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Abstract 13 

The purpose of the study was to investigate the influence of torrefaction on the grindability of wheat straw. 14 

Straw samples were torrefied at temperatures between 200 ˚C to 300 ˚C and with residence times between 0.5 to 15 

3 hours. Spectroscopic information obtained from ATR-FTIR indicated that below 200 ˚C there was no obvious 16 

structural change of the wheat straw. At 200-250 ˚C hemicelluloses started to decompose and were totally 17 

degraded when torrefied at 300 ˚C for 2 hours, while cellulose and lignin began to decompose at about 270-300 18 

˚C. Tensile failure strength and strain energy of oven dried wheat straw and torrefied wheat straw showed a clear 19 

reduction with increasing torrefaction temperature. In addition, Hardgrove Grindability Index (HGI) of wheat 20 
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straw torrefied at different conditions was determined on a standard Hardgrove grinder. Both results showed an 21 

improvement of grindability in the torrefaction temperature range 250-300 ˚C, which can be well explained by 22 

the findings from FTIR analysis.  At a torrefaction temperature of 260 ˚C and with a residence time of 2 hours, 23 

wheat straw samples produced similar HGI values as coal (RUKUZN) with 0% moisture content. Under this 24 

condition, the Anhydrous Weight Loss (AWL%) of the wheat straw sample was 30% on dry and ash free basis 25 

(daf), and the higher heating value of the torrefied wheat straw was 24.2 MJ kg-1 (daf). The energy loss 26 

compared to the original material was 15% (daf).  27 

Keywords: torrefaction, grindability, tensile strength, Hardgrove, ATR-FTIR, Triticum aestivum L. 28 

1. Introduction 29 

One of the drawbacks of using biomass as a fuel source is the fact that it is more tenacious and less brittle and 30 

hence more difficult and energy intensive to grind into fine particles. This problem is especially acute when 31 

biomass is to be used in pulverized combustion systems [1]. Torrefaction is a mild temperature (200-300 ˚C) 32 

pretreatment of biomass in an inert atmosphere, which has received increased attention in recent years [2]. 33 

During the process, the biomass looses moisture and a proportion of the volatile content, and becomes dry, 34 

darker, and brittle. Torrefied biomass is hydrophobic, has a higher calorific value and is easier to grind [3,4].  At 35 

present, a number of studies on grindability of torrefied biomass have been carried out. Arias et al. [3] ground 36 

torrefied eucalyptus wood in a cutting mill with a bottom sieve of 2 mm. In all cases, there is an improvement in 37 

the grindability characteristics of the treated biomass, as the percentage of particles passing to the lower size 38 

fractions greatly increases for the samples subjected to the torrefaction process. Bridgeman et al. [5] measured 39 

the Hardgrove Grindability Index (HGI) of willow heated at 240 ˚C and 290 ˚C for 10 and 60 minutes by using a 40 

Retsch ball mill. The higher temperatures and longer residence times improved the grindability. Abdullah and 41 

Wu [6] investigated the thermal pre-treatment (300-500 ˚C) of mallee wood in a fixed-bed reactor. A laboratory 42 

ball mill was used for testing the grindability. They found that thermal treatment below 330 ˚C leads to 43 
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significantly better grindning properties and that further temperature increase had only minor effects. Further 44 

studies about the torrefaction and grindability of wood samples have been made by [7-10].  45 

Where these studies have shown the beneficial effect of torrefaction of woody biomass, grass samples such as 46 

wheat straw present more difficulty. Wheat straw has some unique properties that differ from woody biomass. 47 

The tenaciousness of the untreated wheat straw makes it almost impossible to grind in a ball mill, where the 48 

tumbling action rather flattens the fibers instead of crushing and breaking them. This is related to the ultra 49 

structural differences of the cell wall of wheat straw as compared to woody biomass. For example, wheat straw 50 

fiber has a much thicker outer layer in the secondary cell wall based on volume percentage compared to spruce 51 

tracheid. The fibrils in this layer are oriented laterally in cross helix making the defibrillation of grassy biomass 52 

more difficult [11]. From a chemical point of view, there is also difference between wheat straw and woody 53 

biomass. The main hemicelluloses found in hardwood are partially acetylated (4-O-methyl-D-54 

glucuronopyranosyl)-D-xylans, while hemicelluloses in wheat straw are more complex, mainly consisting of a 55 

