Vidal and Michelsen mixing rules
coupled with the original UNIFAC and the t-mPR equation of state.
Fluid Phase Equilib. 1994, 92, 75.
(16) Kontogeorgis, G. M.; Folas, G. K. Thermodynamic models for
industrial applications. From Classical and Advanced Mixing Rules to
Association Theories; Wiley: Chichester, U.K., 2010.
(17) Pedersen, K. S.; Michelsen, M. L.; Fredheim, A. O. Phase
equilibrium calculations for unprocessed well streams containing
hydrate inhibitors. Fluid Phase Equilib. 1996, 126, 13.
(18) Pedersen, K. S.; Milter, J.; Rasmussen, C. P. Mutual solubility of
water and a reservoir fluid at high temperatures and pressures
Experimental and simulated data. Fluid Phase Equilib. 2001, 189, 85.
(19) Folas, G. K.; Kontogeorgis, G. M.; Michelsen, M. L.; Stenby, E.
H. Vapor−liquid, liquid−liquid and vapor−liquid−liquid equilibrium
of binary and multicomponent systems with MEG. Fluid Phase Equilib.
2006, 249 (1−2), 67.
(20) Folas, G. K.; Berg, O. J.; Solbraa, E.; Fredheim, A. O.;
Kontogeorgis, G. M.; Michelsen, M. L.; Stenby, E. H. High pressure

vapor−liquid equilibria of systems containing ethylene glycol, water,
and methane. Experimental measurements and modeling. Fluid Phase
Equilib. 2007, 251, 52.
(21) Feroiu, V.; Geana, D. Prediction of vapor−liquid equilibria at
high pressures using activity coefficients at infinite dilution. Fluid Phase
Equilib. 1996, 120, 1.
(22) Geana, D.; Feroiu, V. Title: Prediction of vapor−liquid
equilibria at low and high pressures from UNIFAC activity coefficients
at infinite dilution. Ind. Eng. Chem. Res. 1998, 37, 1173.
(23) Secuianu, C.; Feroiu, V.; Geana, D. Phase equilibria experiments
and calculations for carbon dioxide plus methanol binary system. Cent.
Eur. J. Chem 2009, 7 (1), 1.
(24) Secuianu, C.; Feroiu, V.; Geana, D. High-pressure vapor−liquid
and vapor−liquid−liquid equilibria in the carbon dioxide+1-heptanol
system. Fluid Phase Equilib. 2008, 270, 109.
(25) Lermite, Ch.; Vidal, J. A group contribution equation of state for
polar and nonpolar compounds. Fluid Phase Equilib. 1992, 72, 111.
(26) Lermite, Ch.; Vidal, J. High-pressure polar compounds phase
equilibria calculationmixing rules and excess properties. Fluid Phase
Equilib. 1988, 42, 1.
(27) Vidal, J. Cubic equations of state for reservoir engineering and
chemical process design. Fluid Phase Equilib. 1989, 52, 15.
(28) Soave, G. Application of equations of state and the theory of
group solutions to phase equilibrium prediction. Fluid Phase Equilib.
1993, 87, 23.
