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We consider the classical problem of a single-layer homogeneous fluid at rest and a
low, slowly varying, long and positive bottom obstacle, which is abruptly started from
rest to move with a constant speed V . As a result a system of transient waves will
develop, and we assume that locally in the region over the obstacle dispersion can
be ignored while nonlinearity cannot. The relevant governing equations for the near-
field solution are therefore the nonlinear shallow water (NSW) equations. These are
bidirectional and can be formulated in terms of a two-family system of characteristics.
We analytically integrate and eliminate the backward-going family and achieve a
versatile unidirectional single-family formulation, which covers subcritical, transcritical
and supercritical conditions with relatively high accuracy. The formulation accounts
for the temporal and spatial evolution of the bound waves in the vicinity of the
obstacle as well as the development of the transient free waves generated at the onset
of the motion. At some distance from the obstacle, dispersion starts to play a role
and undular bores develop, but up to this point the new formulation agrees very well
with numerical simulations based on a high-order Boussinesq formulation. Finally,
we derive analytical asymptotic solutions to the new equations, providing estimates
of the asymptotic surface levels in the vicinity of the obstacle as well as the crest
levels of the leading non-dispersive free waves. These estimates can be used to predict
the height and speed of the leading waves in the undular bores. The numerical and
analytical solutions to the new single-family formulation of the NSW equations are
compared to results based on the forced Korteweg–de Vries/Hopf equation and to
numerical Boussinesq simulations.

Key words: shallow water flows, solitary waves, waves/free-surface flows

1. Introduction
In this work, we consider the classical problem of a single-layer homogeneous

fluid at rest and a low, slowly varying, long and positive bottom obstacle, which is
abruptly started from rest to move with a constant speed V . For simplicity, the flow
is assumed to be two-dimensional, and the fluid is inviscid and incompressible. The
literature on this problem is rich, and the canonical problem is relevant for river flow
over obstacles, stratified flows over sills, airflow over mountain ranges, and to some
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extent waves generated by fast-going vessels, landslides or shallow water earthquakes.
Early studies and observations of single-layer and two-layer flow over obstacles were
reported by Long (1954, 1955, 1970, 1972, 1974), Houghton & Kasahara (1968),
Houghton & Isaacson (1970), McIntyre (1972), Baines (1977, 1984, 1987), Pratt
(1983) and Cole (1985); see also the comprehensive monograph by Baines (1995).
In this connection, the formation of shock waves and undular bores is a relevant,
interesting and complicated topic in its own right, and theoretical, numerical and
experimental contributions have been made by e.g. Favre (1935), Binnie & Orkney
(1955), Benjamin & Lighthill (1954), Peregrine (1966) and Gurevich & Pitaevskii
(1974).

Houghton & Kasahara (1968) provided a comprehensive asymptotic analysis of the
single-layer problem covering subcritical, supercritical and transcritical flow conditions,
and capturing the limits of the different flow regimes as well as the asymptotic
steady-state surface levels in the bound solution in the vicinity of the obstacle. They
assumed hydrostatic pressure (i.e. zero dispersion) throughout the domain, and looked
for quasi-steady solutions to the nonlinear shallow water (NSW) equations considering
phenomena such as partial blocking, moving hydraulic jumps and rarefaction waves.
Their formulation did not cover the temporal and spatial evolution of the bound waves
or the transient free waves generated at the onset of the motion.

Grimshaw & Smyth (1986), see also Smyth (1987), made a seminal contribution to
the understanding of transcritical flow over a localized but long bottom obstacle. Their
approach was dedicated to the case of near-critical or resonant flow, and they applied
the forced Korteweg–de Vries equation (fKdV), which incorporates weak dispersion
as well as weak nonlinearity and an explicit forcing term representing the moving
obstacle. Numerical solutions to the unsteady problem were provided for the case of a
positive obstacle as well as for a negative obstacle (i.e. a hole). For a positive obstacle,
Grimshaw & Smyth were able to derive explicit analytical solutions to the steady
near-field problem. These solutions were obtained by invoking the so-called hydraulic
approximation by which the dispersive fKdV equation simplifies to the non-dispersive
Hopf equation. The Hopf equation was expressed in terms of a single family of
characteristics, and it was analytically integrated to establish the steady (asymptotic)
bound solution over the obstacle.

The procedure of Grimshaw & Smyth revealed that a unique feature of transcritical
flow is the existence of turning points in some of the characteristic tracks. The
asymptotic non-dispersive solutions upstream and downstream of the crest of the
obstacle were determined by characteristics starting from the critical turning point,
which separated the cluster of turning characteristics from the non-turning ones. The
resulting near-field solution incorporated an upstream/downstream setup/setdown and
discrete shock waves (hydraulic jumps) moving ahead of/behind the obstacle. With the
non-dispersive solution at hand, Grimshaw & Smyth then replaced the idealized shock
waves by dispersive undular bores consisting of modulated cnoidal wave trains. In this
connection they generalized the formulation by Gurevich & Pitaevskii (1974) to cover
the unsteady upstream and downstream bores evolving in the transcritical far-field
solution.

The work by Grimshaw & Smyth (1986) provided a profound understanding of
the physical mechanisms associated with transcritical flow, an elegant analytical
determination of the non-dispersive bound waves in the vicinity of the obstacle,
and relatively simple asymptotic expressions for the surface levels and celerities
of the upstream and downstream bores. As such their formulation was much more
rich and detailed than the asymptotic steady-state NSW formulation by Houghton &
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Kasahara (1968). On the other hand, it should also be acknowledged that the forced
KdV and Hopf equations have their limitations, which will be summarized in the
following. First, let us consider the classical unidirectional KdV equation. This can be
derived on the basis of the classical bidirectional Boussinesq equations (e.g. Peregrine
1967) utilizing the scaling of ε = O(µ2), where ε defines the nonlinearity and µ the
dispersion. In this process, we assume that waves are moving in a single direction only.
Note, however, that even if the intention is to derive the KdV equation in a fixed frame
of reference, it is necessary as part of the procedure to shift to a coordinate system
moving with the unknown wave celerity c, i.e. to shift to X = ct − x and τ = εt. In this
coordinate system only slow time variations are considered, and it turns out that we
need to assume that (c − c0)/c0 = O(ε), where c0 is the linear shallow water celerity.
Once the necessary manipulations are made, we can shift back to a fixed coordinate
system, but the underlying restriction on the magnitude of c is still valid. Second, let
us consider the forced KdV equation for the case of a bottom obstacle moving with
constant speed V . This can also be derived on the basis of the classical bidirectional
Boussinesq equations allowing for an implicit time-varying bottom. The procedure
follows rather closely the standard KdV derivation except that this time we need to
assume that (V − c0)/c0 = O(ε). This restriction implies that the equations are formally
valid only for near-critical flow and not valid for e.g. subcritical and supercritical flow.
In addition to this restriction on the speed of the bottom obstacle, it turns out that
we also formally need to assume that the relative height of the obstacle is one order
smaller than the surface elevation, which again is one order smaller than the water
depth (see §§ 3 and 4).

With these restrictions in accuracy and application, it would be attractive, if
possible, to extend the hydraulic method by Grimshaw & Smyth from the fKdV/Hopf
formulation to a Boussinesq/NSW formulation. One severe problem, in this connection,
is that the NSW equations are bidirectional and lead to a two-family system of
characteristics, which need to intersect and exchange information in contrast to
the unidirectional Hopf equation. This is not a big problem in the subcritical and
supercritical flow regime, but in the transcritical regime the appearance of turning
points makes it very difficult, if not impossible, to keep track of the intersections of
the two families of characteristics.

In this work, we derive a new single-family characteristic formulation of the NSW
equations. This is achieved by analytically integrating and eliminating the other family
of characteristics, and as a result we derive an equation which is as versatile as the
Hopf equation and as accurate as the NSW equations. This formulation provides an
accurate temporal and spatial evolution of the transient waves up to the point where
dispersion becomes important. The formulation is analytically integrated to provide
asymptotic expressions for the upstream and downstream levels of the bound and
free waves. Section 2 provides a brief summary of the classical steady-state theory by
Houghton & Kasahara (1968). Section 3 covers the derivation of the new single-family
NSW formulation, which allows an accurate determination of the non-dispersive
transient waves. Section 4 covers the analytical integration of the new equations
resulting in simple (but approximate) expressions for the asymptotic levels of the
bound and free waves. In this section we also discuss the concepts of turning points,
the limiting characteristic, the crest characteristic, caustics and the classification of
flow regimes. Section 5 provides a brief discussion of the formation of shock waves
and undular bores with emphasis on simple estimates of the speed of the leading and
trailing edges. Section 6 covers numerical results and a comparison with a high-order
Boussinesq model for various flow regimes. We conduct a systematic verification
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of the temporal and spatial evolution of the bound and free waves, and verify the
asymptotic levels estimated by the new theory. Finally, § 7 contains the summary and
conclusions.

2. The NSW equations and the classical steady-state solution
We consider a low, slowly varying, long and positive bottom obstacle, which is

abruptly started from rest to move with a constant speed in initially calm water. The
fluid is assumed to be inviscid and incompressible, and we assume the pressure to
be hydrostatic throughout the domain, ignoring dispersion but allowing for nonlinear
effects. This leads to the unsteady NSW equations. Houghton & Kasahara (1968)
considered these equations from a frame of reference moving with the obstacle, and
they derived an asymptotic steady-state solution for the bound waves in the vicinity of
the obstacle, while ignoring the forward-going and backward-going free waves. In the
following we provide a summary of their solution.

