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Preface 
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and Torben; thank you for having been a part of my experience here and for your support. Bente, 
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Abstract 
 

The field of polymer solar cells is a field with an exponential growth in the number of published papers. 

It is a field defined by a set of challenges including; efficiency, stability and processability. Before all of 

these challenges have been addressed; polymer solar cells will not be a commercial success.  

This dissertation is devoted primarily to the study of the stability of polymer solar cells, and more 

specifically to designing and verifying experimental techniques, procedures, and automated solutions 

to stability tests and characterization. The goal of the project was to expand the knowledge of the 

degradation mechanisms involved in roll-to-roll coated polymer solar cells. While only a part of the 

experiments have directly involved roll-to-roll coated devices, most of the work is applicable to coated 

devices. 

The first part of the dissertation is devoted to the study of in-depth morphology of polymer solar cells 

using ellipsometry. It was demonstrated that ellipsometry can be used as a non destructive depth 

profiling technique to obtain compositional morphology of the active layer of roll-to-roll coated 

samples. The second and third part is devoted to the study of photo-chemical degradation of the active 

layer materials. The second part details the building of an automated setup for stability tests and 

presents results on thickness and absorbance dependence of the photo-chemical stability, acceptor 

stability, and the influence of intrinsic polymer parameters on stability. In the third part two light 

concentrating setups, built during the PhD, are detailed and results based on high intensity photo-

degradation studies presented. In the last part of the dissertation the use of TOF-SIMS for polymer 

solar cell characterization is detailed and the results on intrinsic barrier effects and degradation 

patterns are summarized.  
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Danish abstract (Resume) 
 

Feltet af plastsolceller er et felt med en eksponentiel vækst i antallet af publicerede artikler. Det er et 

område defineret ved et sæt af udfordringer, herunder effektivitet, stabilitet og bearbejdelighed. Før 

alle disse udfordringer er blevet løst, vil plastsolceller ikke blive en kommerciel succes. 

Denne afhandling er helliget primært til undersøgelse af stabiliteten af plastsolceller, og mere specifikt 

til at designe og kontrollere eksperimentelle teknikker, procedurer og automatiserede løsninger til 

stabilitets test og karakterisering. Målet med projektet var at udvide kendskabet til 

nedbrydningsmekanismerne, som er involveret i rulle-til-rulle coatede plastsolceller. Mens kun en del 

af forsøgene er direkte er relateret til rulle-til-rulle coatede enheder, kan det meste af arbejdet 

anvendes hertil. 

Den første del af afhandlingen omhandler studiet af dybde morfologi af plastsolceller ved hjælp 

ellipsometri. Det blev påvist, at ellipsometri kan anvendes som en ikke-destruktiv dybde profilering 

teknik til at forstå den morfologiske sammensætning af det aktive lag for rulle-til-rulle coatede prøver. 

Den anden og tredje del er afsat til undersøgelse af foto-kemisk nedbrydning af materialer, som indgår 

i det aktive lag. Den anden del indeholder detaljer om bygningen af et automatiseret setup til 

stabilitets test og præsenterer resultaterne for tykkelse og absorbans afhængighed af foto-kemisk 

stabilitet, acceptor stabilitet og indflydelsen af polymer parametre på stabilitet. I tredje del bliver to 

setups til koncentrering af lys, bygget iløbet af Ph.d.en, beskrevet i detaljer og resultater baseret på høj 

intensitet foto-nedbrydning præsenteret. I den sidste del af afhandlingen bliver brugen TOF-SIMS til 

plastsolcelle karakterisering detaljeret og resultaterne for barriere effekter og nedbrydnings mønstre 

sammenfattet. 
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Chapter 1 
 Introduction 

The global energy future is arguably the most important subject undertaken by the scientific 

community. Without energy, our society of today will not function. Without energy we cannot find or 

administer medicine to cure disease, we cannot purify water, drive our cars, operate computers, or 

even study at night. The current energy need is roughly 15 TW and with an increasing world population 

this number is destined to increase. Professor of Physics and Astronomy at Rice University and Nobel 

laureate Richard E. Smalley coined the term the “Terawatt Challenge” based on this future energy 

deficit. Smalley defines the “Terawatt Challenge” as the challenge to provide the technology for 

accomplishing our energy goals An alternative that can act as a basis for energy prosperity in the 21st 

century, that is as enabling as oil and gas have been for the past century.1 It seems inescapable that 

the world of the future must embrace alternative energies. The Oxford Dictionary defines alternative 

energy as “energy fuelled in ways that do not use up natural resources or harm the environment”. The 

definition places emphasis on two key points: Firstly the use of natural resources, and secondly focus 

on the harm of the environment. It is clear that the term “alternative” presupposes a set of 

undesirable energy technologies against which alternative energies are contrasted; coal and oil must 

become a thing of the past. Renewable resources including, wind, photovoltaics, solar thermal, 

geothermal, marine, and tides still represents a minor fraction of the overall primary energy supply. 

With a total nameplate capacity of 93,957 MW as of end 2011 within Europe alone, wind is the leading 

alternative energy resource.2 Several countries have high levels of penetration, such as 25.9% of 

electricity production in Denmark (2011), 15.6% in Spain (2011), 12% in Ireland (2011) and 10.6% in 

Germany (2011).2 By comparison to all other energy sources the sun, however, is a vast resource. 

Taking the total solar irradiance of 1360.8 W/m2 as the solar minimum outside the atmosphere the 

total energy eradiated from the sun at earth is roughly 51.25 10 TW⋅ .3 This number exceeds our energy 

need by orders of magnitude, so even adjusting for losses in the atmosphere, inaccessible locations for 

solar harvesting, etc solar energy is an abundant resource.  
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The most direct use of solar energy is the conversion of photons to electricity by the photovoltaic 

effect. The photovoltaic effect as a phenomenon has been documented by many early experiments 

with the experiment of Alexandre-Edmond Becquerel in 1839 being the most well known.4 However, it 

was not until the early 1950s that the photovoltaics developed into the solar cells of today. The first 

solar cell was made by Daryl Chapin, Calvin Fuller, and Gerald Pearson at Bell laboratories in  1954 

utilizing a silicon p-n junction to achieve 6 % conversion efficiency.5 With the space age, a market for 

solar cells emerged and the first American satellite Vanguard I launched in 1958 equipped with six 

solar cells mounted on the body. The use of solar cells on the satellite proved successful and the 

power-to-weight ratio of solar cells ensured their further success for space applications. For the initial 

history of solar cells their prices were dictated by the semiconductor industry, the price of silicon 

boules being the main cost factor. By 1971 the estimated price had reached $100 per watt. Since then 

progress have be massive. Solar cells are now part of a global industry with a multifaceted array of 

technologies competing. According to a study by EWEA photovoltaics accounted for the largest share 

of new installations within the energy sector in Europe. 21,000 MW worth of capacity was installed  in 

2011 accounting for 46.7% of the total installed capacity.2 

A common distinction between solar technologies recognizes three generations of solar cells. The first 

generation is unsurprisingly represented by monocrystalline silicon solar cells. These solar cells, using 

silicon wafers, still account for the majority of the solar cell market. Their success is due to their high 

efficiency. 25 % conversion efficiency has been confirmed for laboratory cells, and typical installed 

efficiencies are around 15 %.6 A major issue with monocrystalline solar cells, however, comes through 

their high manufacturing costs. Monocrystalline solar cells suffer from the fact that silicon has an 

indirect bandgap and thereby poor light absorbance. Therefore solar cells must be hundreds of 

microns in thickness to achieve good absorbance. Thin-film solar cells represent the second generation 

of solar cell technology and are typically made of direct band gap materials such as cadmium telluride 

(CdTe) and copper indium gallium selenide (CIGS) or amorphous silicon. Thin-film solar cells, are 

significantly cheaper to produce than first generation cells as the technology is based on the deposition 

of a thin semiconducting layer on a low cost substrate. The great advantage of second generation, thin-

film solar cells, along with low cost, is their flexibility. The third generation of solar cell technology 

contains a wide range of potential solar innovations including dye-sensitized solar cells, nanocrystalline 

solar cells, and polymer solar cells. The third generation represents the cutting edge of solar 

technology and is likely to be divided into separate categories when further developed and produced. 
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Organic solar cells represent a successful technology within the third generation and also represent the 

main turning point of this thesis. The subject of polymer solar cells is actively researched by 

universities, national laboratories and several companies around the world. 

1.1. Polymer solar cells 
The potential advantages of polymer solar cells are numerous including flexibility, processability, low 

material cost, and independence on scarce resources. The flexibility as an advantage, is shared with 

thin-film photovoltaics, and is a feature allowing the solar cells to be incorporated into applications in 

an aesthetically pleasing manor. Solar panels that can be rolled out onto a roof or other surfaces are 

one option. Processability is another major selling point of polymer solar cells. Both first and second 

generation solar cells depend on vacuum deposition methods requiring massive amounts of energy. 

With polymer based organic solar cells, on the other hand, layers are processed from solution and 

complete solution processed cells are an option.7 This allows for up-scaling the production and thus 

reducing the cost per area of polymer solar cells. Large rolls of substrate can be used on which the 

layers are deposited using printing or coating techniques, generally referred to as roll-to-roll coating.8–

10 The promise of low material cost and minimal use of scarce materials can be realized with polymer 

solar cells. Many second generation solar cells utilize materials that are scarce in nature. With polymer 

solar cells this can be avoided. Indium is, however, still used in most polymer solar cells, but 

demonstrations of indium free solar cells are available.7,11–14 

 
Figure 1.1. The unification challenge is defined as the challenge of unifying efficiency, stability and 

process for the same material. 
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Listing the advantages of polymer solar cells reveals a very enticing selling point; however, polymer 

solar cells have a number of drawbacks. Firstly while inorganic silicon-based solar cells may last on the 

order of 25 years; polymer based devices struggle to last a year. Efficiency has long remained the other 

major drawback of the technology. With polymer solar cell the efficiency is still behind more traditional 

technologies, but recent records exceeding 10% have been reported.15,16 For polymer solar cells to 

mature to the market, the strong points of the technology will have to outmatch the weak points. 

However, it is still vital to optimize the weak points. Professor Fredrik C. Krebs have defined the 

unification challenge of polymer solar cells by stating that three issues share the same importance, see 

Figure 1.1.17,18 These three issues were defined as; process, stability, and efficiency. The concept is very 

similar to the critical triangle for photovoltaics as presented by Professor Christoph J.  Brabec, however 

substituting processability for cost.19 While no issue can be argued more important than another, the 

efficiency of solar cells have long been given special attention. As an area of focus, the power 

conversion efficiency is important in order to compete with the more mature silicon technology and to 

justify research in the field of polymer solar cells. As long as focus of research is not on all of the areas, 

progress towards application of the technology will remain slow. Within recent years the number of 

reports on both processability and stability has increased significantly. Several reviews on stability have 

appeared plus one book.17,20,21 Roll-to-roll deposition is becoming an established technique for 

producing polymer solar cells.18,22,23 

1.2. The principle behind polymer solar cells 
The use of polymer materials in solar cells is dependent upon their ability to transport electric current 

and to absorb light in the UV-visible spectra. The discovery and development of conductive polymers 

by Alan G. McDiarmid, Hideki Shirakawa and Alan Heeger was awarded the Nobel prize for chemistry in 

2000, marking the importance of the discovery.24 Conducting polymers depend on the delocalized 

nature of the π-electrons resulting in high electronic polarizability. Importantly in comparison with 

inorganic semiconducting materials, organic semiconductors exhibit generally poor charge carrier 

mobility (lower by orders of magnitude).25 On the other hand organic semiconductors have strong 

absorption coefficients partly balancing the mobility as thin layer (~100 nm) can show high 

absorbance. Another major difference to crystalline inorganic semiconductors is the comparably small 

diffusion length of excitons. Excitons further exhibit strong binding energies and strong internal electric 

fields are therefore needed to separate them into free charge carriers. The first organic solar cells 

employed single organic layers between two metals of different work functions. Later implementations 
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employed a bi-layer heterojunction geometry, in which two organic layers with specific electrons and 

hole transporting properties were sandwiched between the electrodes.26 This developed into bi-layer 

heterojunctions of polymer-fullerene structures introduced in 1993 as photoinduced electron transfer 

between the optically excited polymer to the fullerene molecule was observed.27–29 The realization of 

the bulk heterojunction based polymer solar cells in 1995 by Yu et al. introduced further improvements 

in power conversion efficiency.30 The bulk heterojunction has since become the most successful and 

most implemented version of a polymer solar cell that comprise a mixture of a polymer acting as a 

donor, and a soluble fullerene derivative acting as the acceptor material. The role of the bulk 

heterojunction is several-fold. The layer must absorb light, generate and separate excitons, and 

transport charge carriers to their respective electrodes. The morphology of the bulk heterojunction 

affects all of these processes. Excitons are generated at electron donor and acceptor phase interfaces 

and the morphology optimally should ensure that the interface area is maximized so charge separation 

can take place. Conduction of charge carriers requires connected regions of donor and acceptor phases 

respectively.  

   
Figure 1.2. Normal (left) and inverted (right) device geometries.  

Currently two device geometries almost exclusively describe the majority of polymer solar cells. These 

are: the normal and the inverted geometry represented in Figure 1.2, both using a bulk heterojunction 

active layer. For a normal geometry stack the device is typically built upon a semitransparent 

transparent conductive electrode, most often indium tin oxide (ITO). Following the electrode layer is a 

hole transport layer PEDOT:PSS, the active layer, an optional electron transport layer (e.g. LiF), and a 

low workfunction metal electrode on top. The metal electrode acts as the cathode in the normal 

geometry while the ITO layer acts as the anode. This geometry achieves the built-in electric field since 

the top electrode is a low-work-function metal serving as the negative electrode. In the inverted 

geometry electrons and holes exit the device in the opposite direction. This is typically accomplished 

using zinc oxide (ZnO) as a hole-blocking layer and PEDOT:PSS as hole transport layer.31 The main 

advantages of the inverted type geometry is related to the fact the high-workfunction metals can be 
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deposited onto polymer layers via non-vacuum techniques and that avoiding the low-workfunction 

metal removes a weak point in terms of stability.31,32 

1.3. Stability of polymer solar cells 
When discussing the stability of any photovoltaic device the source of instability in the device must be 

uncovered. Polymer solar cells generally present significant degradation when operated.17,20 The 

degradation is of course linked to both intrinsic and extrinsic stability. Examples of extrinsic stability 

deficiencies relate to corrosion of interconnections, yellowing of the encapsulation material or similar; 

typically traits shared between different solar cell technologies. Intrinsic stability relate to the stability 

of the materials, the interfaces within the solar cell, etc. The intrinsic stability of the solar cell is in 

many ways the most interesting from a scientific viewpoint. If a material is not intrinsically stable, the 

final device will suffer or strong measures must be taken to circumvent the problems of the material.  

As a generalization organic materials are not inert. They are naturally more susceptible to chemical 

degradation from e.g. oxygen and water than inorganic materials.33–35 In contrast the pn-junction of 

the monocrystalline silicon solar cells is very stable and 25 years of lifetime is the norm. Polymer 

materials are dynamic and reactive, and prone to attack by a range of agents. When organic matter is 

illuminated, the materials react via photochemical and photolytic processes.36–39 The materials are also 

not heat stable and can suffer heat or sunlight-induced morphology changes or interfacial degradation 

over their operating lifetime. The bulk heterojunction with a specific morphology of interconnected 

domains do not necessarily represent the most thermodynamically stable configuration and growth of 

PCBM acceptor crystallites altering the optimal morphology has been observed.40–43 Polymer solar cells 

can also sustain damage to the top electrode, often made from a low-work-function metal that is 

reactive and easily oxidized in ambient air.44,45 All in all the stability of organic solar cells are on a 

different playing field compared to inorganic solar cells.  

There are measures that can be taken to improve stability of polymer solar cells. Encapsulation 

technology can protect materials from environmental factors; minimize the availability of oxygen and 

water, thereby prolonging the life of the device. Organic semiconductors can be made more resistant 

to oxidation by appropriate tuning of their electronic levels, and they can be made “harder” by tuning 

their glass-transition temperature or with cross-linking. Using thermo-cleavable polymers is an 

approach in which side chains are eliminated post deposition, making otherwise unprocessable but 

stable materials available.46–48 Electrodes can be made more stable by capping the reactive metal with 
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a less reactive one.49 There is no doubt that an improved understanding of degradation mechanisms 

will result in better solar cells if the constituent materials can be improved. A stable device prime for 

production will result from a compromise of optimizing the individual materials and by utilizing all 

available methods of improvement on device level including encapsulation.  

1.4. Project goals 
The stated goal of this PhD project is the identification of degradation mechanisms in roll-to-roll 

produced polymer solar cells. This is a challenging task compared to laboratory cells that are typically 

constructed on a plane glass substrate using spin coating and evaporative techniques. Throughout the 

project various model systems have been used to study aspects of polymer solar cells relating to 

degradation. The first major chapter in the report is focused on the application of ellipsometry on 

polymer solar cells. While none of these efforts were directly related to degradation of polymer solar 

cells, the work has advanced the potential for using ellipsometry to study polymer solar cells on 

flexible substrates especially for morphology studies. The second chapter revolves around the study of 

photo-oxidation of polymer materials and the efforts to build an automated system for evaluating 

photo-stability of the polymers. The fourth chapter is devoted to the application of concentrated light 

to photo-degradation of polymer materials. The last chapter details the use of chemical analysis 

towards polymer solar cells.  The appendix includes a full publication list plus five selected articles.  
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Chapter 2 
Applications of ellipsometry for polymer solar cells 

Ellipsometry is a sensitive optical method proposed by Paul Drude (1863 - 1906) and has thus been 

used for over a hundred years to derive information about surface and bulk properties.1 It makes use 

of the fact that the polarization state of light changes when the light beam is reflected from a surface 

and the technique makes it possible to deduce information about the film properties, especially the 

film thickness. Generally optical measurement techniques are of great interest since they under 

normal circumstances are non-invasive and non-destructive. Ellipsometry is no exception. The basic 

principle of ellipsometry is, as mentioned, that upon reflection the polarization changes. The exact 

nature of the polarization change is determined by the properties of the sample including thickness 

and complex refractive index. The main advantage of ellipsometry is that, in opposition to other optical 

techniques that are inherently diffraction limited, ellipsometry exploits phase information and the 

polarization state of light, and can achieve angstrom resolution. In its simplest form, the technique is 

applicable to thin films with thickness less than a nanometer and up to thicknesses of several 

micrometers. An obvious application of ellipsometry is the use in the semiconductor industry, where 

thin layers of silicon dioxide are a central element throughout production. Ellipsometry enables 

process engineers to keep track of the thickness of the film.  

In the field of organic solar cells several reports exist on applications of ellipsometry for determining 

optical constants and thickness, surface roughness, and morphology. While determination of 

thicknesses and optical constants are an important application of ellipsometry, this application is 

mostly used to augment other measurement and to optimize processes.2,3 A more advanced use of 

ellipsometry is the use of ellipsometry to study the morphology of the bulk hetero junction. A number 

of approached to this exists in literature. Campoy-Quiles et al. have demonstrated work modeling the 

vertical composition profile of P3HT:PCBM films and reported a composition gradient varying from 

PCBM-rich near the PEDOT:PSS layer to P3HT-rich at the air interface.4 This result is important in the 

understanding of the performance of solar cells made by spin coating. Germack et. al. have 
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substantiated the results and proposed that changes in the surface energy significantly affects the 

vertical composition profile.5 Their analysis was based spectroscopic ellipsometry and near-edge X-ray 

absorption fine structure spectra.  

The main work regarding ellipsometry conducted during my PhD revolved around a similar principle of 

determining in-depth morphology studies using ellipsometry applied for flexible substrates. I have 

further employed ellipsometry to generate thickness profile scans and surface scans of roll-to-roll 

coated samples as a quality control measure. At Risø DTU I had access to a Sopra Labs GES51 

Spectroscopic ellipsomter. This particular ellipsometer was a rotating analyzer ellipsometer equipped 

with a translational stage, microspot optics, and an auto focus feature. The instrument was flawed 

when delivered from the manufacturer and a large amount of work went into solving issues relating to 

hardware limits, constructing sample holders, identifying and reporting software bugs, etc. The 

instrument was eventually sold back to the company. The results obtained with the Sopra instrument 

was limited to measurement of thickness and determination of optical constants and has resulted in 

two non co-authored contributions in peer reviewed journals in the articles entitled: “Non-destructive 

lateral mapping of the thickness of the photoactive layer in polymer based solar cells”3 and “A solution 

process for inverted tandem solar cells”6. During three one week sessions the remaining parts of the 

measurements was done at the Johannes Kepler University (JKU) of Linz at the Zentrum für 

Oberflächen- und Nanoanalytik (ZONA) under Professor Kurt Hingerl. At JKU a Woollam Co. M-2000 

Variable Angle Spectroscopic Ellipsometer, with a spectral range of 0.75 to 6.5 eV was available and 

was used to measure the data presented in the article: “Ellipsometry as a nondestructive depth 

profiling tool for roll-to-roll manufactured flexible solar cells” (Appendix 1.1)7 and also data presented 

solely in this thesis. The Woolam ellipsometer had no translation stage or autofocus option. However, 

being a rotating compensator ellipsometer the instrument was far more suited to conduct 

measurements on organic samples. The details of the differences between a rotating analyzer and a 

rotating compensator ellipsometer will be explained in the following sections along with an 

introduction to the field of ellipsometry and the most important theoretical aspects. The last part of 

the chapter is devoted to the specific work carried out during the PhD. 

2.1. Ellipsometry theory 
Ellipsometry, as mentioned, is designed to measure the change of polarization upon reflection or 

transmission. Calculations of the polarization state are therefore tied to the electric field vector, 
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defining the direction of the polarization of the light wave. The electric field vector is decomposed into 

two components named p and s respectively, a tradition originating from their German names Parallel 

and Senkrect. Ellipsometry is primarily interested in how p- and s- components change upon reflection 

or transmission in relation to each other. The change in polarization is commonly written as 

  ( ) ∆= Ψtanp i

s

r
e

r
.         Eq. 2.1 

The right side of the equation is describing the measurement with ( )Ψtan  representing the amplitude 

ratio upon reflection, and ∆ie  the phase shift. The left side of the equation describes the sample with 

rp and rs being the two components of the reflection coefficient. As ellipsometry measures a ratio of 

two values rather than an absolute value of either, the measurement is robust, accurate, and 

reproducible. For instance, ellipsometry is relatively insensitive to scattering and fluctuations, and 

requires no standard sample or reference beam. However, as ellipsometry is an indirect method, 

where the measured Ψ and Δ cannot be converted directly into the optical constants of the sample, a 

model analysis must be performed. Direct conversion into real data is only possible in simple cases of 

isotropic, homogeneous and infinitely thick films. In all other cases a layer model must be established, 

which considers the optical constant and thickness parameters of all individual layers of the sample 

including the correct layer sequence. Then using an iterative procedure unknown optical constants and 

/ or thickness parameters are varied, and the right side of Equation 2.1 is calculated using the Fresnel 

equations for rs and rp. The best match provides the optical constants and thickness parameters of the 

sample. Roughness for example can be included in the model by using a effective medium 

approximation; effectively changing the optical constants in the model.8  

Ellipsometry measurements 
Obtaining Ψ and Δ from the ellipsometric measurement is very dependent on the type of ellipsometer 

used. Rotating analyzer ellipsometry is probably the most widespread technique, but the technique 

has a weakness in that it is not capable of determining the phase Δ, but rather ( )∆cos . A rotating 

compensator ellipsometer is capable of overcoming this issue.   
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Figure 2.1. A simple ellipsometry system consisting of a light source, a polarizer, a sample, an analyzer, 

and a detector. 

Rotating analyzer or rotating polarizer ellipsometry is a simple form of ellipsometry employed by many 

manufactures including the instrument at Risø DTU. See Figure 2.1 for a schematic representation of a 

rotating analyzer setup. The setup is based on an electromagnetic radiation emitted by a light source 

and linearly polarized by a polarizer. After reflection from the sample the radiation passes a second 

polarizer, used to analyze the polarization, and then falls into the detector. Using the Jones matrix 

formalism it is possible to describe the light passage through a rotating analyzer ellipsometer. 

Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones 

matrices. When light crosses an optical element the resulting polarization of the emerging light is 

found by taking the product of the Jones matrix of the optical element and the Jones vector of the 

incident light 

( ) ( ) ( )
( ) ( )

( )
( )

1 1 0
0 1

1 1 0

1 0 0cos sin cos
0 0 0sin cos sin

p i
A S i

s i

r E
E T R T E

r E
      

= =       −      



   α α α
α

α α α
.9

 

iE


 is the Jones vector representation of the incident electric field after a linear polarizer. T


 is the 

sample reflection, ( )1R α


 is the rotation to match the coordinate system of the analyzer, and AT  

represents the analyzer. For a rotating analyzer ellipsometer 1α  is changed to get several intensity 

readings. A rotating polarizer ellipsometer instead rotates the polarization of the incoming light. The 

intensity at the detector is the absolute value of the outgoing electric field *
0 0 0I E E= ⋅
 

. By introducing 

the stokes parameters; 2 2
0 p ss E E= + , 2 2

1 p ss E E= − , and * *
2 p s s ps E E E E= +  the intensity can be written 

as 
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( ) ( ) ( )0 1 0 1 1 2 1
1

cos 2 sin 2
2

I s s sα α α= + +  
.
 

The value of the Stokes parameters can be determined experimentally by conducting measurements of 

the intensity at a minimum of three rotations of the polarizer ( 1α ). Hereby three equations for I0 is 

introduced with the three Stokes parameters as the only unknowns.  It is possible to express the 

elliptical parameters by the Stokes parameters 

( ) ( )
( ) ( )

1 0 0

0 0

0 901
cos

2 0 90
I I
I I

−  ° − °
Ψ = − ° + ° 

,  

and 

( )
( ) ( )( ) ( ) ( )

1 0

0 0

2 45 1
cos

0 90 sin ' sin '
I

I I
−
 °

∆ = − 
° + ° Ψ Ψ  

.9 

In the above example it was assumed that measurements of the intensity were conducted at 0°, 45°, 

and 90°. The value of ∆  is an inverse cosine function. This means that the precision and accuracy is 

poor when Δ is near 0° or 180°. For applications not requiring several angles of incident to be 

measured this is not a big issue. It will then be possible to conduct the measurements near the 

Brewster angle and maintain good accuracy of Δ. If several angles of incident is necessary in order to fit 

the model, poor accuracy in Δ can be problematic. This condition is encountered as an example when 

trying to model in-depth morphology; since multiple angles of incidence yields measurements at 

different optical path lengths providing valuable information. It is possible to install a compensator 

element into the beam path either before or after the sample. The compensator can convert the near 

linear polarization state near Δ = 0° or 180° to a near circular polarization state (Δ=90°), optimizing 

sensitivity for Δ. Hereby both Ψ and Δ can be accurately measured over their full ranges. However, a 

perfectly ideal spectroscopic compensator element does not exist and compensator elements which 

can be used spectroscopically are not achromatic.10 This means that the retardance of the 

compensator must be calibrated throughout the entire spectral range. Otherwise the accuracy of the 

ellipsometric data will be degraded by the introduction of the compensator element.  
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An alternative approach to introduce a compensator into the ellipsometer beam path is to implement 

the rotating compensator ellipsometer configuration. This setup is not restricted to measuring only 

( )cos ∆ , since the rotating-compensator instrument provides all four Stokes vector components for 

the light beam reflected from the sample surface.10 In contrast, the rotating-polarizer instrument 

provides only three such components. This also means that this configuration is capable of measuring 

the depolarization which occurs from samples with non-uniform film thickness, roughness and other 

sample inhomoginities. 

Data analysis 
After a sample is measured and the right side of Equation 2.1 has been determined, a model must be 

constructed to describe the sample. The model is used to calculate the response from the Fresnel 

equations which describe each material with thickness and optical constants. When the values are not 

known they become fitting parameters for which a preliminary guess is applied. The calculated values 

from the left side of equation 1 are then compared to the experimental data. Any unknown parameter 

can be varied to improve the match between experiment and calculation. The best match between the 

model and the experiment is found through regression, where an estimator, like the Mean Squared 

Error (MSE), is used to quantify the difference between curves. The unknown parameters are allowed 

to change until the minimum MSE is reached. It important at this point to notice that the process of 

fitting can be complicated, and that many local minima may exist. It is very possible for the regression 

algorithm fall into a local minimum depending on the initial parameter guess. 

 
Figure 2.2. Reflection and transmission of an incident light wave at a surface boundary or a  infinite 

film. 

The simplest example of an ellipsometry model comes in the form of a bulk sample (infinite film), see 

Figure 2.2. Following Equation 2.1 the model must describe the ratio of rp and rs. For the infinite film 

approximation rp and rs are simply given by the Fresnel reflection coefficients 
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( ) ( )
( ) ( )
θ θ
θ θ

−
=

+
0 0 1 1

0 0 1 1

cos cos
cos coss

n n
r

n n  and 

( ) ( )
( ) ( )
θ θ
θ θ

−
=

+
0 1 1 0

0 1 1 0

cos cos
cos cosp

n n
r

n n , 

where n0 and n1 is the index of refraction for medium 0 and 1 respectively.11 The refracted angle (θ1 ) 

is related by Snells law to n0, n1, and θ0 . Thereby the index of refraction for medium 1 remains the 

only unknown. Solving Equation 2.1 with the simple Fresnel coefficients yields 

 ( ) ( ) ( )
( ) ( ) ( )

1
2 2

2
1 0 0 0

tan exp 1
sin tan 1

1 tan exp
i

n n
i

θ θ
  Ψ ∆ − = +  + Ψ ∆   

 Eq. 2.2 

A negative solution for the equation also exist, however, since the refractive index cannot be negative 

this solution is not shown. It follows that refractive index can directly be calculated from the 

ellipsometric parameters. No fitting is therefore necessary in this case. 

 
Figure 2.3. Illustration of a film substrate optical system. The system consists of three parts; the 

ambient environment, the film, and the sample. 

A case of importance in ellipsometry is an optical system consisting of an ambient-film-substrate 

system as shown in Figure 2.3. When the refractive index of the film and the substrate is known it is 

possible to determine the thickness of the film in such a system by utilizing the Fresnel coefficients. For 

the single layer ontop of a substrate the coefficients are given by the Airy formula 

( )
( )

β
β

+ −
=

+ −
01, 12,

01, 12,

exp 2
1 exp 2

p p
p

p p

r r i
R

r r i  and 
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where 01r  and 12r  are the reflection parameters for the ambient-film and the film-substrate system 

respectively.10 β is the phase angle containing the thickness of the film and is given by  

( )1 12 cosd nβ π λ θ= , 

where d is the thickness, and λ  the wavelength. Inserting Rp and Rs into Equation 2.1 yields a complex 

quadratic equation for ( )exp 2i β−  which can be solved as 

( )

1
2 2

4

exp 2
2

p p p p

s s s s

p

s

R R R R
E B E B D A F C

R R R R
i

R
D A

R

β

       
 − − ± − − − −      
        − =

 
− 

 

, 

where 01, 12, 12,s s pA r r r= , 12, 01, 01, 12,p p s sB r r r r= + , 01,pC r= , 01, 12, 12,p p sA r r r= , 12, 01, 01, 12,s s p pE r r r r= + , and 01,sF r= . 

This allows the thickness d to be calculated since the thickness is only represented in β . However, 

since the thickness is given in a complex exponential no single solution for the thickness exists. The 

thin film approximation deals with this issue by assuming that the lowest positive thickness value is the 

correct thickness. To determine the thickness for thicker films it is possible to conduct measurements 

for several wavelengths and thereby introduce more equations. For multiple isotropic layers, the 

calculation of the complex reflection coefficients is more complicated and performed using a matrix 

representation, where each layer is represented by two 2 X 2 complex matrices, one for the pp 

polarization and the other for the ss polarization.10 

Optical coefficient parameterization 
With ellipsometry the most typical situation with an ambient-film-substrate system is to know the 

complex refractive index of the substrate (either by previous measurement or from a table value), but 

not the thickness nor the complex refractive index of the film. In this case it is never possible to directly 

calculate all three unknowns. With spectroscopic ellipsometry the situation is better. However, since 

the refractive index is wavelength dependent the introduction of more wavelength add as many 

unknowns as equations. It is therefore necessary to model the optical dispersion by a simplified model 

to determine both optical constants and thickness. This parameterization of the optical components is 

done though a dispersion law simulating the optical indices and their variation according to the 
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wavelength. A very common optical dispersion is the Cauchy optical dispersion where six parameters 

are used 

2 4

B C
n A

λ λ
= + +  and 3 5

D E F
k

λ λ λ
= + + . 

By using the dispersion relation the system becomes over determined making the fitting of the 

parameters more robust. The Cauchy dispersion is often used as a simple approach to determine the 

thickness of a film. If a wavelength range exist where the film has zero absorbance the k component 

vanishes and only three fitting parameters remains beyond the thickness. 

Another dispersion model often used is the the Tauc Lorentz model. This is typically used for the 

parameterization of the optical functions for amorphous semiconductors and insulators for which the 

imaginary part of the dielectric function iε  is determined by multiplying the Tauc joint density of 

states by the iε , as obtained from the Lorentz oscillator model. The real part of the dielectric function 

rε  is calculated from iε  using Kramers-Kronig integration, making the model Kramers-Kronig 

consistent. 