(1→4)-linked β-D-xylan with D-glucopyranosyluronic acid (or 4-O-methyl-α-D-glucopyranosyluronic acid) 56 

groups attached at position 2, and L-arabinofuranosyl and D-xylopyranosyl groups attached at position 3. They 57 

form hydrogen bonds with cellulose, covalent bonds (mainly α-benzyl ether linkages) with lignin, and ester 58 

linkages with acetyl units and hydroxycinnamic acids. The cross-linking of hemicelluloses and lignin by 59 

ferulates/diferulates in the wheat straw cell wall enhanced the difficulty of separating these two components [11]. 60 

Higher percentage of hemicelluloses in wheat straw compared with woody biomass also contributes to the better 61 

linkage between the polymers.  62 

In studies of heat-induced modifications of biomass properties, Svoboda et al. [12] summarized that the main 63 

changes in biomass due to torrefaction involve decomposition of hemicelluloses and partial depolymerization of 64 

lignin and cellulose. Bella et al. [13] heated American hardwoods to temperatures between 200 ˚C and 400 ˚C, 65 

and found a lower cellulose and hemicelluloses resistance compared to lignin. Although some decomposition 66 
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temperatures for these compounds can be found in literature [5,8], there is a lack of experimental data indicating 67 

the close relationship between the thermochemical and the grindability changes, especially for wheat straw.  68 

In the present work the heat-induced chemical modifications of biomass is monitored by Attenuated Total 69 

Reflectance (ATR) – FT-IR spectroscopy, where the samples were heated before recording the spectra. ATR-70 

FTIR spectroscopy is a facile method which provides direct information from the outer (μm) sample surface 71 

layers with no requirement for prior sample preparation. The spectra recorded provide basic and in principle 72 

quantitative information on the sample cell wall polymers and their chemical modifications. These modifications, 73 

obtained at various torrefaction temperatures, are related to the mechanical and grindability properties. Different 74 

methods have been used to study these properties. One example is the Hardgrove Grindability Index (HGI), 75 

which in principle is a simple measure of grindability.  76 

The HGI was developed as a measure, which indicates how difficult it is to grind a specific coal to the particle 77 

size necessary for effective combustion in a pulverized coal fired boiler [14]. In the standard method the HGI 78 

value is based on the amount of sample passing through a 75 µm sieve after being ground in a standard 79 

Hardgrove ball mill for 377 radians for each fixed amount of feed (50 g). Joshi [15] and Agus and Waters [16] 80 

pointed out that the fixed mass approach is unsatisfactory for making direct comparisons among fuels with 81 

densities differing a lot. To correct this situation and to bring evenness in grindability ratings of biomass and 82 

coal, Bridgeman et al. [5] used the same fixed volume (50 cm3) for each feed as opposed to a fixed mass (50 g).   83 

As the HGI is based on an empirical method, it is not linked directly with any specific physical property of the 84 

sample, and suffers from relative low reproducibility and repeatability. Therefore, as a supplement, it was 85 

decided to investigate the tensile strength of the wheat straw samples before and after torrefaction. The tensile 86 

strength is the maximum stress that a material can withstand while being pulled before breaking. Furthermore, 87 

by measuring the elongation of the specimen while pulling it apart, it is possible to calculate the strain energy at 88 

fracture per unit volume. Yigit [17] related the energy absorbed per unit new surface area created during 89 
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comminution and the strain energy per unit volume of a solid at fracture, and established mathematical models 90 

assuming fracture by tensile stresses. Mathematical models of new surface area energy derived from different 91 

fracture patterns all have a positive linear relationship with strain energy per unit volume, if the starting particle 92 

size and the reduction ratio are constants. Although the models cannot fully represent the realistic fracture 93 