2.1. The governing equations
In a dimensional fixed frame of reference (x∗, t∗), the NSW equations can be
expressed as

∂d∗

∂t∗
+ ∂

∂x∗
(U∗d∗)= 0, (2.1)

∂U∗

∂t∗
+ U∗

∂U∗

∂x∗
+ g

∂η∗

∂x∗
= 0, (2.2)

where U∗ is the flow velocity, η∗ is the surface elevation measured from the horizontal
still water level, d∗ is the local water depth including the effect of the moving bottom
obstacle, and g is the acceleration due to gravity. This water depth can be expressed as

d∗ = h∗0 + η∗ − Γ ∗, (2.3)

where h∗0 is the constant still water depth, and Γ ∗ defines the localized bottom obstacle
measured from the undisturbed flat sea bottom and moving with the constant speed
V∗. Throughout this paper we consider the following specific shape of the bottom
obstacle:

Γ ∗[x∗, t∗] = Γ
∗

m

2

(
1+ cos

[
2π
(

V∗t∗ − x∗

L∗

)])
for −1

2
6 V∗t∗ − x∗

L∗
6 1

2
, (2.4)

where Γ ∗m > 0 is the maximum positive height of the obstacle and L∗ is the width of
the obstacle. For |V∗t∗ − x∗|> L∗/2 we have that Γ ∗ = 0, and the bottom is horizontal.

We non-dimensionalize all variables by the still water depth h∗0 and the linear
shallow water celerity c∗0 ≡

√
gh∗0 as follows:

η ≡ η
∗

h∗0
, d ≡ d∗

h∗0
, Γ ≡ Γ

∗

h∗0
, x≡ x∗

h∗0
, (2.5)

V ≡ V∗

c∗0
, U ≡ U∗

c∗0
, c≡ c∗

c∗0
, τ ≡ c∗0

h∗0
t∗, (2.6)

and furthermore, we introduce the moving frame of reference χ and the associated
flow velocity Um defined by

χ ≡ τV − x and Um ≡ V − U. (2.7)
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Definition sketch of
transcritical flow in connection with a moving bottom obstacle. The coordinate system
is moving with the obstacle, and the upstream/downstream regions correspond to
negative/positive values of χ .

Within the moving coordinate system (χ , τ ), the bottom obstacle is described as Γ [χ ]
and the governing equations (2.1)–(2.2) read

∂η

∂τ
+ ∂

∂χ
(Umd)= 0,

∂Um

∂τ
+ ∂

∂χ

(
U2

m

2
+ η
)
= 0. (2.8)

2.2. Subcritical and supercritical solutions
Let us first consider the case of subcritical or supercritical flow conditions throughout
the domain, and look for steady-state solutions to (2.8). By utilizing the far-field
conditions U = 0, η = 0 and d = 1 , this leads to the conservation equations

d(V − U)= V and η + (V − U)2

2
= V2

2
, (2.9)

where d = 1+ η − Γ . Conditions at cross-section C located at the crest of the moving
obstacle (see figure 1) are of special interest, and the Froude number (in the moving
frame) at this location is defined by

FC ≡ V − UC√
dC

. (2.10)

Whenever FC→ 1, we reach critical conditions at the crest of the obstacle, and in this
case a combination of (2.9) and (2.10) leads to dC = V2/3, and

Γm = 1+ 1
2 V2 − 3

2 V2/3. (2.11)

This defines the NSW transition from subcritical to transcritical flow (Vlow) and from
transcritical to supercritical flow (Vhigh).

2.3. Transcritical solutions
In the case of transcritical flow conditions over the submerged obstacle, an upstream
shock wave will move ahead of the bar with speed cup, while a downstream shock

http://journals.cambridge.org/flm
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wave will fall behind the bar with speed cdown. In a fixed frame both shock waves will
move in the direction of the obstacle so that

cup > V > cdown, (2.12)

but in the moving (χ, τ ) frame, the upstream shock will move to the left with the
relative speed of V − cup < 0, while the downstream shock will move to the right with
the relative speed of V − cdown > 0. As shown in figure 1, we can now divide the
domain into six cross-sections: A, far ahead of the upstream shock in completely calm
conditions; B, at the upstream toe of the obstacle, which is assumed to be behind the
upstream bore; C, at the crest of the obstacle; D, at the downstream toe of the obstacle,
which is assumed to be in front of the downstream bore; E, immediately downstream
of the downstream bore; F, far downstream in completely calm conditions.

2.3.1. The asymptotic upstream problem
The first step is to conserve mass and momentum between sections A and B, and

for this purpose it is convenient to use a coordinate system moving with the upstream
shock celerity cup. Within this frame we can apply the steady-state jump conditions

dB(cup − UB)= dA(cup − UA) and cup = UA +
√

dB(dA + dB)

2dA
> 0, (2.13)

where dA = 1, UA = 0 and dB = 1 + ηB. Next, mass and energy should be conserved
between sections B and C, and for this purpose we apply a coordinate system moving
with V . This yields

dB(V − UB)= dC(V − UC) and ηB + (V − UB)
2

2
= ηC + (V − UC)

2

2
, (2.14)

where dC = 1+ ηC − Γm. Finally, we utilize that throughout transcritical conditions, the
Froude number at section C will be unity, i.e. FC = 1. This gives us five equations
with the five unknowns ηB, UB, ηC, UC and cup, by which the asymptotic upstream
problem is fully closed and solvable.

2.3.2. The asymptotic downstream problem
In accordance with figure 1, we first assume that the downstream bore will

be located in the flat region behind the downstream toe of the obstacle. In this
case supercritical conditions will govern from section C to D, and the steady-state
conservation of mass and energy in the frame moving with V can be expressed as

dD(V − UD)= dC(V − UC) and ηD + (V − UD)
2

2
= ηC + (V − UC)

2

2
, (2.15)

where dD = 1 + ηD. Notice that (2.15) is formally identical to (2.14), hence we need
to add the additional requirement FB <FC = 1 <FD, in order to obtain the correct
solutions in sections B and D. All three Froude numbers are defined in the frame
moving with the speed V . The matching of sections D and E is similar to the previous
matching between sections A and B except that this time the frame is moving with
cdown. Within this moving frame, the steady-state conservation of mass and momentum
leads to the jump conditions,

dD(cdown − UD)= dE(cdown − UE) and cdown = UD +
√

dE(dD + dE)

2dD
> 0, (2.16)

where dE = 1+ ηE.
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Finally, Houghton & Kasahara (1968) connected sections E and F by the rarefaction
condition

V − UE − 2
√

dE = V − UF − 2
√

dF, (2.17)

where dF = 1 and UF = 0. This gives us five new equations with the five unknowns
ηD, UD, ηE, UE and cdown, by which the asymptotic downstream problem is closed and
solvable.

It should be emphasized that this downstream solution requires that cdown < V , i.e.
that the downstream bore is detached from the moving obstacle. When cdown = V ,
the downstream bore will catch up with the moving obstacle and become attached
with a jump occurring somewhere on the sloping bottom between sections C and
D. Houghton & Kasahara (1968) assumed that the jump was an abrupt and local
phenomenon with the front and back located at the same χ position. On this basis they
established a system of seven equations with seven unknowns for this special problem.

3. A new characteristic formulation of the unsteady NSW equations
The abrupt onset of the motion of the obstacle will generate a series of transient

waves moving in the upstream and downstream directions. In order to cover the
temporal and spatial evolution of these waves, we need unsteady differential equations
incorporating nonlinearity as well as dispersion. Grimshaw & Smyth (1986) applied
the forced KdV equation, which incorporates weak dispersion as well as weak
nonlinearity and an explicit forcing term representing the moving obstacle. In addition
to numerical simulations, their work concentrated on analytical solutions. For this
purpose, they divided the problem into a non-dispersive near-field solution covering
the vicinity of the obstacle, and a dispersive far-field solution covering the upstream
and downstream undular bores. In the near field, the dispersive fKdV equation was
simplified to the non-dispersive Hopf equation, which was solved by the method
of characteristics to provide the bound solution over the obstacle. As a step up in
accuracy, various Boussinesq formulations are available, e.g. Peregrine (1967), Su &
Gardner (1969), Madsen & Sørensen (1992), Nwogu (1993), and Madsen, Bingham
& Liu (2002) and Madsen, Bingham & Schäffer (2003), and despite their very
different levels of sophistication and accuracy with respect to dispersion and deep
water capacities, they all simplify to the NSW equations in the dispersion-free shallow
water limit.

In this section we shall pursue characteristic solutions to the unsteady NSW
equations with the objective of establishing a new unidirectional single-family
formulation of the equations.