Effective medium approximation 
Using an effective medium approximation (EMA), mixtures of materials with known refractive can be 

described. The EMA is a physical model that describes the macroscopic properties of a medium based 

on the properties and the relative fractions of its components. Based on the additive character of the 

polarizability, a generalization of the Claussius-Mossotti formula can be written as 

( )ε ε ε ε ε ε
ε ε ε ε ε ε

− − −
= − +

+ + +
1 2

1 2

1
2 2 2

h h h

h h h

f f
, 

where ε   is the effective dielectric function, ε1  and ε2  are the dielectric functions of the two media 

subject to mixing, εk  the dielectric function of the host medium with the inclusions, and f the volume 

ratio of material 2.12 The underlying assumptions of the equation are that it applies for spherical 

inclusions and dipole interactions only. In the Bruggeman model the effective medium itself act as the 

host material, so ε ε= h .12 The model is then self-consistent and the two phases play exactly the 

same role. The effective dielectric function of the mixture is given by the second order equation 
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The validity of the Bruggeman effective medium approximation requires the sizes of the phases 

(dielectrics) in a composite material to be sufficiently greater than atomic sizes, but smaller than 1/10 

of the wavelength, which indeed is true for the bulk heterojunction films. The effective medium 

approximation cannot represent non-additive features of the dielectric function, such as charge 

transfer absorption bands. Lastly the dielectric functions of the phases must be independent of size 

and shape. 

Practical considerations 
There are a number of practical considerations to be familiar with in connection with ellipsometry 

measurements. The first major hurdle is backside reflections. Backside reflections occur when front 

surface and back surface reflections overlap and enter the detector. This happens for transparent 

substrates which are polished on both sides. This was the case for the glass substrates used during this 

thesis for modeling work. These unwanted backside reflections are incoherent with the desired 

reflection from the front side and can either be accounted for in the model or suppressed by 

experimental means. One approach is to roughen the backside so the light is effectively scattered.  

Another effect encountered in connection with ellipsometry is depolarization. Depolarization occurs 

when totally polarized light used as a probe in ellipsometry is transformed into partially polarized light. 

The effect of depolarization is especially severe for a rotating angle ellipsometer as the instrument 

assumes that reflected light is totally polarized. Imagine a case where the reflected light of linear 

polarization is overlapped with circular polarization. For a rotating angle ellipsometer the polarization 

state of this reflected light will be interpreted as elliptical polarization, since this instrument assumes 

totally polarized light for reflected light.  With a rotating compensator ellipsometer the depolarization 

can be measured and included in the model. The physical phenomena that generate partially polarized 

light upon light reflection are; surface light scattering caused by a large surface roughness, incident 

angle variation originating from the weak collimation of probe light, wavelength variation, thickness 

inhomogeneity in the film, and backside reflection.13 The measurement of the depolarization therefore 

gives a good indication of the quality of the sample. 
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2.2. Model system and validation 
The main results using ellipsometry conducted during this thesis has been determining the in-depth 

morphology of P3HT:PCBM on flexible substrates (Appendix 2.1)7, conducting thickness and 

composition linescans on flexible substrates (Appendix 2.1) 7, and doing surface thickness scans on 

flexible substrates (previously unpublished). In order to achieve this, model work was conducted on 

glass substrates and validated. Firstly the optical constants of the substrate was determined, secondly 

the optical constants of the constituent materials (P3HT and PCBM) were measured. A model system 

was established using an effective medium approximation to describe the layer both including and 

excluding morphology and validated by complementary techniques. Lastly the model system was 

applied to the flexible substrate samples.  

The solar cell geometry chosen as the basis for the main ellipsometry work was a modified Fraunhofer 

type solar cell fabricated by a full roll-to-roll process, with a Kapton/Al/Cr/P3HT:PCBM/PEDOT:PSS/Ag 

structure.14 The active layer was the layer of interest. For this specific geometry efficiencies up to 3.1% 

had been reported on lab scale cells and 0.5 % efficiency for roll-to-roll processed cells.14–16 This 

specific geometry was chosen because of the bottom aluminum electrode. The typical flexible 

substrate material such as biaxially-oriented polyethylene terephthalate (PET), is made by stretching 

the polymer materials. The stretching is achieved through a series of sequential processes, in which the 

film is first drawn in the machine direction using heated rollers and subsequently drawn in the 

transverse direction in a heated oven. Once the drawing is completed, the film is crystallized under 

tension in the oven at temperatures typically above 200 °C, preventing the film from shrinking. The 

disadvantage with this process from an ellipsometry point of view is that the process induces optical 

anisotropy in the material. This anisotropy is difficult but not impossible to model, making ellipsometry 

more complicated. With a rotating angle ellipsometer this type of substrate will never work since the 

anisotropy induces a mixed polarization state that cannot be correctly described. Additional problems 

with the substrate occur in connection with mounting the substrate. Since tension will twist the optical 

axis changing the anisotropy, the sample must be mounted without any tension. A simple approach to 

conducting ellipsometry on PET involves using only the UV part of the spectrum. This will work due to 

the absorbance of the PET material, making it possible to make determinations about film thickness 

and perhaps roughness. For the studies conducted here a simpler system with aluminum on top of a 

Kapton film was chosen. This system is favorable since only the aluminum must be included in the 

model. 
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Substrate optical constant 
The use of a flexible substrate presents a number of challenges. Primarily the production of several 

samples with different thicknesses and compositions was not viable on the Kapton / Aluminum 

substrate. Additionally the optical constants of the material were not well described. A model system 

was therefore needed with a well described substrate. The first step in dealing with a model system is 

to find a suitable substrate to work on. One option was to choose a silicon wafer. The advantage of 

silicon is that the surface roughness is minimal, the optical constants are well known and described, 

and the material is optically homogeneous. Additionally since silicon has an index of refraction at 3.96 

at 590 nm the ellipsometric measurement will be very precise since the refractive index of most 

polymer materials are in the range 1.2 – 1.7. Hereby good resolution of both Ψ and Δ can be expected 

even with a rotating angle ellipsometer. The drawbacks of this substrate are that silicon has a vastly 

different surface energy than glass, making spin coating of the materials more cumbersome. Secondly 

since no solar cell geometry at Risø DTU is based on silicon, this substrate option was abandoned. 

Instead glass was chosen as the model substrate material. 

Optically there are a number of complications using glass. Firstly since glass is transparent in the visible 

spectrum backside reflections must be mitigated. This was done by roughening the backside with a 

diamond scribe. The second issue was that the index of refraction is not well known for all types of 

glass. This, however, could easily be overcome by measuring the refractive index. However, thirdly; 

there are many types of glass available and not all are optically homogeneous. The most commonly 

used type of glass is float glass. Float glass is made by floating molten glass on a bed of molten metal, 

typically tin. This induces a gradient of tin into the glass on both sides. The bottom gradient stems from 

direct contact with the molten tin, and the top side from tin vapors. Hereby this type of glass has two 

dissimilar sides both featuring an optical gradient. To obtain a workable optical model for this type of 

substrate, attempts were made to remove the top micrometers of glass by grinding and polishing. This 

allowed bulk values of the refractive index to be measured and calculated using Equation 2.2 in 

Matlab. Then this value could be used to introduce an ambient-film-substrate system as shown in 

Figure 2.3, where a tin layer was included as the film layer. While moderately successful this approach 

was later dropped as a better substrate was indentified. 

The alternative glass chosen was objective glass manufactured by Menzel-Gläser. This specific glass is 

especially suitable for ellipsometry since it is drawn according to the Fourcault-method. Hereby it does 

not exhibit the tin-rich layer from the typical float glass. This type of glass is also characterized by low 
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surface roughness. All the data presented here for the model system is measured based on this 

substrate glass. The optical index was measured by direct conversion using Equation 2.2 with the 

backside roughened for the measurements. 

Optical constant of constituent materials 
To obtain the optical constants for the constituent materials; namely P3HT and PCBM a generalized 

oscillator model was set up. The procedure began, in the case of P3HT, by determining the thickness by 

fitting a Cauchy model using the zero absorbance approximation. With the thickness locked the 

complex refractive index could be obtained from point-by-point calculation. These values are, 

however, directly affected by the noise in the measurement since the system is not overdetermined. A 

model for the optical constants therefore needed to be introduced. A generalized oscillator model, 

using Tauc Lorentz oscillators was employed for this. Using the complex refractive index obtained by 

point-by-point calculation each oscillator could be introduced and roughly fitted by hand. After that a 

fitting routine was initiated with a range established for each fitting parameter. Measurements of 

P3HT were conducted at both Risø DTU on the Sopra rotating angle ellipsometer and at JKU on the 

Woolam rotating compensator ellipsometer, with similar results. The results shown here was obtained 

at JKU. Following the same procedure the optical constants of PCBM were determined. 

 
Figure 2.4. A simulation of the absorption based on the optical constants measured by ellipsometry. The 

insert shows the absorption maximum as a function of thickness. 

An example of the direct application of these measurements is featured in the article: “Photochemical 

stability of conjugated polymers, electron acceptors and blends for polymer solar cells resolved in 

terms of film thickness and absorbance” (Appendix 2.2)17 where a fit of the absorption spectrum of 

P3HT and PCBM is used to validate a model to determine the thickness of a film of P3HT on a glass 
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substrate by the maximum absorbance value only. Thickness measurements obtained by atomic force 

microscopy showed a linear relation between thickness and absorption maximum value. The 

simulation based on the optical constants, see Figure 2.4, validated this linear relation. This model was 

also used in the articles: “Influence of processing and intrinsic polymer parameters on photochemical 

stability of polythiophene thin films” (Appendix 2.3)18 and “Concentrated light for accelerated photo 

degradation of polymer materials” (Appendix 2.3)19. 

Model system 

       
Figure 2.5. A single layer EMA mix (left) of the two components, this model is labeled simple EMA. A 

more complex model (middel) featuring a phase separated top part of P3HT of varying thickness, 
labeled as the linear gradient model. A four phase model (right). 

In order to model a blended system of P3HT and PCBM an effective medium approximation based on 

Equation 2.3 was introduced. The effective medium approximation allows the effective dielectric 

function to be calculated based on the volume fraction of the constituent materials. A blended layer of 

P3HT and PCBM can hereby be modeled as depicted in the left of Figure 2.5. Using this model it is 

possible to combine the complex refractive index of P3HT and PCBM as seen in Figure 2.6. In the figure 

peaks are assigned to P3HT and PCBM respectively. 
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Figure 2.6. Optical dispersions with peaks assigned are shown for both the index of refraction (top) and 
the extinction coefficient (bottom).  The solid line is the dispersions of the BHJ layer and the dotted lines 

are the dispersions for the pure phases. Reprinted with permission from the American Chemical 
Society.7 

In order to model more advanced features using the effective medium approximation an expansion is 

introduced. The right part of Figure 2.5 depicts a model where a stack of four layers represents the 

entire film. This way each level represents a part of the in-depth morphology. Various degrees of 

freedom can be introduced by locking different aspects of the model such as the ratio of a given layer 

or the thickness. An even more advanced model, such as the one depicted in the middle of Figure 2.5, 

can be achieved. The gradient is described by introducing a high number of layers and locking their 

composition to follow a function. In this case a linear function has been chosen for the composition, 

but all types of mathematical functions are possible. 
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Figure 2.7. The phase gradient model (top) shows the result of the fitting procedure. The fit of Ψ 
(bottom right) and Δ (bottom left) shows the quality of the fit (MSE = 20.59), where red lines represents 

the model and green the experimental values. 

In order to establish the correct in-depth morphology of the sample a large number of samples were 

made at different thicknesses and concentrations. These were comprised of a series of samples made 

at different spin speeds (500, 1000, 2000, 4000 rpm) and concentrations (1:1, 1:0.7). By using the four 

phase model seen in Figure 2.5, fitting was carried out using a random global fit algorithm running 

within reasonable physical limits. The idea of the random global fit is that each fitting parameter is 

restricted to a certain range. Then the computer generates a large number of starting guesses to be 

run in the fitting algorithm. These were given such that the composition of P3HT and PCBM could not 

be negative and that the total thickness stayed within ±20 percent of the thickness as determined by a 

zero absorption Cauchy model. The model was subject to a fitting process were the compositions of 

the four layers were set to values from 0 and 100 percent composition in steps of 25 percent. The 

combined thickness was set at values between 20% less than the expected thickness and 20 % above 

the expected thickness with five evenly spaced guesses. The thicknesses of the sublayers were treated 

as free parameters set to the value from the previous fit. Hereby 2500 different starting guesses were 

established. These were fitted in a random order as the randomness prevents the fit from falling back 

into the previous local minimum. The overall best set of parameters was saved. By repeating this 

procedure for all eight samples with different thickness and composition it was established that a 

linear vertical composition gradient combined with a top phase separation would yield the simplest 

model capable of describing all thicknesses and compositions with a low minimum square error for all 

samples. The linear model with the phase separation only has four fitting parameters, see the middle 

 

Photon Energy (eV)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Ψ
 in

 d
eg

re
es

0

5

10

15

20

25

Model Fit 
Exp E 60°
Exp E 62°
Exp E 64°
Exp E 66°
Exp E 68°
Exp E 70°

 

Photon Energy (eV)
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

∆ 
in

 d
eg

re
es

-100

0

100

200

300

Model Fit 
Exp E 60°
Exp E 62°
Exp E 64°
Exp E 66°
Exp E 68°
Exp E 70°



 
Applications of ellipsometry for polymer solar cells 

 
P a g e  | 29 

 

of Figure 2.5. Two examples of the four phase fitting can be seen in Figure 2.9 and Figure 2.10 

respectively. The linear gradient model yielded generally fits with low mean square error and one 

example of this model for a glass substrate can be seen in Figure 2.7 along with the fits of Ψ and Δ. 

Model system validation 
Generally it is very difficult to prove a model used for ellipsometry. In this work it is important to notice 

that the ellipsometry model so far, has not been based on anything beyond the ellipsometry 

measurement. The random global fitting procedure allowed a prediction of the in-depth morphology. 

When a range of samples had been evaluated a simplified model was chosen to represent the in-depth 

morphology. The linear model with phase separation, see Figure 2.5, was also chosen to be the 

simplest model describing the in depth morphology. It is therefore perhaps not the best model to 

describe all details of the in depth morphology, but rather a model giving good consistent fits with less 

tendency for the model to fall into local minima during the fitting. This is the case since this model 

represents a large decrease in the number of free parameters (four phase model = 8 parameters and 

linear model with phase separation = 4 parameters). 

In order to validate the model a number of measures were introduced. The first leg in the validation 

procedure was validating the total thicknesses determined by the ellipsometry model. This was done 

by measuring the thickness of all samples using AFM. All thicknesses were within the uncertainty of the 

AFM values, thereby validating that the model is capable of determining the thickness. 

 
Figure 2.8. Transmission simulation Good fit between simulated transmission and measured 

transmission. 

The second leg in the validation is related to the transmission of the sample. Since the transmission 

spectrum can be calculated from the optical constants and the thickness; the model can be validated 
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by comparing the simulated transmission spectrum to a measured transmission spectrum. Figure 2.8 

shows the simulated transmission spectrum for both the one layer effective medium and for the linear 

gradient model along with the measured transmission spectrum. Generally it must be noted that the 

simulation of the absorption is based on the pure phase optical spectra of P3HT and PCBM 

respectively. A perfect fit can therefore not be expected as for example vibronic features cannot be 

modeled within that restraint. However, it is clear that the fit of the linear model is an improvement 

over the fit of the single layer effective medium.  Reasonable fits of the transmission was observed for 

all samples. 

 
Figure 2.9. Three different models represented by the dashed lines (simple EMA model, four phase 

model, and linear model with phase separation, see figure 2) detailing the in-depth morphology of a 
P3HT:PCBM 1:1 blend spin-coated on glass at 4000 rpm.  

The last leg in the validation procedure was to determine the in-depth morphology directly using a 

complementary technique. This was done by X-ray photoelectron spectroscopy (XPS) depth profiling 

using a K-alpha XPS (Thermo Electron Limited, Winsford, UK) with a monochromated Al-Kα X-ray 

source. The composition of P3HT and PCBM was calculated by measuring the content of carbon and 

sulfur and then calculating the distribution of the two phases by considering the molecular formulas of 

P3HT and PCBM respectively. This was possible since only P3HT contains sulfur. Atomic compositions 

were determined from surface spectra, and were calculated by determining the integral peak 

intensities using a Shirley type background removing the inelastically scattered electron contribution. A 

comparison of the XPS depth profile and the ellipsometrically determined profile is depicted in Figure 

2.9 and Figure 2.10. By comparing the XPS and ellipsometry data it is observed that the XPS depth 

profile does not feature an as distinct phase separation as the ellipsometry model suggests. Since the 
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probe depth of the XPS is 5-12 nm the real gradient will be a convolution of the real vertical gradient 

and the probe depth, smoothening out the result. Therefore the XPS data supports the ellipsometry 

model. The pileup of PCBM in the beginning of the XPS profile and the later more linear slope is 

described well within the linear gradient restriction. 

 
Figure 2.10. Three different models represented by the dashed lines (simple EMA model, four phase 
model, and linear model with phase separation, see figure 2) detailing the in-depth morphology of a 

P3HT:PCBM 1:0.7 blend spin-coated on glass at 500 rpm. 

2.3. Results 

 
Figure 2.11. Line scan depicting (left) thickness and (right) composition distribution over the width of 

the printed stripe. Reprinted with permission from the American Chemical Society.7 

Having established a sound model to describe the in-depth morphology and also the blend ratio it was 

possible to shift from the model substrate to the flexible substrate. Laminating the substrates onto a 

piece of glass introduced rigidity to the sample and ensured that the samples were flat. It was found 

necessary to use micro-spot for acceptable measurements to be conducted. For each measurement 

the depolarization factor was measured to evaluate the degree of partially polarized light caused by 
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curvature of the sample. Thus only measurements exhibiting low depolarization were considered. The 

optical dispersion of the substrate was determined by point by point fitting procedure solving the 

ellipsometric equations analytically (Equation 2.2) and making the best fit for multiple angles. Using 

the simple EMA model for the BHJ layer (Figure 2.5 left) fits of the thickness and composition of 

constituents could be made. This was employed to conduct a line scans across the width of the slot-die 

coated stripe (8 cm wide) on the Woolam ellipsometer at JKU. As this ellipsometer did not have a 

translation stage the line scans had to be made by hand. The spatial resolution of the micro spot optics 

was roughly 0.1 mm. Figure 2.11 depicts a linscan made with 50 points. The sample is a P3HT coated 

piece of Kapton with an aluminum / chrome electrode. The linescans are presented in full in the article 

entitled “Ellipsometry as a Nondestructive Depth Profiling Tool for Roll-to-Roll Manufactured Flexible 

Solar Cells”, Appendix 2.17. The model showed that the thickness had a slope in the distribution of BHJ 

layer over the observed sample. The composition at the macroscopic level is determined by the 

composition of the solution and the results confirmed that no real composition change is visible across 

the sample.  

 

 
Figure 2.12.Photograph of the roll coated sample (top) and thickness map (bottom). 

Using a motorized translation stage, measurements can be carried out with small translation overhead, 

however, doing the measurements by hand meant only a few linescans could be conducted.  Even with 

a motorized stage and setting the translation overhead to 5 seconds and using only one angle, the 

complete acquisition, would take 400 seconds. It is hereby becomes clear that ellipsometry in this form 

is not appropriate for real time roll-to-roll characteristics, but rather constitutes a means of off-line 

quality control and process optimization.  
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The idea of the linescan can easily be evolved into conducting a surface scan. This is simply done by 

doing multiple linescans. Figure 2.12 shows a surface scan of a sample made on a roll coating setup. 

Features are clearly recognizable from the photograph of the sample. It is surprising that the sample 

exhibits thickness variations in the range from 100 nm to 1 µm and suggests that the coating in this 

case was very unstable. This data has not previously been published. 

  
 

Figure 2.13. Flexible chrome Kapton substrate spin-coated with P3HT:PCBM. The model is shown on top 
and the fits of Ψ and Δ is shown in the bottom.  

Fitting of the ellipsometric data for spin-coated flexible substrates revealed that the vertical gradient 

could be modeled within the same framework used for the samples based on glass substrates, see 

Figure 2.13. The behavior of a phase separated P3HT layer remained, but the linear gradient had 

reversed. In these cases more PCBM was found at the substrate interface as compared to the glass 

substrates.  For a roll-to-roll coated sample a similar in-depth morphology could be shown, see Figure 

2.14. These results were presented in the article entitled: “Ellipsometry as a Nondestructive Depth 

Profiling Tool for Roll-to-Roll Manufactured Flexible Solar Cells”, (Appendix 2.1)7. 
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Figure 2.14. Flexible chrome Kapton substrate coated with P3HT:PCBM. The model is shown on top and 

the fits of Ψ and Δ is shown in the bottom. 

2.4. Conclusions 
From the work presented in this chapter it is evident that the implementation of ellipsometry in the 

organic photovoltaic processing technology presents a series of challenges. Some challenges are 

related to the application of ellipsometry to organic materials on glass substrates. Other challenges are 

unique when working on flexible substrates. It has been demonstrated that variable angle 

spectroscopic ellipsometry can be employed to determine optical constants of the organic materials 

involved. The use of a rotating compensator ellipsometer for this application is by far preferable. This is 

mainly due to the fact that the refractive index of the polymer materials almost matches that of glass. 

It has also been demonstrated that ellipsometry can be a useful technique to evaluate the quality of 

roll or roll-to-roll coated samples. For this thickness and composition linescans have been carried out 

as well as thickness maps.  

The composition gradients in the bulk heterojunction layer of polymer solar cells can be determined by 

ellipsometry. This has been demonstrated by studying various model systems and confirming results 

with transmission measurements and XPS depth profiles. It was concluded that samples manufactured 

by spin coating and slot-die coating exhibit similar vertical composition gradient on equal substrates. It 

is important to stress that great care must been taken when using ellipsometry to test the model. 

Reasonable means of confirming the model include checking the thickness by complementary 

techniques such as AFM and comparing simulations to optical transmission spectra. In addition is 

important to stress that ellipsometry can act as a predictive technique. In the case presented here; the 
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models are based on a model with randomly assigned parameters, with no preconceived knowledge of 

the in-depth morphology necessary.  

It is well known that thermal annealing leads to a dramatic increase in the PCE with respect to as-spun 

devices.20 This leads to a non-thermodynamically stable situation.21–24 Ellipsometry with the models 

described in this thesis will be able to monitor the change in morphology using the technique 

presented. 
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Chapter 3 
Automated photo-degradation 

Performing photo-degradation of both complete solar cells and single polymer layers is a necessary 

step in obtaining knowledge of the degradation mechanisms. Once degraded the cells or the materials 

can be probed by relevant techniques and be further degraded. The photo-degradation itself is 

typically achieved by illuminating the sample under a solar simulator and the sample can then be 

manually transferred to and from the instrument intended for characterization. One primary method 

of following the degradation is by optical transmission measurements. A large number of publications 

exits in literature with this exact approach.1–8 A main focus during this PhD has been in the automation 

of the trivial task of performing photo-degradation. By removing the element of an operator from the 

process the number of errors in an experiment is reduced significantly. Secondly time intervals of 

measurements can be reduced and lag time almost completely removed. Lastly since an automated 

system can work day and night a much larger number of samples can be evaluated, increasing the 

statistics. By operating a sample exchanger robot equipped with a spectrometer setup for transmission 

measurements this was achieved. The design and construction of this degradation environment along 

with acquisition and post treatment software is the focus of this chapter. The setup has been used in 

connection with four articles entitled; “Photochemical stability of conjugated polymers, electron 

acceptors and blends for polymer solar cells resolved in terms of film thickness and absorbance” 

(Appendix 2.2)9, “Influence of processing and intrinsic polymer parameters on photochemical stability 

of polythiophene thin films” (Appendix 2.3)10, “Comparative Studies of Photo Chemical Cross-linking 

Methods for Stabilizing the Bulk Hetero-Junction Morphology in Polymer Solar Cells” (not included in 

the thesis)11, and ”Concentrated light for accelerated photo degradation of polymer materials” 

(Appendix 2.4)12. The work has solely focused on the degradation of the active layer materials. 

3.1. Light induced degradation of polymer materials 
While large efforts are put into describing the degradation and stability of solar cells, focusing purely 

on the stability of the polymer itself can yield valuable insight into the degradation mechanisms. Using 
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UV-visible spectroscopy to study the rate of polymer degradation is a straight forward technique. It 

makes sense since the absorption is vital for solar cell operation as only absorbed photons can 

generate excitons. The technique of monitoring the gradual absorbance loss was first presented by 

Holdcroft in 1991, studying photo-chemical stability of P3HT.13 Describing photo-stability can be done 

either in solution14 or as thin films.15,16 Chemical properties such as conjugation length and crystallinity 

can be qualitatively discussed based on the absorption measurements. Using degradation rates based 

on loss of absorbance directly allows for correlating the degradation state to the number of intact 

monomer units. The number of monomers scales directly with the absorbance, and thus the 

degradation state can be written as 

Monomer
state

initial initial

N A
D

N A
= = , 

where initialN  is the initial number of monomers, initialA   and A is the initial and current absorbance 

respectively. The number of monomers at a given time during degradation can be expressed by  

A
Monomer state

N
N t D

M
ρ

= ⋅

,
 

where AN is Avogadro’s number, ρ  is the polymer density, M is the molar mass, and t is the film 

thickness. According to the Lambert-Beer law, the thickness of the film scales with the absorbance. The 

reciprocal rate of monomer loss yields the degradation event interval, 

1

.MonomerdN
dt

τ
−

 =  
 

 

It is hereby evident that the use of UV-visible spectroscopy is a direct approach for obtaining 

information on the rate of photo-degradation. This can directly be used to compare polymers, but also 

to compare effects of barrier materials, temperature, atmosphere and more. Using this technique 

Manceau et al. has created a rule of thumb for photo-stability of a range of polymers.1 

The most used polymer in polymer solar cells is arguably P3HT. Degradation of P3HT is well 

documented and can be facilitated by exposure to light and molecular oxygen that destroys the π–
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conjugation and consequently induces loss of absorption. P3HT is degraded under these conditions in 

solution as well as a solid (e.g. a film). The consequence of degradation is well established but the 

mechanism responsible for it has been subject to discussion. Whereas singlet oxygen is known to be 

the cause of degradation in solution,17 the degradation mechanism in the solid state is believed to be 

different. Manceau et al. have proposed a degradation mechanism based on a radical process 

beginning from an abstraction of an allylic hydrogen, leading to side-chain and sulfur oxidation.8,18 This 

process is responsible for breaking the macromolecular backbone resulting in loss of conjugation and 

consequent bleaching of the sample. This mechanism occurs under both photo- and thermo-oxidation 

enforcing the notion that singlet oxygen is not the main intermediate in the degradation process. Hintz 

et al. have conjectured that the polymer is mainly attacked at the terminal thiophene rings under 

photo-oxidation.2 The authors concluded this from observing the kinetics of the blueshift in the optical 

absorption. They observed that the blueshift, indicating loss of conjugation (observed for oligomers 

with less than 20 thiophene units), is not observed until the end of the degradation of the polymer. 

Hintz et al. have also demonstrated that a strong increase in photon effectiveness is observed for 

photo-degradation of P3HT films for decreasing irradiation wavelengths.3 Changing the illumination 

wavelength from 554 to 335 nm lead to an increase by a factor of 50 in effectiveness of the P3HT 

photo-oxidation. This observation supports the radical chain mechanism driven by photo-generation of 

radicals by the photo-lysis of precursors absorbing in the ultraviolet region. 

3.2. Degradation setup 
In order to be able to produce reliable data on photo-degradation automatically at a fast rate, a 

framework needed to be established. This included: 

• A sample exchange robot to handle samples during illumination and measurement 

• An acquisition software solution 

• A post treatment software solution 
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Figure 3.1 Schematic drawing of the workflow of the photo degradation setup. 

The workflow of the system designed, is shown in Figure 3.1. The sample exchanger robot is 

responsible for moving samples to and from the spectrometer. A computer program is constantly 

running to make sure samples are measured according to the sample list. The entire software system 

including the post treatment software is designed from the ground up and written in the C# language 

and compiled using Microsoft Visual Studio.  

Sample exchange robot 

 
Figure 3.2. Top view of the sample exchanger robot assembly. 

The sample exchanger robot had the purpose to automate the process of recording transmission 

spectra. The setup consists of a rotational stage mounted with a sample holder, and a two axis 

motorized arm mounted with a spectrometer setup, see Figure 3.2. The sample exchanger has a 

circular aluminum disc of outer diameter 36 cm mounted, into which 12 sample slots of 50.5 x 50.5 

mm had been milled. Each of these sample slots could either house a 50 x 50 mm substrate or 

alternatively two 50 x 25 mm samples. Springs ensured that the samples when mounted would not 
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move inside the slots. The spectroscopy light source was fixed in the bottom part of a fork type arm 

and light was collected from the top part of the arm. The arm was mounted on the x-y stage allowing 

motion in the table plane. The rotation of the sample exchanger was performed by a rotational stage 

(HIWIN TMS32-A00) and the x-y axis was driven by two server motors (MCG 9500188/A). Both the 

server motors and the rotational stage were controlled via a Galil motor driver (Galil DMC-430) with a 

RS232 interface for computer control and programming. The setup features an emergency button 

mounted centrally for quick and easy access.  

Spectrometer 
The spectrometer setup used consisted of a broad-band light source illuminating the sample along 

with a spectrometer for detection of the transmitted light. Assuming negligible scattering in the 

system, the absorption at normal light incidence is expressed by  

1Abs R T= − − , 

where R is the intensity of the reflected light from the sample and T is the transmitted light intensity. 

The studies are typically conducted with polymers deposited on glass substrates. Using a clean glass 

substrate as a reference sample, the transmission of a single layer deposited on the substrate is 

expressed by 

0

0

R

D

I I
Abs

I I
−

=
−

, 

where IR is the intensity of a reference substrate, ID is the dark intensity  and I0 is the intensity for the 

polymer-glass sample. The absorption of a polymer film is typically given in units of absorbance A, 

which is defined by ( )logA Abs= . Absorbance is a unit-less quantity, which scales with the thickness of 

the polymer film according to Lamberts -Beer law. 

The actual spectroscopic setup is based on a fiber based probe mounted on the fork arm of the sample 

exchanger robot. An optical fiber-based CCD spectrometer (Avantes AvaSpec 1024 with a 400 µm 

quartz fiber) and a halogen/deuterium light source (Avantes AvaLight-DHc) are used to record the 

absorption spectrum in transmission geometry in the range of 300 to 900 nm at set intervals. The light 

source optical fiber is mounted in the bottom part of the fork and at the top part light was collected 

into the spectrometer fiber. Collimating lenses (Avantes - COL-UV/VIS) ensured a parallel light beam 
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through the sample with a circular area of 3 mm. The spectrometer has a USB interface allowing 

computer control and the light source had a built-in shutter mechanism operated by a TTL signal. The 

data output from the spectrometer was used to control this shutter for dark intensity measurements 

via the computer software. 

Light source 
A Steuernagel SolarConstant solar simulator custom fitted with an Osram 1200 W Hydrargyrum 

medium-arc iodide (HMI) lamp providing an AM1.5G spectrum was used for all degradation 

experiments. The solar intensity was adjusted to 1 kW m-2 according to a ThorLabs thermopile (S314C). 

The light was not filtered and therefore a UV rich spectrum was obtained with a cut-off at 280 nm. 

Fans were employed to cool samples during the experiments and the temperature was kept at 30 °C. 

All degradations were performed in a lab with humidity and thermal control to ensure a constant 

degradation environment.  

Sample layout 
During degradation, the entire surface of each sample was degraded. Thus multiple areas of the 

samples could be monitored, by which more data was recorded for the same sample. Different 

numbers of points of degradation on the samples were used, referred to as degradation points. 

Different distributions and densities of degradation points could be used to either perform temporally 

dense measurements or to measure a larger number of degradation points to maximize statistics. The 

maximum number of degradation points was obtained with a grid pattern (7 x 4) in which 28 

degradation points were distributed. An alternative layout focused on obtaining the most uniform 

thickness of degradation points were layered out in an arc around the spin coating center. This layout 

could thereby decrease the influence of the thickness inhomogeneity as seen for spin coated samples. 

It was in fact quickly realized that the grid pattern had the great advantage that a rather broad 

thickness range could be covered by a single sample and therefore this layout was commonly used 

when thickness plots were required. 

Acquisition software 
This section will detail the most important aspects of the software including considerations for the 

main file format, multi file format compatibility, interaction surface, instrument modules, and control 

modules. All the software was written in the C# programming language. Before the start of the project 

a main goal was that the software solution must be as modular as possible. This means that a number 

of choices on how the program was split into classes and solutions were taken at an early stage. A 
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solution represents a collection of classes included in a single namespace. Classes are constructs used 

to create instances of itself. Two main solutions were created for generic data handling and instrument 

handling. A large amount of work was put into designing and programming the software platform that 

was expandable and useable for a wide range of applications. Therefore everything was made as 

generic as possible. Beyond the main software programs discussed in this chapter programs to 

evaluate mass spectra from TOF-SIMS, from ellipsometry, and more was written based on the generic 

solutions. For the project a total of approximately 15,000 lines of code have been written and over 100 

iterations of the software were given a version number during the development. The code lines were 

distributed as follows: 

• 3,300 lines for data handling including file formats, plot functionality, data interaction 

functionality. 

• 4,500 lines for instrument communication and data pre-treatment. 

• 3,000 lines for the main acquisition software dubbed: “HektoSun”. 

• 1,700 lines for the data treatment software dubbed “DegradationMonitor”. 

• 2,500 lines for various smaller software implementations. 

The main design criteria before beginning the task of programming included identifying a file format 

suitable for the column based data widely used for spectrometer data, mass spectra, IV-curves, etc. 