(29) Soave, G. S.; Sama, S.; Olivera, M. I. A new method for the
prediction of VLE and thermodynamic properties. Preliminary results
with alkane−ether−alkanol systems. Fluid Phase Equilib. 1999, 156, 35.
(30) Soave, G. S.; Bertucco, A.; Vecchiato, L. Equation-of-state group
contributions from infinite dilution activity coefficients. Ind. Eng.
Chem. Res. 1994, 33, 975.
(31) Soave, G. S. Universal method for equations of state
(UNIFEST)An application of UNIFAC to predict the parameters
of cubic equations of state. Fluid Phase Equilib. 2002, 193, 75.
(32) Soave, G. S.; Bertucco, A.; Sponchiado, M. Avoiding the use of
critical constants in cubic equations of state. AIChE J. 1995, 41 (8),
1964.
(33) Soave, G. S. SRK, 30 years after. What can be kept. What should
be changed. Presentation at the IVC-SEP Discussion Meeting,
Elsinone, 2002.
(34) Soave, G. S. VLE of hydrogen-alkane systems: The Redlich−
Kwong equation of state with the Huron−Vidal mixing rules and the
theory of group solutions. Presentation at the IVC-SEP Discussion
Meeting, Rungsted Kyst, 2004.
(35) Kontogeorgis, G. M.; Coutsikos, P. Comments on ”Predictions
of activity coefficients of nearly athermal binary mixtures using cubic
equations of state”. Ind. Eng. Chem. Res. 2005, 44, 3374−3375.
(36) Sacomani, P. A.; Brignole, E. A. Predictions of activity
coefficients of nearly athermal binary mixtures using cubic equations
of state. Ind. Eng. Chem. Res. 2003, 42, 4143.
(37) Kontogeorgis, G. M.; Economou, I. G. Equations of state: From
the ideas of van der Waals to association theories. J. Super. Fluids 2010,
55 (2), 421.
(38) Kontogeorgis, G. M.; Coutsikos, P.; Harismiadis, V. I.;
Fredenslund, Aa.; Tassios, D. P. A novel method for investigating
the repulsive and attractive parts of cubic equations of state and the
combining rules used with the vdW1f theory. Chem. Eng. Sci. 1998, 53
(3), 541.
(39) Vidal, J. 1993. Mixing rules and vapor−liquid equilibria. Notes
for the EEC Summer School, 1993, Technical University of Denmark.
(40) Sandler, S. I. Chemical and Engineering Thermodynamics, 3rd ed.;
John Wiley & Sons; New York, 1999.
(41) Orbey, O.; Sandler, S. I. Modeling Vapor−Liquid Equilibria.
Cubic Equations of State and Their Mixing Rules; Cambridge Series in
Chemical Engineering; Cabridge University Press: Cambridge, U.K.,
1998.
(42) (a) Castier, M.; Sandler, S. I. Critical points with the Wong−
Sandler mixing rule II. Calculations with a modified Peng−Robinson
equation of state. Chem. Eng. Sci. 1997, 52, 3759. (b) Wong, D. S. H.;