3.1. The classical characteristic formulation of the NSW equations
First, we derive the classical characteristic form of the NSW equations, which we
denote the MOC (methods of characteristics) formulation. The first step is to introduce
the celerity c defined by

c2 = d where d(χ, τ )= 1+ η(χ, τ)− Γ (χ). (3.1)

Differentiation of (3.1) now yields

2c
∂c

∂χ
= ∂d

∂χ
=
(
∂η

∂χ
− ∂Γ
∂χ

)
and 2c

∂c

∂τ
= ∂d

∂τ
= ∂η
∂τ
. (3.2)
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Next, we substitute this into the governing equations (2.8) to obtain

2
∂c

∂τ
+ 2Um

∂c

∂χ
+ c

∂Um

∂χ
= 0, (3.3)

∂Um

∂τ
+ Um

∂Um

∂χ
+ 2c

∂c

∂χ
+ ∂Γ
∂χ
= 0. (3.4)

Adding and subtracting (3.3)–(3.4), now leads to the classical characteristic
formulation of the NSW equations seen from the moving coordinate system

DR±
Dτ
≡ ∂R±

∂τ
+ dχ±

dτ
∂R±
∂χ±
=− ∂Γ

∂χ±
, (3.5)

where

R± ≡ Um ± 2c= V − U ± 2c, (3.6)
dχ±
dτ
≡ Um ± c= V − U ± c. (3.7)

This is a two-family (bidirectional) set of characteristics, which need to intersect and
exchange information concerning the local values of R+ and R− during the solution
procedure. Both variables are necessary in order to determine the local values of c and
U, and according to (3.6) we get

V − U = 1
2(R+ + R−), c= 1

4(R+ − R−). (3.8)

It should be emphasized, that the χ+(τ ) characteristics move in the opposite
direction to the obstacle (negative x-direction for positive V , which corresponds to
the positive χ -direction), and they basically take care of the downstream-propagating
free wave. In contrast the χ−(τ ) characteristics move in the same direction as the
obstacle (positive x-direction for positive V), and they basically take care of the
upstream-propagating free wave. Seen from the moving coordinate system, χ−(τ ) will
move in the negative χ -direction (ahead of the obstacle) for subcritical conditions, and
in the positive χ -direction (falling behind the obstacle) for supercritical conditions.

For subcritical and supercritical flow conditions, it is straightforward to solve
(3.5)–(3.8) numerically by tracking and intersecting the two families of characteristics
even though shock waves may form in the upstream or downstream free waves.
However, for transcritical flow conditions, the tracking procedure becomes very
complicated because the χ−(τ ) characteristics will experience turning points over the
obstacle. In this case the MOC method is inconvenient for practical solutions.

3.2. Analytical integration of the χ+(τ ) characteristics
The non-dispersive Hopf equation, applied by Grimshaw & Smyth (1986) in the
vicinity of the moving obstacle, provides an attractive and convenient formulation
for transcritical flow, because it consists of a single family (unidirectional) of
characteristics with the U variable having already been eliminated during the
derivation of the original KdV equation. The single family of characteristics imbedded
in the Hopf equation corresponds to the χ−(τ ) characteristics of the NSW equations,
and it is this family which will experience turning points and local shock waves
on both sides of the hump in the case of transcritical flow. In the following, we
shall pursue an approximative NSW formulation, which reduces the classical two-
family system to a single χ−(τ ) family. This calls for an analytical integration
of the χ+(τ ) characteristics by which the velocity U can be approximated by an
analytical expression.
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3.2.1. A new approximation for U
According to (3.5)–(3.7), the R+ characteristics are governed by

∂R+
∂τ
+ dχ+

dτ
∂R+
∂χ+
=− ∂Γ

∂χ+
, (3.9)

where

R+ ≡ V − U + 2c and
dχ+
dτ
≡ V − U + c. (3.10)

In the following derivation, we formally assume that

η = O(ε), U = O(ε), Γ = O(ε) with ε < 1, (3.11)

which implies that

d = 1+ ε (η − Γ ) , (3.12)

and

c≡√d ' 1+ ε
2
(η − Γ )+ O(ε2). (3.13)

Note that the explicit ε factor has been included to indicate the order of magnitude
of the different terms. Actually, we do not intend to replace c by (3.13), but merely
utilize that

c− 1= O(ε). (3.14)

By introducing (3.11) and (3.14) into (3.10) we obtain

R+ = V + 2+ ε (2(c− 1)− U) , (3.15)
dχ+
dτ
= V + 1+ ε (c− 1− U) . (3.16)

The leading-order terms in (3.15) are constants, hence they do not influence the result
and may be excluded from R+. Next, we insert (3.15)–(3.16) into (3.9) and collect
terms of O(ε) to obtain

ε
∂

∂τ
(2(c− 1)− U)+ ε (V + 1)

∂

∂χ+
(2(c− 1)− U)+ ε ∂Γ

∂χ+
= O(ε2). (3.17)

Notice that the consequence of ignoring the ε2-terms in (3.17) is that the
characteristic tracks χ+(τ ) will be approximated by

dχ+
dτ
' V + 1, i.e. χ+(τ )' χ+(0)+ τ(V + 1). (3.18)

This implies that the χ+(τ ) tracks are assumed to be straight and independent of the
intersections with the χ−(τ ) characteristics, and this is a really important simplification
of the procedure.

Next, we utilize that Γ is a function of χ+(τ ) but not explicitly of τ , and this allows
the following manipulations

ε
D

Dτ

(
Γ

V + 1

)
= ε (V + 1)

∂

∂χ+

(
Γ

V + 1

)
+ O(ε2)= ε ∂Γ

∂χ+
+ O(ε2). (3.19)
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By inserting (3.19) into (3.17) we finally obtain

ε
D

Dτ

(
2(c− 1)− U + Γ

V + 1

)
= O(ε2), (3.20)

which defines the approximative conservation equation for the χ+ characteristics.
It is now straightforward to integrate (3.20) along χ+(τ ) starting from χ+(0), and in

this process we utilize the starting conditions

η[χ+(0)] = 0, d[χ+(0)] = 1− Γ [χ+(0)], (3.21)

U[χ+(0)] = 0, c[χ+(0)] =
√

1− Γ [χ+(0)]. (3.22)

Consequently, the integration of (3.20) leads to the important result

U[χ+(τ )] = 2 (c[χ+(τ )] − 1)+ α̃, (3.23)

where

α̃ ≡ 2− 2
√

1− Γ [χ+(0)] +
(
Γ [χ+(τ )] − Γ [χ+(0)]

V + 1

)
. (3.24)

Notice that (3.23)–(3.24) incorporate a memory effect by utilizing information related
to χ+(0), i.e. from the location where the characteristics started at τ = 0.

3.2.2. Similar approximations from the literature
Baines (1995), in his § 2.3, argued that ‘the downstream-propagating wave is

generally little affected by nonlinearities, but travels quickly downstream away from
the vicinity of the obstacle. Whilst necessary to satisfy the initial conditions, these
waves are unimportant otherwise, and on the upstream side of the obstacle, the
equations for the variables on this same family of characteristics may be integrated
to yield’

U = 2(c− 1). (3.25)

We note that this is actually the classical expression for simple waves travelling into
undisturbed waters, and obviously (3.23) simplifies to (3.25) as long as the χ+(τ )
characteristics stay completely away from the obstacle, i.e. with α̃ = 0.

It should also be mentioned that El, Grimshaw & Smyth (2009) modified Houghton
& Kasahara’s (1968) steady-state formulation, which was summarized in § 2.3. Firstly,
they replaced the upstream and downstream shock conditions by undular jump
conditions by which e.g. (2.16) was simplified to

V − UD + 2
√

dD = V − UE + 2
√

dE. (3.26)

Secondly, they showed that the downstream Riemann invariant could be ignored
for sufficiently small topographic amplitudes, and this corresponded to ignoring the
rarefaction condition (2.17), while using the relation (3.25), i.e.

UE = 2
(√

dE − 1
)
. (3.27)

By combining these two equations, they could replace (2.16)–(2.17) by

V − UD + 2
√

dD = V + 2. (3.28)

Finally, let us discuss the approximation imbedded in the KdV and Hopf
formulations considered by Grimshaw & Smyth (1986). This corresponds to a global
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use of (3.25), and requires that the scalings from (3.11) are modified to

η = O(ε), U = O(ε), Γ = O(ε2) with ε < 1. (3.29)

Hence we need to assume that the height of the obstacle is one order of magnitude
smaller than the surface elevation, which again is one order smaller than the depth. In
this case (3.23) simplifies to (3.25). If we then additionally insert (3.13) into (3.25),
the velocity further simplifies to

U = η. (3.30)

3.3. A single-family characteristic formulation of the NSW equations
3.3.1. The new AMOC formulation

Having established an analytical estimate of the velocity in (3.23), we are now
able to formulate the NSW equations in terms of a single family of characteristics.
Being an approximative formulation, we call this the AMOC (approximative method
of characteristics) formulation of the NSW equations. According to (3.5)–(3.7), the χ−
characteristics are governed by

∂R−
∂τ
+ dχ−

dτ
∂R−
∂χ−
=− ∂Γ

∂χ−
, (3.31)

where

R− ≡ V − U − 2c and
dχ−
dτ
≡ V − U − c. (3.32)

At any χ−(τ ) location, we would now like to pass on the information about U from
the intersecting χ+(τ ) system. In principle this information is available in (3.23), but
we need to track the location of χ+(0) for any choice of χ−(τ )= χ+(τ ). Conveniently,
this back-tracing is greatly simplified by (3.18), which leads to the approximation

χ+(0)' χ−(τ )− τ(V + 1). (3.33)

Consequently, we can express the velocity U along the χ−(τ ) characteristics as

U = 2(c− 1)+ α, (3.34)

where

α ≡ 2− 2
√

1− Γ [χ−(τ )− τ(V + 1)] +
(
Γ [χ−(τ )] − Γ [χ−(τ )− τ(V + 1)]

V + 1

)
. (3.35)

Notice that α depends not only on the position χ−(τ ), but also explicitly on the time τ
due to the memory feature of χ+(0).