The file format chosen was the Full-Metadata format (fmf) as defined by Riede et al.19 The format is 

based on four principles: readable self-documentation, flexible structure, fail-safe compatibility, and 

searchability. The basic idea of the format is that all metadata required to interpret the tabular data 

are stored in the file itself, allowing for the automated generation of publication-ready tables and 

graphs. A large effort was put into developing a representation of the fmf format as a C# class. This 

allowed instances of the data to be handled within the program. The data class contains methods to 

access data based on either indexes or data values, interpolate data points, find minimum / maximum 

points, calculate running averages, etc. The data class contains a metadata class element containing a 

representation of the metadata from the file. Via this the data class knows the names of the columns 

and the units of the data. An extensive input / output class was written to convert the data class into a 

file or to open a file into a data class instance. The input / output class ensures that a large list of file 

formats can be interpreted as data classes. This way the input / output class can directly convert files 

between different formats via the data class. The implemented file formats include various 
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ellipsometry formats, mass spectra formats, IV data formats, spectroscopy formats, etc. A generic 

importer was also implemented, allowing arbitrary column based data to be imported. Within the data 

handling set of classes a plot class and a class allowing interaction with the data in a grid based tabular 

format was implemented. The plot class allowed the data to be plotted and includes zoom 

functionality, plot layout controls, export functionalities, range selection tools, etc. The class enabling 

the data to be displayed as a data grid automatically ensures binding between multiple open data grids 

and plots, data search options, column sorting, and more. In summary the data handling class is 

responsible for all data in the program including the visualization and interaction with the data and is 

generically written to work with any column based data sets. 

 
Figure 3.3. Robot controller class for the x-y-theta stage. 

The second major solution was written for the instruments. Firstly all instruments were represented by 

their own class. For similar instruments it was prioritized that the instruments were switchable at 

runtime. For example three different “robots” were used; one was a two axis stage, one a rotational 

stage, and the last a rotational stage with a two axis stage. An example of a use for the robots was as 

sample exchangers. For the main software no distinction between the stages was needed as long as 

the program could uniquely identify the sample and move to the sample by an identifier. For this 

reason a layer of interfaces was implemented between the main program and the instrument classes. 

In programming an interface is a reference type object with no implementation, it allows for 

communication with classes inheriting from the interface. The use of interfaces allows easier 

maintainability and makes code reuse much more accessible because implementation is separated 

from the interface. In the case of the robots five interfaces were defined; a common interface, an 
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interface for an x-stage, an x-y-stage, a theta-stage, and an x-y-theta-stage. The common interface 

includes methods such as a home function, a reset function, and a move-to function implementing a 

sample identifier. The remaining interfaces include the move to functions for their respective modes. 

Using inheritance the instrument classes inherits from the respective interfaces. In this way the 

communication is handled via the interfaces and the code becomes independent on the choice of the 

specific robot. A screenshot of the robot controller form for the x-y-theta stage is shown in Figure 3.3. 

Each instrument class has its own form, primarily used for debugging. The program form for the 

spectrometer is shown in Figure 3.4. This class contains controls for controlling the lamp shutter of the 

light source. When dark measurements are carried out the shutter is automatically applied. It is 

possible to record transmission, absorbance, and irradiance measurements in the form directly. The 

data recorded is stored as a data class instance and can be saved to the disk by using the export 

option. 

 
Figure 3.4. Spectrometer class. The program form contains functionality for recording and storing single 

measurements. 

The program used for the data acquisition was dubbed “HektoSun” and a screenshot can be seen in 

Figure 3.5. The program can generally access all instrument interfaces which can be activated in the 

right side. After activation the forms for each instrument can be accessed for debugging and test 
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purposes. Through the tabs in the top of the program the different functionalities can be accessed. 

“UVvis” is the most important tab, since it is used for all photo-degradation using transmission 

measurements. The “Cell Test” and the “Conc Cell Test” tabs are used for solar cell measurements 

using a Keithley source meter (compatiple with either a Keithley 2400 or 2401). With the “Cell Test” 

tab cells can be tested using a multiplexer and up to 36 cells can be monitored in parallel. The mapping 

tab holds functionality for mapping either the transmission from the spectrometer or the readout of a 

photodiode to map light distribution. The LightGradient tab holds some advanced functions, “R&D” 

and “Setup” is mainly used for debugging. The status panel in the bottom left corner tracks the 

progress of the currently running function. Via the Tools menu the post treatment software can be 

accessed along with various smaller programs including a file conversion tool. 

 
Figure 3.5. Main window of the acquisition software dubbed “HektoSun”. 

The basic operation of the “UVvis” tab is based on the sample list. This data grid is used directly from 

the data handling solution as described earlier. Within this list, all the relevant data for the sample can 

be typed in. This includes the sample name, the hole, and slot number identifying the placement of the 

sample. The first checkbox tells if the sample is mounted or not and the second checkbox becomes 

checked when the measurement is done. The cycle time indicates the time span between 

measurements; the exposure is time the total time before the measurement is terminated, and the 

elapsed time is the time expired. Lastly the light intensity can be given in number of suns. With a solar 

simulator the light intensity must be equal for all samples and set accordingly to the intensity of the 

light source. The right toolbox allows sample priority to be changed, samples to be deleted or added, 

preset sample lists to be loaded, and the list to be saved or existing lists to be opened. Keyboard 



 
Automated photo-degradation 

 

 
P a g e  | 49 

 

shortcuts for all these functionalities are also implemented. The bottom toolbox controls the 

experiment with a play button starting the experiment, a pause button, and a stop button. The light 

source and the specific robot can be selected as well. Lastly the export folder can be defined. 

Post treatment software 

 
Figure 3.6. Screenshot of the program dubbed “DegradationMonitor”. 

The software responsible for the post data treatment was dubbed “Degradation Monitor”, see Figure 

3.6. The absorbance files generated during the measurement can either be opened from the menu or 

dropped directly into the left data grid. The left data grid represents the samples; the right grid is a list 

of the absorbance measurements for the selected sample. The right plot shows the selected 

absorption spectrum and the left plot shows a generated degradation profile based on the calculation 

method selected. The data is handled directly within the data handling solution, so the data grids are 

generated directly and bound together, so that when a data set is selected in the right grid the left grid 

is updated automatically. The plots are also bound so they update according to the selections made in 

the data grids. In the top toolbar integration ranges can be set, along with various other parameters. 

All the parameters can be set individually for each sample or be applied for all samples. The software is 

capable of handling a couple of gigabyte of data depending on the amount of ram in the computer. If 

the number of data files is too large various data compression tools are available. The spectra can be 
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imported with lower resolution, a speed mode selecting a representative set of data can be used, and 

data can be imported until a given maximum degradation time. Another important aspect of the post 

treatment software is the implemented filters. The software employs a modified median filter to 

remove odd measurements from the data sets. The software is generally well functioning and has been 

used exclusively for the treatment of degradation data during this PhD. 

Validation 
With the photo-degradation environment completed a validation phase was needed. During this 

validation phase a long list of small improvements was made and a number of hardware and software 

bugs were identified and corrected. The process became ever more important as the setup was 

required to run unattended for longer and longer periods. At the last part of the PhD the setup was 

running almost without interruption with samples being exchanged at runtime. This meant that the 

software had to be stable enough to be run indefinitely without encountering errors. Examples of 

errors included variables overflowing, unknown hardware exceptions, etc. With time the software 

began to run smoothly as corrections were made and counter measures implemented. One example of 

a problem encountered was that roughly 1 in 100 recorded spectra was extremely noise filled. This 

happened at the hardware level were the measurement was done at a too low integration time 

despite the preset setting. To encounter this problem a check of all recorded spectra was 

implemented, and if the noise threshold was superseded the measurement was repeated 

automatically. 

 
Figure 3.7. Validation test of the degradation setup where three degradation tests were performed 

where three P3HT samples where degraded. 
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To validate the entire system a small test was established; three different degradation experiments 

were performed on three different days, see Figure 3.7 Each experiment comprised three samples of 

P3HT of different thicknesses with eight degradation points on each sample, and all degradation points 

were plotted together. No grouping between the samples or between the degradation experiments 

was observed and the precision of the evaluated degradation rates was considered high.  

3.3. Results 
With the photo-degradation environment working, a lot of data was produced. The first scientific 

contribution was reported in the article entitled: “Photochemical stability of conjugated polymers, 

electron acceptors and blends for polymer solar cells resolved in terms of film thickness and 

absorbance” (Appendix 2.2)9 When making comparative studies of polymer stabilities, many different 

parameters influence the experimental conditions. Some may be outside the control of the 

experimenter. Parameters such as the temperature, light spectrum, and light intensity are typically 

kept constant. The focus of the article was to expand the knowledge of the parameter room 

comprising the simple system of a thin polymer film on a substrate. The main question before the work 

of this article regarded the influence of thickness on stability. Further since it is common to use the 

initial absorption to compare polymer stability1, it is important to known if this indeed yields a fair 

comparison between stabilities or if the thickness directly is a better basis of comparison. The effect of 

varying optical density / thickness on material stability was not studied systematically before the 

article and therefore the uncertainty introduced by thickness variation was unknown. By comparing 

stabilities without knowing the influence of the thickness of the film, wrong conclusions can be drawn 

in the worst case.  

In the article photochemical stabilities of six different polymers were studied, see Figure 3.8. Clear 

initial absorbance / thickness dependence was visible for all polymers. By plotting the relative 

stabilities of the polymers to the stability of regio-regular P3HT, revealed that reasonably flat lines 

were obtained when plotted against the initial absorbance, see Figure 3.9 (left). This indicated that the 

absorbance provides a relatively fair basis for comparison. However, as is evident from the figure, 

intersections between different polymers are present. Hereby comparing polymers at low initial 

absorption can yield the opposite conclusion when comparing polymers at high initial absorbance. This 

is extremely important to comparative studies, where the absorbance has to be kept constant for all 

materials to provide a basis for valid conclusions on relative stabilities. Still the validity of estimating a 
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material stability based on a single measurement at a single absorbance is considered doubtful. Only 

by studying a wide thickness range for all studied samples, a sound estimation of relative stabilities can 

be obtained. Consequently it was concluded that relative stabilities cannot be given in factors less than 

five if only a single degradation of each material has been performed.  
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Figure 3.8. Absorbance resolved degradation rates for six different polymers. Reprinted with permission 

from the Royal Society of Chemistry.9  

While the relative stability estimation was not perfect in the initial absorbance basis, thickness as a 

basis can also be considered. It is far more cumbersome to use thickness as the basis of comparison as 

the thickness must be measured externally. Using AFM; thickness / initial absorbance relations were 

established for all the polymers and blends. The linear relation used was confirmed with simulations 

based on ellipsometry measurements as described in Chapter 2. This allowed the degradation rates to 

be plotted in terms of thickness. This plot is different from the absorbance based plot since the 

materials have vastly different extinction coefficients. The relative stabilities with P3HT as a basis, is 

plotted in Figure 3.9 (right) with thickness as a basis. It is clearly evident that this basis is inferior to the 

absorbance basis. It was therefore concluded that using initial absorbance as the basis of comparison 

was the best choice.  
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Figure 3.9. Absorbance resolved stabilities (right) and thickness resolved stabilities (left) in units of P3HT 

stability for the studied polymers. Reprinted with permission from the Royal Society of Chemistry.9 

The effect of adding a fullerene derivative to the polymers was studied extensively within the article. 

For each of the studied polymers, their respective blends in a ratio of 1:1 with PCBM were studied and 

the blends of P3HT with 5 different electron acceptors were documented. It was shown that the 

absorbance basis remained the better choice as compared to the thickness basis (see Figure s9-s11 in 

Appendix 2.2 (supporting materials))9.  

The photochemical stability of blends of conjugated polymers and electron acceptors is a topic that has 

only been briefly discussed in the literature. Rivaton et al. evaluated the stabilities of regio-regular 

P3HT and P3HT:PC60BM (1:1 ratio) and reported a stabilization factor of 8. They used a thickness basis, 

where films of approximately  200 nm were compared.7 The observed degradation rates were in good 

correlation with the results observed at Risø DTU for the similar blend. The degradation rates were 

observed to vary with an order of magnitude between the most unstable blend, P3HT:ICBA, and the 

most stable blend, P3HT:C60. Significant variations in relative stabilities were observed for the different 
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electron acceptors with C60 stabilizing by a factor of approximately 10 while ICBA was observed to 

destabilize the blend by a factor of 2. The magnitude of the stabilization of P3HT by the electron 

acceptor was observed to correlate well with the LUMO–LUMO gap in the low absorbance range. A 

ranking of decreasing stabilization of C60, PC60BM, PC70BM, bisPCBM, and ICBA was found, which is in 

clear correspondence with a decreasing LUMO–LUMO gap or increasing open circuit voltage of the 

corresponding solar cells. Overall, this result demonstrated the increasing thermodynamic tendency of 

increasing the population of excited states on the P3HT relative to the acceptor, thus implying a higher 

degradation rate. For this reason, the application of ICBA in polymer solar cells to obtain 6.5% 

efficiency20 introduces a significant decrease in photochemical stability that will affect the operational 

device lifetime negatively. 

Studying the different polymers blended with PCBM the general expectation was that a highly unstable 

material should benefit highly from being blended with PC60BM, since each excitation has a large 

possibility of leading to a degradation event. For a highly stable material this effect would be less 

pronounced. This exact tendency was observed as the unstable MEH-PPV was highly stabilized by a 

factor of around 15, while the stable PT was only stabilized by a factor 3. Additionally, PSBTBT was 

found to destabilize slightly by a factor of 0.3. A destabilization is expected if the polymer is 

comparable to or more photo-chemically stable than the electron acceptor. This was the case for 

PSBTBT, where for an absorbance above 1, the polymer stability even exceeds the stability of PC60BM. 

For this material combination a charge transfer to PC60BM will induce a larger degradation rate than by 

keeping the excited electron on the pure polymer.  

The second scientific contribution using the photo-degradation framework came with the article 

entitled: “Influence of processing and intrinsic polymer parameters on photochemical stability of 

polythiophene thin films” (Appendix 2.3)10. This article expanded upon the work of the previous article 

by investigating the influence of processing and intrinsic parameters on the photo-degradation of 

P3HT. As was done in the previous article, it is generally common to express stability in units of 

stability of a reference material of well-known stability, typically P3HT. This assumes that P3HT 

presents an intrinsic, constant stability that is independent of synthesis routes, regio-regularity (RR), 

molecular weight, molecular weight distribution, crystallinity etc if the relative stabilities are compared 

across different experiments. The overall effect is that the material stabilities expressed in units of 

P3HT stability as reported in the literature may be associated with significant uncertainty and cannot 
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be compared directly. Furthermore, until this article, development of stable conjugated polymers for 

polymer solar cells has been focused on the stability of the different functional groups used for the 

synthesis. However, understanding the influence of the above described intrinsic polymer properties 

on the photo-chemical stability is highly appealing, since it will provide a new set of tools when 

designing novel materials for polymer solar cells. In the article 18 different batches of P3HT from 

different manufacturers and batches made in house were tested and compared. By studying films of 

different thicknesses insight into oxygen availability in the film and effects of light shielding could be 

discussed. Assuming that oxygen diffusion is not limited and that light shielding from the top layer of 

the film is insignificant, the concentration of oxidized thiophene rings is independent of film thickness. 

Figure 3.10 shows a plot of degradation event interval against film thickness and a plot of total film 

lifetime. The existence of a constant lifetime region implied that the degradation took place in parallel 

for the entire depth of the film. This means that for this region light shielding is negligible and oxygen is 

equally available for all depths in accordance with the findings of Hintz et al.3 For films thicker than 175 

nm, either light shielding or lack of oxygen sets the bottom part of the film apart from rest of the film 

with a lower degradation rate. The event interval was therefore observed to stabilize in this region. 

The conclusion was consistent with observations of the blueshift kinetics. For films in the stable region 

of 125–175 nm, the blueshift of the absorbance occurred late near the last 20% of the degradation. For 

films thicker than 175 nm the blueshift appeared earlier. This was consistent with the fact that parts of 

the film degraded later than the top part of the film, thereby extending the degradation. The fast 

blueshift for thin films (<75 nm) indicates that another mechanism was involved in this region. A 

candidate for the increase in reaction rate is the higher surface to volume ratio. If the reactions are 

more likely on the surface the rate may easily be different. The polymers in the top layer can be 

expected to have a higher density of kinks, introducing more attack points for the reaction and 

explaining the fast blueshift observed for thin films. 
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Figure 3.10. Degradation event interval (left) plotted against the thickness of a film of R1 polymer. The film 

lifetime (right) as calculated from the time between degradation events and the initial number of monomers. 
Reprinted with permission from Elsevier.10  

P3HT polymers with significantly different molecular weight and regio-regularity were included in the 

study. The first observation was that while the molecular weight did not seem to play an important 

role. The regio-regularity did. This is consistent with work presented by Hintz et al.3 and Dupuis et al.21 

A hypothesis was established that in accordance with observations by Hintz et al.3the polymer is 

attacked only at terminal thiophene units. Assuming that each breach of regularity introduces two new 

attack points, it was possible to model the degradation rate as a function of regio-regularity. The 

relative number of attack points was written as 

( )
( )1

2 1
2 1
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where Nap is the number of attack points relative to R1, RRX is the regio-regularity of the specific 

polymer, and RRR1is the regio-regularity of polymer R1 used for normalization. Figure 3.11 shows a plot 

of the normalized degradation rate as a function of regio-regularity and relative number of attack 

points. The dotted line in the graph represents the theoretical value of degradation rate, calculated 
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from the degradation rate of R1. It is evident that the simple model is capable of explaining the 

behavior in a convincing manner, suggesting that each breach of regularity induces new attack points 

that weaken the system. The conjugation length is proportional to the regio-regularity since the 

conjugation breaks when the polymer is not planar and the π electrons are not in the same plane. 

 
Figure 3.11. Normalized degradation rate plotted against the calculated relative conjugation length / regio-

regularity. The dotted line represents the predicted degradation rate. Reprinted with permission from 
Elsevier.10 

In the article it was demonstrated that annealing the films of P3HT increased the stability, see Figure 

3.12. While it was documented that the crystallinity of the films increased for regio-regular films, it was 

also shown that regio-random films increased in stability. It was therefore concluded that the 

crystallinity plays a minor role in the stability. The effect of the stabilization was instead ascribed to the 

relaxation of the polymer leading to fewer high energy kinks. 

 
Figure 3.12. (Left scale) Degradation rate of (dark grey) regio-regular and (white) regio-random P3HT normalized 

to their respective pristine degradation rates. (Right scale) Reciprocal crystallinity as deduced from X-ray 
diffraction studies. Reprinted with permission from Elsevier.10 
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3.4. Conclusions 
The automated degradation setup was in general a great success. As an example the total workload for 

degradation of 22 samples with a total of 176 degradation points can be estimated to: spin coating (22 

minutes), sample loading and sample registration in the software (10 minutes), and evaluation of 

absorbance resolved degradation rates (3 minutes). Thus a total of around 40 minutes workload for a 

degradation experiment results in a workload per degradation point of around 14 seconds or roughly 2 

minutes per sample. This can be contrasted to a manual setup where samples are degraded under a 

solar simulator and frequently brought to a spectrometer for absorbance measurements.  A skilled 

operator can degrade 20 samples in parallel, and thus the work load would imply: spin coating (20 

min), 10 absorbance measurements for acceptable statistics of all samples (10 x 40 minutes) and a final 

degradation rate evaluation based on manual, serial data processing in e.g. a spread sheet (20 

minutes). A total of 440 minutes would be required for 20 parallel degradations and thus on the 

average each degradation point would demand 22 minutes of work. This gain in operator efficiency has 

allowed a series of experiments to be conducted with high statistical validity. In excess of 5,000 glass 

slides were used for degradation experiments during this PhD project. Additionally, the precision of the 

automated setup outperforms any manual handling since measurements are performed with higher 

frequency, non interrupted illumination, and with a fixed geometry during the entire degradation as 

opposed to the manual handling where samples are removed from the degradation setup and 

transported to and from the spectrometer. Finally, in terms of the reliability of the automated setup 

the timing of the data point acquisition is computer controlled (data is stored with millisecond 

accuracy), while manual handling involves an attentive operator keeping track of time, introducing a 

multitude of risks to the data acquisition.  

With the automated degradation system photo-chemical degradation at 1 sun was performed both for 

a range of conjugated polymers and electron acceptors. These results allowed a wide range of 

thicknesses to be investigated leading to recommendations about the experimental procedure for 

photodegradation based on absorbance loss. Firstly it was recommended that samples are compared 

based on initial absorbance value rather than their thickness. The stability ranking between the 

materials of the pure polymers was found to be similar to the ranking for their respective blends, 

implying that the photochemical stability of a pure polymer is a good measure of its associated blend 

stability. Different electron acceptors were found to stabilize P3HT decreasingly with decreasing 

donor-acceptor LUMO-LUMO gap. Destabilization of P3HT was observed in the case of the electron 
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acceptor ICBA. Thereby, the decreased stabilization of P3HT by high LUMO electron acceptors poses a 

challenge if these materials are to be of commercial interest. By studying the influence of processing 

and intrinsic polymer parameters on photochemical stability it was shown to be evident that the 

polymer degradation follows strict 0th order degradation kinetics for the initial part of degradation. 

Stability was found to increase with regio-regularity following the ratio of head-to-tail connected 

thiophene units, demonstrating that the polymer is attacked at points of broken conjugation. 

Annealing was shown to relax the films and increase conjugation length and in turn, increases stability 

and delay spectral blueshift. For films of different thickness, the interval between degradation events 

was observed to scale linearly with the initial number of thiophene rings for medium thick films (75–

175 nm) indicating that oxygen diffusion and light shielding effects had negligible or no effect for 

medium thick films. 

The results demonstrated that photochemical degradation of conjugated polymers is a powerful tool 

to polymer stability assessment if the results are interpreted correctly. The use of an automated 

system is necessary in order to conduct hundreds or thousands of degradation experiments which will 

provide sufficient data for solid conclusions.  
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Chapter 4 
Concentrated light for photo-degradation 

Advancements in research has pushed the stability of polymer solar cells. Outdoor tests of polymer 

solar cells with lifetime exceeding one year have been demonstrated.1,2 Assuming an average of 1,000 

h of nominal sunlight exposure per year about 500 kWh m−2 of absorbed light is expected for a solar 

cell (if only 50 % is absorbed by the cells). This means that running such a solar cell under an AM1.5 

solar simulator continually, reduces the test time to 1,000 hours (42 days and nights) to be equivalent 

with the influx of light from one year. Materials such as polythiophene (PT) have been shown to have 

degradation rates of 0.029% / h under ambient 1 sun conditions.3 With this level of stability, fast 

material screening under accelerated conditions is an appealing prospect. Acceleration methods 

utilizing atmosphere and temperature control have been demonstrated to increase degradation rates 

by a factor of 20.4 Temperature has typically been used to accelerate the degradation of polymer solar 

cells. Concentrated light, on the other hand, has not generally been applied within the field of polymer 

solar cells. During this PhD a large amount of work has gone into optimizing and perfecting the use of 

concentrated light for degradation experiments. Two setups have been constructed to enable 

extremely high concentrations to be reached and used comfortably for degradation studies. One setup 

is based on an artificial light source and is advantageous since it can be run nonstop without breaks. 

The other setup is based on concentration of real sunlight as opposed to simulated sunlight. This setup 

can achieve very high concentration (~2000 suns), but is limited to times of clear skies. The article 

entitled “Thermally reactive Thiazolo[5,4-d]thiazole based copolymers for high photochemical stability 

in polymer solar cells” describes the use of the artificial concentrated light source to compare the 

photo stability of novel polymers and the article: “Concentrated light for accelerated photo 

degradation of polymer materials” (Appendix 2.5)5 is a verification of the technique and establishes the 

acceleration factor for concentrated sunlight. No publication has yet been made using the solar 

concentrator.  
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4.1. Acceleration methodologies 
Doing accelerated testing of polymer solar cells have become an almost near common practice. A 

general review of the concept of accelerated testing of organic solar cells has been written by Haillant 

describing concepts such as; increased irradiation, increased temperature, increased humidity and 

time compression.6 The main acceleration parameter used for accelerated studies is temperature, 

however many other parameters affect the lifetime of the solar cell. Therefore a wide variety of 

accelerated test conditions can be imagined. Time compression is one in which the solar cell is tested 

by rapidly cycling test parameters. Herby daily cycles of environmental parameters are compressed to 

within a few hours. Compressed cycles generate mechanical stress of thermal origin due to the fast 

change in temperature.  

Using temperature as an acceleration parameter is attractive since the temperature is easily controlled 

and easily reported. The rationale behind using the temperature as an acceleration parameter is that 

the decay process, which may be chemical in nature follows an Arrhenius-type model. Assuming this 

model the temperature dependence of the reaction can be described by an exponential function 

'
deg

AE
RTk Ae= , 

where R is the gas constant, EA is the activation energy, and A is the reaction dependent pre-factor. 

Alternatively the rate constant can be expressed in terms of the Boltzmann constant. Hereby the 

energy will be expressed directly instead of energy per mol as B Ak R N= . From the exponential 

behavior the reaction rate is clearly extremely temperature dependent. An acceleration factor can be 

defined as the ratio of two reaction rates at different temperature  
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The prefactor is the same for both equations and is therefore eliminated in the equation. Accelerated 

testing was applied to MDMO-PPV/PCBM solar cells by Schuller et al. determining the acceleration 

factor in the temperature range of  40–105 °C4. They observed a roughly linear behavior of log(K) 

versus 1/T with a more than ten-fold increase in the rate of degradation from 40 to 105 °C. They 

concluded that the activation energy was in the range of 300–350 meV. Using temperature as an 

acceleration factor seems simple with the Arrhenius formula and the model has been used to predict 
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lifetimes of solar cells.7 The main problem with the model is that it assumes that only the activation 

energy of one decay mechanism is needed to describe the entire system. As demonstrated by 

Gevorgyan et al. the acceleration factor may change during the lifetime of the device.8 In addition 

temperature independent processes can take place, further invalidating the model. UV light at 400 nm 

has an energy of 3 eV, which is a high energy compared even with the thermal energy at room 

temperature. Heating the sample by an additional 50–60 °C does not necessarily affect processes 

much. Degradation limited by diffusion depends directly on the diffusion coefficient of the chemical 

species responsible for the decay. In this case temperature can play an important role since this 

diffusion coefficient is temperature dependent according to an Arrhenius-type exponential equation. 

So in theory, at low temperature, the UV degradation processes may dominate, while the diffusion 

process could take over at higher temperatures. If this is the case, accelerated testing would give false 

temperature dependence for the stability. If increasing the temperature causes thermo-oxidative 

processes to become the main degradation pathway and altering the chemical evolution observed 

without acceleration, the test is invalid. Therefore it is important to understand the degradation 

mechanisms involved when designing acceleration conditions. 

As an alternative to the above described acceleration methodologies the use of concentrated light is 

perhaps the conceptually simplest type of accelerated studies. Sunlight concentration setups within 

the field of inorganic photovoltaics, has been developed for high performance solar cells with 

increased power output as the main goal.9 The goal is to effectively increase the active area of high 

price multijunction solar cells by relatively cheap concentrator systems. Within the field of polymer 

solar cells concentrated light has been scarcely used to study degradation. It is, however clear that 

with the multitude of degradation mechanisms that are accelerated by concentrated light, the polymer 

solar cell response is complex, and even effects such as reversible degradation have been observed.10 

Conventional stability assessments of organic solar cells are performed by studying the decrease of 

power conversion efficiency during the degradation time. However, a multitude of parameters 

including the polymer, the electron and hole transport layers, the electrodes, and the interfaces 

influence the device performance. As a result the interplay between many different parameters is 

probed making single parameters such as the stability of the polymer itself rather inconclusive. To 

focus on the actual stability of the polymer, degradations under 1 sun illumination of the polymer have 

demonstrated the intrinsic stability of polymers directly as described in the previous chapter.3,11 The 

exact same approach have been use to expose pure polymers to concentrated light. Tromholt et al. 
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performed such accelerated degradations of conjugated polymer up to 200 suns.12 For both MEH-PPV 

and P3HT the acceleration factors were found to increase linearly with solar intensity and at 200 suns a 

complete degradation of MEH-PPV took place within 80 seconds. This study demonstrated that 

degradation of polymers can be highly accelerated by concentrated light, and that the approach has 

the potential to serve as a standard tool for rapid polymer stability evaluation. As the field of 

concentrated light is still new, a rigorous analysis of degradation rates observed at 1 sun and 

concentrated light has been needed. 

4.2. Indoor artificial concentrator 
An indoor artificial light concentrator can potentially have many advantages. In a country like Denmark 

where the number of sunshine hours can be few and far between using artificial lighting greatly 

increases the usability of a setup as compared to a solar concentrating setup. Prior to the construction 

of the indoor concentrator a number of design criteria were established. Firstly the system needed to 

have a constant spectrum with a spectral distribution approximately like AM1.5. Light intensity 

regulation between 0.1 to 100 suns over a 1 cm2 illuminated area was a design goal. The system must 

feature a built-in shutter mechanism and be completely computer operated. 

 
Figure 4.1. Schematic of the artificial light concentrating setup. 

To meet the design criteria; the design of the concentrator was based on an elliptical reflector to 

refocus the light from a light bulb into the second focal point of the ellipse, as shown in Figure 4.2. This 
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way high light intensity could be achieved at the exit of the system. By selecting a 1200 W hydrargyrum 

medium-arc iodide (HMI) light bulb, the spectrum of the concentrator was set (the bulb is identical to 

the one used in the solar simulator, as described in Chapter 3). This type of lamp is commonly used in 

solar simulators with reasonable spectral match with natural sunlight. Since the HMI bulb requires a 

constant correction of the voltage to ensure constant current flow and an ignition spark of several kV; 

a ballast and igniter system was specified and installed up as well. 

Intensity regulation was accomplished with an iris. The initial design featured a camera like iris with a 

diameter of 50 mm (ThorLabs D50S). The iris was controlled by a linear actuator (Firgelli M12-100mm). 

The first iris employed had a dark coating and was not able to withstand the heat generated from the 

incoming light. The second generation iris (Edmound optics NT53-913) was larger at 70 mm diameter 

and had highly polished steel iris blades to circumvent the heating issue. However, after prolonged use 

the iris blades warped out of shape in the heat. Lastly a custom iris with two blades of 1 mm sheet 

aluminum was constructed, see Figure 4.2 (right). This iris was driven by two stepper motors through a 

gear reduction. 

       
Figure 4.2. The iris (right) is an aluminum plate, moved by a stepper motor with a gear reduction. The 

shutter plate (left) is operated by a rotary solenoid. 

The shutter mechanism was based on a rotary solenoid with a 1 mm aluminum blocking plate, see 

Figure 4.2 (left). Both the iris and the shutter mechanism were controlled through an Arduino derived 

controller called a Netduino. The Netduino is an open source electronics platform using the .Net micro 

framework and can therefore be programmed and debugged within the Microsoft Visual Studio 

environment. 
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Lamp assembly 

           
Figure 4.3. A drawing of the concentrator assembly (left) with elliptical reflector, Rexroth aluminum 
chassis, and HMI bulb. A picture of the finished setup (right) featuring the sample exchanger at the 

bottom. 

To assemble the lamp a chassis was created using Rexroth aluminum profiles. The design was meant to 

be as adjustment friendly as possible and was laid out in AutoCad Inventor prior to construction, see 

Figure 4.3. The width of the total system was 350 mm and the height 1200 mm. All optical components 

were mounted on vertical mounting plates fixed onto the main frame. The top mounting plate 

featured a 7 kV igniter (Schiederwerk, Germany, model 18-7) along with the lamp socket (Osram 

socket G-38). The 1200 W HMI bulb (Osram) was inserted in the socket and fixed with tensing screws 

on each pin, fixating the bulb even when facing down.  The lamp was powered by an external power 

supply based on an electronic ballast from Schiederwerk (PVG, 12-12 AC SL). Beneath the lamp plate a 

rhodium coated elliptical reflector made by Optiforms (focal length 509 mm, diameter 260 mm, height 

206 mm) was mounted. The second focal point of the ellipse was adjusted to be 30 mm above the 

bottom of the lamp chassis. A fused silica kaleidoscope (10 x 10 x 75 mm) made by Quartz Plus was 

positioned at the exit of the chassis, homogenizing the spatial light distribution of the outgoing light 

and providing a square 1 cm2 high intensity illuminated area. Two mounting plates were inserted 
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between the ellipse and the kaleidoscope. The top plate featured the iris mechanism and the bottom 

plate the shutter mechanism. At the underside of the iris plate the Netduino controller, a relay 

controlling the rotary solenoid, plus two stepper motor drivers for the iris stepper motors were placed. 

The iris mechanism employs electronic hard limits allowing the setup to reinitialize the stepper motor 

positions. To control the iris and shutter a software class was created. The visual appearance of this 

class is seen in Figure 4.4. The sides of the chassis were covered with sheet aluminum and handles 

were fitted to ensure easy handling of the device. The lamp assembly was wall mounted in two vertical 

aluminum profiles for easy high adjustment. In the top of the chassis a ventilation pipe connected to 

the central ventilation system of the building was placed. This was needed since the lamp generated 

ozone. Cooling of the setup during operation was achieved through eight fans. Air is mainly sucked in 

from the bottom of the setup and removed at the top. By this, cooling of the light bulb and the 

embedded electronics was ensured.  

 
Figure 4.4. Screen capture from iris and shutter control module. 
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Sample exchange robot 

 
Figure 4.5. Sample exchanger robot. 

A custom sample exchange robot was designed for the concentrator setup. The design of the sample 

exchanger is similar to the one described in Chapter 3, but smaller and tailor made for the 

concentrator. The sample exchange robot is seen in Figure 4.5 and in the bottom of Figure 4.3 right. 

The sample holder plate is designed to hold seven samples plus one reference sample. The rotation is 

achieved with a ThorLabs rotation stage (PRM1Z8) and controller (apt-dc servo controller TDC001). A 1 

mm aluminum mask plate with two 3 mm circular aperture was positioned on the sample holder plate. 