Industrial & Engineering Chemistry Research Review

dx.doi.org/10.1021/ie2015119 | Ind. Eng. Chem. Res. 2012, 51, 4119−41424139

mailto:gk@kt.dtu.dk


Orbey, H.; Sandler, S. I. Equation of state mixing rule for nonideal
mixtures using available activity coefficient model parameters and that
allows extrapolation over large ranges of temperature and pressure.
Ind. Eng. Chem. Res. 1992, 31, 2033.
(43) Orbey, H.; Sandler, S. I. Reformulation of Wong−Sandler
mixing rule for cubic equations of state. AIChE J. 1995, 41 (3), 683.
(44) Michelsen, M. L.; Mollerup, J. M. Thermodynamic Models:
Fundamentals & Computational Aspects, 2nd ed.; Tie-Line Publications:
Denmark, 2007.
(45) Satyro, M. A.; Trebble, M. A. A correction to Sandler-Wong
mixing rules. Fluid Phase Equilib. 1998, 143, 89.
(46) Satyro, M. A.; Trebble, M. A. On the applicability of the
Sandler-Wong mixing rules for the calculation of thermodynamic
excess propertiesV-E, H-E, S-E, C-p(E). Fluid Phase Equilib. 1996,
115, 135.
(47) Michelsen, M. L.; Heidemann, R. A. Some properties of
equation of state mixing rules derived from excess Gibbs energy
expressions. Ind. Eng. Chem. Res. 1996, 35, 278.
(48) Heidemann, R. A. Excess free energy mixing rules for cubic
equations of state. Fluid Phase Equilib. 1996, 116, 454.
(49) Coutsikos, P.; Kalospiros, N. S.; Tassios, D. P. Capabilities and
limitations of the Wong−Sandler mixing rules. Fluid Phase Equilib.
1995, 108, 59.
(50) Heidemann, R. A.; Kokal, S. L. Combined excess free-energy
models and equations of state. Fluid Phase Equilib. 1990, 56, 17.
(51) Orbey, H.; Sandler, S. I. On the combination of equations of
state and excess free-energy models. Fluid Phase Equilib. 1995, 111, 53.
(52) Orbey, H.; Sandler, S. I. A comparison of Huron−Vidal type
mixing rules of mixtures of compounds with large size differences, and
a new mixing rule. Fluid Phase Equilib. 1997, 132, 1.
(53) Orbey, H.; Sandler, S. I. Analysis of excess free energy based
equations of state models. AIChE J. 1996, 42 (80), 2327.
(54) Fischer, K.; Gmehling, J. Further development, status and
results of the PSRK method for the prediction of vapor−liquid
equilibria and gas solubilities. Fluid Phase Equilib. 1996, 121, 185.
(55) Noll, O.; Fischer, K. A note on the constant packing fraction
condition applied as reference state to g(E) mixing rules. Chem. Eng.
Sci. 1998, 53 (3), 449.
(56) Novenario, C. R.; Caruthers, J. M.; Chao, K.-C. A mixing rule to
incorporate solution model into equation of state. Ind. Eng. Chem. Res.
1996, 35, 269.
(57) Tochigi, K.; Futakuchi, H.; Kojima, K. Prediction of vapor−
liquid equilibrium in polymer solutions using a Peng−Robinson group
contribution model. Fluid Phase Equilib. 1998, 152, 209.
(58) Dahl, S.; Fredenslund, A.; Rasmussen, P. The MHV2 modelA
UNIFAC-based equation of state model for prediction of gas solubility
and vapor−liquid equilibria at low and high pressures. Ind. Eng. Chem.
Res. 1991, 30, 1936.
(59) Knudsen, K.; Stenby, E. H.; Fredenslund, A. A comprehensive
comparison of mixing rules for calculation of phase equilibria in
complex systems. Fluid Phase Equilib. 1993, 82, 361.
(60) (a) Horstmann, S.; Fischer, K.; Gmehling, J. PSRK group
contribution equation of state: Revision and extension III. Fluid Phase
Equilib. 2000, 167, 173. (b) Horstmann, S.; Jabloniec, A.; Fischer, K.;
Gmehling, J. PSRK group contribution equation of state: Compre-
hensive revision and extension IV, including critical constants and
alpha-function parameters for 1000 components. Fluid Phase Equilib.
2005, 227, 157.
(61) Tochigi, K.; Kolar, P.; Iizumi, T.; Kojima, K. A note on a
modified Huron−Vidal mixing rule consistent with the 2nd virial
coefficient. Fluid Phase Equilib. 1994, 96, 215.
(62) Kolar, P.; Kojima, K. Prediction of critical points in
multicomponent systems using the PSRK group contribution equation
of state. Fluid Phase Equilib. 1996, 118, 175.
(63) Boukouvalas, C. J.; Magoulas, K. G.; Tassios, D. P.; Kikic, I.
Comparison of the performance of the LCVM model (an EoS/G(E)
model) and the PHCT EoS (the perturbed hard chain theory equation
of state) in the prediction of the vapor−liquid equilibria of binary
systems containing light gases. J. Supercrit. Fluids 2001, 19, 123.