Two situations are of special interest: the first one is the initial condition for τ = 0,
in which case (3.35) simplifies to

α0 = 2− 2
√

1− Γ [χ−(0)]. (3.36)

The second one is for large values of τ , where the back-tracing to χ+(0) typically
ends in the flat region surrounding the moving obstacle. If we select, for example, the
location χ−(τ ) = 0, the time it takes to back-trace to the flat surrounding region is
τ1 = L/(2V + 2). Hence, asymptotically (3.35) simplifies to

α∞ ≡ Γ [χ−(τ )]V + 1
. (3.37)
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Next, we insert (3.34) in (3.32) to obtain

R− = V − 2− 4(c− 1)− α, (3.38)
dχ−
dτ
= V − 1− 3(c− 1)− α. (3.39)

Again there is no reason to keep the first two constant terms in R−, and we replace it
by the alternative Riemann invariant

R≡ 4 (c− 1)+ α. (3.40)

In terms of R, the new single-family AMOC formulation of the NSW equations now
reads

DR

Dτ
= ∂Γ

∂χ−
where

dχ−
dτ
= V − 1− 3

4
R− 1

4
α. (3.41)

The corresponding water depth and surface elevation are determined by

d = (1+ 1
4(R− α))

2
and η = d − 1+ Γ. (3.42)

It is straightforward to solve (3.41) numerically by tracking the χ−(τ ) characteristics
from their origin, and phenomena associated with subcritical, supercritical and
transcritical flow conditions can easily be handled, in contrast to the original two-
family system (3.5)–(3.7).

3.3.2. The Hopf formulation
The Hopf equation solved by Grimshaw & Smyth (1986) can be retrieved from

(3.41), by once again assuming that Γ = O(ε2), i.e. one order of magnitude smaller
than the surface elevation, and two orders smaller than the water depth. By utilizing
(3.29), (3.13), (3.35) and (3.40) we find that

c' 1+ εη
2
+ O(ε2), α = O(ε2), R' 2η + O(ε2), (3.43)

by which (3.41) simplifies to

Dη
Dτ
= 1

2
∂Γ

∂χ−
where

dχ−
dτ
= V − 1− 3

2
η. (3.44)

This is the Hopf equation imbedded in the forced KdV equation.

3.3.3. A comparison between the AMOC, Hopf and NSW formulations
In order to make a preliminary comparison with the original NSW equations as

given in (3.5)–(3.7), we have considered an obstacle defined by (2.4) with Γm = 0.10
and L = 100. Figure 2(a) shows the subcritical case of V = 0.45 at time τ = 300,
while figure 2(b) shows the supercritical case of V = 1.60 at time τ = 200. In both
cases the numerical AMOC solution (dashed line) is in remarkably good agreement
with the NSW solution (the full grey line). In fact you can hardly tell the difference
between the two curves, except in the far downstream region (χ ' 400 in figure 2a
and χ ' 500 in figure 2b). The bound solutions over the obstacle (−50 < χ < 50)
as well as the forward-going free waves (appearing at χ ' −190 in figure 2a, and
at χ ' 150 in figure 2b) are almost identical. However, in fact it is even more
remarkable that the single-family AMOC solution is able to capture the backward-
going free waves (appearing for χ ' 450–550). This is possible due to the memory
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FIGURE 2. Snapshots of the computed surface elevation for (a) a subcritical case with
V = 0.45 and τ = 300 and (b) a supercritical case with V = 1.60 and τ = 200, and for
Γm = 0.10, L = 100. Full grey line: two-family MOC solution to the NSW equations defined
by (3.5)–(3.7); dashed line: single-family AMOC solution to (3.41); dashed-dotted line:
solution to the Hopf (fKdV) equation defined by (3.44).

effect incorporated in α given by (3.35). The accuracy of the backward-going free
wave is not perfect, but still good enough to secure a high accuracy of the forward-
going free wave. In contrast, the numerical Hopf solutions (dot-dashed line) are
completely off: for the subcritical/supercritical case the bound solution as well as
the forward-going free waves are significantly overestimated/underestimated, while the
backward-going free wave is not captured at all. However, it should be emphasized
that this test is really violating the restrictions for the Hopf solution: as discussed
in the introduction, the forced KdV equation requires that V − 1 = O(ε), which
implies that the Hopf equation is really not applicable for subcritical and supercritical
conditions.

4. Analytical solutions to the new AMOC formulation of the NSW equations
Grimshaw & Smyth (1986) derived an exact analytical solution to (3.44) by

integrating it along the χ−(τ ) characteristics. Their analytical solution provided a
very informative perception of the flow details and phenomena to be observed in
transcritical flow, and it could be used to determine not only the asymptotic solution
but also temporal and spatial details, which matched numerical solutions to (3.44). In
the following, we shall pursue the possibility of deriving a similar analytical solution
to the new AMOC formulation (3.41), which will cover not only transcritical flow
but also subcritical and supercritical flow. It turns out that we can only achieve an
approximative solution to (3.41), which nevertheless is convenient, informative and
fairly accurate.



250 P. A. Madsen and A. B. Hansen

4.1. Analytical integration of the χ−(τ ) characteristics
The first step towards an analytical solution to (3.41), is to multiply the characteristic
equation by the characteristic speed, by which the right-hand side becomes

dχ−
dτ

∂Γ

∂χ−
= DΓ

Dτ
, (4.1)

while the left-hand side becomes

dχ−
dτ

DR

Dτ
=
(

V − 1− 3
4

R− 1
4
α

)
DR

Dτ
. (4.2)

The first three terms on the right-hand side of (4.2) can easily be written in
conservation form, while the last term calls for an additional approximation: we
assume that α, which basically is a function of Γ , varies more slowly with χ−(τ ) than
R, and use the approximation

−1
4
α

DR

Dτ
' D

Dτ

(
−1

4
αR

)
. (4.3)

This leads to the following approximative conservation form of (3.41):

D
Dτ

(
3
8

R2 −
(

V − 1− 1
4
α

)
R+ Γ

)
= 0. (4.4)

Next, we integrate (4.4) along χ−(τ ) starting from χ−(0), and in this connection the
integration constant becomes

G0[χ−(0)] ≡ 3
8 R2

0 − (V − 1− 1
4α0)R0 + Γ [χ−(0)], (4.5)

where α0 is given by (3.36), and where

R0 ≡ R[χ−(0)] = 2
(√

1− Γ [χ−(0)] − 1
)
. (4.6)

We note that G0 goes to zero for |χ−(0)|> L/2, while it reaches its maximum G0m for
χ−(0)= 0, i.e.

G0m = 3
8 R2

0m − (V − 1− 1
4α0m)R0m + Γm, (4.7)

R0m = 2
(√

1− Γm − 1
)
, α0m = 2− 2

√
1− Γm. (4.8)

By integrating (4.4), using (4.5), and solving with respect to R, we finally obtain

R= 4
3

(
β ∓

√
β2 + 3

2(G0 − Γ )
)

where β ≡ V − 1− 1
4α. (4.9)

In the following we shall discuss this solution in connection with transcritical flow,
subcritical flow and supercritical flow.

4.2. The essential characteristics and the classification of flow regimes
4.2.1. The concept of turning points and the limiting characteristic

The concept of turning points is a unique feature of transcritical flow. A turning
point occurs whenever the characteristic speed goes to zero, and according to (3.41)
this happens for

R→ 4
3(V − 1− 1

4α). (4.10)
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This, on the other hand, coincides with the situation where the square-root terms in
(4.9) cancel, i.e.

(V − 1− 1
4α)

2+ 3
2(G0 − Γ )→ 0. (4.11)

Now, let us consider the limiting characteristic (lc), which starts from χ−(0) = χ lc
0

and reaches its turning point precisely at χ−(τ ) = 0, i.e. at the crest of the obstacle.
This particular characteristic will asymptotically stop and remain at χ = 0, and
therefore it will eventually govern the bound solution at the crest of the obstacle.
Characteristics starting closer to the crest of the obstacle will experience no turning
but continue over the obstacle, while the characteristics starting further away from the
crest will turn before reaching the crest and return to where they came from. For this
reason, it is the limiting characteristic and its immediate neighbours (starting from
χ lc

0 ± δ where δ→ 0), which govern the asymptotic bound solution in the vicinity
of the obstacle. Now let α be approximated by its asymptotic expression (3.37), and
require that (4.11) goes to zero for Γ = Γm. This leads to the condition

Glc
0 = Γm − 2

3

(
V − 1− 1

4
Γm

V + 1

)2

. (4.12)

Provided that Glc
0 obtained from (4.12) satisfies 0 6 Glc

0 6 G0m, we can now determine
the corresponding value of χ lc

0 by combining (4.12) and (4.5). Examples are given in
figure 4, which is discussed in § 4.2.5.

4.2.2. Classification of flow regimes
The special case of Glc

0 = 0 defines the transition from transcritical flow to
subcritical or supercritical flow. The subcritical transition occurs for χ lc

0 → L/2
and V = Vlow < 1, while the supercritical transition occurs for χ lc

0 → −L/2 and
V = Vhigh > 1. Combining the condition Glc

0 = 0 with (4.12) yields the implicit AMOC
expression

Γm = 2
3

(
V − 1− 1

4
Γm

V + 1

)2

, (4.13)

which defines the limits Vlow and Vhigh as a function of Γm. We emphasize that, due
to the approximations involved in the analytical integration of the AMOC formulation,
(4.13) differs from the corresponding expression derived directly from the steady NSW
equations, e.g.