The first aperture positioned under the light exit and the second in the path of the optical transmission 

measurement system. The positions for light and transmission were then mapped in the software 

controlling the stage. As the implementation of the instrument classes in the software discussed in 

Chapter 3 was done through interfaces, the class controlling this stage could directly be used in the 

existing software. It is even possible to change the sample exchanger robot during runtime. The entire 

sample exchanger with optical fibers attached was mounted on an optical breadboard, which again 

was mounted on drawer rails. Hereby the sample exchanger could easily slide underneath the lamp 

assembly and be pulled out for samples to be exchanged. 

Atmosphere chamber 
Two atmosphere chambers were constructed with double quartz windows to allow absorption spectra 

to be recorded without the need of removing samples from the chamber. Both chambers were 

designed to be mounted on the sample exchanger robot and thereby measurements of four samples 

under controlled atmospheres could be conducted simultaneously under one sun conditions and 

serially under concentrated light. One of the atmosphere chambers can be seen in Figure 4.6. 
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Figure 4.6. The atmosphere chamber is designed with dual windows to allow transmission 

measurements to be carried out, without removing the sample from the chamber. 

UV-visible absorbance measurements 
UV-visible absorbance spectra were recorded in transmission mode with an Avantes Avaspec-3648 

CCD fiber spectrometer in connection with an Avantes deuterium-halogen light source (AvaLight-DHc). 

The system is nearly identical to the one described in Chapter 3 using a newer spectrometer and a 

compact light source. For the software different control classes were needed for each spectrometer, 

but using an interface each class interacted with the general software seamlessly. 

Acquisition and post treatment software 
The acquisition software used for the concentrator setup is the exact same piece of software used for 

the one sun photo-degradation studies, as described in Chapter 3. Two modes of operation were 

allowed within the software; one for one sun degradation and one for concentrated work. The major 

difference in operation is that while using a one sun solar simulator all samples are illuminated in 

parallel. With the solar concentrator the mode of operation is limited to degrading a single sample 

point at the time. This means that a total degradation time must be typed in prior to the experiment as 

each sample is degraded individually. A feature allowing automatic termination was implemented 

allowing a stop condition to be selected. The most common stop condition was observing when the 

integrated absorption, within a certain range, reached a predetermined value. The mode of operation 

is selected at run time and both sample exchanger robots will work in either mode. 

Setup validation 
With the artificial concentrator system built; a validation was needed to ensure that all design criteria 

had been meet. These criteria included the ability to generate light concentrations in the range from 

0.1 to 100+ suns, have uniform light distribution, and spectral invariance for all intensities. 
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The light intensity was measured with a S314C thermopile from Thorlabs. It was determined that a 

maximum of 200 suns was achieved at full iris opening. At low intensities a limited resolution was 

available, but 1 sun could easily be achieved. By inserting a blocking plate under the light bulb the 

intensity was lowered, however, this avoided direct light from the light bulb greatly increasing low 

intensity resolution. With this blocking plate the light intensity was reduced to 150 suns, but fine sub 1 

sun resolution could be achieved. 

100 suns 135 suns50 suns

5 suns 25 suns10 suns

 
Figure 4.7. Spatial intensity maps of different solar intensities. At 200 suns a fairly homogeneous light 

distribution is obtained, while at lower solar intensities the spatial inhomogeneity increases. 

The blocking plate had a dual purpose. In addition to improving the light intensity resolution; it also 

vastly improved the light distribution. The spatial light intensity distribution as shown in Figure 4.7 was 

mapped with a Hamamatsu S5971 photodiode with a 50 µm pinhole raster scanned by an x-y-stage 

(Prior microscope stage, H128V3). The outgoing light from the kaleidoscope was found to be slightly 

diverging, implying that the distance between sample and kaleidoscope had to be kept constant for all 

experiments. All experiments were therefore conducted with a distance of 5 mm, which was also 

utilized for the mapping of the intensity distributions. Figure 4.7 shows the light distribution measured 

for 6 different iris openings without the blocking plate. It was found that a higher degree of light 

blocking by the iris introduced a higher inhomogeneity of the light intensity. Going from a free light 

passage at 200 suns to higher degrees of blocking, a higher intensity was observed in the corners of the 

kaleidoscope. At all intensities symmetry around the center of the kaleidoscope was observed, which 

indicated a good alignment of the optical elements in the setup in terms of projection of the light onto 

the kaleidoscope. The increasing center intensity was a result of direct light from the light bulb. With 

the blocking plate in place a pronounced improvement in light intensity distribution was obtained.  

200 
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Figure 4.8. Scan of the irradiance from the concentrator as a function of intensity. The color bar 

represents the normalized irradiance with violet as minimum and dark red as maximum. 

The spectral variance of the setup for different intensities, shown in Figure 4.8, was mapped in integral 

intensity steps from 1 to 150 suns. The figure shows a representation of the normalized irradiance as a 

function of wavelength and intensity. Clear vertical lines are observed both for peaks (green) and local 

minima (red) indicating a complete conservation of the spectral features. A minor narrowing of the 

features combined with a minor decrease of UV content at low intensities was observed. However, this 

is not believed to have an observable influence on the degradation data. 

In short the concentrator fulfilled or exceeded the design criteria by having a constant spectrum and 

light intensity regulation from 0.1 to 150 suns over a 1 cm2 illuminated area. 
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4.3. Solar concentrator 

     
Figure 4.9. Schematic of the solar concentrator (right). Autodesk Inventor rendering of the cylinder 

(left). 

The basic principle behind the solar concentrator is that a Cassegrain reflective system with a parabolic 

mirror reflects sunlight onto a planar mirror, from which the light is coupled into an optical fiber, see 

Figure 4.9. Inside a laboratory the fiber exit can be used to conduct experiments with concentrated 

sunlight. As compared to the artificial concentrator, the solar concentrator setup constructed was 

based on very different design principles with intended specifications deviating significantly in key 

areas. The artificial light concentrator was designed to be stable and capable of delivering 150 suns on 

a 1 cm2 area. The solar concentrator on the other hand would, by using the sun as the light source, not 

be able to be stable for operation over more than the sunny hours of the day. The intensity of the light, 

however, was intended to far exceed the artificial light concentrator. In Figure 4.10 a picture of the 

mounted functional setup is seen along with a picture of the fiber inside the concentrator. 
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Iris ring
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Figure 4.10. Solar concentrator (left) and close-up of fiber (right). 

The design of the solar concentrator was based on a 600 mm diameter diamond turned solid 

aluminum parabola obtained from LT-ultra, Germany. The reflector was mounted inside a 580 mm high 

aluminum barrel tightly fitting around the mirror. Enclosed with a glass front window mounted with an 

o-ring, the barrel was effectively shielded air tight, to exclude humidity, snow, rain etc. The window 

further provided the fixation point for a planar aluminum mirror (Edmund Optics NT47-113, diameter 

5.4 mm) reflecting the light into the fiber inserted from the back of the barrel and through the main 

reflector. As normal irradiation from the sun is required to couple the light a solar tracking system was 

needed. Due partly to the size (>100 kg) of the reflector and partly to the design criteria of high 

temporal stability a custom tracking system was constructed for the concentrator. High precision of 

the solar tracking is needed since a minor deviation from normal incidence would result in the focus 

moving outside the optical fibers with an associated decrease of coupled light intensity. Two triangles 

mounted on a supporting plate was used to hang the barrel in two ball bearings. The barrel was 

mounted in its vertical center of gravity to keep the stresses on the fixation rods to a minimum. With 

all parts designed using the Autodesk Inventor software the overall center of gravity could be 

estimated in the design phase. Hereby, the height of the pillars supporting the fixation rods could be 

adjusted accordingly. Two slewing drives were used to control the rotation and the inclination of the 

setup. A large 14” drive with 6.5 kNm of torque was selected for the rotation and a smaller 3” with 0.4 

kNm of output torque was used for the inclination. Both were driven by 24 V DC motors with a gear 
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ratio of 234:1. With these drives the tracking precision of the system was estimated to be less than 

0.10° for the rotation and less than 0.15° for the inclination.  

Controlling the solar tracking two options were possible. Firstly the solar position can be calculated 

based on the position of the setup and the exact time. The advantage of this system is that the 

concentrator will always point directly at the sun, since the system will not be disturbed by external 

factors such as clouds, reflections, etc. The other solution is tracking based on the incoming light. This 

system in opposition to the calculation based system does not require fine adjustments of the initial 

position of the system. Such a system relies on 4 photodiodes mounted at different angles. At any 

given detector position, the current generated in the photodiodes will be different since some are 

more exposed. When the intensity of all four photo diodes match the system has perfectly tracked the 

sun. Compared to calculation based tracking, this system is cruder since the system must constantly 

corrects its position. The calculation based system allows for fewer movements or even one single 

continuous movement following the sun. Based on cost and ease of use a detector based tracking 

system was obtained from the company HelioTrack. The entire concentrator system was mounted on 

top of an office building with a flat roof on top of a 3.5 x 3.5 m wooden platform, see Figure 4.10. The 

laboratory was located in a adjacent building. Thereby signal and power cables plus the optical fibers 

were dug into the ground to insure minimum disturbance to the surroundings.  

To control the intensity of light impinging on the parabolic mirror, an iris was used. Due to the large 

dimensions of the setup a ventilation shaft damper from the ventilation company Lindab was used. 

The damper is a large iris capable of being adjusted from 100% to approx. 20%. A LA36 linear actuator 

from Linak was mounted to remotely control the iris. A shutter mechanism was implemented by 

driving the tracker off the sun. Optical fibers with a numerical aperture of 0.48 and a high 

transmissivity (Thorlabs BFH48-1000) were chosen and 7 fibers were bundled together. The diameter 

of the bundle was 3.0 mm with each fiber having a 1 mm diameter. The focus spot in turn had a 6 mm 

diameter consequently, only 20 % of the light in the focal point was coupled into the fibers. While this 

large loss may seem unnecessary it served the purpose of increasing temporal stability of the output 

power. This works since small variations in incidence angle will not take the fiber bundle outside the 

focus. Because of the intense photon flux the fibers had to be stripped of their protective jackets at 

both ends. The fiber bundle was guided through the outer wall into the laboratory. The total length of 

the fiber bundle was 35 meters and 3 meters extended into in the laboratory.  
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The maximum power output from the fibers was recorded to 12 W with the Thorlabs thermopile. With 

each fiber opening being 0.785 mm2 the output area becomes 3.39 mm2. With this power density the 

solar concentrator is capable of approximately 2150 suns equivalent intensity. 

 
Figure 4.11. Intensity monitoring during 4000 seconds. The shutter is applied twice  

at 2800 and 3600 seconds. 

The power stability during solar tracking was monitored by recording the power every 10 seconds with 

the thermopile, see Figure 4.11. The power was observed to be constant around 11 W at the given day. 

At 2,800 and 3,600 seconds the shutter was applied to demonstrate the speed of closing and recovery. 

The inset shows the variations in the power in the range of 500 to 2000 seconds with increased 

contrast. Fluctuations in the range of 0.1 W were observed due to the solar tracking, corresponding to 

approximately 1 % fluctuations. 

4.4. Results 
In the work described in the article entitled: “Thermally reactive thiazolo[5,4-d]thiazole based 

copolymers for high photochemical stability in polymer solar cells”13 the first use of the artificial light 

concentrator is featured. In that work novel thermally reactive thiazolo[5,4-d]thiazole based 

copolymers were synthesized. Thermolytic elimination of the ester groups allowed the solubilizing 

groups to be eliminated around 200 °C. The solubilizing groups are required in order to process 

polymer materials into thin films, but they are also a part of the reason why the polymers degrade as 

they allow for both morphologic changes along with chemical transformations caused by diffusion of 

small molecules and constituents. In order to overcome this, polymer materials with thermally 
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cleavable solubilizing groups were investigated. To confirm that the elimination of the solubilizing 

groups improved the durability of the materials the photo-chemical stability was estimated using 

concentrated light, see Figure 4.12. It is evident that the pristine films are the most unstable under the 

given conditions. While the photo-chemical stability observed at 100 suns could not be directly 

converted into an expected stability at 1 sun, the measurements provided good estimate of the 

relative stabilities between different polymers. The stability of PhxSDT-DTZ was observed to be more 

than twice that of the P3HT reference (at T50). The thermocleaving was found to introduce a 

considerable stability improvement of the polymer PhxSDT-DTZ. The T50 is 12 min which increases 

with 50% for the thermocleaved polymer PhxSDT-DTZ* to a T50 of 18 min. The introduction of PCBM 

creating a 1 : 2 PhxSDT-DTZ:PCBM blend approximately doubled the T50 both in the case of the 

pristine and the annealed films consistent with the discussion in Chapter 3. 

 
Figure 4.12. Evolution of the normalized absorption during accelerated photochemical ageing in 

ambient air under 100 solar intensities. The asterix marks the thermally treated samples. 

In the article: “Concentrated light for accelerated photo degradation of polymer materials” (Appendix 

1.4)5 the connection between degradation rates and mechanisms at 1 sun and high intensity is 

presented and discussed. As nothing conclusive could be said about the 1 sun degradation rate in the 

previous article based on accelerated studies, the value of the technique is limited. As long as it is not 

clear whether or not the degradation mechanisms remains constant and if other mechanisms comes 

into play, the use of concentrated light remains a quantitative technique. From the literature it is 

known that a strong increase in photon effectiveness is observed for photo degradation of P3HT films 

for decreasing irradiation wavelengths, and it has been demonstrated that oxygen diffusion is not a 

rate limiting factor under 1 sun conditions.11,14 For concentrated light conditions it is unknown if this 
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remains true. Concentrated light might introduce degradation mechanisms that are not observed at 1 

sun, which could change the degradation rates. The thermal equilibrium of the sample is expected to 

change with intensity convoluting the degradation rates. A single study by Tromholt et al. reports 

accelerated photochemical degradation by concentrated sunlight. They observed an acceleration 

factor of 55 for P3HT by comparing the degradation rate at 1 sun and at 100 suns.15 This suggests that 

at 100 suns, each photon has roughly half the effectiveness that a photon has at 1 sun. A bit 

depressingly the authors compared five different polymers (MEH-PPV, P3HT, JC1, PCPDTBT, and MH76) 

and reached different acceleration factors for each. If true, this means that the photochemical stability 

measured at high intensities cannot be compared even to each other. In their study, however, the 

spectrum at 1 sun was an artificial light source, while the 100 sun spectrum was natural sunlight 

focused through a concentrator lens setup. The spectra thus had vastly different UV content and a 

decrease in photon effectiveness was consequently expected explaining the sub 100 acceleration 

factor. The differences in acceleration factor between the different polymers can be explained by their 

different absorbance. Thereby different response to the two different spectra is expected. The 

question, however, remains: are the photons equally destructive at all intensities or do some higher 

order degradation mechanisms become prevalent at higher intensities.  

      
Figure 4.13 Degradation state versus dose for 110 nm P3HT films performed at 1, 50, 100, and 150 suns 
(left). Dose-corrected acceleration factors for films degraded at 50, 100, and 150 suns as a function of 

film thickness (right). 

By studying degradation of P3HT under highly concentrated light (50 – 150 suns) a significant behavior 

was observed, see Figure 4.13. While the gradual decrease of absorbance during degradation of P3HT 

is linear at 1 sun, the linearity is observed to be lost for concentrated light conditions. The degradation 

rate is decelerating with time, making it impossible to establish a single degradation rate for polymers 

degraded under concentrated light. It was further observed that the dose-corrected degradation rate 
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were always higher for concentrated conditions. By determining degradation rates for the initial 10 

percent of the degradation process; 1 sun conditions could be compared to concentrated conditions. 

The dose-corrected acceleration factor, calculated by the ratio of the dose-corrected degradation rates 

for concentrated light (50, 100, and 150 suns) and the corresponding value for 1 sun, for film 

thicknesses between 10 and 115 nm is compared in Figure 4.13 (right). The degradation rate 

corresponding to 1 sun, depicted as the dashed line represents a polynomial fit of 526 separate 

degradation experiments covering the entire film thickness range. The dose-corrected acceleration 

factor of 8 observed for 150 suns at the largest film thickness indicates an absolute acceleration factor 

of 1,200. It is evident that increasing light intensity implies increasing dose-corrected degradation rates 

when compared to the 1 sun data. Additionally, the effect is observed to increase with film thickness, 

suggesting that the photon effectiveness increases with higher light intensity and film thickness. In the 

article it was hypothesized that the rise in effectiveness observed was purely a consequence of the 

induced temperature increase during experiments. It is expected that the temperature will increase 

during illumination and that the extent of the induced temperature increase depends both on the 

absorption of the sample and the light intensity. Thus the hypothesis explains the decelerating 

degradation rates observed in Figure 4.13 (right). Since it was technically not possible to measure the 

temperature in the material during light exposure an estimate was needed. By assuming that the 

temperature could be modeled by the absorbed energy, a radiative loss, and a loss associated with the 

thermal conductivity through the glass, the steady state temperature was calculated in the article. For 

a film of 100 nm, a temperature of 65 °C was predicted for 150 suns. It is important to emphasize that 

this temperature represented a lower limit estimate since the model assumes an instant 

thermalisation between the polymer and the glass substrate and the model assumes that the substrate 

is coupled to a perfect heat reservoir. An upper limit was obtained by measuring the temperature of a 

model system comprising a glass / polymer / silver stack under illumination. At 150 suns a temperature 

of 175 °C was measured. Consequently, a film with a thickness of 100 nm was predicted to have a 

temperature in the range between 65 °C and 175 °C. In this temperature range acceleration factors 

from 3 to 30 is expected with an acceleration determined by an Arrhenius type behavior. The observed 

acceleration is clearly within the limits, and at the measured acceleration factor for 150 suns / 100 nm 

a temperature of 105 °C would account for the acceleration. As the hypothesis implies that materials 

with different activation energies will yield different acceleration factors; PT with an activation energy 

of EA = 16.0 kJ was tested.16 By assuming that the temperature of PT is equal to the temperature of 



 
Concentrated light for photo-degradation 

 

 
P a g e  | 81 

 

P3HT at equal absorption PT was predicted to have a dose-corrected acceleration factor of 2.2 at an 

optical density of 0.5. The experimentally determined dose-corrected acceleration factor for PT was 

2.0 in excellent agreement with the prediction. 

 
Figure 4.14. Dose-corrected degradation rates for cooled (grey markers) and  

non-cooled samples (black markers). The dotted grey line represents the 1 sun degradation rate. 

In an attempt to prevent or at least minimize heating of the samples, an air ventilation setup was 

installed. The samples were continuously ventilated by a dry air flow at a rate of 25 liters per minute at 

ambient temperature directed at the polymer surface, which effectively cooled the samples. As is 

evident from Figure 4.14 the degradation rates from the cooled samples overlay the 1 sun degradation 

rates. This confirmed the hypothesis that temperature is the only difference between 1 sun and 

concentrated degradation. It also implies that concentrated light can be used to determine the 

degradation rates for polymer films with proper cooling, leading to the opportunity of using 

concentrated light as a rapid evaluation tool in the pursuit of stable materials. Further since the 

degradation is accelerated based on an Arrhenius behavior the degradation rates at increased 

temperature and light intensity is deterministic, given the activation energy.  
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Figure 4.15. Degradation of P3HT in nitrogen atmosphere (black markers) and degradation in ambient 

atmosphere (grey markers).  

As the thermal activation is expected only for samples where photo-oxidation is dominant, no thermal 

activation is expected for samples in a nitrogen atmosphere. This is shown in Figure 4.15. The 

increased energy associated with the temperature increase is insignificant in comparison to the energy 

of the light. At 100 °C, the thermal energy equates to 32 meV, which is significantly lower than the 

photon energy (1 - 4.5 eV). From Figure 4.15 it is evident that the photo-lysis of P3HT is not thermally 

activated as the degradation at 1 sun, 50 suns, and 150 suns overlap in degradation time. It thus 

follows that for all practical purposes thermal activation only occurs when oxygen is present.  

4.5. Conclusions 
As demonstrated; the use of concentrated light can accelerate degradation studies by extremely high 

factors enabling rapid routine studies to be conducted for even very air-stable polymers that 

consequently can be studied within minutes. Concentrated light is clearly an effective tool for screening 

polymer stability and thus a valuable tool for the development of competitive polymer solar cells.  

By studying degradation rates at different light intensities of conjugated polymers, it has been clearly 

established that the degradation rate scales linearly with light intensity. Any observed deviations from 

this behavior can be ascribed to an induced temperature increase leading to a thermal acceleration 

factor. With the induced temperature extremely high acceleration factors can be achieved. An 

acceleration factor of 1,200 was reported, which is the highest reported in literature. With proper 

cooling the relative acceleration factor vanished demonstrating that the degradation mechanism and 

kinetic remained unchanged in the range between 1 and 150 suns. This documents that the photon 

effectiveness towards degradation is fundamentally independent of the light intensity for films of 
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P3HT. If the temperature of the sample and activation energy is known, it is further possible to 

compensate for the temperature induced acceleration and use concentrated studies deterministically.  
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Chapter 5 
Applications of TOF-SIMS for polymer solar cells 

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a technique used primarily for the study 

of surfaces of solids. In simple terms secondary ion mass spectrometry is the mass spectrometry of 

ionized particles emitted when a surface is bombarded by energetic primary particles. Beyond 

positively and negatively charged ions, neutral particles are emitted. The ions are typically a mixture of 

atomic ions molecular fragment ions, cluster ions, and molecular ions (if sufficiently small). This allows 

for a detailed chemical analysis of the surface by providing a mass spectrum. The TOF-SIMS variant of 

the technique works by assessing the time-of-flight of the secondary ions and thereby achieving a high 

resolution of the mass of the ions.  The usefulness of the method depends on the precision of the time-

of-flight analyzers and on the properties of the primary ion used. With modern equipment 

differentiation of different chemicals and isotopes is standard.  

TOF-SIMS has been applied to characterize polymer solar cells mainly to study degradation. Examples 

of this include; characterization of oxygen and water induced degradation, pinhole effects and more. 

Diffusion of indium into the PEDOT:PSS layer was demonstrated by Bulle-Lieuwma et al. using depth 

profiling TOF-SIMS.1 Van Duren et al. have demonstrated that nanoscale phase separation occurs in 

active layers comprising MDMO-PPV and PCBM.2 The phase separation was not observed up to 50 wt. 

% PCBM, but at 67 wt. % PCBM almost pure PCBM domains in a surrounding matrix of MDMO-PPV was 

observed. The data was based on AFM, TEM, and TOF-SIMS depth profiling. By standard solar cell 

characterization a connection with the phase separation and the device performance was established. 

By studying TOF-SIMS images Norrman et al. demonstrated that oxygen diffuses through pinholes in 

the aluminum electrode of a normal geometry device structure.3 Using 18O2 isotopic labeling in 

conjunction with TOF-SIMS Norrman et al. also demonstrated that oxygen-containing species were 

generated throughout the active layer. It was demonstrated that the oxygen came from the 

atmosphere and diffused through the aluminum electrode and into the device.4 As related to the 

results presented in Chapter 2 Jo et al. have reported that upon solvent annealing, PCBM molecules 
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migrate or diffuse toward the top surface of the BHJ composite films, which induce a new vertical 

composition. They used TOF-SIMS measurements of the top surface of the composite films to confirm 

this change in vertical composition.5 

As is evident from the examples of the use of TOF-SIMS for the study of organic solar cells; TOF-SIMS 

can be an extremely useful technique for elucidating information from devices. During this PhD study 

work with TOF-SIMS has been presented in three journal articles entitled; “The effect of post-

processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer 

photovoltaics”6, “Degradation patterns in water and oxygen of an inverted polymer solar cell”7, and 

“Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect” 

(Appendix 2.2)8. 

5.1. TOF-SIMS theory and principles 

 
Figure 5.1. Schematic of the TOF-SIMS system featuring primary ion source and time-of-flight tube. 

The basic operation of TOF-SIMS is that upon bombarded by energetic primary particles a collision 

cascade is initiated from the sample surface, see Figure 5.1 for a schematic of the TOF-SIMS operation. 

Since the ion source is pulsed, using short pulses of < 1 ns, accurate time-of-flight measurements can 

be conducted. This is done as the emitted secondary ions are extracted into the time-of-flight analyzer 

by applying a high voltage potential, V0, between the sample surface and the mass analyzer. Secondary 

ions travel through the time-of-flight analyzer with different velocities, depending on their mass to 

charge ratio. For each primary ion pulse, a full mass spectrum is obtained by measuring the arrival 

times of the secondary ions at the detector and performing a time-to-mass conversion. The generated 
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secondary ions are electrostatically accelerated into a field-free drift region with a nominal kinetic 

energy of  

2
0

1
2kE zV mv= = , 

where m the mass of ion, v the flight velocity of the ion, and z  is the ion charge. As ions with lower 

mass have higher flight velocity than ones with higher mass, they will reach the secondary-ion detector 

earlier. As a result, the mass separation is obtained in the flight time tTOF from the sample to the 

detector. The flight time is expressed by  

1
202

TOF
zV

t L
m

−
 =  
 

, 

as TOFv L t= , where L is the length of the flight tube and TOFt  is the time-of-flight. Since L and V0 are 

instrument parameters a simplification of the equation for the time of flight can be written as 

1
2

TOF
m

t a b
z

 = + 
 

. 

a and b are constants based upon the instrument parameters, and m/z is the mass-to-charge ratio of 

the ion. The equation is valid as long as the initial ion velocity is zero.9 A calibration of the 

measurement is necessary as electronic delays in the time measurement system must be taken into 

account. During this calibration the constants a and b are extracted from a least square fit using known 

calibration peaks in the spectrum. This calibration must be preformed for all obtained spectra. The 

equation can alternatively be written as 

2' 'TOF
m

a t b
z
= ⋅ + . 

It is hereby clear that the mass spectrometry is not in fact determining the mass, but rather the mass 

to charge ratio. The mass spectrum is drawn as a histogram of counts for each time interval converted 

into mass per charge. 
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Mass spectrum analysis 
Mass spectra have several distinct sets of peaks, which include the molecular ion (if detected), isotope 

peaks, fragmentation peaks, and meta stable peaks. Different types of ion sources result in different 

arrays of fragments produced from the original molecules. It is therefore important that care is put 

into the correct assignment of mass peaks in the spectrum. Usually the first strategy for identifying an 

unknown compound is to compare its experimental mass spectrum against a library of mass spectra. 

With knowledge of expected signals it is possible to assign mass markers to a range of the peaks. Mass 

spectrometers work in either negative or positive ion mode as a result of the value of the acceleration 

potential. It is very important to know whether the observed ions are negatively or positively charged. 

Many molecules/fragments/atoms are only observed in either negative or positive mode. 

One major disadvantage of TOF-SIMS is that it is not a qualitative technique. This problem is caused by 

the matrix effect as secondary ion formation is strongly influenced by electron exchange processes 

between departing spices and the surface. Thus the electronic state of the surface is critical and the 

surrounding material becomes highly influential on the ion yield.  To circumvent this problem 

complementary measurement techniques can be used, one example is X-ray photoelectron 

spectroscopy (XPS). TOF-SIMS data can empirically be calibrated against XPS data resulting in a 

transformation of qualitative TOF-SIMS data into quantitative data, which is especially useful when 

studying low levels of photo-oxidation in materials used in organic solar cells.  

Practical considerations 
Being a destructive technique certain experiments are not possible using TOF-SIMS. It is not possible to 

take a working solar cell, degrade it, do a measurement and then degrade it again. After the analysis 

the solar cell will no longer function. Therefore experiments must be carefully planned. 

Contaminants can be a major problem when conducting chemical analysis using surface sensitive (~1 

nm) techniques such as TOF-SIMS. Silicone is a common contaminant on surfaces, and it is easily 

introduced by various materials such as oils, greases, heater transfer fluid, sealants, adhesives, 

surfactant, and medical devices. The typical silicone is polydimethylsiloxane (PDMS), which has a very 

low surface tension and thus preferentially segregates on the surface of samples. The silicone 

contaminant on the surface will induce strong signals and the mass spectra will be filled with peaks 

from the silicone rather than the real sample. Silicone results in the characteristic peaks including m/z 

28, 43, 73, 133, 147, 207, 221, and 281.10 Likely sources for silicone are latex gloves as some latex 
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gloves contain silicones. It is therefore extremely important to handle samples carefully and avoid 

contamination. A preferable option is to use polyethylene gloves that contain no additives. 

Gaining access to layers of interest 
Gaining access to the layers of interest is an important part of doing mass spectral analysis of solar cell 

devices. To achieve this two different approaches are available. The first is doing depth profiling and 

the second is physically removing the layers (if possible). 

 
Figure 5.2. Schematic of the depth profiling procedure. An alternative ion source is used to remove 

material. 

Depth profiling is achieved by introducing a constant ion sputter phase in between the pulsed mode 

acquisition phase in order to remove material. Successive removal of each layer in the multilayer 

device thus exposing the interfaces, which can then be analyzed. The process is then repeated until the 

desired depth has been reached. The sputter process is achieved via a secondary gun, see Figure 5.2. 

This sputter mode depth profiling by TOF-SIMS allows monitoring of all species of interest 

simultaneously, and with high mass resolution. As a consequence of differences in the sputter 

efficiencies through different materials the depth profile is not normally displayed as a function of 

depth, but rather as a function of sputter time. It is not straightforward to perform a TOF-SIMS depth 

profile on multilayered thin-film devices. Problems include interlayer mixing caused by the sputter 

process, in which small amounts of the sputtered material will tend to be pushed further into the next 

layer. This complicates the analysis of diffusion phenomena in the sputter direction. Bulle-Lieuwma et 

al. have reported an increasing bottom crater roughness when starting from the aluminum top layer, 

resulting in a loss of depth resolution.1 Another problem with TOF-SIMS depth profiling is the 

significant charge build-up in the sample surface caused by the sputter ion bombardment, which in 

many cases is too extensive for the electron bombardment to be able to fully compensate for the 

Sputter Ions

ITO
ZnO
P3HT : PCBM

Substrate

PEDOT

Ion Source Sputter Gun

Time-of-Flight Tube



 
Chapter 5 
 

 
P a g e  | 92 
 

effect. Charge build-up will decrease the intensity of secondary ions resulting in loss of sensitivity. 

Despite the short comings depth profiling is a valuable tool allowing information to be obtained from 

the entire stack including the interfaces and the bulk. 

The other option of gaining access to the buried interfaces is to physically remove material. This can be 

done in either of two ways; by delamination or by exploiting solubility of the layers. Since the layers 

comprised in a polymer solar cell is often solution processed, the organic layers can subsequently be 

re-dissolved and removed. This is done by gently swiping the surface with a cotton stick soaked in a 

solvent capable of dissolving the layer and without dissolving the next layer. The process is repeated 

until the layer is completely removed. Delamination is possible with encapsulated devices, since 

peeling the encapsulation off typically reveals a buried interface. The method can also be used on non 

encapsulated devices with tape substituted for the encapsulation material. When performing 

delamination it is critical to determine if the delamination occurred as expected. This can typically be 

tested by acquiring ion images on both exposed surfaces. 

Isotopic labeling 

 
Figure 5.3. Atmosphere chamber used for controlled atmosphere degradation. 

Since TOF-SIMS is not a quantitative technique it is desirable to have uniquely identifiable markers. 

One way of achieving this is to use an isotopically labeled atmosphere. This allows incorporation from 

the atmosphere to be monitored. Since the natural ratio of isotopes is well known it is possible to 

identify the amount introduced under the labeled atmosphere. For this an atmosphere chamber is 

used, see Figure 5.3.11 Typical isotopically labeled atmospheres consist of 18O2 or H2
18O (often mixed 

with N2 in order to simulate ambient conditions). 
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5.2. Results 

 
Figure 5.4. TOF-SIMS mass spectra of a ZnO surface before and after 22 h of photo-annealing. 

Reprinted with permission from Elsevier.6 

The first contribution is described in the article entitled “The effect of post-processing treatments on 

inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics”6 (not 

included in the thesis). In this work an investigation of an observed inflection point in roll-to-roll coated 

inverted polymer solar cells was studied. The inflection point was shown to be removed after 

continuous current-voltage sweeps during illumination (1000 W m–2) at 80 ˚C for 15–30 minutes. In 

addition to classical IV testing under various conditions, devices were analyzed using XPS and TOF-SIMS 

in order to ascertain a possible relationship between photo-annealing and chemical changes in the 

devices. The chemical composition of the ZnO layer was observed to change significantly as a result of 

photo-annealing, see Figure 5.4. A possible mechanism based on ZnO photo-conductivity, photo-

oxidation and redistribution of oxygen inside the device as proposed by Verbakel was used to explain 

the observed inflection point.12 Re-distribution of oxygen within the cell was thus responsible for the 

reversible inflection point behavior. The oxygen was present as a result of photo-desorption from ZnO 

and/or decreased oxygen solubility in the encapsulation layers (at elevated temperatures). It was 

concluded that devices employing ZnO will likely require some pre-treatments and/or chemical doping 

in order to optimize performance. In the article it was demonstrated that photo-annealing removes 

the remains of methoxyethoxy-acetate used to make the ZnO nano-particles soluble, see the peak 

marked 1 in Figure 5.4. The observation of characteristic fragment ions from the ionization process 

confirms the identity of the methoxyethoxy-acetate. The presence of an O2H– peak that increases in 
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intensity after photo-annealing was also observed. This is an indicator ion for the superoxide ion, 

known to form during photo-excitation of ZnO in the presence of oxygen, and contributes to the 

degradation of organic materials including P3HT.  