pattern of a comminution process, they allow one to use the relative change of the strain energy at fracture under 94 

tensile stress at different torrefaction temperatures as an indication of how much energy can be saved during 95 

grinding under the same mill conditions.   96 

The objective of this study was to obtain knowledge on the effects of the torrefaction process on the chemical 97 

and mechanical behavior. Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy, 98 

together with chemical analysis of cell wall composition were used to qualitatively determine the chemical 99 

changes in the lignocellulosic material during the torrefication process. HGI and tensile strength test were used 100 

to study the mechanical behavior of the straw at different conditions of torrefication. Higher heating value (HHV) 101 

was determined to establish a relationship between energy loss and anhydrous weight loss (AWL).  102 

2. Material and methods 103 

2.1. Torrefaction 104 

The wheat straw used in this study is from winter wheat (Triticum aestivum L.), which was the most grown 105 

wheat species in Denmark in 2008. The straw was cut by hand in the field on the island of Funen, Denmark 106 

(55°21′N 10°21′E) in August 2008, and stored indoors packed in the paper bags. Prior to the experiment, wheat 107 

straw were selected and cut to about 30 cm long pieces. Samples were first dried in the oven at 104 ˚C for 24 108 

hours, and then placed in an air tight metal container (15×31×10 cm) that could be heated in an oven 109 

(Lyngbyovnen of type S 90, 3 × 380 V, 9 kW) to the desired torrefaction temperature. 0.5 dm3 min-1 of nitrogen 110 

was pumped through the sample container to create an inert atmosphere. The temperature of the oven was 111 

measured in the centre of the chamber using thermocouples and this measurement was used for temperature 112 
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control. The residence time of the torrefaction process starts when the material temperature has reached the set 113 

temperature until it starts to cool down. Torrefaction was carried out at 150, 200, 220, 230, 250, 260, 270, 280, 114 

290 and 300 ˚C with residence time of 2 hours. Additional different residence times of 0.5, 1, 2, 3 hours were 115 

tested at 250 ˚C.  116 

2.2. ATR-FTIR 117 

For sample preparation wheat straw were comminuted in a Hardgrove ball mill and the particle size fraction 118 

between 250-600 µm was used for the FTIR test. Before the test, these particles were dried in the oven at 40 ˚C 119 

for 24 hours. ATR-FTIR spectra (4000-650 cm-1) were recorded using a Fourier transform infrared spectrometer 120 

(Nicolet 6700 FT-IR, Thermo Electron Corporation, USA). The system was equipped with a thermostat 121 

controlled ATR unit (T = 30 ˚C) where the sample was pressed against the diamond surface using a spring-122 

loaded anvil. All spectra were obtained with 128 scans for the background (air) and 100 scans for the sample 123 

with a resolution of 4 cm−1 from 500-4000 cm-1. Spectra were recorded from 10 different sub-samples for each 124 

sample condition, and these spectra were normalized at around 690 cm-1 where the spectra are free of distinct IR 125 

bands.  The average spectrum of the 10 normalized spectra was presented for each sample condition. A spectrum 126 

was also obtained for each of the two xylans (from Birchwood and from oat spelts, both from Sigma) reference 127 

samples (results not shown in this paper). 128 

2.3. Tensile strength  129 

Plant leaf materials were removed from the stem internodes, and a flat thin piece was cut from the hollow stem. 130 

The ends of the specimens were glued between 2 pieces of aluminum by using ‘Loctite super glue, precision’ 131 

(Henkel, USA). The length of the specimen was in the range of 3-6 cm, and the width of the specimen was in the 132 

range of 1.4-3.1 mm.  133 

Tensile tests of wheat straw torrefied at different temperatures were tested using a tensile tester (Vantage, 134 

Thwing Albert, USA) with a video extensometer measuring the prolongation of the straw. The elongation rate 135 
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was 1mm min-1 and stress was recorded using a 250 N load cell. Data from samples that failed close to the 136 

aluminum tabs were rejected. Each measurement was repeated 4 times, except for wheat straw torrefied at 300 137 