Γm = 1+ 1
2 V2 − 3

2 V2/3. (4.14)

Note also that the corresponding expression for the Hopf equation reads

Γm = 2
3(V − 1)2, (4.15)

which leads to the explicit solutions

Vlow = 1−
√

3
2Γm and Vhigh = 1+

√
3
2Γm. (4.16)

Figure 3 shows that (4.16) is surprisingly accurate, especially considering that the
Hopf equation formally requires that V − 1 = O(ε) and Γm = O(ε2). On this basis
we recommend classifying the flow conditions over the obstacle by the following
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FIGURE 3. (Colour online) Basic thresholds between subcritical, lower-transcritical, higher-
transcritical and supercritical flow. Full line: NSW solution to (4.14); dot-dashed line: Hopf
solution (4.15); dashed line: AMOC solution to (4.13); dotted line: AMOC solution to (4.18).
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FIGURE 4. (Colour online) The characteristic tracks χ−(τ ) determined from (3.41) for
Γm = 0.05, L = 100. (a) Lower-transcritical case: Φ = −0.5; (b) higher-transcritical case:
Φ = 0.5.

parameter:

Φ ≡
√

2
3
∆√
Γm
, where ∆≡ V − 1. (4.17)

Hence we introduce the limits Φlow and Φhigh based on (4.17) with Vlow and Vhigh,
respectively. Note that (4.17) has the advantage that it combines the effect of the
height and the speed of the obstacle, and for the case of the Hopf solution we obtain
the approximate flow limits of Φlow =−1 and Φhigh = 1. We shall utilize the definition
(4.17) throughout the rest of this paper.

4.2.3. The crest characteristic starting from the crest of the obstacle
Another unique characteristic is the one starting at the location of the crest of the

obstacle, i.e. at χ−(0) = 0. For subcritical flow, i.e. V < Vlow, this crest characteristic
governs the magnitude of the forward-going free wave, which propagates in the
upstream region ahead of the obstacle. Similarly, for supercritical flow, i.e. Vhigh < V ,
it governs the magnitude of the forward-going free wave, which now occurs in the
downstream region behind the obstacle.

Remarkably, the crest characteristic also plays an important role in transcritical flow,
despite the presence of turning points. In this connection, it turns out to be convenient
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to introduce the concepts of lower-transcritical and higher-transcritical flow conditions
defined as Vlow < V < Vmid and Vmid < V < Vhigh, respectively. The threshold Vmid

satisfies the condition

Glc
0 = G0m⇒ V = Vmid , (4.18)

and the determination of Vmid involves a combination of (4.18), (4.12) and (4.7).
The Hopf equation leads to Vmid = 1, while the AMOC solution generally leads to
slightly lower values. Note that for V = Vmid , we obtain χ lc

0 = 0, and this implies that
the turning points in the transcritical solution vanish. Consequently the characteristics
starting from χ−(0) < 0 will radiate upstream, while the ones with χ−(0) > 0 will
radiate downstream.

For lower-transcritical flow conditions, the crest characteristic will govern the
magnitude of the leading forward-going free wave, which propagates in the upstream
region ahead of the obstacle. This situation is very similar to what happens
in subcritical flow. For higher-transcritical flow conditions, the crest characteristic
will influence the leading forward-going free wave, which now propagates in the
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All the characteristics starting from χ−(0)6−L/2 will turn exactly at the caustic χb =
−33.52. Finally, it should be emphasized that we generally allow the characteristics to
cross and produce double-valued solutions even though this situation heralds the onset
of shock waves.

4.3. Asymptotic expressions for transcritical flow
4.3.1. The AMOC solution

We consider the transcritical regime defined by Φlow < Φ < Φhigh, and assume that
shock waves do not occur in the region −L/2 6 χ 6 L/2 over the obstacle. Similar
assumptions were made by Grimshaw & Smyth (1986) and El et al. (2009), but we
emphasize that these assumptions are sometimes violated (examples will be given
later).

As discussed in § 4.2.1, the asymptotic bound solution in the vicinity of the obstacle
is governed by the limiting characteristic coming from χ−(0) = χ lc

0 . Hence at the
upstream and downstream toes of the moving obstacle we use (4.9) with G0 = Glc

0 and
χ−(τ )=±L/2, which implies that α and Γ go to zero. This leads to

Rup
bound = 4

3

(
∆+

√
∆2 + 3

2 Glc
0

)
, Rdown

bound = 4
3

(
∆−

√
∆2 + 3

2 Glc
0

)
. (4.20)

More generally, we may express the χ variation of the asymptotic bound solution for
R as

Rbound(χ)= 4
3

(
β1(χ)+ κ

√
β1 (χ)

2+ 3
2

(
Glc

0 − Γ (χ)
))

for − L

2
6 χ 6−L

2
, (4.21)

where

β1(χ)≡∆− 1
4
Γ (χ)

V + 1
, κ ≡−sign(χ). (4.22)

Note that at χ = 0, the general expression (4.21)–(4.22) can be simplified by using
(4.12), which leads to

Rcrest
bound =

4
3

(
∆− 1

4
Γm

V + 1

)
. (4.23)

As discussed in § 4.2.3, the asymptotic free solution is governed by the crest
characteristic starting from χ−(0) = 0. In this case we use (4.9) with G0 = G0m, α = 0
and Γ = 0, which leads to

Rup
free = 4

3

(
∆+

√
∆2 + 3

2 G0m

)
for Φlow <Φ 6Φmid , (4.24)

Rdown
free = 4

3

(
∆−

√
∆2 + 3

2 G0m

)
for Φmid 6Φ <Φhigh. (4.25)

We note that for Φ = Φmid , (4.24)–(4.25) match the bound solutions (4.20), i.e.
Rup
free = Rup

bound and Rdown
free = Rdown

bound . It is emphasized that the corresponding solutions
for η are determined by utilizing (3.42).

4.3.2. The Hopf solution
For comparison, let us again assume that Γ = O(ε2), i.e. one order of magnitude

smaller than the surface elevation. In this case (4.6) simplifies to R0 = 0, while (4.5)
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and (4.12) simplify to

G0[χ−(0)] = Γ [χ−(0)] and Glc
0 = Γm − 2

3∆
2. (4.26)

Now the asymptotic bound solution (4.21) simplifies to

ηbound(χ)= 2
3

(
∆+ κ

√
∆2 + 3

2(G
lc
0 − Γ (χ))

)
where κ ≡−sign(χ), (4.27)

which leads to

η
up
bound = 2

3

(
∆+

√
3
2Γm

)
, ηcrestbound = 2

3∆, ηdownbound = 2
3

(
∆−

√
3
2Γm

)
. (4.28)

4.4. Asymptotic expressions for subcritical and supercritical flow
For subcritical and supercritical conditions, the asymptotic bound solution surrounding
the moving obstacle is determined by characteristics coming from infinity, i.e. G0 = 0.
In this case (4.9) leads to

Rbound(χ)= 4
3

(
β1(χ)+ κ

√
β1 (χ)

2− 3
2Γ (χ)

)
for − L

2
6 χ 6−L

2
, (4.29)

where β1 is defined by (4.22), and where κ = 1 for Φ < Φlow and κ = −1 for
Φ >Φhigh. The corresponding solution to the Hopf equation reads

ηbound(χ)= 2
3

(
∆+ κ

√
∆2 − 3

2Γ (χ)

)
, (4.30)

where κ = 1 for Φ <−1 and κ =−1 for Φ > 1.
Finally, the forward-going free wave is governed by the crest characteristic starting

from χ−(0)= 0, and by using (4.9) with G0 = G0m, α = 0 and Γ = 0 we obtain

Rup
free = 4

3

(
∆+

√
∆2 + 3

2 G0m

)
for Φ 6Φlow, (4.31)

Rdown
free = 4

3

(
∆−

√
∆2 + 3

2 G0m

)
for Φhigh 6Φ. (4.32)

Notice that (4.31)–(4.32) match and continue the expressions (4.24)–(4.25) valid in
the transcritical regime. It is emphasized that the corresponding solutions for η are
determined by utilizing (3.42).

5. The formation of shock waves and undular bores
Whenever the NSW characteristics of the same family cross, the solution starts to

produce overturning waves, and this heralds the formation of a shock wave (see e.g.
Stoker 1958, his § 10.10 with figures 10.10.8 and 10.10.9). The shock wave (at least
in a mathematical sense) moves with a vertical front face, i.e. as a discontinuity in the
surface elevation, and for weak shocks its celerity can be approximated as the average
speed of the two crossing characteristics. For stronger shocks the general expressions
given in § 2 should be applied.

For the relatively low obstacles considered in this work, the discontinuity should
be replaced by a dispersive undular bore, which cannot be captured by the NSW
equations. Instead we need KdV or Boussinesq equations including a mixture of
nonlinearity and dispersion. Gurevich & Pitaevskii (1974) were the first to provide a
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mathematical description of an undular bore generated by an initial discontinuity in the
surface elevation. They used the modulation theory by Whitham (1974) in connection
with the KdV equation, and showed that the bore can be described as a modulated
train of cnoidal waves with a leading solitary wave in front and small sinusoidal waves
trailing behind. They derived asymptotic expressions for the temporal and spatial
variations of the surface elevation including the propagation speed of the leading
and trailing edges of the bore. Later, Grimshaw & Smyth (1986) and Smyth (1987)
extended this description to cover upstream and downstream bores in connection with
transcritical flow over a bottom obstacle. A comprehensive and systematic review of
these methods has been given by Kamchatnov (2000).