(64) Voutsas, E. C.; Boukouvalas, C. J.; Kalospiros, N. S.; Tassios,
D. P. The performance of EoS/G(E) models in the prediction of
vapor−liquid equilibria in asymmetric systems. Fluid Phase Equilib.
1996, 116, 480.
(65) Li, J.; Fischer, K.; Gmehling, J. Prediction of vapor−liquid
equilibria for asymmetric systems at low and high pressures with the
PSRK model. Fluid Phase Equilib. 1998, 143, 71.
(66) Voutsas, E. C.; Spiliotis, N. S.; Kalospiros, N. S.; Tassios, D. P.
Prediction of vapor−liquid equilibria at low and high-pressures using
UNIFAC-based models. Ind. Eng. Chem. Res. 1995, 34, 681.
(67) Kalospiros, N. S.; Tassios, D. P. Prediction of vapor−liquid
equilibria in polymer solutions using an equation of state excess Gibbs
free-energy model. Ind. Eng. Chem. Res. 1995, 34, 2117.
(68) Spiliotis, N. S.; Boukouvalas, C. J.; Tzouvaras, N.; Tassios, D. P.
Application of the LCVM model to multicomponent systems
Extension of the UNIFAC interaction parameter table and prediction
of the phase behavior of synthetic gas condensate and oil systems.
Fluid Phase Equilib. 1994, 101, 187.
(69) Yakoumis, I.; Vlachos, K.; Kontogeorgis, G. M.; Coutsikos, Ph.;
Kalospiros, N. S.; Kolisis, Fr.; Tassios, D. P. Application of the LCVM
model to systems containing organic compounds and supercritical
carbon dioxide. J. Super. Fluids 1996, 9 (2), 88.
(70) Apostolou, D. A.; Kalospiros, N. S.; Tassios, D. P. Prediction of
gas solublities using the LCVM equation of state excess Gibbs free
energy model. Ind. Eng. Chem. Res. 1995, 34, 948.
(71) Voutsas, E. C.; Spiliotis, N.; Kalospiros, N. S.; Tassios, D. P.
Prediction of vapor−liquid equilibria at low and high pressures using
UNIFAC-based models. Ind. Eng. Chem. Res. 1995, 34, 681.
(72) Voutsas, E. C.; Coutsikos, Ph.; Kontogeorgis, G. M. 2004.
Equations of state with emphasis on excess Gibbs energy mixing rules.
In Computer-Aided Property Estimation for Process and Product Design;
Kontogeorgis, G. M., Gani, R., Ed.; Elsevier, Amsterdam, The
Netherlands, 2004.
(73) Coutsikos, P.; Magoulas, K.; Kontogeorgis, G. M. Prediction of
solid−gas equilibria with the Peng−Robinson equation of state.
J. Supercrit. Fluids 2003, 25 (3), 197.
(74) Spiliotis, N.; Magoulas, K.; Tassios, D. P. Prediction of the
solubility of aromatic hydrocarbons in supecritical CO2 with EoS/GE
models. Fluid Phase Equilib. 1994, 102, 121.
(75) Sansot, J.-M.; Pauly, J.; Daridon, J.-L.; Coutinho, J. A. P.
Modeling high-pressure wax formation in petroleum fluids. AIChE J.
2005, 51 (7), 2089.
(76) Kontogeorgis, G. M.; Vlamos, P. M. An interpretation of the
behavior of EoS/GE models for asymmetric systems. Chem. Eng. Sci.
2000, 55 (13), 2351.
(77) Coniglio, L.; Knudsen, K.; Gani, R. Prediction of supercritical
fluid−liquid equilibria for carbon dioxide and fish oil related
compounds through the equation of state-excess function (EOSg(E))
approach. Fluid Phase Equilib. 1996, 116, 510.
(78) Zhong, C.; Masuoka, H. Mixing rules for accurate prediction of
vapor−liquid equilibria of gas/large alkane systems using SRK
equation of state combined with UNIFAC. J. Chem. Eng. Jpn. 1996,
29, 315.
(79) Chen, J.; Fischer, K.; Gmehling, J. Modification of PSRK mixing
rules and results for vapor−liquid equilibria, enthalpy of mixing and
activity coefficients at infinite dilution. Fluid Phase Equilib. 2002, 200,
411.
(80) Ahlers, J.; Gmehling, J. Development of an universal group
contribution equation of state I. Prediction of liquid densities for pure
compounds with a volume translated Peng−Robinson equation of
state. Fluid Phase Equilib. 2001, 191, 177.
(81) Ahlers, J.; Gmehling, J. Development of a universal group
contribution equation of state. 2. Prediction of vapor−liquid equilibria
for asymmetric systems. Ind. Eng. Chem. Res. 2002, 41, 3489.
(82) Ahlers, J.; Gmehling, J. Development of a universal group
contribution equation of state III. Prediction of vapor−liquid
equilibria, excess enthalpies, and activity coefficients at infinite dilution
with the VTPR model. Ind. Eng. Chem. Res. 2002, 41, 5890.