˚C. Due to the brittleness of the sample, data were collected from only 2 samples. The tensile failure stress (or 138 

ultimate tensile strength), σ, of the specimen was calculated from the Eq. (1) [18]: 139 

A
Ft=σ            (1) 140 

Where Ft is the tension force at failure and A is the area of the specimen at the failure cross-section. The cross-141 

section area was measured both by an electronic digital micrometer (Digital Micrometer DIN 863, Diesella, 142 

Denmark) and calculated from the apparent density by assuming a uniform wall area and structure with length. 143 

The length and weight of each specimen were measured before the test, and the cross-section area was calculated 144 

as given in Eq. (2): 145 

l
mArea
×

=
ρ

           (2) 146 

Where ρ is the apparent density that was determined by coating the wheat straw samples (prepared in the same 147 

way as the tensile strength specimen) with paraffin wax (with known density). The weight was measured both 148 

prior to and after the coating with paraffin wax. Volumetric pipettes and water were used to measure the volume 149 

of wax coated samples in a volumetric flask. 150 

Strain energy per unit volume was calculated as the area below the stress-strain curve in the diagram with the 151 

percent of elongation as X-axis and stress as Y-axis. [19] 152 

2.4. Hardgrove Grindability Index (HGI) 153 

Determination of grindability was performed in a standard Hardgrove grinder (3200LB, AUBEMA, Germany) 154 

pursuant to the ASTM D409-51 (1961) standard. The test feed volume was 50 cm3 with a particle size between 155 

0.6 mm and 1.18 mm, this was done by pouring the particles into a 50 cm3 volumetric flask and vigorously 156 
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stamping on a wooden board to the point where further stamping did not reduce the volume of the material.  The 157 

loading of the top grinding ring was 290 N and the grinding time was 3 min (377 radians of the mill at speed of 158 

2.09 rad s-1). The test sieve had a 75 µm mesh size and the Hardgrove Index was determined by Eq. (3) [20]:  159 

HmHGI ×+= 93.613            (3) 160 

Where mH is the weight (in the units of gram) of the ground product passing the 75 µm sieve. The lower the 161 

number, the more difficult the material is to grind.  162 

In addition to the wheat straw samples, a reference coal sample (RUKUZN, supplied by DONG Energy, 163 

Denmark) was tested. The sample was dried in an oven at 104 ˚C for 24 hours before the test, and the mass 164 

fraction of water was determined to be 9.0% on wet material basis (w.b.).  HGI was measured for the original 165 

(wet), partially dried and totally dried coal sample according to ASTM standard test procedure as described in 166 

[20] by using the same fixed volume (50 cm3) for each feed.   167 

2.5. Heating value 168 

A Bomb calorimeter (6300, Parr Instrument Company, USA) was used to determine the higher heating value 169 

(HHV). Initially, the calorimeter was calibrated using benzoic acid tablets. Torrefied wheat straw was milled in a 170 

cutting mill (SM2000, Retsch, Germany) and particles smaller than 0.6 mm were placed in the crucible and fired 171 

inside the bomb calorimeter using an ignition wire in the presence of oxygen. The measurements were repeated 172 

at least 2 times, and the average value was used for calculation.  Ash content was determined by placing the 173 

samples in a muffle furnace at 550 ˚C for 3 hours, 2 measurements were taken for each condition. Sample 174 

crucibles were ashed and dried before the measurement, and the dry material content (DM%) of each sample was 175 

determined by a moisture analyzer (Halogen moisture analyzer, Mettler Toledo, Switzerland). All data was 176 

calculated on dry and ash free basis (daf).  177 









−×=

b

a

m
m

AWL 1100%            (4) 178 
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Where ma and mb stand for the sample mass after and before the torrefaction respectively.  mb was recorded right 183 

after the drying, making AWL% already dry based.  ash%(r.b.) denotes ash content in the raw material 184 

(untorrefied), whereas ash%(t.b.) is the ash content in the torrefied material. Both parameters are dry material 185 

based.  Energy loss is defined as the total heating value loss of the same wheat straw samples after the 186 

torrefaction treatment. HHV104˚C means the heating value of oven dried (104 ˚C, 24 h) wheat straw.  187 