Recently, El, Grimshaw & Smyth (2006) and El et al. (2009) developed a far-field
modulation solution for undular bores in the framework of the Boussinesq equations
by Su & Gardner (1969). They were not able to describe the actual evolution of the
surface elevation, but provided expressions for the height and speed of the leading
and trailing edges of the upstream and downstream undular bores. The non-dispersive
near-field solution over the obstacle was covered by a slightly modified version of
Houghton & Kasahara’s (1968) asymptotic formulation for bound waves.

In the following we shall concentrate on the propagation speeds of the leading and
trailing edges of the bores in the framework of the NSW and KdV formulations.

5.1. Leading downstream edge
The leading edge of the downstream bore is assumed to travel over a flat bottom as a
solitary wave of height HD, in a depth dD = 1+ ηD, and in an ambient current UD. In a
fixed frame of reference the celerity can be expressed as

c−down = UD +
√

dD + HD, (5.1)

where the velocity UD is determined by (3.34) with α = 0. The remaining problem
is therefore to estimate the wave height HD. In the framework of the KdV equation,
Gurevich & Pitaevskii (1974) and Grimshaw & Smyth (1986) established the result
HD =−2ηD > 0, and in combination with (5.1) and (3.34) this leads to

c−down = 2
(√

1+ ηD − 1
)
+
√

1− ηD. (5.2)

Note that for small values of ηD, (5.2) simplifies to c−down ' 1 + ηD/2, and by inserting
the Hopf expression (4.28) we obtain

c−down ' 1+ 1
3∆−

√
1
6Γm, (5.3)

which is the fKdV result obtained by Grimshaw & Smyth (1986).
A more sophisticated estimate of HD was recently derived by El et al. (2009) on

the basis of the Boussinesq equations by Su & Gardner (1969). Their result can be
expressed as

HD = (1+ ηD)
(
λ2 − 1

)
and c−down = 2

(√
1+ ηD − 1

)
+ λ
√

1+ ηD, (5.4)

where λ satisfies

(1+ ηD)
√
λ−

(
4− λ

3

)21/10(1+ λ
2

)2/5

= 0. (5.5)

In practice there is little difference between (5.4) and (5.2) up to the point where ηD

exceeds 35–40 % of the still water depth.
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FIGURE 5. (Colour online) The attachment of upstream and downstream bores as a function
of Γm. Dashed line: the KdV solution for attachment.

The downstream bore becomes attached to the obstacle whenever c−down→ V , and we
denote this incidence as Φdown

a . This criterion is shown in figure 5 as a function of Γm.
For comparison the corresponding KdV solution based on (5.3) leads to Φdown

a =−0.5.
The downstream bore will be attached to the obstacle in the interval Φlow <Φ 6Φdown

a .

5.2. Leading upstream edge
The leading edge of the upstream bore is assumed to travel over a flat bottom as a
solitary wave of height HB, in a depth dA = 1, and in the ambient current UA = 0. In a
fixed frame of reference the celerity can be expressed as

c−up =
√

1+ HB. (5.6)

Again we need to estimate the wave height HB. By using the findings of Gurevich &
Pitaevskii (1974) and Grimshaw & Smyth (1987), we get HB = 2ηB > 0, which leads
to

c−up =
√

1+ 2ηB. (5.7)

Note that for small values of ηB, (5.7) simplifies to c−up ' 1 + ηB, and by inserting the
Hopf expression (4.28) we obtain

c−up ' 1+ 2
3∆+

√
2
3Γm, (5.8)

which is the KdV result obtained by Grimshaw & Smyth (1986).
A more sophisticated estimate of HD was derived by El et al. (2009) on the basis

of the Boussinesq equations by Su & Gardner (1969). In this case their result can be
expressed as

HB =
(
λ2 − 1

)
and c−up = λ, (5.9)

where λ satisfies
√
λ

1+ ηB
−
(

4− λ
3

)21/10(1+ λ
2

)2/5

= 0. (5.10)

Again, there is little difference between (5.9) and (5.7) up to the point where ηB

exceeds 35–40 % of the still water depth.
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However, it should be emphasized that El et al. (2009) generally combined
(5.9)–(5.10) with the choice of ηB = ηupbound . As discussed throughout § 4, a better
choice would be ηB = ηupfree determined from (4.24) if Φlow <Φ <Φmid , and ηB = ηupbound
determined from (4.20) if Φmid <Φ <Φhigh.

5.3. Trailing upstream edge
As long as the undular bore is completely detached from the moving body and moves
over a constant depth, the trailing edge of the bore will move with the group velocity
of the cnoidal wave train. Within the framework of KdV theory and measured in the
fixed frame of reference, the group velocity reads

c+up = 1−∆−
√

3
2Γm. (5.11)

El et al. (2009) extended this expression to

c+up = 2
(√

1+ ηB − 1
)
+ λ3

√
1+ ηB, (5.12)

where the first term accounts for the ambient-current velocity, the second term for the
group velocity, and where λ satisfies

(1+ ηB)
√
λ−

(
4− λ

3

)21/10(1+ λ
2

)2/5

= 0. (5.13)

In this case ηB = ηupbound is always the relevant level to apply in connection with
(5.12)–(5.13).

The upstream bore becomes attached to the obstacle whenever c+up→ V , and we
denote this incidence as Φup

a . This criterion is shown in figure 5 as a function of Γm.
For comparison the corresponding KdV solution based on (5.11) leads to Φup

a = −0.5.
The upstream bore will be attached to the obstacle in the interval Φup

a 6Φ 6Φhigh.

6. Numerical results and comparisons
In this section, we demonstrate that the numerical solution to the new single-

family formulation of the NSW equations can predict the initial temporal and spatial
evolution of the transient waves associated with the moving bottom obstacle. Typically,
the solution will approach a bound steady state over most parts of the obstacle,
which is also valid asymptotically, and this implies that dispersion can generally be
ignored within this region. At some distance from the obstacle, dispersion will become
important sooner or later, and beyond this point a Boussinesq formulation will be
much more appropriate for the detailed modelling of the upstream and downstream
waves. But even beyond this point, the non-dispersive asymptotic predictions obtained
by the new theory are useful, e.g. for estimating the expected height and speed of
the leading upstream waves, the upstream/downstream setup/setdown at the toe of
the obstacle, and the height and speed of the leading downstream waves. This also
allows a prediction of when the upstream and downstream bores become attached to or
detached from the obstacle.

Our main vehicle for establishing reference solutions for the transient wave problem
is a numerical model, which solves the high-order Boussinesq formulation by Madsen,
Fuhrman & Wang (2006), see also Madsen et al. (2002, 2003). This method uses
exact representations of the kinematic and dynamic free-surface conditions expressed
in terms of surface velocities, and determines the vertical distribution of fluid
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FIGURE 6. Snapshots (at five different times) of the surface elevation for subcritical
conditions: Φ = −1.5, Γm = 0.05 and L = 100. Comparison between the AMOC simulation
(dashed line) and a Boussinesq simulation (full line). Dotted line: the asymptotic level ηupfree
based on (4.31). Snapshots shown at (1) τ = 200; (2) τ = 400; (3) τ = 600; (4) τ = 800; (5)
τ = 1000.

velocity through a Padé-enhanced truncated series solution to the Laplace equation.
As demonstrated in many previous studies, this formulation can accurately treat
nonlinear dispersive waves even for a wavenumber times the water depth as high as
30. This is more than sufficient for the present problem, which is basically a shallow
water problem with relatively weak dispersion. Fuhrman & Madsen (2009) recently
extended the model to allow for a time-varying bottom and a moving shoreline in
connection with tsunami generation. The numerical solution procedure is based on
finite-difference discretizations on an equidistant grid, and an explicit four-stage fourth-
order Runge–Kutta scheme is used for the time integration. A detailed description
of the scheme can be found in Madsen et al. (2002) for one horizontal dimension.
The examples presented in this section have been simulated using the following
non-dimensional discretization: dx = 0.25–0.5 and dτ = 0.1–0.2 keeping the Courant
number at Cr = dτ/dx = 0.4. For most cases, this choice is adequate for describing
the waves appearing in the upstream and downstream bores; however it should be
mentioned that near the transitions Φlow and Φhigh the leading waves become very high
and steep and somewhat under-resolved.

6.1. Verification of the temporal and spatial evolution of the surface elevation
In this first investigation covering figures 6–12, we have considered the moderate
obstacle height of Γm = 0.05. This leads to the following set of governing parameters:
firstly, the thresholds for transcritical flow (see § 4.2.2) are Φlow = −0.974 and
Φhigh = 1.020; secondly, the transition from lower- to higher-transcritical flow (see
§ 4.2.3) occurs at Φmid = −0.035; thirdly, the upstream and downstream attachment
thresholds (see §§ 5.1 and 5.3) are Φup

a = −0.452 and Φdown
a = −0.595 (see also

figure 5).
Figure 6 covers the subcritical case of Φ = −1.5 (with L = 100). The computed

spatial variation of the surface elevation (shown for τ = 200, 400, 600, 800 and
1000) includes the forward-going free wave as well as the bound wave (appearing at
−50 < χ < 50), while the backward-going free wave has been left out of the picture.
For the first two instants there is hardly any difference between the AMOC solution
(dashed line) and the Boussinesq solution (full line). Then at τ = 600 dispersion starts
to play a minor role at the crest of the forward-going free wave, and this trend
further evolves at τ = 800 and τ = 1000, where the AMOC solution starts to produce
overturning waves. The crest of the AMOC solution for the forward-going free wave
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FIGURE 7. (Colour online) Snapshots, at times (a) τ = 300, (b) τ = 600 and (c) τ = 800,
of the surface elevation for lower-transcritical conditions: Φ = −0.9, Γm = 0.05 and L = 100.
Comparison between the AMOC simulation (dashed line) and a Boussinesq simulation (full
line). Dashed-dotted curve: the asymptotic level ηbound based on (4.21); dotted line: the
asymptotic level ηupfree based on (4.24).

clearly follows the analytical AMOC estimate ηupfree based on (4.31), which is shown as
the horizontal dotted line. The bound wave over the obstacle does not change beyond
τ = 400, and there is an excellent agreement between the AMOC solution and the
Boussinesq solution.