The second contribution comes in the form of the article entitled “Oxygen- and water-induced 

degradation of an inverted polymer solar cell: the barrier effect” (Appendix 2.2)8. In this work the 

difference between the stability of normal and inverted geometry devices was investigated. While cells 

of normal geometry have demonstrate high stability when subjected to oxygen and low stability when 

subjected to a water atmosphere the opposite is true for inverted device geometry cells, see Figure 

5.5. It was observed that both atmospheres lead to fast degradation of the initial response for the non-

encapsulated devices (black). The oxygen atmosphere led to complete degradation of the device in 

roughly 20 hours with all parameters showing fast decay. The comparable cell exposed to a humid 

atmosphere remained functional after the 480 hour time frame of the experiment. The encapsulated 

devices (grey) generally showed little degradation. 

 
Figure 5.5. Normalized PCE describing the degradation in performance of encapsulated (grey) and 
Non-encapsulated (black) devices under continuous illumination (330 W m−2, AM1.5G, 65 ± 2 °C). 

Reprinted with permission from SPIE.8 

The mechanism for the diffusion of water into the normal geometry device is fairly well described by 

primarily diffusion of oxygen through pinholes in the metal electrode.3 As a possible explanation of the 

difference in the behavior for normal and inverted cells it was hypothesized that the different layers 

act as a barrier toward both water and oxygen. If this barrier effect is different for oxygen and water 

the hypothesis can explain the observed behavior. The aim of the work presented was to determine 

the effect of each layer in the inverted geometry stack as a barrier material. A series of four partial 

solar cells were prepared for both atmospheres (molecular oxygen and water), see Figure 5.6. This 



 
Applications of TOF-SIMS for polymer solar cells 

 

 
P a g e  | 95 

 

allowed the barrier effect of the layers from the active layer and up to be tested. The experiment was 

based on the uptake of isotopically labeled oxygen (18O2) and water (H2
18O). The influence of the 

atmosphere was established by illumination of the samples at 330 Wm−2 at 65 °C in a chamber with 

controlled atmosphere. The chamber, see Figure 5.3, was equipped with a quartz window allowing 

illumination. Prior to the experiment a pressure of ∼10−4 mbar was established inside the chamber and 

the entire system was purged with nitrogen (99.9%) and pumped back down to ∼10−4 mbar. For the 

water atmosphere condition the chamber was then injected via a septum with H2
18O (97%, 5 mL, ∼20 

mmol). The entire system had a volume of 2.5 L resulting in a saturated isotopically labeled 

atmosphere. For the oxygen atmosphere the chamber was filled with 1 atm of 18O2 and N2 in a ratio of 

20 to 80. For both atmosphere conditions the samples were exposed for a period of 14 days. 

 
Figure 5.6. Schematic illustration of partial (a)–(c) and complete (d) solar cell devices. 

Information on where and to what extent oxygen uptake took place was investigated by analyzing the 

ZnO surfaces by TOF-SIMS. In order to obtain access to the ZnO surface delamination was used in the 

case of the encapsulated device. The delamination was shown to take place at the P3HT:PCBM / 

PEDOT:PSS interface. For the remaining sample layers the PEDOT:PSS layer was removed by gently 

swiping the surface with a cotton stick soaked in pure water. The underlying P3HT:PCBM layer was 

removed using the same procedure by substituting water with chloroform. Having exposed the entire 

ZnO interface for all partial devices TOF-SIMS surface  analysis was carried out. Figure 5.7 shows the 

incorporation of 18O at the ZnO surface in each of the given cases. In the oxygen atmosphere a clear 

barrier effect is seen for all layers (blue bars). It is seen that each layer has a distinctive effect as a 

barrier. In the humid atmosphere (red bars) it is seen that the active layer has a profound effect on the 

oxygen uptake. In fact the barrier effect of the active layer effectively shields the effect of the 

preceding layers as the difference between B and C lies within the error bars. The elevated 

incorporation of oxygen seen for the encapsulated devise (D) is somewhat puzzling. The explanation 

given in the article was that the binder used for the Alcan encapsulation is hygroscopic and acted as a 

reservoir for water. The observations that the uptake of oxygen is more pronounced in an dry oxygen 
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atmosphere as compared to a humid atmosphere is in good correlation with the lifetime study 

demonstrating superior lifetime for cells in a humid atmosphere for inverted geometry devices. 

 
Figure 5.7. Normalized 18O intensities for partial (a)–(c) and complete (d) solar cells. The values was 
normalized to the largest degree of oxygen exchange seen in the oxygen-free humid atmosphere. (c) 

The functional cell without encapsulation, (d) the same cell with encapsulation, and (a) and (b) partial 
device. 

       
Figure 5.8. Contrast image (left)  of the PEDOT phase marker (red) and the PSS markers (blue). The 
markers are PEDOT: S, 34S, C2S, C2HS, C6H5O2S, C6H6O2S and PSS: SO2, SO3, C8H7SO3. 18O- marker 

shown for the same data set (right). The sample was exposed to an 18O2 rich atmosphere. 

In the article entitled “Degradation patterns in water and oxygen of an inverted polymer solar cell”7 

(not included in this thesis), the spatial distribution of induced reaction products in multilayer polymer 

solar cells was mapped. The geometry studied was an inverted geometry device with a layer sequence 

starting with an ITO coated glass slide. On top of this a ZnO layer followed by a P3HT:PCBM active layer 

and a PEDOT:PSS acting as a hole transporting layer. The top electrode was a printed silver electrode. 

By using labeled atmospheres (H2
18O and18O2) detailed information on where and to what extent 
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uptake took place was obtained. A combined XPS and TOF-SIMS analysis then enabled degradation 

patterns and failure mechanisms to be elucidated. It was concluded that the reactions taking place at 

the interface between the active layer and the PEDOT:PSS were the major cause of device failure. 

Phase separation in the PEDOT:PSS was observed, with the PEDOT-rich phase being responsible for 

most of the interface degradation in oxygen atmospheres. TOF-SIMS images displaying the distribution 

of 18O- demonstrated that oxygen preferentially reacted with the PEDOT phase, see Figure 5.8. This 

observed phase separation affects the barrier properties of the layers as a result. It was observed that 

the reaction pattern of 18O- was persistent through the sublayers suggesting that oxygen diffuses more 

efficiently through the PEDOT as compared to the PSS phase. In the water atmospheres, little 

chemically induced degradation was observed as seen in Figure 5.9 where no contrast in the 18O- image 

can be seen in relation to the PEDOT:PSS contrast image. 

       
Figure 5.9. The left image represents a contrast image of the PEDOT phase marker (red) and the PSS 

markers (blue). The markers are PEDOT: S, 34S, C2S, C2HS, C6H5O2S, C6H6O2S and PSS: SO2, SO3, 
C8H7SO3. The right image represents the same data set, but shows the 18O- marker. The sample was 

exposed to a humid H2
18O atmosphere. 

5.3. Conclusions 
With the results presented it is clear that TOF-SIMS is a powerful technique for doing chemical analysis 

of solar cells and materials. The technique becomes useful for polymer solar cells partly because it is 

capable of extracting information from buried interfaces and from the bulk. Access to these interfaces 

can be gained either using depth profiling, but also by delamination and redesolving layers.  

It has been demonstrated that the individual layer offer a barrier effects against molecular oxygen and 

water in an inverted geometry polymer solar cell. In an oxygen-free humid atmosphere the barrier 

effect of the active layer (P3HT:PCBM) is demonstrated to be very pronounced. The barrier effect of 
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the active layer effectively overshadows the effect of the preceding layers. While these results cannot 

be related to the relative lifetime of the device in molecular oxygen and water, they are useful when 

designing encapsulation materials. 
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Chapter 6 
Summary and Future Challenges 

The main goal of the project was identification of degradation mechanisms in roll-to-roll produced 

polymer solar cells. While the work described in the dissertation has revolved around this subject most 

work has been on model systems. 

Through the study of in-depth morphology of polymer solar cells using ellipsometry, it was revealed 

that ellipsometry can be used to study advanced aspects of the solar cell composition. While the 

results presented did not deal with the stability or degradation of solar cells, the technique can 

potentially be used for this. It is well known that the morphology of the active layer is not 

thermodynamically stable and ellipsometry could serve as a non-destructive technique for monitoring 

the evolution of the morphology. 

The two following chapters of the dissertation were devoted to the study of photo-chemical 

degradation of the active layer materials. The second part detailed the building of an automated setup 

for stability testing and presented results on thickness and absorbance dependence of the photo-

chemical stability, acceptor stability, and the influence of intrinsic polymer parameters on stability. In 

the third part two light concentrating setups, built during the PhD, were detailed and results based on 

high intensity photo-degradation studies presented. The results of these two chapters, while being 

generic, can be directly applied to roll-to-roll coated polymer solar cells. Especially the automated 

aspect of the degradation setups will allow degradation experiments to keep the pace of the coating 

process and be a rapid evaluation tool.  

In the last part of the dissertation the use of TOF-SIMS for polymer solar cell characterization was 

detailed and the results on intrinsic barrier effects and degradation patterns were summarized.  TOF-

SIMS is a characterization technique very suited for roll-to-roll coated devices since it is not directly 

affected by the substrate choice. 
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1. INTRODUCTION

The realization of bulk heterojunction (BHJ)-based organic
solar cells in 1995 by Yu et al.1 introduced significant improve-
ments in power conversion efficiency. BHJ-based solar cells have
been reported with efficiencies as high as 8.3% as demonstrated
by Konarka2 and 8.5% by Mitsubishi Chemical Corp.3 However,
even at >8% efficiency, organic solar cells cannot compete with
inorganic solar cell devices. Amorphous silicon solar cells easily
outmatch organic solar cells in efficiency as well as cover many of
the same unique aspects, such as flexibility and low weight of the
final device. The real unique advantage of polymer solar cells is
the relative ease of production, the prospect of no material
shortages, and the potential low cost. Several examples of roll-to-
roll (R2R) manufacturing of polymer solar cells can be found in
literature, both including and excluding vacuum steps for electrode
deposition.4,5 As the inverted type solar cell geometry allows for
the use of a solution processed back electrode, most R2R solar
cell devices are based on this geometry.6 Solution-processed back
electrodes are an advantage since vacuum steps are undesirable,
as they both increase the time and energy consumption asso-
ciated with production. The role of the BHJ is several-fold. The
layer must absorb light, generate and separate excitons, and
transport charge carriers to their respective electrodes. The
morphology of the BHJ affects all of these processes. Excitons
are separated at electron donor and acceptor phase interfaces,

and the morphology optimally should ensure that the interface
area is maximized. Conduction of charge carriers requires con-
nected regions of donor and acceptor phases, respectively.
Literature shows examples where surface energy effects cause
segregation in the BHJ layer of the most described material
combination poly-3-hexylthiophene:phenyl-C61-butyric acid
methyl ester (P3HT:PCBM). Using variable angle spectroscopic
ellipsometry (VASE), Campoy-Quiles et al.7 modeled the vertical
composition profile of P3HT:PCBM films and reported a
composition gradient varying from PCBM-rich near the poly-
(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) layer to P3HT-rich at the air interface. Con-
sequently, the normal device geometry is inferior to the inverted
geometry since P3HT acts as a hole-transporting phase and
PCBM acts as an electron transporting phase. Yang and co-
workers8,9 reported P3HT:PCBM BHJ devices with an inverted
geometry, where devices showed increased power conversion
efficiency over the conventional architecture. This enhanced
performance was ascribed to the segregation of blend com-
ponents as observed with X-ray photoelectron spectroscopy
(XPS) depth profiling. It was demonstrated in agreement with
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ABSTRACT:We show that it is possible to perform ellipsometry on large area roll-to-roll
(R2R) coated solar cells on flexible substrates and further demonstrate that the slot-die
coating technique employed yields the same bulk heterojunction (BHJ) film morphology
and vertical phase separation as laboratory samples prepared by the spin coating
technique. The solar cell device geometry was Kapton/Al/Cr/P3HT:PCBM/PEDOT:
PSS/Ag. Variable angle ellipsometry was used to determine the optical dispersions of the
pure phases of P3HT and PCBM allowing an effective medium approximation model to
be employed. It was found that a top layer phase separation of P3HT and a vertical linear
gradient of P3HT and PCBM best described the BHJ layer. The model was tested for
samples of varying thickness and blend composition, model parameters including
thickness (AFM), vertical composition (XPS depth profiling), and optical transmission
(optical simulation and UV�visible spectroscopy comparisons) was confirmed to comply
with the model. A means of quality testing and optimization of the coating procedure line
scans across a R2R slot-die-coated sample over large distances (8 cm) was made giving insight into thickness and composition
uniformity.
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Campoy-Quiles et al.7 that the air interface of the blend film was
P3HT-rich, whereas the buried interface was PCBM-rich. Re-
cently, studies by Germack et al. substantiated the hypothesis
that changes in the surface energy significantly affects the vertical
composition profile by casting BHJ layers on two hole transport
layers (HTLs) with significantly different surface energies and
characterizing them using spectroscopic ellipsometry and near-edge
X-ray absorption fine structure spectroscopy. Using three-
dimensional reconstructions by transmission electronmicrotomo-
graphy Bavel et al.10,11 presented data suggesting enrichment of
P3HT at the lower part of the BHJ layer and, correspondingly,
enrichment of PCBM close to the surface. Their findings differ
from the results presented by Germack et al.12 and Yang et al.8,9

The authors suggest that the underlying substrate surface energy
is not important for the formation of vertical gradients, as
different morphologies can be observed on equal substrates.
Rather the thermodynamic aspects of the interacting com-
ponents, in particular the kinetic aspect involved during film
and morphology formation, is believed to be central in the
formation of vertical gradients.

All of the above-described results have been reported on rigid
substrates, with the films deposited by spin coating. R2R
manufacturing techniques are becoming more prevalent, and
the nanomorphology induced by this technique is of general
interest. The influence of the deposition technique itself as
compared to the surface energy contribution becomes highly
interesting. In this work, VASE is applied to determine thickness,
composition of constituents, vertical composition gradients in
R2R slot-die-coated P3HT:PCBM BHJ layers. The solar cell
geometry targeted for this research is a modified Fraunhofer-type
solar cell fabricated by a full R2R process, with a Kapton/Al/Cr/
P3HT:PCBM/PEDOT:PSS/Ag structure, and described in de-
tail by Manceau et al.13 Efficiencies up to 3.1% and excellent
stability have been obtained by Zimmerman et al.14,15 Using this
geometry in a lab-scale test, 1.4% efficiencies for printed elec-
trode lab-scale cells and 0.5% efficiency for R2R processed cells
have been demonstrated by Manceau et al.13

2. EXPERIMENTAL SECTION

2.1. Model Device Preparation. Objective glass model
devices were prepared by spin coating the BHJ layer. The
objective glass is manufactured by Menzel-Gl€aser and is espe-
cially suited as substrates for ellipsometry, as the glass is drawn
according to the Fourcault-method; thereby it does not exhibit
the tin-rich top layer associated with the widely used Pilkington
process. The BHJ layer was spin coated at speeds of 500, 1000,
2000, and 4000 rpm at two concentrations: 1:1 and 1:0.7. A blend
solution consisting of 10 mg mL�1 P3HT (Rieke Metals Lot:
BS16�24) and 10mgmL�1 PCBM (Solenne BV, 99% purity) in
chlorobenzene was used for all model devices. The solution was
stirred at 40 �C overnight, after which it was brought to room
temperature and was ready to use. Samples were also prepared by
doctor-blading using a solution of 10 mg mL�1 P3HT (BASF,
Sepiolid P200) and 10 mg mL�1 PCBM (Solenne BV, 99%
purity) in chlorobenzene.
2.2. R2R Processing. Deposition of the Cr, Al/Cr stack was

performed using magnetron sputtering at Polyteknik A/S
(Denmark) on the Kapton foil as purchased from Skultuna
Flexibles AB (Sweden) and trimmed to a web of 290 mm. The
bare foil was introduced into a R2R sputtering system employing
two DCmagnetrons with two different targets (Al and Cr). After

pumping down overnight, either 100 nm of Cr or 100 nm of Al
followed by 15 nm of Cr was deposited in two 8 cm wide stripes.
The web speed was 1 cm min�1. R2R slot-die coating was
performed on a BC30 basecoater from Solarcoating Machinery
GmbH (Germany) from a chlorobenzene solution of 21
mg mL�1 P3HT and 18.5 mg mL�1 PCBM.16 P3HT was
purchased from BASF as Sepiolid P200, labeled P3HT(Sepiolid)
and [60]PCBM was purchased from Solenne BV (purity of
99%). The typical coating speed was 2 m min�1, and the active
layer was subsequently dried at 90 �Cwith a residence time in the
oven of around 30 s. The dry layer thickness was estimated to be
260 nm, based on manufacturing parameters and material dry
density considerations. The principles, details, and solar cell test
results of the R2R processing can be found in the work by
Manceau et al.13

2.3. Ellipsometry. Variable angle spectroscopic ellipsometry
measurements were carried out using a Woollam Co. M-2000
Variable Angle Spectroscopic Ellipsometer, with a spectral range
of 0.75 to 6.5 eV. All measurements were done for angles
between 45 and 75 degrees with 5 degree steps. When noted,
focusing optics were used to minimize the spot size of the
measurement spot, referred to as the microspot. All ellipsometry
measurements were carried out at the Johannes Kepler University
of Linz at the Zentrum f€ur Oberfl€achen- and Nanoanalytik.
2.4. XPS. XPS depth profiling analysis were performed on a

KR (Thermo Electron Limited, Winsford, UK) using a mono-
chromated Al�KRX-ray source, a 400 μm spot size, and a takeoff
angle of 90� from the surface plane. Surface spectra (100�600 eV,
200 eV detector pass energy) were evaluated at discrete depths.
Sputtering was performed over a 1 mm2 area using 1000 eV Arþ

with an ion current of 2.7 μA.

3. RESULTS AND DISCUSSION

The devices studied in this work were based on flexible Kapton
substrates with either Cr coating (100 nm Cr/Kapton) or Cr/Al
coating (15 nm Cr/100 nm Al/Kapton). To test and verify the
measurement and data fitting procedure, a model system was
employed. In this case, a glass substrate was chosen as a substrate,
and the BHJ layer (P3HT (Rieke):PCBM) was spin coated on
top. This substrate allows for transmission measurements to be
made as a means of testing the ellipsometric model; additionally
XPS depth profiles were made to verify the procedure. For slot-
die-coated and spin-coated samples, two different polymers were
used: P3HT (Rieke) was used for spin-coated samples, and
P3HT (Sepiolid) was used for slot-die-coated and doctor-bladed
samples due to different solubility properties of the polymers.
3.1. The VASE Approach.VASE is used as the primary tool to

determine the vertical composition gradient in the BHJ layer.
The complex ratio between the reflection amplitude of the
polarized light with the electric field in the plane of incidence
(rp) and perpendicular to the plane of incidence (rs) is expressed
in terms of the ellipsometric parameters Ψ and Δ.

rp
rs

¼ tanðΨÞeiΔ ð1Þ

The ellipsometric parameters are measured accurately, allowing
measurements to be fitted to a complex model including spatial
effects such as a vertical composition profile. To further ensure
quality of the fit, measurements are carried out at variable
angles, thus supplying data at different optical path lengths.
Using an effective medium approximation (EMA) ascribed to
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Bruggeman,17 mixtures of materials with known n and k can be
described. The EMA is a physical model that describes the
macroscopic properties of a medium based on the properties
and the relative fractions of its components. On the basis of the
additive character of the polarizability, a generalization of the
Claussius�Mossotti formula can be written as

Æεæ� εh
Æεæþ 2εh

¼ ð1� f Þ ε1 � εh
ε1 þ 2εh

þ f
ε2 � εh
ε2 þ 2εh

ð2Þ

where Æεæ is the effective dielectric function, ε1 and ε2 are the
dielectric functions of the two media subject to mixing, εk the
dielectric function of the host medium with the inclusions, and f
is the volume ratio of material 2. The underlying assumptions of
the equation are that it applies for spherical inclusions and dipole
interactions only. Neither is strictly true for the BHJ layer, but the
model is still applicable as the dipole interaction is a standard first
order approximation giving good results, and because changing
the depolarization factor from the spherical value of 1/3 is not
generally significant.18 In the Bruggemanmodel, Æεæ= εh, thereby
letting the effective medium itself act as the host material.17 The
model is then self-consistent, and the two phases play exactly the
same role. The effective dielectric function of the mixture is given
by the second-order equation

0 ¼ ð1� f Þ ε1 � Æεæ
ε1 þ 2Æεæ

þ f
ε2 � Æεæ
ε2 þ 2Æεæ

ð3Þ

Since f is given as the volume fraction, a conversion is
necessary to calculate the mass fraction given for the blends.
By considering the basic formula for the volume fraction with the
volumes expressed as mass per density, the following relation
between mass fraction and volume fraction can be found:

fmf ¼ 1

1þ ðf�1
vf � 1ÞFPCBM

FP3HT

ð4Þ

where fmf is the mass fraction, and fvf is the volume fraction.
FPCBM and FP3HT are the dry densities of the respective phases.
The dry densities have been found in literature to be 1.33 g cm�3

and1.5 g cm�3 for P3HTandPCBM, respectively.19,20 The validity
of the Bruggeman effective medium approximation requires the
sizes of the phases (dielectrics) in a composite material to be
sufficiently greater than atomic sizes, but smaller than 1/10 of the
wavelength, which indeed is true for the BHJ films. The EMA
cannot represent nonadditive features of the dielectric function,
such as charge transfer absorption bands. This is, however, not a
problem since such features seems to be weak in all recorded
spectra. Vibronic features originating from crystallization of the
P3HT is also neglected in the model. Lastly, the dielectric
functions of the phases must be independent of size and shape;
this is expected to be the case based on the success of the
implementation of the model to samples with varying thickness
and composition.
3.2. Pure Phase Optical Dispersions.The dielectric function

of both phases, P3HT and PCBM, must be known for the EMA
model to be used for a blended system. Glass substrates with
spin-coated P3HT (Rieke) and PCBM, respectively, were mea-
sured using VASE. The optical dispersion of the pure phases was
derived from a generalized oscillator model, using Tauc Lorentz
oscillators21 (see Figure 1). The Tauc Lorentz model is typically
used for the parametrization of the optical functions for amor-
phous semiconductors and insulators for which the imagi-

nary part of the dielectric function εi is determined by multi-
plying the Tauc joint density of states by the εi, as obtained from
the Lorentz oscillator model. The real part of the dielectric
function εr is calculated from εi usingKramers�Kronig integration,
making the model Kramers�Kronig consistent. The Supporting
Information contains the fits of the ellipsometry parameters for
both P3HT and PCBM in Figures s13 and s14, respectively.
3.3. Model System Fitting. A series of samples were spin

coated on glass substrate at different speeds (500, 1000, 2000,
and 4000 rpm) employing two blend concentrations (1:1 and
1:0.7) and measured using VASE. Using the EMA three different
models were proposed to describe the optical dispersion, all
depicted in figure 2. The four phase model seen in Figure 2c is
intended as a general model used to determine the shape of the
vertical gradient. Fitting to this model was carried out for samples
with layer thicknesses varying from 50 to 200 nm, using a random
global fit algorithm running within reasonable physical limits.
These were given such that the composition of P3HT and PCBM
could not be negative and that the total thickness must stay
within (20% of the thickness determined with ellipsometry
using a Cauchy model (with k assumed zero). These latter
thicknesses were further supported by atomic force microscopy
(AFM)-based thickness measurements. The model was subject
to a fitting process where the compositions of the four layers were

Figure 1. Optical dispersions with peaks assigned are shown for both
the index of refraction (top) and the extinction coefficient (bottom).
The solid line is the dispersions of the BHJ layer and the dotted lines are
the dispersions for the pure phases. The blend optical dispersion is
calculated from the pure phase dispersions, using an EMA model as
depicted in Figure 2a.

Figure 2. (a) Single layer EMAmix of the two components; this model
is labeled simple EMA. (b) More complex model featuring a phase
separated top part of P3HT of varying thickness; the bulk of the layer is
comprised of a P3HT/PCBMmix described by a linear gradient, labeled
as the linear gradient model. (c) Four phase model used for initial fitting.
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set to values from 0 and 100% composition in steps of 25%. The
combined thickness was set at values between 20% less than the
expected thickness and 20% above the expected thickness with
five evenly spaced guesses. The thicknesses of the sublayers were
treated as free parameters set to the value from the previous fit.
Hereby 2500 different starting guesses were established. These
were fitted in a random order (randomness prevents the fit to fall
back into the previous local minimum). The overall best set of fit
parameters for the 2500 guesses was saved. By repeating this
procedure for eight samples with different thickness and com-
position, it was established that a linear vertical composition
gradient combined with a top phase separation would yield the
simplest model capable of describing all thicknesses and com-
positions with a low minimum square error for all samples with
only four fitting parameters (see Figure 3b; the four phase model
has eight fitting parameters). In the Supporting Information, all
four models are shown with XPS depth profiles for two samples
(Figures s1 and s6). In Figures s3�s5 and s8�s10, the ellipso-
metry fits are shown for the different models, and Figures s2 and
s7 show simulated transmission spectra for all models along with
the measured transmission spectra. The linear gradient model,
seen in Figure 2b, gave consistent fits with thicknesses as verified
by fitting a Cauchy model in the wavelength range 650�1690 nm.
The average deviation between the Cauchy model and the
gradient model is 1.8% as documented in Table s1 in the
Supporting Information. The linear gradient model is further-
more capable of producing simulated transmission spectra
comparing well to measurements, as seen in Figure 3 and in
the Supporting Information.
Further verification of the proposed gradient profile is

achieved through XPS depth profiling. The composition of
P3HT and PCBM is calculated by measuring the content of
carbon and sulfur and then calculating the distribution of the two
phases by considering the molecular formulas of P3HT and
PCBM, respectively (only P3HT contains sulfur). Atomic com-
positions were determined from surface spectra, and were
calculated by determining the integral peak intensities using a
Shirley type background, removing the inelastically scattered
electron contribution. A comparison of the XPS depth profile
and the ellipsometrically determined vertical profile is depicted in

Figure 4. By comparing the XPS and ellipsometry data, it is
observed that the XPS depth profile does not feature a phase
separation as distinct as the one the ellipsometry model suggests.
Since the probe depth of the XPS is 5�12 nm, the real vertical
gradient will be a convolution of the real vertical gradient and the
probe depth, smoothening out the result. Therefore the XPS data
supports the ellipsometry model. The pileup of PCBM in the
beginning of the XPS profile and the later more linear slope is
described well within the linear gradient restriction.
3.4. Flexible Substrate Fitting. Using flexible substrates for

ellipsometry introduces a number of complications. First, one
must ensure that the substrates are flat. This was achieved by
laminating the substrates onto a piece of glass, thereby inducing
rigidity to the sample. However, microspot optics was still found
necessary for acceptable measurements to be conducted. For
each measurement, the depolarization factor was measured to
evaluate the degree of partially polarized light caused by curva-
ture of the sample. Thus only measurements exhibiting low
depolarization were considered. The substrate used was a
Kapton/Al/Cr substrate, which in itself is a multilayer substrate
consisting of several highly absorbing layers. The Cr layer is
expected to oxidize as the layer is freely exposed to the atmo-

Figure 3. (a) The simulated transmission spectrum (dotted line) shows a good fit for the vertical profile as compared to the measured transmission
spectrum (solid line). The dashed dot line represents a simple EMAmodel, as seen in panel b in Figure 2, which does not reproduce the transmission as
convincingly as the more advanced model. (b) Fitted ellipsometric parameters with red lines displaying measured values and green lines representing
simulated values.

Figure 4. An XPS depth profile compared to the ellipsometrically
determined gradient model. The dotted line is the gradient profile from
the ellipsometry model. The solid curve is the XPS depth profile.
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sphere. The aluminum layer is protected under the Cr layer and
the sputtering processes of Al and Cr is completed without
breaking the vacuum. However, when chromium oxide is heated
with aluminum, it is reduced to chromium metal and aluminum
oxide. The layer is therefore quite complicated and modeling and
determination of sublayer distribution, thicknesses of sublayers
etc., is difficult. Bare Kapton/Al and Kapton/Cr substrates were
therefore evaluated in an attempt to build a useful model.
However, a monolayer model with infinite absorption (infinite
thickness) was chosen as the model resulting in the best fits. The
optical dispersions were determined by a point-by-point fitting
procedure solving the ellipsometric equations analytically and
making the best fit for multiple angles. The Kapton/Cr substrate
was fitted using the same procedure. The difference between the
Kapton/Cr and the Kapton/Al/Cr is primarily the efficiency of
the resulting solar cells as the Al layer increases the conductivity
considerably. For ellipsometry it is desirable to have the simplest
substrates. Therefore the Kapton/Cr substrate was used for all
model work, and the Kapton/Al/Cr were used in the slot-die
coating, as slot-die-coated cells were also meant for a solar cell
production run.
3.5. Flexible Substrate Results. Fitting of the ellipsometric

data for spin-coated Kapton/Cr substrates revealed that the
vertical gradient could be modeled within the same framework
used for the samples based on glass substrates (see Figure 5a).
The behavior of a phase-separated P3HT layer remained, but the
linear gradient had reversed. In these cases, more PCBM was
found at the substrate interface as compared to the glass
substrates. Again, fitting of the c-type model found in Figure 2
was carried out to ensure that the model was in fact valid. For
these samples, the P3HT (Rieke) was used.
For the slot-die-coated samples, the P3HT (Sepiolod) was

used. It was not possible to spin coat this polymer neither alone
nor blended with PCBM. Therefore doctor-bladed samples with
P3HT (Sepiolid) were made with both pure P3HT and blended

with PCBM on both glass substrates and Cr/Kapton substrates.
The optical dispersion determined for P3HT (Rieke) turned out
to be applicable for the P3HT (Sepiolid) in the doctor-bladed
samples with similar vertical distributions. Therefore the same
gradient model was applied to the slot-die-coated substrates.
Figure 5b shows the fitted parameters for the slot-die-coated
sample. It can be seen that the vertical composition gradient is
similar to the spin-coated sample on the Cr/Kapton substrate,
shown in Figure 5a. The results show that the slot-die coating
process does not lead to a change in the vertical distribution of
the constituents as compared to spin-coated samples, meaning
that the phase-separated top layer remains as well as the gradient
of P3HT and PCBM. It is therefore concluded that the manu-
facturing technique in the present case plays a minor role in the
formation of the vertical composition gradient in the BHJ layer.
The surface energy of the substrate appears to be the important
factor in this case. Even though the substrates used for slot-die
coating and spin coating are not identical, the surface energy is
not changed, as the top layer is identical.
3.6. Ellipsometry for Process Control. A line scan was

conducted over the width of the slot-die-coated stripe (8 cm
wide). Using the simple EMA model for the BHJ layer
(Figure 1a) fits of the thickness and composition of constituents
were made along the line scan (see Figure 6). The model shows
that the thickness has a slope in the distribution of BHJ layer over
the observed sample. Outliers in the graph are not to be
considered since they have very high minimum square error,
especially the measurements near the edges of the sample. The
decrease in the fit quality is associated with the curvature of the
sample which could not be compensated for by using the
microspot objectives and correcting the stage tilt. This is also
supported by a high degree of depolarization observed near the
edges. The thickness was also fitted using the Cauchy model in
the wavelength range 650�1690 nm under assumption of zero
absorption, and yielded thicknesses within (3% of the

Figure 5. (a) Vertical composition gradient for the P3HT:PCBM/Cr/Kapton spin-coated sample. The mixture is 1:1. (b) Vertical composition
gradient as determined for the P3HT:PCBM/Cr/Al/Kapton slot-die-coated sample. The mixture is 1:0.85. In the Supporting Information, Figures s11
and s12 show the fitted and measured ellipsometric parameters.

Figure 6. Line scan depicting (a) thickness and (b) composition distribution over the width of the printed stripe.
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thicknesses found for the EMA model. The composition at the
macroscopic level is determined by the composition of the
solution, and Figure 6b confirms that no real composition change
is visible across the sample.
The spatial resolution of the micro spot optics is roughly 0.1

mm. The speed of line scans is determined by the speed of
translating the sample. In the case presented, the sample is
translated manually. However, using a motorized stage transla-
tion, measurements can be carried out with small translation
overhead. The speed of the measurement is high for ellipsometry
employing a CCD-based spectrometer, giving an acquisition
time with adequate integration time of roughly 60 s including
seven angles. Restricting measurements to one angle, the acquisi-
tion time is reduced to about 5 s. Setting the translation overhead
to 5 s and using only one angle, the complete acquisition, shown
in Figure 6, can be completed in 400 s. It is hereby clear that
ellipsometry in this form is not appropriate for real time R2R
characteristics, but rather constitutes a means of off-line quality
control and process optimization.

4. CONCLUSIONS

The implementation of ellipsometry in the organic photo-
voltaic processing technology presents a series of challenges. It
has been demonstrated that VASE can be employed to determine
composition gradients in the BHJ layer of polymer solar cells
with flexible substrates. Overfitting of data is a general concern
when dealing with ellipsometry. In this work, great care has been
taken by testing the model on samples of varying thickness and
composition, as well as confirming model parameters including
thickness (simplified Cauchy model and AFM), vertical compo-
sition (XPS depth profiling), and optical transmission (optical
simulation and UV�visible spectroscopy). It was concluded that
samples manufactured by spin coating and slot-die coating
exhibit similar vertical composition gradient on equal substrates.
A technique for fabrication optimization has been demonstrated
by implementations of line scans across a coated sample giving
insight into thickness and composition variations over the width
of a R2R slot-die coated sample.
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Figure s1. Three different models (simple EMA model, four phase model, and linear model with phase 

separation, see figure 2) detailing the in-depth morphology of a P3HT:PCBM 1:1 blend spincoated on glass at 

4000 rpm. Thicknesses; simple EMA: 63.7 nm,  four phase model: 74.4 nm, thickness for linear gradient with 

phase separation: 72.7 nm, Cauchy model based thickness: 70.6 nm. 
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Figure s2. Measured and simulated transmission spectra for the simple EMA model (orange), four phase model 

(green), and linear model with phase separation (blue), and the measured transmission (red). The data are 

made to the models shown in figure s1. 