2.6 Cell wall composition  188 

The content of lignin, cellulose and hemicelluloses were determined for both untorrefied wheat straw and wheat 189 

straw torrefied at 300 ˚C for 2 hours according to ASTM E 1758-01 [21] and Kaar et al. [22]. Briefly, a 190 

representative sample that was smaller than 1mm was first made soluble in strong acid (72% H2SO4) at room 191 

temperature and then hydrolyzed in dilute acid (4% H2SO4) at 121 ˚C by autoclavation. Hemicelluloses and 192 

cellulose contents were determined by HPLC analysis of liberated sugar monomers. Klason lignin content was 193 

determined based on the filter cake, subtracting the ash content after incinerating the residues from the strong 194 

acid hydrolysis at 550 ˚C for 3 h.  195 
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3. Results and discussion 196 

3.1. ATR-FT-IR 197 

 198 

Figure 1: ATR-FTIR spectra of oven dried (104 ˚C) and torrefied wheat straw samples. All spectra are separated to ease the 199 

comparison. 200 

Infrared spectra taken from wheat straw samples torrefied at different temperatures are shown in Figure 1 with 201 

the bands of interest being identified by their wavenumbers. The band at 670 cm-1 is characteristic for cellulose 202 

[23,24] and is an OH torsional vibration band. The fact that a significant decrease of this band is seen only for 203 

the highest temperatures between 270 ˚C and 300 ˚C shows that the cellulose component is largely stable until 204 

these temperatures are reached. The band at 1160 cm-1 is attributed to the antisymmetric stretching of C-O-C 205 

glycosidic linkages in both cellulose and hemicelluloses [25,26]. Its decrease is attributed to depolymerization 206 

and is most significant at the higher temperatures, and for 300 ˚C the band is practically absent. Gierlinger et al. 207 

attributed the band at 1240 cm-1 to the antisymmetric stretching of C-O-C of acetyl groups [26]. There are no 208 

acetyl groups existing in the hemicelluloses of wheat straw. However, for both reference xylans a band is found 209 
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at 1245 cm-1 and is of approximately the same strength as the (xylan) 900 cm-1 band. The assignment of the 1240 210 

cm-1 band to lignin can also not be ruled out. The peak observed at 1505 cm-1 is diagnostic of lignin [25,27] and 211 

is placed in a spectral region devoid of polysaccharide peaks. No clear change of this peak is observed for most 212 

of the temperature range. However, at 300 ˚C it does appear to have diminished. The band at 1732 cm-1 is 213 

attributed to the carbonyl stretching band of carboxylic acid groups in hemicelluloses [26,27]. It starts to 214 

decrease from 250 ˚C, signifying a reduction in the amount of the carboxylic acid groups of hemicelluloses. This 215 

reduction is paralleled by the appearance of a new degradation product band at 1700 cm-1. When torrefaction 216 

temperature reaches 300 ˚C, the 1732 cm-1 band is completely eliminated, which suggests the complete removal 217 

of hemicelluloses. The narrow CH2- stretching bands (superimposed a broader band) at approximately 2850 and 218 

2920 cm-1 are ascribed to the aliphatic fractions of wax [27]. These bands for the C-H stretching can clearly be 219 

seen in spectra of extracted wax using hexane by work by Stelte, et al. [28]. These bands appear not to change 220 

significantly due to the heat treatment of torrefaction although a small decrease of these bands is suggested for 221 

the highest temperatures. It is possible that the higher molecular weight waxes may still be present in the 222 

samples torrefied at 300 ˚C, although further work needs to be done to confirm this.  223 

By analyzing the FTIR spectra of the torrefied wheat straw samples, it can be concluded that there is no major 224 

structural change of the wheat straw samples torrefied below 200 ˚C. Increasing the temperature from 200 ˚C to 225 