Figure 7 covers the lower-transcritical case of Φ = −0.9 (with L = 100). Since
Φ < Φmid = −0.035, we expect the leading edge of the upstream bore to follow η

up
free,

while the trailing edge should follow η
up
bound (see the discussion in §§ 4.2.1 and 4.2.3).

Furthermore, since Φlow < Φ < Φdown
a , we expect the downstream bore to become

attached to the obstacle. The computed spatial variation of the surface elevation is
shown in figure 7(a–c) for τ = 300, 600 and 800, respectively. The figures also include
a horizontal dotted line representing η

up
free based on (4.24), and a dash-dotted curve

representing ηbound(χ) based on (4.21).
At τ = 300 the numerical AMOC solution (dashed line) agrees very well with the

Boussinesq solution (full line) except for the weak signs of dispersion seen in the
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downstream transition to still water. At this stage, both solutions deviate significantly
from the asymptotic ηbound , while the crest of the upstream-going wave follows ηupfree
very closely. At τ = 600 the AMOC solution matches the Boussinesq solution quite
closely in the upstream region (χ < 0), except for the very front of the bore, where
dispersion starts to play a role. In the front of the upstream bore, the AMOC solution
still follows ηupfree, while the Boussinesq solution tends to grow somewhat higher due
to the formation of shorter and higher cnoidal waves. At this stage, the AMOC
solution and the Boussinesq solution agree very well with the asymptotic ηbound over
part of the obstacle (−50 6 χ < 20). However, at the downstream location χ ' 20,
an undular bore develops in the Boussinesq solution, and this obviously violates the
non-dispersive assumptions for ηbound . No attempts have been made to capture the
formation of shock waves in the AMOC formulation, but from its strongly overturning
pattern we can see that shock waves would indeed occur over the obstacle. This is
clearly a situation which violates the basis for the AMOC solution as well as for the
NSW equations in the downstream region. Finally, at τ = 800 we have omitted the
numerical AMOC solution, because it no longer makes sense. Again we notice that
the Boussinesq solution agrees well with ηbound in the region −50 < χ < 20, while it
is clear that the downstream undular bore is attached to the obstacle (as predicted) at
approximately χ = 20.

Figure 8 shows the lower-transcritical case of Φ = −0.5 (with L = 100). Since
Φ < Φmid , the leading edge of the upstream bore is again expected to follow η

up
free,

while the trailing edge should follow η
up
bound . Furthermore, since Φdown

a < Φ < Φup
a , we

expect the downstream and upstream bores to be detached from the obstacle. The
computed spatial variation of surface elevation is shown in figure 8(a–c) for τ = 100,
300 and 1000, respectively. At τ = 100 the AMOC solution and the Boussinesq
solution are almost identical even with respect to the small backward-going free wave
located at χ ' 200. At this stage, both solutions clearly deviate from the asymptotic
AMOC expression (dashed-dotted curve). At τ = 300 the AMOC solution still does
a very good job in the upstream region, while it deviates in the downstream region
due to the growing importance of dispersion. Both solutions start to approach the
asymptotic AMOC expression over the obstacle. Finally, at τ = 1000, we have omitted
the numerical AMOC solution, because it no longer makes sense in the far field. We
notice that the Boussinesq solution agrees with the asymptotic ηbound in the region
−75 < χ < 75, i.e. beyond the region of the obstacle. In this case the downstream
undular bore is detached from the obstacle, and it gradually falls further and further
behind. The toe of the leading wave of this bore follows ηdownbound based on (4.20) very
closely. The upstream undular bore is also detached, and since ηupfree based on (4.24)
is only marginally larger than η

up
bound based on (4.20), the upstream bore resembles

a uniform bore. We notice that the height of the leading soliton is approximately
H ' 2ηupfree.

Figure 9(a,b) covers the higher-transcritical case of Φ = 0 (with L = 100) for
τ = 320 and 480 respectively. With Φ being only slightly larger than Φmid , the
asymptotic level of ηdownfree based on (4.25) almost coincides with the bound solution
ηdownbound based on (4.20), and consequently we have omitted ηdownfree from the figure.
Furthermore, since Φup

a < Φ < Φhigh, we expect the upstream bore to become attached,
while the downstream bore should be detached. At τ = 320 the numerical AMOC
solution and the Boussinesq solution both agree up to the point where dispersion
becomes important. At τ = 480 the numerical AMOC solution has been omitted,
but we notice how the Boussinesq simulation supports the asymptotic ηbound in the
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FIGURE 8. (Colour online) Snapshots, at times (a) τ = 100, (b) τ = 300 and (c) τ = 1000,
of the surface elevation for lower-transcritical conditions: Φ = −0.5, Γm = 0.05 and L = 100.
Comparison between the AMOC simulation (dashed line) and a Boussinesq simulation (full
line). Dashed-dotted curve: the asymptotic level ηbound based on (4.21); dotted line: the
asymptotic level ηupfree based on (4.24).

interval −25< χ 6 50. The downstream bore is seen to be detached from the obstacle
(as predicted), and it falls further and further behind while supporting the asymptotic
level ηdownbound based on (4.20). In contrast, the upstream bore is seen to be attached (as
predicted) at approximately χ ' −30, and this violates the AMOC solutions beyond
this location. For this reason, the asymptotic AMOC solution for the upstream level
overestimates the actual level, and consequently the height of the leading upstream
soliton is seen to be somewhat smaller than the estimate 2ηupbound .

Figure 10(a–c) covers the higher-transcritical case of Φ = 0.5 (with L = 100) for
τ = 300, 500 and 900 respectively. Since Φup

a < Φ < Φhigh, the upstream bore is
expected to be attached, while the downstream bore should be detached. Since
Φ > Φmid , the leading edge of the downstream bore initially follows ηdownfree based
on (4.25). In this case ηdownfree (dotted line) is clearly lower than ηdownbound (dashed-dotted)
based on (4.20). We notice that the toe of the leading downstream waves clearly
follows ηdownfree at least up to τ = 500. The trend is, however, that the dispersive undular
bore will travel with a lower positive speed in the (χ, τ )-frame than the trough in
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FIGURE 9. (Colour online) Snapshots, at times (a) τ = 320 and (b) τ = 480, of the surface
elevation for transcritical conditions: Φ = 0, Γm = 0.05 and L = 100. Comparison between
the AMOC simulation (dashed line) and a Boussinesq simulation (full line). Dashed-dotted
curve: the asymptotic level ηbound based on (4.21).

the AMOC formulation, and in this process the toe of the undular bore will slowly
climb the non-dispersive curve, so that the toe level gradually rises from ηdownfree to ηdownbound .
This trend is clearly seen in the Boussinesq results at τ = 900, where the numerical
AMOC solution has been left out. As a consequence of the rising toe level, the height
of the leading downstream soliton will gradually decrease, and after some time the
initial influence of ηdownfree will vanish. We notice that the upstream bore is attached to
the obstacle (as predicted) at χ ' −20, and consequently the non-dispersive solutions
make little sense for χ < −20. Like in figure 9, this implies that the asymptotic
AMOC solution for the upstream level overestimates the actual level and as a result
the height of the leading upstream wave is much smaller than the estimate 2ηupbound .

Figure 11(a–c) covers the higher-transcritical case of Φ = 0.9 (with L = 100) for
τ = 400, 600 and 1000 respectively. In the downstream region the solutions behave
essentially like the previous case, and it is evident that the toe of the undular bore
slowly climbs the non-dispersive curve, so that the toe level gradually rises from ηdownfree

to ηdownbound . The upstream region is, however, much more extreme than in figure 10, and
relatively high and steep cnoidal and solitary waves are generated close to the crest of
the obstacle. This seems to influence the solution over most of the obstacle, and the
Boussinesq solution only matches ηbound for χ > 40. Clearly, this is not a case which is
suitable for non-dispersive calculations.

Figure 12 covers the supercritical case of Φ = 1.2 (with L = 50). It shows the
computed solutions for the bound wave over the obstacle and the downstream, forward-
going free waves for τ = 100, 200, 300 and 400. At τ = 100 the agreement between
the numerical AMOC solution (dashed) and the Boussinesq solution (full line) is
excellent, hence dispersion clearly plays no role at this stage. Then at τ = 200
dispersion starts to play a role at the leading edge of the downstream waves, and
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FIGURE 10. (Colour online) Snapshots, at times (a) τ = 300, (b) τ = 500 and (c) τ = 900,
of the surface elevation for higher-transcritical conditions: Φ = 0.5, Γm = 0.05 and L = 100.
Comparison between the AMOC simulation (dashed line) and a Boussinesq simulation (full
line). Dashed-dotted curve: the asymptotic level ηbound based on (4.21); dotted line: the
asymptotic level ηdownfree based on (4.25).

this trend further evolves at τ = 300 and τ = 400. Actually, the downstream forward-
going free waves behave similarly to what was discussed in connection with figures 10
and 11: first of all, the lowest point of the numerical AMOC solution follows ηdownfree
(dotted), while the toe of the dispersive undular bore slowly climbs the non-dispersive
curve, so that the toe level gradually rises from ηdownfree to ηdownbound = 0. The bound wave
over the obstacle does not change beyond τ = 200, and the agreement between the
non-dispersive AMOC solution and the dispersive Boussinesq solution is excellent in
this region.