Industrial & Engineering Chemistry Research Review

dx.doi.org/10.1021/ie2015119 | Ind. Eng. Chem. Res. 2012, 51, 4119−41424140



(83) Ahlers, J.; Yamaguchi, T.; Gmehling, J. Development of a
universal group contribution equation of state. 5. Prediction of the
solubility of high-boiling compounds in supercritical gases with the
group contribution equation of state volume-translated Peng−
Robinson. Ind. Eng. Chem. Res. 2004, 43, 6569.
(84) Gmehling, J. Potential of thermodynamic tools (group
contribution methods, factual data banks) for the development of
chemical processes. Fluid Phase Equilib. 2003, 210, 161.
(85) Collinet, E.; Gmehling, J. Prediction of phase equilibria with
strong electrolytes with the help of the volume translated Peng−
Robinson group contribution equation of state (VTPR). Fluid Phase
Equilib. 2006, 246, 111.
(86) Diedrichs, A.; Rarey, J.; Gmehling, J. Prediction of liquid heat
capacities by the group contribution equation of state VTPR. Fluid
Phase Equilib. 2006, 248, 56.
(87) Collinet, E.; Gmehling, J. Activity coefficient at infinite dilution,
azeotropic data, excess enthalpies and solid−liquid-equilibria for binary
systems of alkanes and aromatics with esters. Fluid Phase Equilib. 2005,
230, 131.
(88) Voutsas, E.; Magoulas, K.; Tassios, D. P. Universal mixing rule
for cubic equations of state applicable to symmetric and asymmetric
systems: Results with the Peng−Robinson equation of state. Ind. Eng.
Chem. Res. 2004, 43, 6238.
(89) Voutsas, E.; Louli, V.; Boukouvalas, C.; Magoulas, K.; Tassios,
D. P. Thermodynamic property calculations with the universal mixing
rule for EoS/G(E) models: Results with the Peng−Robinson EoS and
a UNIFAC model. Fluid Phase Equilib. 2006, 241, 216.
(90) Louli, V.; Voutsas, E.; Boukouvalas, C.; Magoulas, K.; Tassios,
D. P. Application of the UMR−PRU model to multicomponent
systems: Prediction of the phase behavior of synthetic natural gas and
oil systems. Fluid Phase Equilib. 2007, 261, 351.
(91) Skouras, E.; Voutsas, E.; Louli, V.; Solbraa, E. Hydrocarbon dew
point prediction of synthetic and real natural gas mixtures with the
UMR-PR model. Presentation at ESAT, 2009.
(92) (a) Coniglio, L.; Knudsen, K.; Gani, R. Model prediction of
supercritical fluid−liquid equilibria of carbon dioxide and fish-oil
related compounds. Ind. Eng. Chem. Res. 1995, 34, 2473. (b) Chen, X-
h.; Yao, Z.; Li, Y.; Cao, K.; Huang, Z.-M. Prediction of vapor−liquid
equilibrium at high pressure using a new excess free energy mixing rule
coupled with the original UNIFAC method and the SRK equation of
state. Ind. Eng. Chem. Res. 2009, 48, 6836.
(93) Yan, W.; Kontogeorgis, G. M.; Stenby, E. H. Application of the
CPA equation of state to reservoir fluids in presence of water and polar
chemicals. Fluid Phase Equilib. 2009, 276 (1), 75.
(94) Folas, G. K. Modelling of Complex Mixtures Containing Hydrogen
Bonding Molecules. Ph.D. Thesis, Technical University of Denmark,
2006.
(95) Kristensen, J. N.; Christensen, P. L.; Pedersen, K. S.; Skovborg,
P. A combined Soave−Redlich−Kwong and NRTL equation for
calculating the distribution of methanol between water and hydro-
carbon phases. Fluid Phase Equilib. 1993, 82, 199.
(96) Austegard, A.; Solbraa, E.; Koeijer, G.; De.; Mølnvik, M. J.
Thermodynamic models for calculating mutual solubilities in H2O−
CO2−CH4 mixtures. Trans IChemE, Part A, Chem. Eng. Res. Des. 2006,
84, 781.
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