250 ˚C introduces distinct changes in the spectrum. These appear not to involve lignin or cellulose to any major 226 

extent, as the two characteristic bands of these components at 1505 and 670 cm-1 do not change. Thus 227 

degradation and depolymerization of hemicelluloses is proposed to account for the initial low temperature 228 

torrefication effects. A higher temperature effect is most notable for the 270 ˚C to 300 ˚C transition and consists 229 

of the degradation of lignin and cellulose. The cell wall composition of both untorrefied wheat straw and wheat 230 

straw torrefied at 300 ˚C were determined, and the results (Table 1) support the findings from FTIR. At 300 ˚C 231 

torrefaction conditions, hemicelluloses are almost completely removed and cellulose is also reduced 232 
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substantially. Furthermore, although some degradation of wax is indicated, its efficient removal by the heat 233 

treatment during torrefaction has not been proved at the current operational conditions (300 ˚C, 2 hours). 234 

Table 1: Mass fraction of hemicelluloses, cellulose and lignin in both raw and torrefied wheat straws (dry and ash free basis)  235 

  Lignin  Cellulose  Hemicellulose  Total  

Raw wheat straw 21.28 35.64 27.78 84.70 

Wheat straw-torrefied at 300˚C for 2h 98.40 1.02 0.34 99.76 

3.2. HGI 236 

The reference coal sample at 3 different moisture contents on wet material basis (w.b.) (totally dried: 0%; 237 

partially dried: 6.3%; wet: 9.0%) were first ground in the standard Hardgrove grinder, and HGI was determined 238 

to be 33, 53, 68 respectively. Then the relationship between the mass fraction of the coal samples passing 239 

through the 75 µm sieve after the grinding (x) and the equivalent HGI (HGIequiv) was established in the similar 240 

way as Bridgeman et al. [1] . The result is given in Eq. (9) with R2 = 0.9993: 241 

( )
3577.0

2521.5+
=

xHGIequiv            (9)                                                                   242 

This equation was then used to determine the equivalent HGI of the wheat straw samples torrefied at the 243 

different temperatures. Meanwhile, standard HGI value was calculated according to Eq. (3). Both standard and 244 

equivalent HGI are calculated and plotted in Figure 2. The standard HGI value of wet coal was measured to be 245 

33, which is close to the value of wheat straw torrefied at 300 ˚C for 2 hours.  It means that the mill can produce 246 

similar amounts of fine particles by loading the same volume of the two materials. The HGI tests were repeated 247 

for the wheat straw samples torrefied at 300 ˚C. It can be seen from the figure that there was no big improvement 248 

of HGI when torrefaction temperature was lower than 200 ˚C and the HGI value increases sharply when 249 

torrefaction temperature goes from 230 ˚C to 300 ˚C. FTIR spectra indicate that there is no major structural 250 

change of samples torrefied below 200 ˚C, hemicelluloses start decomposition at 200 ˚C to 250 ˚C and are 251 

removed totally when torrefaction temperature reaches 300 ˚C, while cellulose and lignin are found to start the 252 
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degradation at 270 ˚C to 300 ˚C. It can thus be concluded that the removal of hemicelluloses is the main reason 253 

of the increase of HGI, which means a better grindability.   254 

 255 

Figure 2: HGI of oven dried (104 ˚C) and torrefied wheat straw 256 

Furthermore, plots of weight percent of particles passing 75 µm and 250 µm after being ground in the Hardgrove 257 

ball mill are given in Figure 3. It can be seen that there is no big change before 200 ˚C. The largest increase in 258 

the fine particle fraction, which is smaller than 75 µm, happens in the range of 250 ˚C to 300 ˚C. For particles 259 

smaller than 250 µm it happens in the temperature range of 200 ˚C to 250 ˚C. The weight percent of reference 260 

coal particles at different moisture contents passing through 75 µm and 250 µm after grinding are 6.67% to 261 

19.08%, and 31.26% to 41.95% respectively. This means that in order to produce similar grindability as coal, the 262 

torrefaction temperature should be at least 230 ˚C. At a torrefaction temperature of 260 ˚C, wheat straw sample 263 

has a similar equivalent HGI value as ‘totally dried coal’, but a higher percentage of particles passing through 264 