  

Figure s3. Ellipsometry fit for the simple EMA model associated with figure s1. The thickness was found to be 

63.7 nm with a minimum square error of 41.67. 
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Figure s4. Ellipsometry fits for the four phase model associated with figure s1. The thickness was found to be 

74.4 nm with a minimum square error of 23.22.  

  

Figure s5. Ellipsometry fits for the linear gradient with phase separation model associated with figure s1. The 

thickness was found to be 72.7 nm with a minimum square error of 26.41.  

 

Figure s6. Three different models (simple EMA model, four phase model, and linear model with phase 

separation, see figure 2) detailing the in-depth morphology of a P3HT:PCBM 1:0.7 blend spincoated on glass at 

500 rpm. Thicknesses; simple EMA: 147.1 nm, four phase model: 143.9 nm, thickness for linear gradient with 

phase separation: 142.2 nm, Cauchy model based thickness: 141.5 nm. 
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Figure s7. Measured and simulated transmission spectra for the simple EMA model (orange), four phase model 

(green), and linear model with phase separation (blue), and the measured transmission (red). The data are 

made to the models shown in figure s2. 

  

Figure s8. Ellipsometry fit for the simple EMA model associated with figure s2. The thickness was found to be 

147.1 nm with a minimum square error of 55.3. 
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Figure s9. Ellipsometry fits for the four phase model associated with figure s2. The thickness was found to be 

143.9 nm with a minimum square error of 17.84. 

 

 

Figure s10. Ellipsometry fits for the linear gradient with phase separation model associated with figure s2. The 

thickness was found to be 142.2nm with a minimum square error of 20.59 
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1:1 4000 72 70.6 64.7 8.0 1.03 

1:1 2000 103 101.7 88.9 9.0 0.96 

1:1 1000 143 140.8 134.5 7.3 1.01 

1:1 500 202 202.7 189.1 11.5 0.99 

1:0.7 4000 53 52.4 44.8 7.5 1.00 

1:0.7 2000 72 71.9 61.8 7.8 0.97 

1:0.7 1000 99 99.4 86.5 11.3 0.98 

1:0.7 500 139 141.5 133.7 8.5 1.00 

Table s1. The table shows comparisons of the thicknesses determined with the linear gradient model with 

thicknesses determined with a Cauchy model in the wavelength range 650 – 1690 nm with k assumed zero. The 

T ratio is the ratio between the Cauchy thickness and the layer thickness from the linear model with phase 

separation. 
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Figure s11. Shows data for spin coated sample on Chrome Kapton substrate. The minimum square error is 

82.21. 

 

 

Figure s12. Shows data for slot die coated sample on Chrome Aluminum Kapton substrate. The minimum square 

error is 48.79. 

  

Figure s13. Ellipsometry fit for P3HT on glass spin coated at 4000 rpm. The thickness was measured to be 38.2 

nm and the minimum square error is 44.3. 
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Figure s14. Ellipsometry fit for PCBM on glass spin coated at 4000 rpm. The thickness was measured to be 37.6 

nm and the minimum square error is 22.6. 
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Appendix 1.2
Photochemical stability of conjugated polymers, electron acceptors and blends
for polymer solar cells resolved in terms of film thickness and absorbance†
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Photochemical degradation at 1 sun under AM1.5G illumination was performed on six conjugated

polymers and five different electron acceptors. Additionally, the respective polymer:PC60BM and

P3HT:electron acceptor blends were studied, and all degradations were resolved in terms of film

thickness and absorbance. A fully automated degradation setup allowed for inclusion of in excess of

1000 degradations in this study to enable a discussion of reliability of the technique. Degradation rates

were found to increase exponentially with decreasing film absorbance for all materials. The relative

stabilities within each material group were found to vary for both the pure polymers and the blends.

The stability ranking between the materials of the pure polymers was found to be similar to the ranking

for their respective blends, implying that the photochemical stability of a pure polymer is a good

measure of its associated blend stability. Different electron acceptors were found to stabilize P3HT

decreasingly with decreasing donor–acceptor LUMO–LUMO gap. Destabilization of P3HT was

observed in the case of the electron acceptor ICBA. Additionally, the decreased stabilization of P3HT

by high LUMO electron acceptors poses a challenge to solar cell encapsulation if these materials are to

be of commercial interest. The presented method is generally applicable to all types of organic materials

to assess photochemical stabilities. The presented results of conjugated polymers demonstrate that this

is a powerful tool for conjugated polymer stability assessment if the results are interpreted correctly.
Introduction

With the increasing attention polymer solar cells (PSCs) are

receiving on the basis of potential ease of processing, low cost

and light weight,1–3 solving the stability issue is becoming

increasingly urgent. While the efficiency of devices has rapidly

risen to exceed 8%,4 stability is still a major limitation to the

technology.5 A multitude of new polymers have been developed

and their performances in PSCs have been studied.6,7 However,

the stability of the polymers is only rarely discussed and therefore

their practical potential in actual commercial solar cells is not

obvious if they cannot combine high performance with high

stability.

A general complication regarding stability assessment of the

conjugated polymer in PSCs is the influence of several degrada-

tion mechanisms external to the polymer, e.g. diffusion of water

and oxygen into the cell,8 hole and electron transport layer

degradation,9,10 morphology and phase changes of the active

layer.11 An alternative method is to focus only on the stability of

the polymer itself by degrading only the polymer, either in
Risø National Laboratory for Sustainable Energy, Technical University of
Denmark, Frederiksborgvej 399, DK-4000 Roskilde, Denmark. E-mail:
ttro@risoe.dtu.dk

† Electronic supplementary information (ESI) available. See DOI:
10.1039/c2jm16340c
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Page | 
solution12 or as thin films.13,14 By this the photochemical stability

of a large number of different material classes has been estab-

lished.14 Consequently, this knowledge has been used as a prac-

tical guide to direct polymer synthesis and development in the

direction of higher stabilities.

Photochemical stability of polymers is normally studied by

monitoring the UV-visible photo-bleaching as a function of

degradation time.14 However, the photochemical stability of

polymers is known to be highly dependent on several different

parameters, e.g. oxygen concentration, humidity, temperature,

light intensity, film optical density (thickness), UV content,

ozone concentration and molecular weight.13,15 As a result, when

making comparative studies of polymer stabilities, many

different parameters influence the experimental conditions,

which may be outside the control of the experimenter. The

majority of the above mentioned parameters are normally

approximately constant within an experimental study if not

actively changed. Parameters such as the temperature, light

spectrum, and light intensity are typically kept constant.

Contrary to this, the optical density (thickness) of the sample is

more prone to variation and great attention must be given to

keep this parameter constant for all samples. Furthermore, the

effect of varying optical density (thickness) on material stability

has not been studied systematically and therefore the uncertainty

introduced by thickness variation is unknown. Degradation of
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 Schematic illustrations of the polymers studied.
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Appendix 1.2
conjugated polymers in the ambient is highly dominated by the

concentration of light and oxygen.5 In general, due to the limited

penetration depth of both light and oxygen, a thick film is

expected to be more stable than a thin film. In the literature,

examples of this effect can be found by comparison of different

P3HT stabilities, where the time frame for a complete degrada-

tion with the same light source was found to increase ten-fold

when the film absorbance was increased from 0.2 to 0.6‡.14,16

Additionally, when performing comparative stability studies

between different materials, the effect of the optical density

(thickness) on the stability for different materials is unknown.

The overall effect is that the photochemical stabilities obtained

for thin films are not necessarily consistent with the stabilities

obtained for thick films.

This study presents a rigorous analysis of the influence of the

optical density (thickness) on the photochemical stability of

different materials and material combinations relevant to PSCs.

However, the presented method is applicable as a stability

assessment tool to all types of organic materials. To allow for

a thorough analysis of the parameter space, a fully automated

degradation setup was constructed. By this a high number of

degradation studies could be performed while keeping the

workload for the experimenter to a minimum. This study

therefore presents in excess of 1000 degradations, providing

a sound basis for all conclusions. Six different conjugated poly-

mers were studies as well as five different electron acceptors to

establish their individual stabilities and the dependence of these

on optical density (thickness). To study the actual chemical

context of conjugated polymers in PSCs, the impact of blending

P3HT with the five different electron acceptors is studied. This

studies the consequence of application of high LUMO level

acceptors to PSCs. Finally, the stability of blends consisting of

the six studied polymers and PC60BM is assessed. This allows for

a general discussion of the correlation between photochemical

stability of the single polymers and their associated blends, which

is essential for making sound predictions of the stability of

different polymers in PSCs.
Experimental

Sample preparation

Six different polymers were studied, which contain different

chemical moieties (Fig. 1). 90–94% regio-regular poly[3-hex-

ylthiophene] (P3HT) was obtained from Rieke metals. Synthetic

procedures and characterization data for poly[2,3-bis-(3-octy-

loxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1),

regio-random P3HT, and poly[(4,40-bis(2-ethylhexyl)dithieno
[3,2-b:20,30-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl]
(PSBTBT) are documented elsewhere.17–19 A thermocleavable

polymer poly[3-(2-methylhexan-2-yl)-oxy-carbonyldithiophene]

allowed for the preparation of solid polythiophene (PT) film

from solution20 by cleaving the polymer on a hot plate in the

ambient at 300 �C for 10 seconds after spin coating.21 Molecular

weights for all polymers are given in Table S1†. Photochemical

stabilities of all polymers of a single thickness have already been

established.13,14,16,22 All polymers and blends were spin coated on
‡ Corrected value in accordance with the article author.

This journal is ª The Royal Society of Chemistry 2012
Page | 
glass substrates from chlorobenzene in the ambient at room

temperature in concentrations ranging from 5 to 30 mg mL�1 to

obtain a wide range of layer thicknesses. Absorbance spectra of

all polymers are shown in Fig. S1a†.

Five different electron acceptors were studied of which four

are functionalizations of C60 Buckminster fullerenes (Fig. 2).

Phenyl-[6,6]-C61-butyric acid methyl ester (PC60BM),

bisPC60BM and PC70BM were obtained from Solenne, C60 was

obtained from Aldrich, while the indene-C60 bis-adduct (ICBA)

was obtained from Plextronics. Absorbance spectra of electron

acceptors are shown in Fig. S1b†.
Degradation setup

A Steuernagel solar simulator with an Osram 1200 W HMI lamp

providing an AM1.5G spectrum was used for all degradations.
Fig. 2 Schematic illustrations of the studied electron acceptors.

J. Mater. Chem., 2012, 22, 7592–7601 | 7593
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Appendix 1.2
A power meter was used to adjust the solar intensity to 1 kWm�2.

The light was not filtered and therefore a UV rich spectrum was

obtained with a cut-off at 280 nm (Fig. S2†). All degradations

were performed in a laboratory with humidity (20% relative

humidity) and thermal control (23 �C room temperature) to

ensure a constant degradation environment. The temperature

during all degradation experiments of the samples was 32 �C. The
ozone generated by the light bulb was removedwith a fan, and the

samples were thus exposed to the ozone concentration of the

laboratory, which was slightly higher than outdoor ozone levels.

A fully automated sample exchanger with a capacity of 24

different samples was employed to performmultiple degradations

in parallel (Fig. 3A–C). The distance to the center was identical

for all samples avoiding effects of spatial inhomogeneities of the

illumination. An optical fiber-based CCD spectrometer (Avantes

AvaSpec 1024 with a 400 mm quartz fiber) and a halogen/deute-

rium light source (Avantes AvaLight-DHc) were used to record

the absorption spectra in a transmission geometry in the range of

300 to 900 nm at set intervals based on the approach described in

ref. 23. By using collimating lenses adjusted normal to the sample,

a parallel light probe was obtained by which a circular area of Ø

3 mm was probed. The flowchart in Fig. 3C shows the operation

procedure of the degradation setup. During each run 22 samples

were mounted in the sample exchanger and eight degradation

points were measured on each sample and thus 176 parallel

degradations were monitored in parallel to increase the statistic

significance. After the recording of the absorbances, the samples

were allowed to degrade for a customized interval with no rota-

tion of the exchanger, typically 5 minutes.
Fig. 3 (A) Side view of the degradation setup. (B) Top view of the sample exc

flow chart describes the procedure for the degradations. (D) Absorbance reso

different degradation experiments are shown.

7594 | J. Mater. Chem., 2012, 22, 7592–7601
Page | 
Stability evaluation

The degradation rates were extracted from the decrease of the

calculated total number of absorbed photons (Nphoton) per second

as absorbed by the polymer, when the recorded absorption

spectrum is folded with a theoretical AM1.5G solar spectrum as

described in ref. 24. 30–500 absorption spectra were recorded for

each individual sample point. A strictly linear decrease ofNphoton

was observed for all polymers during the entire degradation. The

slope of the decrease of Nphoton over time allowed for the eval-

uation of the degradation rate. Only few percent of degradation

allowed a precise estimation of the degradation rate due to the

high density of recorded absorption spectra. A C# based auto-

mated software infrastructure was established to handle the high

number of data files generated. This software showed the Nphoton

evolution for all 176 samples as well as the respective absorption

spectra. If an erroneous absorption spectrum was recorded, this

was clearly observed when processing the data and the data point

could thus be dismissed. In total, this study presents in excess of

1000 degradations each including an average of 50 absorption

measurements. Invalid data points have been filtered from the

data where effects of particles, bad film coverage, inhomoge-

neous film thickness etc. clearly influenced the degradation rates.

The reliability of the method is demonstrated by comparison of

evaluated degradation rates for P3HT on the same sample, for

different samples and different separate experiments, which are

all found to strictly follow the same correlation (Fig. 3D).

When neglecting the significant time invested in setting up the

apparatus and the time required for its validation, the total

operator workload for all the degradation data reported here is
hanger. (C) Schematic illustration of the automated degradation setup. A

lved degradation rates for P3HT where data from different samples and

This journal is ª The Royal Society of Chemistry 2012
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Fig. 4 Absorbance resolved degradation rates for six different polymers.
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Appendix 1.2
estimated to be roughly 4 hours, while a manually operated setup

was estimated to a workload of roughly 400 hours, clearly indi-

cating the gain in operator efficiency. Additionally, the precision

of the automated setup outperforms any manual handling since

measurements are performed with higher frequency, non-inter-

rupted illumination, and with a fixed geometry during the entire

degradation as compared to the manual handling where samples

are removed from the degradation setup and transported to and

from the spectrometer. Finally, in terms of the reliability of the

automated setup the timing of the data point acquisition is

computer controlled (data are stored with millisecond accuracy),

while manual handling involves an attentive operator keeping

track of time, introducing a multitude of risks to the data

acquisition. We firmly believe that comparative studies on this or

larger scales mandatorily require a setup of the complexity

described here to enable fast extraction of reliable data.

AFM thickness correlations

A Bruker Neos atomic force microscope (AFM) was used to

establish correlations between layer thickness and material

absorption for each of the studied materials and material

combinations. A minimum of four samples covering a broad

thickness range were spin coated. By scratching the sample with

a scalpel, AFM measurements across the scratch allowed the

determination of film thicknesses with an uncertainty of 5 nm.

For all material combinations, linear correlations were found

between the peak absorption of the polymer and the thickness.

Simulations of the theoretical absorption of the film demonstrate

that a linear correlation in the thickness range is indeed expected

in accordance with the Lambert–Beers law. Fig. S3† shows an

optical simulation in the range of 5 to 200 nm of both P3HT and

P3HT:PC60BM demonstrating a clear linear correlation between

the polymer peak absorption and the thickness for both the

polymer and the blend validating the observed linear AFM

correlations. The simulation was based on the refractive index as

measured by spectroscopic ellipsometry (Sopra lab GES5E). The

refractive index of the P3HT:PC60BM blend was obtained by

combination of the refractive indices of the pure phases using an

effective media approximation as described in ref. 25.

Results and discussion

Stability of conjugated polymers

In this study six different polymers have been studied (Fig. 1).

These have been chosen to cover a wide range of chemical

moieties and photochemical stability. Furthermore, all materials

are known for their high performance or historical use in PSCs

and are therefore highly relevant to the present research. In the

discussion of the evaluation of photochemical stabilities of

different materials, the basis for comparisons is important.

Conventionally, the basis for comparison of different conjugated

polymers has been the absorbance peak values in the UV-visible

spectrum, where all samples in a comparative study have been

adjusted to the same peak absorbance.14 The absorbance is an

easily measurable quantity and intrinsic to the spectroscopic

degradation probe. Additionally, it can also be qualitatively

estimated by visual inspection of the light attenuation by the film,

simplifying sample preparation. Such an absorbance basis implies
This journal is ª The Royal Society of Chemistry 2012
Page | 
that for a material with low linear attenuation coefficient,

a thicker film is needed to achieve the same absorption as for

a high linear attenuation coefficient material. The light pene-

tration depth depends on the linear attenuation coefficient, where

a low linear attenuation coefficient implies a larger ratio of

photons being absorbed deeper into the bulk of the material. To

justify an absorbance basis for polymer comparisons, each

photon absorbed by the material should thus contribute with

equal degradation independent of whether the material is a high

or low linear attenuation coefficient material. Since degradation

of conjugated polymers in the ambient is governed by oxygen this

ideally implies that the oxygen availability is effectively constant

within the penetration depth of the light.

Degradation rates of the six polymers are presented in Fig. 4

and resolved in terms of their absorbance. The degradation rate

of MEH-PPV is found to exceed the rest of the materials by two

orders of magnitude, while the thermocleaved PT is highly stable

(Fig. 4). This is in correspondence with the expected stability

reported in the literature.14,22 The absorbance resolved degra-

dation rates additionally show a clear exponential decrease with

absorbance for all studied polymers. The degradation rate of

regio-regular P3HT is observed to vary from 10�3 to 5 � 10�5%

per second with increasing absorbance implying a relative vari-

ation of a factor of 20. This observation explains the above

described variations of lifetimes of P3HT reported in the litera-

ture where degradation rates have been found to range by

a factor of 10 for P3HT.14,16 This clearly demonstrates the high

importance of absorbance/film thickness in the discussion of

photochemical stabilities of conjugated polymers.

The observed exponential decreases are believed to be an effect

of the exponential decay of light into the film. Consequently, an

increased degradation in the top layer is expected while the

bottom part remains partly shielded. The degradation products

in the form of small degradation products, oligomers, etc. were

found to increase the absorbance in the range of 280–320 nm

over the cause of the degradation. This layer may function as

a physical barrier toward oxygen or other reactants. Addition-

ally, many other factors come into play such as oxygen solubility,

morphology, etc. and therefore no simple mechanism for the
J. Mater. Chem., 2012, 22, 7592–7601 | 7595
124
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Appendix 1.2
degradation can be established; see the section Outlook and

Perspectives for a general discussion on this matter.

Utilizing the absorbance resolved degradation rates, all

material stabilities can be evaluated in units of the degradation

rates of regio-regular P3HT thus providing a relative stability

with regio-regular P3HT as a reference. This unit is advanta-

geously used as a measure of comparative photochemical

stabilities of polymers since a reference is needed to compensate

for the differences between different degradation setups and

environmental factors. All correlations in Fig. 4 were fitted

exponentially and their fits divided by the P3HT degradation rate

fit to obtain relative stabilities (Fig. 5). Relative stabilities were

only evaluated in the range where degradation rates for both the

reference and the individual polymer were obtained. Even

though not all ranges were covered due to processing difficulties,

the strict exponential evolutions observed within the measured

ranges are expected to continue if processing were possible. For

an ideal basis of comparison for the degradation data, ideally

constant relative stabilities for all materials would have been

obtained. However, due to the above described assumptions for

the absorption basis, constant relative stabilities are not expec-

ted. Relative stabilities for all polymers are found to vary within

the absorbance range studied with the largest variations being

observed for TQ1 where the relative stability increases from 2 to

6 with absorbance. Many parameters are expected to influence

the thickness dependent stability of the materials. Specifically,

P3HT is known as a highly crystalline material, which may affect

the thickness dependence. This effect, in combination with the

other issues discussed in the section Outlook and Perspectives,

may explain the variations.

The slopes of the degradation rate–absorbance (thickness)

correlations for the polymers as shown in Fig. 4 are observed to

be similar in magnitude and thus the absorption basis seems to

provide an acceptable presentation for comparisons of different

polymers. The relative stabilities of PT and TQ1 are found to

increase slowly with absorbance, while the remaining exhibit

a slightly negative slope. This demonstrates that regio-regular

P3HT has a degradation rate slope lying in the middle of the

remaining polymers and thus serves as a good reference for all
Fig. 5 Absorbance resolved stabilities in units of P3HT stability for the

studied polymers.

7596 | J. Mater. Chem., 2012, 22, 7592–7601
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polymers. The six different polymers have highly different linear

attenuation coefficients which may influence the degradation rate

slopes. As a result, the film thicknesses for samples with absor-

bance of 0.6 attain highly different thicknesses as indicated in

Table S2†. A PT film would only be 44 nm thick, while a TQ1

film would be 164 nm, as compared to regio-regular P3HT,

which would be 101 nm. No pattern was found between the

slopes of the relative stabilities and the linear attenuation coef-

ficient and therefore the use of absorption as a basis seems to

successfully allow for comparison of polymers with highly

different linear attenuation coefficients.

Regio-Random P3HT was found to exhibit relative stabilities

of 0.3–0.4 relative to regio-regular P3HT. This is in correspon-

dence with earlier reports on the photochemical stability of regio-

regular and regio-random P3HT stating a relative stability of

0.33 for films of 1.8 absorbance.13 Likewise, photochemical

stabilities of TQ1 at 0.2 absorbance16 and MEH-PPV and

PSBTBT at 0.6 absorbance14 have been established in combina-

tion with regio-regular P3HT. These studies showed a relative

TQ1 stability of 5, while we observe a relative stability of 2.

MEH-PPV and PSBTBT were found to exhibit relative stabilities

of 0.010 and 2 while, with our degradation setup, we observed

stabilities of 0.019 and 4, respectively. The reason for these

deviations could be one of the following: the degradations

reported in the literature were performed with a UV filtered light

spectrum by which light below 300 nm was removed. The UV

responses of different polymers vary with the different functional

groups and will thus introduce differences in relative stabilities.

The temperature was kept at 85 �C in the earlier studies, which is

known to increase degradation rates differently for different

polymers.15 Additionally, the strong decrease of degradation

rates with absorbance has not been reported before and therefore

this parameter may not have been given much attention. A small

variation between the optical densities of two films being

compared can lead to large deviations in the observed relative

stabilities. Finally, the automated setup presented here is asso-

ciated with higher precision of the degradation rates due to the

large number of degradations carried out, while the degradation

rates evaluated from a single sample are associated with signifi-

cant uncertainty, which may introduce the observed differences.

Generally, the absorbance (thickness) is a parameter which

introduces large variations in degradation rates. Therefore this

parameter must be given extensive attention for future compar-

ative photochemical studies since large uncertainties can easily be

introduced and conclusions may be made on a wrong basis. The

precision to which the relative stability of a given polymer can be

assessed based on a single thickness is found to be rather low due

to the variation in relative stability. Only conservative estima-

tions can be made with validity. It is recommended that

conclusions on relative stabilities from a single thickness are not

resolved in less than factors of five. More precise conclusions

demand for degradations of several optical densities and pref-

erably several independent degradation experiments for each

optical density as presented in this work. Only then can a more

precise conclusion on relative stabilities be made where the effect

of absorbance (thickness) is taken into consideration.

An alternative basis for comparison of materials is the film

thickness, which is less reported in the literature.26 For a thick-

ness basis to be sensible, the absorption in the bulk should not
This journal is ª The Royal Society of Chemistry 2012
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Appendix 1.2
introduce degradation. Two different materials with different

linear attenuation coefficient would exhibit highly different

absorbances if films of identical thicknesses were compared.

Thus for this to represent a physically sound model, only the very

top part of the material should degrade. This can be understood

as the oxygen availability being very limited below the surface,

where the bulk of the film will only suffer from negligible

photolysis.27 In this case initially the light only degrades the very

top of the film, and gradually the degradation proceeds into the

film as the upper parts photobleach.

As for the degradations presented above with an absorbance

basis, an analogous analysis can be made by correlation with the

material thickness. For each material, linear correlations

between the peak absorption value and the film thickness as

determined by AFM were established. The parameters for all

thickness correlations are given in Table S2† and the individual

thickness correlations in Fig. S4 and S5†. This allowed for

a direct comparison of polymer degradation rates as a function

of the respective film thicknesses (Fig. S6†). Since the thickness

correlates linearly with the absorbances, the evolution of

degradation rate with film thickness was found to be exponential

as in the case of the absorbance basis. Analogous to the absor-

bance basis all degradation rate correlations were fitted and by

division with the degradation rates of regio-regular P3HT, an

expression of the relative stability for each polymer compared to

regio-regular P3HT was obtained (Fig. 6).

The effect of changing the basis of comparison to a thickness

basis changes both the horizontal and vertical positions of the

lines. Generally, the variations in the relative stability evolutions

are observed to vary to a higher degree than in the case of the

absorbance basis, where e.g. an order of magnitude of variations

is found for PSBTBT and PT. The theoretical absorbances as

deduced by AFM thickness correlations for 100 nm films of each

polymer show the large deviations in absorption (Table S2†).

While regio-regular P3HT lies in the middle of the distribution

with an absorbance of 0.59, a similar PT film would have an

absorbance of 1.57 and PSBTBT only 0.31. PT and PSBTBT are

the extremes in terms of linear attenuation coefficients and these

deviations from the linear attenuation coefficient are obviously

not handled well by the thickness basis of comparison, where
Fig. 6 Thickness resolved degradation rates for different polymers.

This journal is ª The Royal Society of Chemistry 2012
Page | 
relative stability of PT is found to increase highly with thickness,

while the opposite is the case for PSBTBT. Thus it can be

concluded that when comparing individual polymers, an

absorption basis is considered the best basis of comparison since

this allows for comparisons of materials of highly different linear

attenuation coefficients.
Stability of electron acceptors

Stability of the single electron acceptors is expected be a function

of the oxidation potential and therefore the HOMO level of the

acceptor. A high HOMO level is more readily oxidized than

a low level, and thus the high HOMO level acceptors are

expected to exhibit lower photochemical stabilities. In this

discussion the LUMO levels are not considered due to the

negligible population relative to the HOMO levels. Photochem-

ical stabilities of electron acceptors were studied in terms of the

decrease of their peak absorption in the range of 300–350 nm

(Fig. 7). While the solubility of C60 in common organic solvents is

rather low, functionalization of the fullerene cage may highly

increase the solubility.28 Thus, all acceptors as shown in Fig. 2

were studied in terms of photochemical stability except for C60

due to solution processing complications. All acceptors exhibited

exponential increases of degradation rates with decreasing

absorbance as in the case of single polymers. The stabilities were

found to vary by less than a factor of 3, which is significantly

lower than the case of the polymers (Fig. 4). PC60BM and

PC70BMwere found to be approximately three times more stable

than the high HOMO acceptors bisPCBM and ICBA, which is in

correspondence with their respective HOMO levels.29

The electron acceptors were generally found to be more

photochemically stable than the polymers, where PC60BM and

PC70BM exhibited stabilities one order of magnitude higher than

e.g. regio-regular P3HT.
Stability of P3HT:electron acceptor blends

The photochemical stability of blends of conjugated polymers

and electron acceptors is a topic that has only been briefly dis-

cussed in the literature. Rivaton et al. evaluated the stabilities of
Fig. 7 Absorbance resolved degradation rates of electron acceptors.

J. Mater. Chem., 2012, 22, 7592–7601 | 7597
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Fig. 8 Absorbance resolved degradation rates for pure regio-regular

P3HT blended with different electron acceptors.
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regio-regular P3HT and P3HT:PC60BM (1 : 1 ratio) with

a thickness basis of comparison, where approximately 200 nm

films were compared.26 In this study a stabilization factor of 8

was found between the polymer and the blend. To make a more

thorough comparison of electron acceptors, we have studied five

different electron acceptors in conjunction with regio-regular

P3HT as well as P3HT:PC60BM in 1 : 1, 1 : 2 and 2 : 1 ratios.

Degradation rates were evaluated by integration of the P3HT

part of the absorption spectrum (400–600 nm). Degradation of

blends generally showed a rapid degradation of the polymer

compared to the acceptor as reflected in the respective UV-vis

absorption spectra, which is in correspondence with the higher

stability of the latter as discussed above.

Degradation rates of all P3HT:electron acceptor combinations

as well as pure P3HT compared with an absorbance basis

demonstrate a behavior similar to the case for the single polymers

and electron acceptors (Fig. 8). All blends show exponential

decreases with absorbance (and rather similar slopes on a log

scale). Interestingly, the degradation rates are observed to vary

with an order of magnitude between the most unstable blend,
Fig. 9 Absorbance resolved relative stabilities for blends consisting of

P3HT and different electrons.

7598 | J. Mater. Chem., 2012, 22, 7592–7601
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P3HT:ICBA, and the most stable blend, P3HT:C60. All curves

were exponentially fitted and divided by the pure P3HT degra-

dation rate fit to obtain the stabilization of P3HT by incorpo-

ration of an electron acceptor (Fig. 9). All relative stability curves

were found to increase slightly with absorbance. The reason for

this is the steeper slope of the degradation rate correlation with

absorbance for P3HT than for the blends. The largest variation

in relative stability was observed for P3HT:PC60BM (1 : 1 ratio)

where the value increased from 3 to 10 with increasing absor-

bance. A thickness basis was also applied to the degradation

rates (Fig. S7†) and by division of the P3HT degradation rates,

the relative stabilities from a thickness basis were evaluated

(Fig. S8†). Due to the higher linear attenuation coefficient at the

peak absorbance for pure P3HT (approximately 530 nm) when

compared to the blends, absorption and thickness bases are

expected to provide highly different results. Indeed this is the case

for the relative stabilities for the thickness basis, where all relative

stabilities are found to decrease with thickness. Generally, larger

fluctuations are observed when applying the thickness basis than

in the case of the absorbance basis, where e.g. for the different

blend ratios of P3HT:PC60BM the 2 : 1 ratio displays a signifi-

cantly higher stability than the 1 : 1 and 1 : 2 ratios, which is

counterintuitive. Based on these conclusions, the more suitable

basis of comparison of a pure polymer and its respective blends

with different electron acceptors is an absorbance basis.

The photochemical stabilities of blends based on a conjugated

polymer and different electron acceptors have not been reported

in the literature. Nevertheless, significant variations in relative

stabilities are observed for the different electron acceptors with

C60 stabilizing by a factor of approximately 10 while ICBA is

observed to destabilize the blend by a factor of 2. The stabili-

zation correlations for the PC60BM blends of different ratios are

observed to exhibit intersections in the absorbance range of 0.35–

0.8 within which they all exhibit highly similar stabilizations.

This is in accordance to expectations, since these blends consist

of a highly intimate mixing of the donor and acceptor and

therefore no significant variations in acceptor stabilization are

expected. However, at higher absorbances, the 1 : 2 blend is less

stable, which is counterintuitive since the higher content of

PC60BM is expected to induce a higher photochemical stability.

Consequently, it appears that sound conclusions on stabilization

by electron acceptors should be based on the lower absorbance

range (below 0.8). An additional argument for using an

absorption basis for the lower absorbance range is that photo-

active materials for solar cells are intended to be applied as films

that are sufficiently thick to absorb the greater proportion of the

incoming light while being sufficiently thin to enable extraction

of carriers. For most active layers this equates to film absorptions

in this range.

The relative stabilities of the different P3HT:acceptor blends

demonstrate the same stability ranking as observed for the pure

electron acceptors, however with higher variations. An unstable

high HOMO acceptor that degrades significantly within the

lifetime of the polymer will decrease the efficiency of the charge

transfer of the excited state from the polymer to the acceptor for

a given donor–acceptor blend. However, due to the generally

higher stabilities of the electron acceptors compared to regio-

regular P3HT, this effect is not pronounced. Another effect

introduced is the charge transfer efficiency for the different
This journal is ª The Royal Society of Chemistry 2012
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Appendix 1.2
donor–acceptor blends. It is generally accepted that the excited

state of P3HT is efficiently quenched by fullerenes and its

derivatives through a charge transfer from the P3HT to the

photochemically stable fullerene.30,31 Extensive attention is

directed at developing electron acceptors with lower donor–

acceptor LUMO–LUMO gap than for the commonly used

PC60BM to increase the open circuit voltage (Voc) of PSC.
32–34

However, the impact of such a decrease in the electron affinity of

the acceptor ultimately implies different charge transfer kinetics

between the donor and the acceptor. With a higher LUMO level

of the acceptor the statistical distribution between excited states

on the donor and the acceptor is moved in the direction of the

donor. As excited states are prone to photodegradation,

the overall effect is a decreased photochemical stability. In the

literature there are no reports on the LUMO levels of all the

electron acceptors studied in this work. By direct comparison

between LUMO levels of the individual electron acceptors, large

variations are found, which originate from different cyclic vol-

tammetry setups. An indirect approach to assessment of the

LUMO levels is by inspection of the Voc obtained for optimized

PSCs applying P3HT and the different electron acceptors.32 The

typical Voc values for regio-regular P3HT and different electron

acceptors are (C60) 0.40 V,35 (PC70BM) 0.63 V,36 (PC60BM)

0.65 V,37 (bisPCBM) 0.73 V,33 and (ICBA) 0.87.38 The ranking

of the Voc was found to be consistent with individual studies

of LUMO levels of typically PC60BM and another fullerene

derivative.33,39,40

The magnitude of the stabilization of P3HT by the electron

acceptor is observed to correlate clearly with the LUMO–LUMO

gap in the low absorbance range. A ranking of decreasing

stabilization of C60, PC60BM, PC70BM, bisPCBM, and ICBA is

found, which is in clear correspondence with a decreasing

LUMO–LUMO gap or increasing Voc of the corresponding

PSCs. Only PC60BM and PC70BM do not clearly fulfil this

principle since their LUMO–LUMO levels are similar. However,

stability of pure PC70BM was found to slightly exceed the one of

PC60BM, which may explain the deviation from the LUMO–

LUMO gap correlation. Additionally, other factors such as

morphology and phase segregation may play a role; see the

section Outlook & Perspectives for further discussion. Overall,

this result demonstrates the increasing thermodynamic tendency

of increasing the population of excited states on the P3HT

relative to the acceptor, thus implying a higher degradation rate.

For this reason, the application of ICBA in PSCs to obtain 6.5%

efficiency38 introduces a significant decrease in photochemical

stability that in turn will affect the operational device lifetime.
Fig. 11 Absorbance resolved photochemical stabilization of different

polymers by introduction of PC60BM.
Stability of polymer:PC60BM blends

For each of the studied polymers, their respective blends in

a ratio of 1 : 1 with PC60BM were studied. Degradation rates of

the decrease of the respective polymer contribution to the UV-

visible absorption were evaluated as a function of peak absor-

bance of the polymer transition (Fig. S9†) and thickness

(Fig. S10†). No major differences are observed between the

absorbance and the thickness plots, where primarily PT:PC60BM

is shifted due to the higher optical density, however to a lesser

extent than in the case of the pure polymers due to the PC60BM

content. To evaluate the relative stabilities, P3HT:PC60BM is
This journal is ª The Royal Society of Chemistry 2012
Page | 
applied as the reference to which remaining blends are compared.

The shift of the optically dense PT introduces a difference in

relative stability from around 4 with an absorbance basis

(Fig. 10) to around 8 with a thickness basis (Fig. S11†), while the

low linear attenuation coefficient of blend PSBTBT:PC60BM

changes from 3 to 2. This demonstrates the sensitivity of the

method toward the basis of comparison where two polymers of

similar stability are found to exhibit highly different blend

stabilities with the two bases of comparison.

The best consistency between the observed polymer and blend

relative stabilities is found for the absorbance basis. Addition-

ally, less variation with absorbance/thickness is observed, and

thus an absorbance basis is regarded the best basis of comparison

for different blends. The relative stabilities of the blends were

found to be similar to the case of the single polymers. However

PSBTBT demonstrates a deviating behavior, where the material

is observed to destabilize by the introduction of PC60BM, which

is in contradiction to all the other studied polymers. This effect

may be attributed to microscopic properties such as morphology,
J. Mater. Chem., 2012, 22, 7592–7601 | 7599
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Appendix 1.2
phase segregation, etc., as discussed in the section Outlook and

Perspectives.

Absorbance resolved PC60BM stabilization of the different

polymers was evaluated as the ratio between the degradation rate

of the blend and the single polymers (Fig. 11). Fluctuations in the

stabilization curves of both positive and negative slopes are

observed and both TQ1, regio-regular and regio-random P3HT

are observed to intersect around an absorbance of 0.75.

However, these results are based on a combination of degrada-

tion rates of the single polymers and their respective blends, both

of which are affected by uncertainties in the method, and thus

their quotient is expected to be further impacted. The general

expectation is that a highly unstable material should benefit

highly from being blended with PC60BM, since each excitation

has a large possibility of leading to a degradation event, while for

a highly stable material this effect is less pronounced. This is

indeed the tendency observed, where the unstable MEH-PPV is

highly stabilized by a factor of around 15, while the stable PT

is only stabilized by a factor 3. Additionally, PSBTBT is found to

destabilize slightly by a factor of 0.3. A destabilization is

expected if the polymer is comparable or more photochemically

stable than the electron acceptor. This is the case for PSBTBT,

where for absorbances above 1, the polymer stability even

exceeds the stability of PC60BM. For this material combination

a charge transfer to PC60BM will induce a larger degradation

rate than by keeping the excited electron on the pure polymer.

This demonstrates how the photochemical advantage well-

known for e.g. regio-regular P3HT of blending with PC60BM is

found to decrease with more stable polymers, where even

destabilizations are introduced.
Outlook and perspectives

This work presents a systematic study of the influence of

absorbance and electron acceptor on the photochemical stability

of conjugated polymers. It was shown that the relative stabilities

of different polymers could only be qualitatively assessed from

single thicknesses, since they were found to vary with absor-

bance. However, attention in the processing was not given to

obtain e.g. identical morphology, phase segregation, and crys-

tallinity, which are parameters that are expected to influence

stability. Photochemical stability testing of polymers appears as

a general tool robust enough to establish a stability ranking of

the different materials without a specific focus on the control of

these parameters. However, in order to understand the mecha-

nisms behind the observed behavior and the variations in relative

stabilities with absorbance, detailed studies of several parameters

are needed. Parameters that are prone to influence photochem-

ical degradation rates are e.g.:

� Morphology

� Kinetics

� Reactant solubility

� Vertical segregation

� Exciton diffusion length

The stability is expected to change as a function of the

morphology for both the pure polymers as well as for the blends

as a function of solvent, processing method, temperature,

humidity, etc. Additionally, the impact of these parameters is

expected to vary with the material type thus making up a large
7600 | J. Mater. Chem., 2012, 22, 7592–7601
Page | 
parameter space. The solubility of the degradation reactant

(typically oxygen) and the kinetics of the diffusion of oxygen

differ for each material thus influencing the degradation rates for

different film thicknesses. Additionally, vertical segregation of

P3HT:PC60BM has been observed to vary highly with the pro-

cessing method and substrate. Finally, the exciton diffusion

length may vary for different material systems, which influences

the dependence of domain size on photochemical stability.

Consequently, obtaining an understanding of the underlying

mechanisms demands for further work on e.g. regio-regular

P3HTwhere the impact of these above mentioned parameters are

studied. Additionally, in order to obtain a higher precision of the

relative stabilities of different polymers by photochemical

stability testing, a more thorough study of each material and the

above described parameters is needed. By this, better estimations

of the actual material stabilities can be given thus increasing the

precision of the technique.
Conclusions

A novel photochemical stability assessment platform was pre-

sented by which degradation of organic materials can be evalu-

ated with high precision. In this work, the technique has been

applied to stability studies of electron donors and acceptors

relevant to PSC. Photochemical stabilities of six different poly-

mers and 5 different electron acceptors demonstrated a strong

increase of degradation rates with film absorbances. This is

important for comparative studies where the absorbance has to

be kept constant for all materials being studied to provide a basis

for valid conclusions on relative stabilities. The validity of esti-

mating a material stability based on a single measurement at

a single absorbance is considered doubtful. We believe that only

by studying a wide absorbance range for all studied samples can

a sound estimation of relative stabilities be obtained. The

precision of this estimation was also found to depend on the basis

of comparison, where an absorbance basis was considered the

best choice for all studied material combinations. Since this

model is a simplified version of the real world, uncertainties are

introduced into the stability evaluation. Consequently, our

conclusion is that only sound relative stabilities are given in no

less than factors of five if only a single degradation of each

material has been performed. However, with these precautions in

mind, photochemical degradation as a stability evaluation tool is

found to be a powerful tool to obtain estimates of relative

stabilities of conjugated polymers, electron acceptors, and blends

relevant to PSCs.
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Figure S1: UV‐vis absorption spectra of (A) the studied polymers and (B) the studied electron acceptors 

 

Polymer Molecular weight Mn Reference

Regio‐regular P3HT 50000 Rieke Metals

Regio‐random P3HT 40000 [1]

PT 11300 [2]

TQ1 21000 [3]

PSBTBT 10000 [4]

MEH‐PPV 45600 [5]  

Table S1: Molecular weights of the polymers studied. Reference 
1‐5
 describe synthesis and molecular weight of all polymers. 
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Figure S2: Irradiance of the 1200 W HMI lamp from Osram and the ASTM G‐173 AM1.5 reference solar spectrum. 

 

Material A value in y = ax+b B value in y=ax+b Abs for 100 nm Thickness for 0.6 Abs

Pure polymers

Regio‐regular P3HT 185.3 ‐9.8 0.59 101

Regio‐random P3HT 188.9 2.2 0.52 116

PT 57.7 9.6 1.57 44

MEH‐PPV 180.8 ‐8.3 0.60 100

TQ1 301.8 ‐17.4 0.39 164

PSBTBT 232.8 27.6 0.31 167

Regio‐regular P3HT:Acceptor

P3HT:PC60BM 1:1 372.9 ‐7.4 0.29 216

P3HT:PC60BM 1:2 469.2 ‐24.6 0.27 257

P3HT:PC60BM 2:1 0

P3HT:PC70BM 263.8 35.9 0.24 194

P3HT:C60 0

P3HT:bisPC60BM 306.6 24.0 0.25 208

P3HT:ICBA 310.4 17.5 0.27 204

Blends

Regio‐random P3HT:PC60B 378.6 ‐11.0 0.29 216

TQ1:PC60BM 443.8 5.3 0.21 272

PT:PC60BM 252.0 ‐20.6 0.48 131

PSBTBT:PC60BM 430.5 12.8 0.20 271

MEH‐PPV:PC60BM 334.1 ‐22.9 0.37 178
 

Table S2: Fitting constant for correlations between absorption peaks and film thicknesses as determined by AFM 
measurements 
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Figure S3: Simulated absorption spectra of (Top left) regio‐regular P3HT and (Top right) regio‐regular P3HT:PCBM of varying 
thickness. The insets show the linear relations between absorption maximum and thickness for both the polymer and the 
blend. (Bottom) The measured AFM thickness / absorbance relations for P3HT and P3HT:PCBM. 
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Figure S4: AFM thickness / absorbance relations for the different polymers on the left column and polymers blended with 

PCBM 1:1 in the right column. 
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Figure S5: AFM thickness / absorbance relations for the different acceptors blended with P3HT. The ratio is 1:1 for all except 

for P3HT PCBM 1:2 and P3HT PCBM 2:1. 
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Figure S6: Degradation rates as a function of film thickness for different polymers. 

 

y = 170.85x + 20.619

50

100

150

200

0.25 0.45 0.65 0.85 1.05

Th
ic
kn

es
s (
nm

)

Absorbance

P3HT PCBM 2:1

y = 206.94x + 26.206

75

95

115

135

155

0.25  0.35  0.45  0.55  0.65

Thickness (nm)

Absorbance

P3HT C60 1:1

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012

Appendix 1.2

Page | 135



Page | 6 
 

0 200 400 600
1E-5

1E-4

1E-3

D
eg

ra
da

tio
n 

ra
te

 (%
/s

)

Thickness (nm)

 P3HT
 P3HT:PC60BM
 P3HT:PC70BM
 P3HT:PC60BM 1:2
 P3HT:PC60BM 2:1
 P3HT:bisPC60BM
 P3HT:C60
 P3HT:ICBA

 

Figure S7: Thickness resolved degradation rates for P3HT blended with different electron acceptors. 
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Figure S8: Thickness resolved stabilities in units of P3HT stability for P3HT blended with different electron acceptors. 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry
This journal is © The Royal Society of Chemistry 2012

Appendix 1.2

Page | 136



Page | 7 
 

0.0 0.5 1.0 1.5 2.0 2.5

1E-5

1E-4

1E-3

D
eg

ra
da

tio
n 

ra
te

 (%
/s

)

Absorbance

 Regular P3HT:PCBM
 Random P3HT:PCBM
 PT:PCBM
 TQ1:PCBM
 PSBTBT:PCBM
 MEH-PPV:PCBM

 

Figure S9 Absorbance resolved degradation rates of bulk hetero junctions based on different polymers and PC60BM.
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Abstract 
Intrinsic polymer parameters such as regio-regularity, molecular weight, and crystallinity play an important role 

when studying polymer stability. 18 different batches of poly-3-hexyl-thiophene (P3HT) were degraded in a solar 

simulator (AM1.5G, 1000 W/m2) and the degradation kinetics were monitored. The results suggest that the 

radical reaction responsible for the photodegradation takes place at terminal thiophene rings exposed at points 

were the conjugation is broken. This proposed mechanism is supported by the fact that stability scales with 

regio-regularity following the ratio of head-to-tail connected thiophene units. Annealing was found to relax the 

P3HT films and increase conjugation length and, in turn, increase stability observed as a delayed spectral 

blueshift caused by photochemical degradation. Crystallinity was found to play a minor role in terms of stability. 

Oxygen diffusion and light shielding effects were shown to have a negligible effect on the photochemical 

degradation rate. The results obtained in this work advance the understanding of polymer stability and will help 

improve the design of materials used for polymer solar cells resulting in longer lifetimes, which will push the 

technology closer to large-scale applications. 

Keywords 
P3HT, photooxidation, organic photovoltaics, photo-chemical stability, degradation 

 

Introduction 
The field of polymer solar cells (PSC) is growing fast, manifested in an exponential increase in publications.[1] The 

technology has reached a point where focus has shifted to application, demonstration and commercialization. 

The technology combines low cost, flexibility, and fast processability well-suited for large scale production that, 

in turn, will constitute a strong alternative to energy production. State-of-the-art in terms of efficiency has been 

reported to have increased to above 10% for small area laboratory devices.[2,3]  Large scale production based on 

roll-to-roll techniques is now possible and production of 10.000 units has been demonstrated.[4] However, 

limited lifetime of the devices is still an issue and it is thus crucial to be able to both characterize and understand 

the different degradation mechanisms responsible for the performance deterioration of PSCs. It is well-known 
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that several aspects affect the final lifetime of the device including stability of the morphology, oxygen, and 

water diffusion, and polymer photo degradation.[5,6] The exact nature of the degradation mechanisms depends 

on the specific materials used in the multilayer stack of the solar cell. Consequently, when studying the overall 

PSC device stability, the actual stability of each layer cannot be deduced. Specifically, the stability of the photo-

active layer is highly important since this layer accommodates the free charge carrier generation. Evaluation of 

the stability of this layer is therefore paramount to overcome the issue of lifetime for PSC. The evaluation of 

polymer photo-chemical stability using primarily UV-vis spectroscopy is an emerging field as documented by a 

number of recent reports on comparative studies. Manceau et al. reported a study involving 20 different 

polymers from which relative stabilities of an extensive range of functional groups were established.[7]  In an 

extensive material screening by Tromholt et al. material stabilities were also resolved in terms of the optical 

density of the samples. [8] Exponential increases of stability were observed for all materials and it was concluded 

that identical optical densities are needed when comparing stabilities between different materials. 

This paper focuses solely on the intrinsic photo-chemical stability of the well-known conjugated polymer poly-3-

hexyl-thiophene (P3HT). Degradation of P3HT is well-documented and can be facilitated by exposure to light and 

molecular oxygen that destroys the π–conjugation and consequently induces loss of absorption. P3HT is 

degraded under these conditions in solution as well as a solid (e.g. a film). The consequence of degradation is 

well-established but the mechanism responsible for it has been subject to discussion. Whereas singlet oxygen is 

known to be the cause of degradation in solution,[9] the degradation mechanism in the solid state is believed to 

be different. Manceau et al. have proposed a degradation mechanism based on a radical process beginning from 

an abstraction of an allylic hydrogen, leading to side-chain and sulfur oxidation.[10,11] This process is responsible 

for breaking the macromolecular backbone resulting in loss of conjugation and consequent bleaching of the 

sample. This mechanism occurs under both photo- and thermal oxidation enforcing the notion that singlet 

oxygen is not the main intermediate in the degradation process. Hintz et al. have conjectured that the polymer is 

mainly attacked at the terminal thiophene rings under photo-oxidation.[12] The authors concluded this from 

observing the kinetics of the blueshift in the optical absorption. They observed that the blueshift, indicating loss 

of conjugation (observed for oligomers with less than 20 thiophene units), is not observed until the end of the 

degradation of the polymer. Hintz et al. have also demonstrated that a strong increase in photon effectiveness is 

observed for photo-degradation of P3HT films for decreasing irradiation wavelengths.[13] Changing the 

illumination wavelength from 554 to 335 nm leads to an increase by a factor of 50 in effectiveness of the P3HT 

photo-oxidation. This observation supports the radical chain mechanism driven by photo-generation of radicals 

by the photolysis of precursors absorbing in the UV-region.  

The absolute stability of polymers is known to be affected by degradation parameters such as light spectrum, 

room temperature, ozone level, and humidity. Thus, direct comparisons of absolute stabilities assessed with 

different degradation setups in different laboratories are not straightforward. To reduce influence of different 

degradation parameters in photo-chemical stability reports, material stabilities are normally expressed in units of 
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stability of a reference material of well-known stability, typically P3HT. However, this assumes that P3HT 

presents an intrinsic, constant stability that is independent of synthesis routes, regio-regularity (RR), molecular 

weight, molecular weight distribution, crystallinity etc. The overall effect is that the material stabilities expressed 

in units of P3HT stability as reported in the literature may be associated with significant uncertainty. 

Furthermore, until now, development of stable conjugated polymers for PSCs has been focused on the stability 

of the different functional groups used for the synthesis. However, understanding the influence of the above 

described intrinsic polymer properties on the photo-chemical stability is highly appealing, since this will provide a 

new set of tools when designing novel materials for PSCs. 

In this report we describe the influence of the intrinsic polymer properties on the photo-chemical stability of 

P3HT. This involves 18 different batches of P3HT from different manufacturers and batches made in house. P3HT 

polymers with significantly different Mw and RR are studied. The effect of inducing crystallinity by thermal 

annealing is reported by studying stabilities for different annealing temperatures. Furthermore, the degradation 

kinetics is studied for films of different thicknesses, which allows for studying the influence of light shielding and 

oxygen availability in the film.  

Experimental 
Degradation Setup and Data Evaluation 

A fully automated, high-throughput photo-chemical degradation setup was used for the degradation of all 

materials in this study as described elsewhere.[12] The setup utilized a Steuernagel solar simulator with an 

Osram 1200 W metal halide arc lamp providing an approximate AM1.5G spectrum with an intensity of 1000 

W/m2. The sample exchanger had a capacity of 22 samples and a UV-vis spectroscopic probe based on an optical 

fiber-based CCD spectrometer (Avantes AvaSpec 1024) and a halogen/deuterium light source (Avantes AvaLight-

DHc) are used to measure the evolution in the absorbance of the samples. For this study, the setup was 

programmed to monitor 28 degradation points per sample. A fully loaded sample exchanger with 22 samples 

consequently monitors 616 degradation points in parallel. A C# based automated software infrastructure was 

established to handle the high number of data files. To avoid spectral shielding from the substrate, illumination 

was always performed from the polymer side.  

Degradation rates were extracted from the rate of decrease of the calculated total number of absorbed photons 

per second as absorbed by the polymer when the recorded absorption spectrum is folded with a theoretical 

AM1.5G solar spectrum as described in reference 13. We observed that plotting the rate of number of absorbed 

photons as a function of initial absorption maximum yields a constant value for a broad interval from 0.4 to 1 in 

absorbance, see Figure 1. The ordinate axis in this plot is dependent on the choice of integration range and 

therefore the same integration range (400 – 600 nm) has been used for all materials. It was thus possible to run a 

large number of degradation experiments for different polymers and compare their stablities while the effect of 

thickness was cancelled. This behaviour has been observed for P3HT, poly(5-methoxy-2-(2-ethyl-

hexyloxy)phenylenevinylene] (MEH-PPV), and polythiophene (PT). Normalized degradation rates in all 
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comparisons are given in units of the stability of the polymer designated R1, see Table 1. Consequently, values 

below 1 describe polymers more stable than R1 and values above 1 describe polymers less stable. 

 

  
Figure 1. Rate of change in number of absorbed photons as a function of initial absorbance value and thickness. 

 

Using degradation rates based on loss of absorbance directly allows for correlating the degradation state to the 

number of intact monomer units. The number of monomers scales directly with the absorbance, and thus the 
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where AN is Avogadro’s number, ρ  is the polymer density, M is the molar mass, and t  is the film thickness. 
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thickness conversion presented in reference 12 for regio-regular P3HT, the film thickness can be expressed by 

68.188)622.0( max ⋅−= At  nm, where maxA  is the peak absorbance. The density was determined to be 
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NMR 
1H NMR was used to determine the regio-regularity of P3HT in deuterated chloroform solution.  For P3HT the 

regio-regularity is determined as the ratio between the signal at 2.8 ppm, originating from the preferred head-to-

tail connected monomers, and the signal at 2.6 ppm being associated with the head-to-head coupled monomers. 

 

X-ray diffraction 

X-ray diffraction was used to quantify the crystallinity of annealed films. The position of the P3HT 100 reflection 

was determined by a specular scan using a dedicated reflectometry setup, with a rotating Cu anode as source, 

operating at 50 kV, 200 mA. The X-ray beam is monochromatized (λ = 1.5418 Å) and collimated by a 1D 

multilayer optic and the beam is further collimated by incident and diffracted beam slits. 

With a point detector positioned at the diffracted beam angle (2θ) for the 100 reflection, rocking scans were 

recorded by rotating the sample from incidence angle zero to 2θ. The integrated intensity, less background, was 

used as a measure of the polymer crystallinity. 

 

Materials 

P3HT films were spin-coated on microscopy slides obtained from Menzel from 12 mg/mL chlorobenzene 

solutions. 18 different batches of P3HT from different manufactures as well as in-house manufactured batches 

were studied. For each batch the manufacturer, the batch number and an abbreviation have been indicated in 

Table 1. The regio-regularity was measured by 1H NMR. 

 

Code Manufacturer Batch RR Mn [kDa] 

M1 Merck EE-97802 94.8% 19.6 
M2 Merck EE-99202 94.0% 23.7 
M3 Merck EE-101702 95.8% 29.6 
M4 Merck EE-99120 93.0% 15.7 
R1 Rieke Metals PTL 10-87 91.7% 28.8 
R2 Rieke Metals BS19-60A - 21.6 
R3 Rieke Metals BS16-24 92.1% 23.3 
B1 BASF GK-2126-108 96.8% - 

B2 BASF GK-2566/77 93.7% - 

B3 BASF 2010_A6-7 94.6% - 

P1 Plextronics 11-11822 96.0% - 

P2 Plextronics P04205 96.0% 34.7 
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P3 Plextronics PO2122 91.6% - 

P4 Plextronics PO4054 95.1% - 

D1 DTU (in 

house) 

McCullough route, 

chloroform 

fraction[15] 

96.1% 17.3 

D2 DTU (in 

house) 

McCullough route, 

hexane fraction[15] 

96.0% 2.8 

D3 DTU (in 

house) 

Method B, Soxhlet 

purified[15] 

76.2% 40 

D4 DTU (in 

house) 

Method A, Soxhlet 

purified[15] 

76.1% - 

Table 1. The 18 different samples of P3HT studied. The manufacturers and their batch numbers have been stated 
as well as the abbreviations used. The regio-regularity has been determined using 1H NMR. R2 was not measured 

by NMR as the polymer had been depleted. 

Results and discussion 
Figure 2 shows the relative stabilities expressed as normalized rate of degradation of the 18 different polymers in 

units of R1, evaluated as described in the experimental section. The polymers are grouped according to 

manufacturer; D is DTU in-house synthesized batches of P3HT, M are commercial P3HT polymers from Merck, R 

from Rieke Metals, B from BASF, and P from Plextronics. The complete list of polymers is shown in Table 1. The 

polymers D3 and D4 are regio-random P3HT polymers, while the rest are regio-regular to different degrees. 

While all regio-regular P3HT polymers exhibit relative degradation rates close to 1, the regio-random polymers 

are significantly less stable exceeding relative degradation rates of 2. This is consistent with the work by Hintz et 

al. where an increase in degradation rate by a factor of five was observed, in fair agreement with the factor of 

three observed on average in this work.[10] 

  
Figure 2 Degradation rates normalized to the value of R1. For each polymer a minimum of three samples with 28 

sample points each, were monitored for the full degradation. The error bars indicate the standard deviation. 
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While the regio-regularity clearly affects the stability of the polymer, the molecular weight seems to have no 

significant effect in agreement with Dupuis et al. When comparing the polymer D2 that has a particularly low 

molecular weight (Mn = 2.8 kDa), with the polymer D1 that has a significantly higher molecular weight (Mn = 17.3 

kDa) it is clearly evident that both polymers have similar regio-regularities close to 96% and clearly have identical 

degradation rates (Figure 2) if the error bars are considered. This suggests that molecular weight has either no or 

a negligible influence on the degradation rate. Indeed plotting the normalized degradation rate against the 

number average molecular weight (not shown) reveals that no correlation is present. It can thus be concluded 

that the length of the polymer chain is much less important than the conjugation length. However, for very low 

molecular weights this is probably not true, but is at least valid for polymers with Mn above 2.8 kDa as shown in 

this work. It therefore seems that the regio-regularity is the major dominating factor on the stability of the 

polymer. Dupuis et al. have reported that regio-regularity is the crucial parameter that controls the photo 

stability and reported a linearity between degradation rate and regio-regularity in the range from 93% regio-

regularity to 98%.[16] 

 

  
Figure 3. (Top) Absorption peak position as a function of degradation state. (Bottom) Degradation event interval 

plotted against degradation state. All data is based on polymer films of 140 nm thickness. 
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first 70% of the degradation as the interval is constant. Furthermore, the degradation event interval is observed 

to increase with regio-regularity. The timescales of photolysis in the absence of oxygen are many orders of 

magnitude slower than photo-oxidative degradation.[17] Likewise, thermolysis at moderate temperatures (<400 

K) is negligible.[11] Both contributions can therefore be neglected in the analysis of the degradation kinetics. The 

degradation kinetics of the initial part of the degradation is expected to be 0th order assuming that only terminal 

thiophene rings are attacked during the photo-oxidation. Preferential surface degradation could possibly explain 

the 0th order kinetics. However, this possibility can be excluded based on the blue-shift dynamics of the 

polymers, see Figure 3. Observing the regio-regular B1 it is evident that no significant blueshift occurs in the 

initial parts of the degradation process. This would not be the case if the top layer was preferentially degraded. 

The hypothesis is that if only terminal thiophene rings are attacked, there should not be a significant blueshift of 

the spectrum in the initial part of the degradation process. Figure 3 confirms that B1 (RR=96.8%) only exhibits a 

limited blueshift for the initial 80% of the degradation process. For the regio-random D4 (RR=76.1%) a strong 

blueshift is observed during the entire degradation process. R1 (RR=91.7%) and P3 (RR=91.6) show stronger 

blueshift compared to B1. The strong blueshift observed for regio-random P3HT is ascribed to the shorter initial 

conjugation length of the chain like morphology in the regio-random polymer. Figure 3 shows that the initial 

peak position for the regio-random D4 at ~490 nm is close to the value at which the regio-regular polymers 

initiate their quick peak shift, indicating that the conjugation length of D4 is sufficiently short at the initial stage 

that every monomer contributes strongly to the size of the bandgab and each monomer loss is thus associated 

with a peak shift. The observation suggests that breaking the regularity induces attack points for the radical 

reaction, implying that a regio-random polymer is more susceptible to photo-degradation. If true, the stability of 

the polymer must scale with regio-regularity.  

 

 
Figure 4. Normalized degradation rate plotted against the calculated relative conjugation length / regio-

regularity. The dotted line represents the predicted degradation rate. 
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Assuming that each breach of regularity introduces two new attack points, it is possible to model the 

degradation rate as a function of regio-regularity. The relative number of attack points can then be written as 

( )
( ) ,
12
12

1R

x
ap RR

RRN
−
−

=  

where apN is the number of attack points relative to R1, xRR is the regio-regularity of the specific polymer, and 

1RRR is the regio-regularity of R1. Figure 4 shows a plot of the normalized degradation rate as a function of 

regio-regularity and relative number of attack points. The degradation rate appears to scale with regio-regularity 

by a linear relationship between regio-regularity and polymer stability. The dotted line in the graph is the 

theoretical value of degradation rate, calculated from the degradation rate of R1. It is evident that the simple 

model is capable of explaining the behavior in a convincing manner, suggesting that each breach of regularity 

induces new attack points that weaken the system. The conjugation length is proportional to the regio-regularity 

since the conjugation breaks when the polymer is not planar and the π electrons are not in the same plane.  

Besides the difference in ratio of head-to-tail connected thiophene units, regio-random and regio-regular P3HT 

films differ in a more distinct manner. Regio-regular P3HT has been reported to exhibit vanishing intersystem 

crossing and thereby low triplet yield in contrast to regio-random P3HT.[18] Triplet states are more 

photochemically active due to their longer lifetime and therefore have been proposed as the cause for the 

increased degradation rate.[13] It was further implied that the fragmentation of the conjugated π-system in 

regio-random P3HT takes place on a random basis, while for regio-regular P3HT, terminal thiophene rings are 

attacked. The results presented in this work, however, demonstrate a strict 0th order degradation rate for both 

regio-random batches, enforcing the notion that only terminal thiophene rings at points of broken conjugation 

are attacked. The increase in degradation rate can be explained by an increase in attack points resulting from the 

lower regularity and the blueshift dynamics is explained by the change in initial conjugation length.  

 

 

  
Figure 5. (Left scale) Degradation rate of (dark grey) regio-regular and (white) regio-random P3HT normalized to 
their respective pristine degradation rates. (Right scale) Reciprocal crystallinity as deduced from X-ray diffraction 

studies. 

0.4

0.6

0.8

1.0

1.2

0.4

0.6

0.8

1.0

1.2

Pristine 120 °C 140 °C

1/
Cr

ys
ta

lli
ni

ty

N
or

m
al

iz
ed

 D
eg

. R
at

e 1/Crystallinity

rr-P3HT

rra-P3HT

Appendix 1.3

Page | 147



Page 10 of 14 
 

 

Dupuis et al. offered an alternative explanation suggesting that difference in degradation rate is related to the 

fact that oxygen can diffuse more readily through the amorphous zones and is not soluble in the crystal domains 

amorphous phase of semicrystalline polymers or at the interface amorphous/crystalline phase.[16] Regio-regular 

P3HT films more readily crystallizes, whereas a regio-random film maintains a more chainlike morphology. Figure 

5 shows a plot of the degradation rate superimposed on the reciprocal crystallinity as measured by X-ray 

diffraction for the regio-regular polymer R2. As is evident from Figure 5 annealing at 120 °C and 140 °C for one 

hour was found to induce relative degradation rates of 0.75 and 0.68, respectively, relative to the pristine 

sample. This indicates that the crystallinity of the sample has affected the stability. While an increase in 

crystallinity is obtained for regio-regular P3HT, annealing is not expected to increase the crystallinity of regio-

random P3HT significantly. Indeed, when the regio-random D4 was annealed, no diffraction peaks were observed 

in the X-ray diffractogram (not shown). This is also consistent with a glass transition temperature of –3 °C 

reported for regio-random P3HT, indicating that the polymer is indeed amorphous.[19] However, comparable 

relative stabilizations were observed relative to the regio-regular R2, see Figure 5. Considering that the 

degradation rate has been shown to scale with the number of kinks in the polymer, it is hypothesized that the 

main contribution of the annealing step is the relaxation of the polymer leading to an increased conjugation 

length. Consequently, thermal annealing of P3HT is favorable to the photo-chemical stability. During spin coating 

the polymers are frozen in a morphology that is not necessarily the lowest energy state. Annealing the films 

generally relaxes the films, i.e. the chains are stretched and high-energy kinks are avoided. If the annealing effect 

can be ascribed to an increased conjugation length, a difference in the degradation kinetics as observed in Figure 

3 for regio-regularity is expected. This was indeed observed when the regio-regular R1 batch was studied by 

comparing the pristine polymer to films annealed for two hours at 80 °C and 120 °C. The samples were allowed 

to cool at a slow rate for 48 hours prior to the degradation experiment. Based on 200 degradation points for 

each sample type, the degradation state for which the absorption peak reaches 480 nm was 20.85, 18.85, and 

17.5% for the pristine, 80 °C and 120 °C annealed samples, respectively. Consequently, annealing the polymer 

introduces the same delay of the blueshift as observed for higher regio-regular samples. This is in accordance 

with the hypothesis that the relaxation of the film to a lower energy state increases the conjugation length, 

which in turn increases film stability.  

As a final validation of the hypothesis, the stabilization of the amorphous polymer poly (2‐methoxy‐5-

(2’‐ethyl)hexoxy‐phenylenevinylene) (MEH-PPV) was assessed as a function of annealing temperature (not 

shown). For this polymer, stabilization by a factor of 3.5 was observed. The strong stabilization of the MEH-PPV 

film supports the hypothesis that the relaxation of the polymer is the main contributing factor in the 

stabilization. 

 

Effect of Thickness on Degradation Kinetics 
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Figure 6. Degradation event interval plotted against the thickness of a film of R1 polymer.  

 

Studying films of different thicknesses gives insight into oxygen availability in the film and effects of light 

shielding. Assuming that oxygen diffusion is not limited and that light shielding from the top layer of the film is 

insignificant, the concentration of oxidized thiophene rings is independent of film thickness. No significant spatial 

reaction gradient is observed in the top 10 nm of a degraded P3HT film,  as deduced from angle dependent X-ray 

photoelectron spectroscopy measurements.[12] This suggests that there is no shielding effect in at least the top 

layer of the film. Figure 6 shows a plot of degradation event interval against film thickness. It is clear from Figure 

6 that a peak is observed around 60 nm.  Thin films (below 60 nm) are less stable and very sensitive to changes in 

film thickness (i.e. steep slope in Figure 6). Thicker films are also less stable manifested in decreasing intervals 

between degradation events for increasing film thickness, which is close to being a linear correlation between 75 

and 175 nm. The decrease in the time between degradation events for thicker films is expected since the thicker 

film contains a higher number of monomers, and thus more reaction sites. Figure 7 shows the film lifetime 

plotted against thickness, and it is evident that in the range 125 to 175 nm the film lifetime is constant. The plot 

is constructed by multiplying the event interval by the initial number of monomers. The existence of a constant 

lifetime region implies that the degradation takes place in parallel for the entire depth of the film. This means 

that for this region light shielding is negligible and oxygen is equally available for all depths in accordance with 

the findings of Hintz et al.[13] For films thicker than 175 nm, either light shielding or lack of oxygen sets the 

bottom part of the film apart from rest of the film with a lower degradation rate. The event interval is therefore 

observed to stabilize in this region.   
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Figure 7. The film lifetime as calculated from the time between degradation events and the initial number of 

monomers. Thereby the film lifetime is extrapolated from the initial 50% of the degradation. 
 