250 µm sieve. 265 
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 266 

Figure 3:  Mass fraction of particles passing through 75 µm, and 250 µm after grinding for oven dried and torrefied wheat straw. 267 

In order to study the influence of residence time on the Hardgrove grindability, tests were also made for wheat 268 

straw torrefied at 250 ˚C for 0.5 h, 1 h, 2 h and 3 h respectively. Results are shown in Figure 4. It can be seen 269 

that for a torrefaction temperature of 250 ˚C, a 2-hour residence time is enough for improving the grindability of 270 

wheat straw samples.  271 
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 272 

Figure 4: Mass fraction of particles passing 75 µm, and 250 µm after grinding for wheat straw torrefied at 250 ˚C for difference 273 

time. 274 

3.3. Tensile strength 275 

The results of the tensile strength measurements obtained by using both apparent density and caliper 276 

measurements are shown in Figure 5. From both methods, it can be seen that there is a clear decrease of breaking 277 

stress from 150 ˚C to 200 ˚C, and from 250 ˚C to 300 ˚C. Compared to the HGI results, both tests show a big 278 

improvement of grindability at a torrefaction temperature of 250 ˚C to 300 ˚C, and this finding is consistent with 279 

the FTIR analysis results discussed in 3.2. By comparing the mean strain energy (Figure 6), it can be concluded 280 

that wheat straw torrefied at 250 ˚C for 2 hours only requires about 1/5 to 1/7 of the energy, required to pull 281 

untorrefied, oven dried wheat straw apart.  282 

The tensile strength of untreated wheat straw with mass fraction of water in the range of 8-65% on wet material 283 

basis (w.b.) found in the literature varies from 9 MPa to 38 MPa [18,29,30]. Contrary to these numbers, 284 

Kronbergs [31] reported a much higher value for wheat stalk, found to be (118.7±8.63) MPa. These data are 285 
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based on the wall area of the whole stalk sample at the failure cross-sections. Besides, Burmistrova [32] 286 

calculated stalk cross-section area based on the absolute dry weight of the wheat sample, the length of sample 287 

and the density of cellulose (1.55 g cm-3). This physical cross-section area is smaller than the geometrical wall 288 

area by a factor of 5 to 10. Therefore the tensile strength, which was found to be in the range of 128 MPa to 399 289 

MPa, is correspondingly larger than the results of the other quoted authors. Comparing the results obtained from 290 

oven dried wheat straw in this paper and the data mentioned above, it is found that the tensile strength is likely to 291 

be underestimated in most of the literature [18,29,30] where the whole stalk is used for the test. This is because 292 

the whole stalk does not break equally at the same time. In most cases, the weakest part breaks first while the 293 

other parts still hold together and only break when the force increases. Therefore, the cross section area of the 294 

whole stalk is bigger than the actual area where the break happens, leading to underestimated tensile strength.  295 

 296 

Figure 5: Tensile strength of wheat straw dried in oven (104 ˚C, 24 h) and torrefied under different temperatures for 2 hours 297 
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 298 

Figure 6: Strain energy of same wheat straw as in Fig.5 from both direct calliper measurement and indirect apparent density 299 

calculation 300 

3.4. Anhydrous weight loss and energy loss 301 

The weight loss from the drying process (104 ˚C, 24 h) is quite constant, which is around 9-10% (w.b.). The 302 

weight loss in the torrefaction process can also be called anhydrous weight loss (AWL). The higher torrefaction 303 

temperature, the more mass is lost. When the temperature reaches 300 ˚C, around half of the material is lost. 304 

Figure 7 shows the experimental and calculated results of ash content. The increase of experimental ash content 305 

is only due to the mass loss (non-ash part) from torrefaction. By comparing the calculated ash content, it can be 306 

concluded that torrefaction treatment below 300 ˚C and 2 hours has no influence on the ash content of wheat 307 

straw samples.  308 

The higher heating value of wheat straw torrefied to different degrees (in form of AWL%) on dry ash free basis is 309 

shown in Figure 8. Data obtained from different residence times at 250 ˚C are also presented in the plot (triangle 310 

markers). As shown, these points are located on the same trend line of HHV as a function of AWL% obtained 311 
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from different torrefaction temperatures with the same residence time (2 hours). This means that the parameter 312 