In Figure 8 the degradation state at which the blueshift reaches 480 nm is plotted. For films in the stable region 

of 125–175 nm, the blueshift occurs late near the last 20% of the degradation. For films thicker than 175 nm the 

blueshift appears earlier. This is consistent with the fact that parts of the film degrade later than the top part of 

the film, thereby extending the degradation. A key point of Figure 8 is the fact that thin films (<75 nm) blueshift 

rather quickly. This indicates that another mechanism is involved. Ozone has been shown to cause 1th order 

degradation kinetics and to attack the polymer at random sites.[12] It is conceivable that the relatively high 

ozone content of the laboratory environment affects the degradation for thin films. This would explain the 

decrease in degradation interval seen in Figure 6 and also the strong blueshift in Figure 8. However, the kinetics 

of the degradation remained 0th order. Another likely candidate for the increase in reaction rate is the higher 

surface to volume ratio. If the reactions are more likely on the surface the rate may easily be different. The 

polymers in the top layer can be expected to have a higher density of kinks, introducing more attack points for 

the reaction. This would also explain the fast blueshift observed for thin films. 

 

  
Figure 8. Wavelength shift observed for different thicknesses of P3HT films. The black crosses represent data bins 

of a width of 40 nm. 
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Conclusion 
18 different batches of P3HT were degraded under simulated sunlight (AM1.5G, 1000 W/m2) and the respective 

stabilities were evaluated from the decrease in optical absorption. A highly automated setup allowed for 

monitoring hundreds of degradation points in parallel to allow for statistically sound investigations of 

degradation kinetics. It was shown to be evident that the polymer degradation follows strict 0th order 

degradation kinetics for the initial part of degradation. The typical blueshift of the absorption peak observed 

during degradation was found to appear later for the more regio-regular films. This indicates that the radical 

reaction responsible for the photo-degradation attacks terminal thiophene rings exposed at points where the 

conjugation is broken. Stability was found to increase with regio-regularity following the ratio of head-to-tail 

connected thiophene units, demonstrating that the polymer is indeed attacked at points of broken conjugation. 

Annealing relaxes the films and increases conjugation length. This, in turn, increases stability and delays spectral 

blueshift. For films of different thicknesses, the interval between degradation events is observed to scale linearly 

with the initial number of thiophene rings for medium thick films (75–175 nm) indicating that oxygen diffusion 

and light shielding effects have negligible or no effect for medium thickness films. 
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The field of polymer solar cells (PSCs) is maturing fast manifested in an ever increasing 

number of publications covering the subject. Over the last decade, reported efficiencies have 

risen to exceed 10%, and several companies have entered the field.1,2 While efficiencies and 

production scalability are high interest areas, the Achilles’ heel of polymer solar cells has long 

remained the operational lifetime of the devices. When organic matter is illuminated, the 

materials react via photochemical and photolytic processes, making it essential to utilize 

materials where the yield and rate of photochemical degradation is minimized. Outdoor tests 

of PSCs with lifetime exceeding one year have been demonstrated3 and materials such as 

polythiophene (PT) have been shown to have degradation rates of 0.029% / h under ambient 1 

sun conditions4. With this level of stability, fast material screening under accelerated 

conditions is an appealing prospect. Acceleration methods utilizing atmosphere and 

temperature control have been used to increase degradation rates by a factor of 20.5 It has 

been demonstrated that increasing the temperature accelerates the degradation according to 

the Arrhenius equation for both PSCs and single polymer layers.5,6 Concentrated light is 

another novel direct acceleration condition, which accelerates the rate of photo oxidation of 

the polymer. Due to the multitude of degradation mechanisms that are accelerated by 

concentrated light, the PSC response to concentrated light is complex,7 and even effects such 
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as reversible degradation have been observed.8 For the simplified system of pure polymer in 

the ambient, accelerated degradation has been performed up to 200 suns.9 This study 

demonstrated that degradation of polymers can serve as a standard tool for rapid polymer 

stability evaluation. However, the validity of using concentrated light to accelerate the 

degradation process still remains to be studied.  

This paper focuses on the use of concentrated light as a deterministic method of polymer 

degradation. For this, films of pure regio-regular poly-(3-hexyl-thiophene) (P3HT) were 

studied and their degradation rates compared. A novel fully automated lamp-based light 

concentrator (Figure 1) was constructed to allow for precise evaluation of degradation rates at 

high light intensities ranging from 0.1 to 150 suns. The evaluated degradation rates were, in 

turn, compared to the degradation rates of 1 sun degradation, with equivalent light spectra at 

all intensities. The degradation state is deduced by monitoring the changes in the optical 

spectrum of the sample during the illumination.4 The artificial solar concentrator had the 

advantage of long term stability and precision in comparison with solar collector setups.9 

Automated sample exchangers were employed to ensure that no errors were introduced when 

handling samples. The full details of the experiments and the setups are provided in the 

Supporting Information. 

Degradation of P3HT films at 1 sun is a well described phenomenon, known to proceed via a 

mechanism based on a radical process initiated by an abstraction of an allylic hydrogen, 

leading to side-chain and sulfur oxidation.10,11 This process is responsible for breaking the 

macromolecular backbone resulting in loss of conjugation and consequent bleaching of the 

sample. It has been demonstrated that the P3HT polymer is attacked at terminal thiophene 

rings at points of broken conjugation, and that degradation is both thickness and regio-

regularity dependent.4,12 A strong increase in photon effectiveness is observed for photo 

degradation of P3HT films for decreasing irradiation wavelengths, and it has been 
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demonstrated that oxygen diffusion is not a rate limiting factor under 1 sun conditions.6 For 

concentrated light conditions it is unknown if this remains true. Concentrated light might 

introduce degradation mechanisms that are not observed at 1 sun, which could change the 

degradation rates. The thermal equilibrium of the sample is expected to change with intensity 

convoluting the degradation rates. A single study by Tromholt et al. reports accelerated 

photochemical degradation by concentrated sunlight. They observed an acceleration factor of 

55 for P3HT by comparing the degradation rate at 1 sun (0.1 W/cm2) and at 100 suns (10 

W/cm2).9 This suggests that at 100 suns, each photon has roughly half the effectiveness that a 

photon has at 1 sun. The spectrum at 1 sun in that particular work was an artificial light source, 

while the 100 sun spectrum was natural sunlight focused through a concentrating lens setup. 

The spectra thus had vastly different UV content and a decrease in photon effectiveness was 

consequently expected. The question, however, remains: are the photons equally destructive 

at all intensities or do some higher order degradation mechanisms become prevalent at higher 

intensities. The gradual decrease of absorbance during degradation of P3HT is linear in the 

initial part of the degradation process at 1 sun.6 In Figure 2 the black line represents 

degradation of a 110 nm P3HT film at 1 sun. The degree of degradation is observed to 

increase linearly with dose and is completely degraded after roughly 50 hours in agreement 

with the literature.4 For concentrated light at 50, 100, and 150 suns, the dose-corrected 

degradation rate is observed to be higher as shown in Figure 2. Furthermore, the linearity is 

observed to be lost for concentrated light conditions. The degradation rate is decelerating with 

time, making it impossible to establish a single degradation rate for polymers degraded under 

concentrated light. The dose-corrected degradation rates, expressed as degradation rate per 

solar intensity, for concentrated conditions, have been determined for the initial 10 percent of 

the degradation process and compared (Figure S1). The dose-corrected acceleration factor, 

calculated by the ratio of the dose-corrected concentrated degradation rates and the 
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corresponding value for 1 sun, is shown in Figure 3 for degradations at 50, 100, and 150 suns 

for film thicknesses between10 and 115 nm. The degradation rate corresponding to 1 sun, 

depicted as the dashed line in Figure 3, represents a polynomial fit of 526 separate 

degradation experiments covering the entire film thickness range with an r-squared value of 

0.93. The dose-corrected acceleration factor of 8 observed for 150 suns at the largest film 

thickness indicates an absolute acceleration factor of 1,200, which is the highest acceleration 

factor reported in literature. It is evident that increasing light intensity implies increasing 

dose-corrected degradation rates when compared to the 1 sun data. Additionally, the effect is 

observed to increase with film thickness, suggesting that the photon effectiveness increases 

with higher light intensities and film thicknesses.  

The concentrated light will induce a temperature increase in the material, and we thus 

hypothesize that the rise in effectiveness observed in our data is purely a consequence of the 

induced temperature increase during experiments. The extent of the induced temperature 

increase depends on the absorption of the sample, and thus the hypothesis explains the 

decelerating degradation rates observed in Figure 2. It was technically not possible to measure 

the temperature in the material during light exposure, so an estimate was done based on a 

simple approximation. By assuming that the temperature can be modeled by the absorbed 

energy inQ , a radiative loss, and a loss associated with the thermal conductivity through the 

glass, the steady state can be written as 0QQQQ inTCrl +=+ ,where rlQ  is the radiative loss given as 

aeTQrl
42σ= , aeTQ 4

00 2σ=  is the room temperature energy, and dxdTkaQTC =  is the thermal 

conductivity. The emissivity is set to 92.0=e  equal to the emissivity for glass, and in the 

interval given for poly-vinyl-chloride. The room temperature energy is set to CT °= 300 . For the 

thermal conductivity it is assumed that the glass is coupled to a perfect heat reservoir, the 

glass has a thickness of 1 mm, and a thermal conductivity of 8.0=k . The area a is given by the 

area of the incoming light. The input energy is calculated as the number of photons absorbed 
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at each wavelength ( ( )λA ) multiplied by the energy at that given wavelength ( ( )λE ) by 

( ) ( )[ ]∑ ⋅= λλ ENAQin . The absorption is measured for each thickness and the number of photons 

is calculated from the spectrum of the light source. By solving the equation for each thickness, 

it is possible to calculate the temperature (Figure S2). For a film of 100 nm, a temperature of 

65 °C is predicted for 150 suns. It is important to emphasize that this temperature will be a 

lower limit estimate since the model assumes an instant thermalisation between the polymer 

and the glass substrate. Furthermore, the model assumes that the substrate is coupled to a 

perfect heat reservoir.  

In an attempt to obtain an experimental value for the temperature, a glass /polymer / silver 

sample with a thickness of 50 nm was constructed by evaporating silver on a P3HT covered 

glass substrate. By illuminating the sample from the glass side, the temperature could be 

measured by coupling a thermocouple to the silver layer, thereby avoiding the temperature 

increase due to the absorption of the thermocouple. At 150 suns a temperature of 175 °C was 

measured. Since the reflection from the silver interface is not perfect, the silver will induce a 

temperature increase by itself, so the measured value can be considered as an upper limit for 

the temperature of the polymer. As the light passes the film twice, the effective thickness is 

100 nm. Consequently, a film with a thickness of 100 nm will have a temperature in the range 

between 65 °C and 175 °C.  

Assuming that the temperature dependence of the reaction can be described by an Arrhenius 

model, it is possible to model the temperature based on the observed acceleration factor. The 

acceleration observed during degradation at two different temperatures T’ and T can be 

described by   

1 1
''

 − 
 

= =

A
A A

E
E E R T TT T
R RK B e Be e , 
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where R  is the gas constant, AE is the activation energy, and B  is the pre-factor. The 

activation energy for P3HT has been reported by Hintz et al. to be kJE A 5.26=  and thereby it is 

possible to calculate the temperature of the material for a given acceleration factor (Figure 

S2).6 The temperature for a film of 100 nm is thus predicted to be 100 °C at 150 suns, which 

is within the established upper and lower limit. 

The hypothesis implies that materials with different activation energies will yield different 

acceleration factors. In order to investigate this further, polythiophene (PT) with an activation 

energy of kJEA 0.16=  was tested.13 It is assumed that the temperature of PT is equal to the 

temperature of P3HT at equal absorption level since the absorption spectrum of P3HT and PT 

are similar. At an optical density of 0.5, PT is predicted to have a dose-corrected acceleration 

factor of 2.2. The experimentally determined dose-corrected acceleration factor for PT was 

2.0 in fair agreement with the prediction. This implies that the degradation rate based on 

concentrated light is deterministic given the sample temperature and the activation energy.  

The thermal activation is expected only for samples where photo oxidation is dominant. The 

increased energy associated with the temperature increase is insignificant in comparison to the 

energy of the light. At 100 °C, the thermal energy equates to 32 meV, which is significantly 

lower than the photon energy (1 - 4.5 eV). Figure 4 shows the degradation of six samples 

under ambient and nitrogen atmospheres. It is evident that the photolysis of P3HT is not 

thermally activated as the degradation at 1 sun, 50 suns, and 150 suns overlap in degradation 

time. Reference 11 has documented that thermo oxidation takes place on a time scale of 

10,000 hours while photo oxidation takes place in the time frame of 100 hours.  It thus 

follows that for all practical purposes thermal activation only occurs when oxygen is present. 

Under ambient atmosphere, acceleration is observed for increasing intensity. The sample 

exposed to 1 sun and a nitrogen atmosphere was stopped at 96% of the initial absorbance. In 

order to degrade the 1 sun sample to 50 percent, a timeframe of 1 month was needed, far 
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exceeding the capacity of nitrogen available. This study represents the first degradation 

experiment described in the literature where P3HT under photolysis has reached T50.  

The hypothesis of thermal activation as the only major contributing factor to the dose-

corrected acceleration factor also implies that the reaction mechanism remains unchanged. 

This is in agreement with the findings described in reference 9 where IR spectra of degraded 

polymers were compared at 1 sun and 100 suns for poly-(phenylene-vinylene) (PPV). Figure 

5 shows a plot describing the evolution of the peak shift in the optical absorption spectrum for 

1 sun and concentrated light. The values represent the degradation state at which the 

absorption peak has shifted from the initial value to 480 nm. It is clearly evident that the peak 

shift occurs at the same degradation state for all light concentrations. This supports the fact 

that the reaction mechanics remain unchanged for all intensities. 

In an attempt to prevent heating of the samples, an air ventilation setup was installed. The 

samples were continuously ventilated by a dry air flow at a flow rate of 25 liters per minute at 

ambient temperature directed at the polymer surface, effectively cooling the samples. As is 

evident from Figure 6 the degradation rates from the cooled samples overlay the 1 sun 

degradation rates. It was further observed that the degradation rates exhibited a linear 

behavior with dose, suggesting that no temperature change took place. The fact that the 

temperature influence can be eliminated by effective cooling proves the hypothesis of thermal 

activation and demonstrates that the degradation mechanism remains constant for all 

intensities between 1 and 150 suns. This also implies that concentrated light can be used to 

determine the degradation rates for polymer films with proper cooling, leading to the 

opportunity of using concentrated light as a rapid evaluation tool in the pursuit of stable 

materials. 

By studying degradation rates at different light intensities of conjugated polymers, it has been 

clearly established that the degradation rate scales linearly with light intensity. Any observed 
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deviations from this behavior can be ascribed to an induced temperature increase leading to a 

thermal acceleration factor. The degradation mechanism and kinetic have been demonstrated 

to remain unchanged in the range between 1 and 150 suns, and oxygen diffusion rates are not 

a limiting factor, even at 150 suns. This documents that the photon effectiveness towards 

degradation is fundamentally independent of the light intensity for films of P3HT. If the 

temperature of the sample and activation energy is known, it is possible to compensate for the 

temperature induced acceleration and use concentrated studies deterministically. This can lead 

to extremely high acceleration factors, and an acceleration factor of 1,200 has been reported 

in this paper for P3HT. Photolysis has been shown to be unaffected by temperature and 

degradation experiments have been performed to T50 at 50 and 150 suns. Concentrated light 

for accelerated polymer degradation thus constitutes a practical approach by which the time 

frame of polymer stability evaluation can be severely reduced and the 1 sun stability can be 

precisely calculated. This allows for rapid, routine stability studies of even very air-stable 

polymers, which will prove valuable to the development of commercial PSCs with stability 

exceeding years. 

 

Supporting Information 
Please see the Supporting Information for experimental details and supporting results. 
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Figure 1. Schematic representation and photo of the concentrator setup. 
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Figure 2. Degradation state versus dose for 110 nm P3HT films performed at 1, 50, 100, and 
150 suns.  
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Figure 3. Dose-corrected acceleration factors for films degraded at 50, 100, and 150 suns as a 
function of film thickness. 
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Figure 4. Degradation of P3HT in nitrogen atmosphere (black markers) and degradation in 
ambient atmosphere (grey markers).  
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Figure 5.  Degradation state for which the film absorbance has shifted to 480 nm as observed 
for different thicknesses of P3HT films and at different light intensities. 
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Figure 6. Dose-corrected degradation rates for cooled (grey markers) and non-cooled samples 
(black markers). 
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Concentrated light is used to perform photochemical degradation of polymer solar cell 
materials with acceleration factors up to 1,200. With proper cooling the photon efficiency 
in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates is not a 
limiting factor. The reaction is temperature activated and the induced temperature increases 
the reaction rate.  
 
Keyword Concentrated light, P3HT, Photo oxidation, organic photovoltaics, degradation 
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Concentrated light for accelerated photo degradation of polymer materials 
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Concentrated light for accelerated photo degradation of polymer materials 
 
Morten V. Madsen*, Thomas Tromholt, Kion Norrman, and Frederik C. Krebs 
 
 

S1 - Experimental 

A fully automated, high-throughput photo-chemical degradation setup was used for the 

degradation of all materials at 1 sun.[1] The setup utilizes a Steuernagel solar simulator with an 

Osram 1200 W metal halide arc lamp powered by a Schiederwerk 12-12 AC SL power supply 

providing an approximate AM1.5G spectrum with an intensity of 1000 W/m2. A sample 

exchanger with a capacity of 22 samples was used in conjunction with a UV-vis spectroscopic 

probe based on an optical fiber-based CCD spectrometer (Avantes AvaSpec 1024) and a 

halogen/deuterium light source (Avantes AvaLight-DHc) to measure the optical evolution of 

the samples. The setup is further documented in reference 1. 

The light concentrator setup is based on the same type of light bulb used in the 1 sun 

degradation setup. A rhodium coated elliptical reflector made by Optiforms (focal length 509 

mm, diameter 260 mm, height 206 mm) focuses the light from the light bulb into at the 

second focal point of the ellipse, as shown in Figure 1 in the article. At this focal point a fused 

silica kaleidoscope (10 x 10 x 75 mm3) obtained from Quartz Plus is positioned, 

homogenizing the spatial light distribution of the outgoing light, providing a square 1 cm2 

illuminated area. A shielding plate was used to avoid direct light from the bulb to reach the 

kaleidoscope and induce poor light distribution. Light intensity is controllable by a custom-

made, thermally resistant automated two blade iris, optimized to provide a high spatial 
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conservation of the light intensity distribution on the illumination area at different light 

intensities. Light intensities in discrete steps from 0.1 to 150 suns are obtainable with the 

setup and a shutter allowed for controllable periods of illumination. The light intensity was 

calibrated with a S314C thermopile from Thorlabs. A custom automated sample exchanger 

similar to the one used for 1 sun degradation tests was used to ensure precise sample handling. 

UV-visible absorbance spectra were recorded in transmission mode with an Avantes Avaspec 

3648 CCD fiber spectrometer and an Avantes Avalight DHc deuterium-halogen light source.  

It was found that a higher degree of light blocking by the iris introduced a higher 

inhomogeneity of the light intensity. Going from a free light passage at 150 suns to higher 

degrees of blocking, up to 10% higher intensity was observed in the corners of the 

kaleidoscope. At all intensities, symmetry around the center of the kaleidoscope was observed, 

which indicated a good alignment of the optical elements in the setup in terms of projection of 

the light onto the kaleidoscope. For all samples, a 3 mm pinhole was used over the sample to 

avoid the reduced homogeneity of light distribution. The outgoing light from the kaleidoscope 

was found to be slightly diverging, implying that the distance between sample and 

kaleidoscope had to be kept constant for all experiments. No spectral variance could be 

observed for different intensity settings. The spectrum of the concentrated light is 

approximately identical to the spectrum of the solar simulator with a UV cutoff at 280 nm 

since no filters are applied. The temporal stability of the intensity was found to be <5% for 

both setups, and thus on a level comparable to standard HMI based solar simulators. 

Degradation rates were extracted from the loss of absorption normalized to the initial value as 

described in reference 1.  

Two atmosphere chambers were constructed with double quartz windows to allow absorption 

spectra to be recorded without the need of removing the sample from the chamber. Both 

chambers were designed to be mounted on the sample exchanger robot and thereby 
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measurements of four samples under controlled atmospheres could be conducted 

simultaneously under one sun conditions and serially under concentrated light. 

 

S2 - Materials 

Regio-regular P3HT from Rieke Metals (Lot: PTL 10-87) was spin-coated on microscopy 

slides obtained from Menzel from 12 mg / mL chlorobenzene solutions. The film thickness is 

expressed by 68.188)622.0( max ⋅−= At  nm, where maxA  is the peak absorbance in 

accordance with Reference 1. 

 

S3 – Supporting Data 
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Figure S7. The degradation rate of the initial 10 percent of the degradation at 1, 25, 50, 100, 
and 150 suns is shown in the top graph. The degradation rate under 1 sun is depicted as a 
dashed line and represents a polynomial fit of 526 separate degradations in the thickness 
range with an r-squared value of 0.93. Overlaying this data is the degradation rates for 25, 50, 
100, and 150 suns divided by the number of suns. The relative acceleration factor is depicted 
below. 
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Figure S8. Assuming that the temperature dependence of the reaction can be described by an 
Arrhenius model, the sample temperature is plotted for 25, 50, 100 and 150 suns (markers). 
The lines represent the calculated temperatures for the films based upon their absorption. 
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Abstract. The work focuses on the degradation of performance induced by both water and
oxygen in an inverted geometry organic photovoltaic device with emphasis on the accumulated
barrier effect of the layers comprising the layer stack. By studying the exchange of oxygen
in the zinc oxide (ZnO) layer, the barrier effect is reported in both a dry oxygen atmosphere
and an oxygen-free humid atmosphere. The devices under study are comprised of a bulk het-
erojunction formed by poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester
sandwiched between a layer of zinc oxide (electron transporting layer) and a layer of poly(3,4-
ethylenedioxythiophene) poly(styrenesulfonate) (hole transport layer) and the two electrodes
indium tin oxide and silver. Time-of-flight secondary ion mass spectrometry is employed to
characterize the accumulated barrier effect. A pronounced barrier effect is observed in the hu-
mid atmosphere, correlating well with a long observed lifetime in the same atmosphere. C© 2011
Society of Photo-Optical Instrumentation Engineers. C© 2011 Society of Photo-Optical Instrumentation

Engineers (SPIE). [DOI: 10.1117/1.3544010]
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1 Introduction

In recent years polymer solar cells have presented themselves as an upcoming technology in
the commercial photovoltaic market. The existence of companies developing and marketing
polymer solar cells is evidence that the technology is maturing rapidly. The main driver behind
the commercialization of polymer solar cells is the production scalability. Production involving
only printing techniques have been demonstrated, either without any vacuum steps involved1–3

or starting from an indium tin oxide (ITO) covered substrate.4,5 Performance issues with polymer
solar cells include the limited efficiency and lifetime. Efficiencies are typically in the region of
5% with a few reports of efficiencies approaching higher values in the 6 to 8% range.6,7 Polymer
solar cells have been produced on a pilot scale and demonstrated in real world situations8 with an
inferior efficiency, which suggests that efficiency is not a significant obstacle for the technology
to reach a production stage. In this regard stability and lifetime is a more pressing issue. Today,
lifetimes on the order of a few years are being recorded with good stability for air stable devices,
encapsulated devices, and devices exposed to outdoor conditions.9–14 An effective encapsulation
is in many cases the enabling technology for stable polymer solar cells. However, the use of
expensive barrier materials is not desirable from a production point of view. Characterizing
the performance of the solar cell under different atmosphere conditions can experimentally
determine the stability of the cell toward a specific atmosphere,15 but do not in any way quantify
the degree of oxidation caused by the atmosphere. Furthermore, as each layer in the cell acts
as a barrier, changing a layer may change the overall need for encapsulation. In this study the
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Fig. 1 Schematic illustration of partial (a)–(c) and complete (d) solar cell devices.

barrier effect was determined by studying the oxygen exchange inside the solar cell caused
by an isotopically labeled dry oxygen (18O2) atmosphere or an oxygen-free humid (H2

18O)
atmosphere by employing time-of-flight secondary ion mass spectrometry (TOF-SIMS).

2 Experimental

A series of four partial and complete solar cells of inverted geometry were prepared, see
Fig. 1. The solar cell is comprised of an ITO electrode, an electron transporting layer (ZnO), an
active layer poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM),
a hole transport layer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS),
silver electrode stripes, and an Alcan encapsulation. One set of complete and partial devices
were subjected to an isotopically labeled dry oxygen (18O2) atmosphere and another set was
subjected to an oxygen-free isotopically labeled humid (H2

18O) atmosphere. The atmosphere
exposure time was set to 21 days (504 h) where the devices were subjected to 330 W m−2 of
illumination at 65 ± 2◦C. The accumulated barrier effect was measured by TOF-SIMS at the
ZnO surface inside the solar cell (after layer removal).

2.1 Photovoltaic Preparation

Complete and partial solar cell devices were prepared on ITO coated glass substrates. ZnO
nanoparticles were prepared by a method similar to the one described earlier, however, with
the ink prepared in acetone instead of o-xylene/WS-1.4 The ZnO particles were stabilized with
10% methoxyethoxyacetic acid and filtered (0.45 μm) prior to use. The final concentration of
the ZnO solution was 42.5 mg mL−1. The ZnO solution was spin-coated using a rotational
speed of 1000 rpm and subsequently annealed for 5 min at 140◦C. The P3HT:PCBM ink
was prepared by dissolving P3HT (Sepiolid P200 from BASF) and PCBM (99%, Solenne
BV) in half the required volume of 1,2-dichlorobenzene at 110◦C for 2 h followed by the
addition of one volume of chloroform. The final concentrations were 24 mg mL−1 for P3HT and
22 mg mL−1 for PCBM. The P3HT:PCBM solution was spin-coated using a spin speed of 1000
rpm and subsequently annealed for 2 min at 140◦C. The PEDOT:PSS was (EL-P 5010 from
Agfa with a conductivity of ∼30 Ohm square−1) diluted with isopropanol (10:5 w/w) to give
a final viscosity of 270 mPa · s. The PEDOT:PSS solution was spin-coated using a rotational
speed of 1000 rpm and subsequently annealed for 5 min at 140◦C. The silver ink was from
Dupont (PV410) and printed on without modification in a stripe pattern with stripes being 0.2
mm wide and spaced by 0.8 mm. A stripe pattern was used to mimic the conditions used for
R2R fabricated devices, where a stripe pattern is employed to reduce cost. The active areas of
the devices were ∼3 cm2.

2.2 Control of Atmosphere

The influence of the atmosphere was established by illumination (330 W m−2, 65 ± 2◦C) in
chambers equipped with a quartz window allowing for control of the atmosphere.15 Prior to
the experiment a pressure of ∼10−4 mbar was established and the entire system was purged
with nitrogen (99.9%) and pumped back down to ∼10−4 mbar. One chamber was then injected
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Fig. 2 Normalized PCE describing the degradation in performance of encapsulated (gray) and
nonencapsulated (black) devices under continuous illumination (330 W m−2, AM1.5G, 65 ± 2
◦C).

via a septum with H2
18O (97%, 5 mL, ∼20 mmol). The entire system has a volume of 2.5 L

resulting in a saturated isotopically labeled atmosphere. Another chamber was filled with 1 atm
of 18O2:N2 (20:80).

2.3 Accessing the ZnO Layer

In order to study the ZnO surface the preceding layers need to be removed. Since the layers
comprised the cell where the solution was processed, the organic layers can subsequently be
re-dissolved and removed. The PEDOT:PSS layers were removed by either delamination in the
case of the encapsulated device or by gently swiping the surface with a cotton stick soaked
in pure water. The underlying P3HT:PCBM layers were removed using the same procedure
by substituting water with chloroform. Delamination of encapsulated devices is accomplished
by peeling off the encapsulation. The delamination occurs at the PEDOT:PSS-P3HT:PCBM
interface as verified by TOF-SIMS mass spectra (not shown).

2.4 Chemical Characterization

Analysis of the ZnO surface was performed using a TOF-SIMS IV (ION-TOF GmbH, Münster,
Germany) with 25-ns pulses of 25-keV Bi+ (primary ions), bunched to form ion packets with a
nominal temporal extent of <0.9 ns at a repetition rate of 10 kHz yielding a target current of 0.9
pA. These primary ion conditions were used to obtain 10 mass spectra for each sample acquired
on a 100×100 μm2 surface area for 20 s. The intensity of the 18O signal describes the oxygen
exchange that has taken place in accordance with the reaction shown below.

Zn16O + 1/2
18O2 → Zn18O +16 O. (1)

By comparing the 18O signal intensities for the different surfaces (Fig. 1), semiquantitative
information on the barrier effect was extracted.

3 Results and Discussion

Two functional solar cells were produced, as depicted in Fig. 1(c) and Fig. 1(d). Both were
performance tested prior to the degradation experiments. This was done in both an oxygen-free
humid atmosphere and a dry oxygen atmosphere.

3.1 Cell Performance

Figure 2 depicts a comparison of the degradation of the solar cell performance in a dry oxygen
atmosphere and an oxygen-free humid atmosphere. Both encapsulated and unencapsulated
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devices, corresponding to Fig. 1(c) and Fig. 1(d), were tested. The mounting process took 1 h.
Power conversion efficiency (PCE) was measured before and after the mounting process, which
revealed a small insignificant drop in the PCE. Figure 2 shows the temporal development of
PCE after the mounting process and exchange of the atmospheres.

It is observed that both atmospheres lead to fast degradation of the initial response for
the unencapsulated devices. However, a clear difference is seen in device stability in the two
atmospheres. The dry oxygen atmosphere led to complete degradation of the solar cell properties
in roughly 20 h with all parameters showing fast decay. On the contrary the device in the oxygen-
free humid atmosphere remained nearly constant after the initial performance drop. During the
480 h time frame of the experiment the cell had not reached the end of its functional lifetime.

3.2 Barrier Effect

Complete and partial devices were placed in the atmosphere chambers for 504 h (21 days)
and subjected to light for the entire duration. After the exposure to the atmosphere the devices
were removed from the atmosphere chamber, the ZnO layer was exposed, and TOF-SIMS mass
spectra were obtained. Figure 3 shows a plot of the degree of oxygen exchange that took place
during the experiment at the ZnO surface inside the cell. The normalized intensities are based
on the integrated 18O signal normalized to the largest degree of oxygen exchange. TOF-SIMS
is not directly quantitative, however, since the substrate is the same in each case the intensities
can be compared semiquantitatively.

At the directly exposed ZnO surface [Figs. 3(a) and 1(a)] a higher degree of oxygen exchange
(roughly a factor of 2) is observed in an oxygen-free humid atmosphere as compared to a dry
oxygen atmosphere. ZnO is expected to exchange oxygen easily; hence the oxygen uptake at the
ZnO surface cannot directly be correlated to degradation. However, it can be used to determine
the accumulated barrier effect of the preceding layers. The explanation for the difference in
oxygen uptake at the directly exposed ZnO surface can be found in the different trapping
mechanisms for oxygen and water. The exchange with 18O2 is expected to take place through
trapping of superoxide radicals at the surface of the ZnO nanoparticles, whereas the exchange
with H2

18O is expected to take place through the exchange of hydroxide on the surface of the
ZnO nanoparticles.

In the dry oxygen atmosphere a clear barrier effect is observed for all layers [Figs. 3(b)–3(d),
white columns]. It is seen that each layer has a distinctive effect as a barrier. An accumulated
effect is therefore seen. In the oxygen-free humid atmosphere the active layer is observed to
have a pronounced barrier effect [Fig. 3(a) and 3(b), striped columns] to such an extent that

Fig. 3 Normalized 18O intensities for partial (a)–(c) and complete (d) solar cells. The values
have been normalized to the largest degree of oxygen exchange seen in the oxygen-free humid
atmosphere. (c) The functional cell without encapsulation, (d) the same cell with encapsulation,
and (a) and (b) partial devices (see Fig. 1).
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the active layer effectively shields the effect of the preceding layers as the difference between
B and C lies within the error bars (i.e., a bottleneck effect). The elevated 18O intensity for the
encapsulated device [Fig. 3(d), striped column] can seem puzzling as it intuitively was expected
to show the lowest value. One possible explanation could be that the adhesive used for the Alcan
encapsulation is hygroscopic, i.e., the adhesive acts as a reservoir for water.

4 Conclusion

Barrier effects against molecular oxygen and water in an inverted geometry polymer solar
cell (Alcan-Ag-PEDOT:PSS-P3HT:PCBM-ZnO-ITO) were determined using TOF-SIMS in
conjunction with isotopic labeling. In an oxygen-free humid atmosphere the barrier effect of
the active layer (P3HT:PCBM) is demonstrated to be very pronounced. The barrier effect of the
active layer effectively overshadows the effect of the preceding layers (i.e., a bottleneck effect).
In a dry oxygen, atmosphere barrier effects of similar magnitudes are observed for the various
layers giving rise to a steady increase in the accumulated barrier effect. These results provide
information on how much of the atmosphere reached the ZnO surface during the experiment,
it does not directly provide information on the degree of oxidation/degradation in the organic
materials, and does not provide information on where oxidation/degradation took place. It is
therefore not possible to relate these results to the relative lifetime in molecular oxygen and
water.
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