AWL%(daf) can be used as a parameter to determine the effect of different torrefaction conditions, including 313 

temperature and residence time, on the heating value of the biomass. This finding is in agreement with the study 314 

done by Almeida et al. [33].  315 

In addition, the influence of the degree of torrefaction as given by the AWL% parameter on the energy loss is 316 

also shown in Figure 8. When the torrefaction conditions get more severe, there is more anhydrous weight loss 317 

and energy loss from the original material. The FTIR results show that hemicelluloses start the decomposition at 318 

200-250 ˚C and it lasts until 300 ˚C, while cellulose and lignin start the decomposition at 270-300 ˚C. So there is 319 

more energy and mass loss at torrefaction temperatures ranging from 250 ˚C to 300 ˚C compared to from 200 ˚C 320 

to 250 ˚C.  321 

Furthermore, these two kinds of loss are not at the same ratio. Heating value is lost faster than the mass. The 322 

energy loss at 300 ˚C (33%) is about 2.8 times of the energy loss at 250 ˚C (12%); while regarding anhydrous 323 

weight loss this number is 2.3. So in order to preserve energy in the torrefied material, lower torrefaction 324 

temperature and/or shorter residence time are preferred. On the other hand, if energy condensed material is 325 

desired, it is better to have more severe torrefaction condition.  326 
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 327 

Figure 7: Ash content of wheat straw torrefied at different temperatures (denoted as ‘ash% (t.b.)’), and calculated ash content of 328 

raw materials (denoted as ‘ash% (r.b.)’). All data are on dry material basis. 329 

 330 
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Figure 8: Higher heating value and percent of energy loss of wheat straw torrefied at different degrees (150, 200, 220, 230, 250, 331 

260, 270, 280, 290, 300 ˚C for 2 hours. ‘250C, 0.5-3 h’ represents the data collected at 250 ˚C torrefaction temperature with 332 

different residence time of 0.5, 1, 2, and 3 hours). All data are on dry and ash free basis.  333 

4. Conclusion 334 

By comparing the HGI of wheat straw samples torrefied at different temperatures, it can be seen that there is 335 

almost no improvement of the grindability for samples torrefied below 200 ˚C. In the torrefaction temperature 336 

range between 230 ˚C and 300 ˚C, the HGI value increases sharply. In the same range, tensile failure stress 337 

decreases from about 21-26 MPa to 4 MPa, which shows a close relation between the two properties. The FTIR 338 

analysis suggests that the removal of hemicelluloses, the degradation of which starts at 200-250 ˚C and finishes 339 

at about 300 ˚C, is the main reason for the improvement of grindability in this temperature range. Following 340 

grinding of the wheat straw torrefied at a temperature of 230 ˚C, the samples produce similar weight percentages 341 

of fine particles (‹75 µm) as the tested wet coal sample (with 9.0% moisture content on wet basis), while similar 342 

percentages of fine particles as produced from ‘totally dried coal’ (with 0% moisture content) can be achieved at 343 

a torrefaction temperature of 260 ˚C.  344 

However, tensile strength test was not proved to be more reproducible and repeatable than the HGI test. But on 345 

the other hand, strain energy measured from tensile failure strength suggests that about 80-85% of the energy can 346 

be saved when comparing torrefied wheat straw (250 ˚C, 2 h) with oven dried samples in the breaking process. 347 

Such numbers cannot be derived from HGI results.  348 

By looking at the relationship between energy loss and weight loss, it is found that the percent of energy loss 349 

increases faster than the weight loss when torrefaction condition gets more severe and is probably because the 350 

degradation of lignin and cellulose happen at 270-300 ˚C. So in order to preserve energy in the torrefied material, 351 

lower torrefaction temperature and shorter residence time are preferred. On the other hand, if energy condensed 352 

material is desired, it is better to have more severe torrefaction condition.  353 
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