6.2. Verification of asymptotic estimates as a function of Φ

In this section we focus on the asymptotic AMOC expressions for transcritical flow
(derived in § 4.3) and for subcritical and supercritical flow (derived in § 4.4). The
corresponding numerical Boussinesq solutions are of course not truly asymptotic but
have been estimated on the basis of relatively long simulations.
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FIGURE 11. (Colour online) Snapshots, at times (a) τ = 400, (b) τ = 600 and (c) τ = 1000,
of the surface elevation for higher-transcritical conditions: Φ = 0.9, Γm = 0.05 and L = 100.
Comparison between the AMOC simulation (dashed line) and a Boussinesq simulation (full
line). Dashed-dotted curve: the asymptotic level ηbound based on (4.21); dotted line: the
asymptotic level ηdownfree based on (4.25).

Figure 13(a,b) shows a comparison of upstream levels for the two obstacles
Γm = 0.05 and Γm = 0.10, respectively. Results are shown and compared for
−1.5 < Φ < 0, which covers subcritical flow, lower-transcritical flow and a small
part of higher-transcritical flow. It should be emphasized that the asymptotic AMOC
expressions are only strictly valid as long as the upstream bore is detached from the
obstacle. According to figure 5, this requires that Φ <Φup

a , i.e. less than approximately
−0.45. This explains why the simulated values fall slightly below the theoretical
estimates in the interval Φup

a < Φ < 0. For Φ > 0 (not shown) the estimate of the
asymptotic upstream level becomes very inaccurate because of the attachment of the
upstream bore (see e.g. figure 10). First of all, figure 13 shows that the theoretical
value of η

up
bound (full line) is in excellent agreement with the Boussinesq results

obtained at the upstream toe of the obstacle. Secondly, we notice that the height of the
leading upstream free wave detected from the Boussinesq simulations follows the trend
from the KdV estimate H ' 2ηupfree (dashed line). In this connection it is remarkable
that H as a function of Φ varies continuously over the threshold from subcritical to
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FIGURE 12. Snapshots (at four different times) of the surface elevation for supercritical
conditions: Φ = 1.2, Γm = 0.05 and L = 50. Comparison between the AMOC simulation
(dashed line) and a Boussinesq simulation (full line). Dotted line: the asymptotic level ηdownfree

based on (4.32). Snapshots shown at (1) τ = 100; (2) τ = 200; (3) τ = 300; (4) τ = 400.
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FIGURE 13. (Colour online) Asymptotic upstream levels as a function of Φ for (a)
Γm = 0.05 and (b) Γm = 0.10. Full line: ηupbound based on (4.20); dashed line: ηupfree based on
(4.24). Boussinesq simulations: �, half the height of the leading solitary/cnoidal waves in the
upstream undular bore; •, the elevation computed at the upstream toe of the obstacle. Length
of the hump: L= 100.

lower-transcritical flow conditions. Finally, it should be emphasized that figures 6–12
have already established that the peak of the leading edge is in excellent agreement
with η

up
free up to the point where dispersion starts to play a role. The agreement in

figure 13 between H and 2ηupfree is less impressive because this KdV estimate for H



Transient waves generated by a moving bottom obstacle 267

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.5 1.0 1.5–0.5 0

0.5 1.0 1.5–0.5 0

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

0(a)

(b)

FIGURE 14. (Colour online) Asymptotic downstream levels as a function of Φ for (a)
Γm = 0.05 and (b) Γm = 0.10. Full line: ηdownbound based on (4.20); dashed line: ηdownfree based
on (4.25). Boussinesq simulations: �, half the height (shown as negative) of the leading
solitary/cnoidal waves in the downstream undular bore; •, the elevation computed at the
downstream toe of the obstacle. Length of the hump: L= 100.

tends to overestimate the wave height, and this trend increases in the subcritical
domain.

Figure 14(a,c) shows a comparison of downstream levels for the two obstacles
Γm = 0.05 and Γm = 0.10, respectively. Results are shown and compared for
−0.5 < Φ < 1.5, which covers supercritical flow, higher-transcritical flow and a small
part of lower-transcritical flow. Again, it should be emphasized that the asymptotic
AMOC expressions are only strictly valid as long as the downstream bore is detached
from the obstacle. According to figure 5, this requires that Φ > Φdown

a , i.e. larger than
approximately −0.6. For smaller values of Φ, the comparison between simulation
and the asymptotic theory becomes meaningless (see e.g. figure 7). First of all,
figure 14 shows that the theoretical value of ηdownbound is in excellent agreement with the
Boussinesq results obtained at the downstream toe of the obstacle, except for Φ < 0
and Γm = 0.10. Secondly, we can again conclude that the height of the leading free
wave detected from the Boussinesq simulations approximately follows the trend from
the KdV estimate H ' −2ηdownfree , and actually the agreement is better than observed
in the upstream region in figure 13. Again this trend varies continuously over the
threshold from higher-transcritical to supercritical flow conditions.

Figure 15 concentrates on the surface elevation obtained at χ = 0, i.e. at the crest
of the obstacle. In this case, results are shown and compared for the full range
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FIGURE 15. (Colour online) Asymptotic surface levels at the crest of the obstacle (i.e. at
χ = 0) as a function of Φ for (a) Γm = 0.05 and (b) Γm = 0.10. Full line: ηcrestbound based
on (4.23); dashed-dotted line: the Hopf solution given by (4.28); Boussinesq simulations: •.
Length of the hump: L= 100.

of −1.5 < Φ < 1.5, because the crest region is rarely influenced by the attached
upstream or downstream bores. Note that ηcrestbound obtained from (4.23) and (4.29) is
in excellent agreement with the Boussinesq simulations throughout the three different
flow regimes. For comparison, the dashed-dotted curve shows the corresponding Hopf
solution. This solution generally underestimates the crest levels, and although the
discrepancy reduces for smaller values of Γm as expected, it may come as a surprise
that the discrepancy is almost insensitive to the value of Φ. It is, however, (3.30), i.e.
U ' η, which is the main weakness of the Hopf solution in this connection. It does not
really account for the nonlinearities occurring over the obstacle, and therefore the Hopf
solution is generally poor in this region even for relatively low values of Γm and ∆. It
should be emphasized that the Hopf solutions for the asymptotic levels at the upstream
and downstream toes of the obstacle are of relatively better quality.

Figure 16 compares the computed and theoretical celerities of the leading upstream
waves (c−up) and the leading downstream waves (c−down). The theoretical solution for c−up
is determined by (5.7) combined with ηB = ηupfree based on (4.24) and (4.31), while
c−down is determined by (5.2) combined with ηD = ηdownfree based on (4.25) and (4.32).
The results are shown in a fixed frame of reference, the diagonal line representing
the speed of the obstacle (V) and the horizontal line representing the linear shallow
water celerity. We notice that c−up is in good agreement with the Boussinesq simulations
(shown as dots) in the interval −1.5 < Φ < 0, while c−down is in good agreement in the
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FIGURE 16. (Colour online) Fixed frame celerities of the leading edges in the
upstream/downstream bores for (a) Γm = 0.05 and (b) Γm = 0.10. Full line: theoretical
expressions for c−up and c−down based on (5.7) and (5.2). Boussinesq simulations: •. Length
of the hump: L= 100.

interval −0.25 < Φ < 1.5. The trend is, however, that the theoretical predictions are
slightly on the high side compared to the simulations, and this is in agreement with
the previous findings from figures 13 and 14.

7. Summary and conclusions
When a long, slowly varying, positive bottom obstacle of height Γm is abruptly

started from rest to move with a constant speed V , a system of transient waves will
develop: free waves will propagate in the forward and backward directions, while a
bound wave will settle locally over the obstacle. It turns out that in most situations,
dispersion can be ignored in the vicinity of the obstacle while nonlinearity cannot.
This implies that the near-field problem can be described by the NSW equations, while
the far-field problem calls for Boussinesq-type equations, whenever dispersive effects
become important.

Within a coordinate system moving with the obstacle, the flow conditions can
be characterized as either subcritical, transcritical or supercritical and the separating
thresholds are defined as Vlow < 1 and Vhigh > 1, which are solutions to (4.14).
Their variation with respect to Γm is depicted in figure 3. We emphasize that, in
the framework of a nonlinear formulation, critical conditions (i.e. V = 1) play no
specific role, but it turns out to be convenient to divide the transcritical regime into
a lower-transcritical and a higher-transcritical regime separated by the threshold Vmid .
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This is determined by a combination of (4.18), (4.12) and (4.7), and its variation is
shown in figure 3 (see also § 4.2.3). As shown by Grimshaw & Smyth (1986), the
classical Hopf formulation leads to explicit expressions for Vlow and Vhigh, and on this
basis we have chosen to classify the flow conditions in terms of a new parameter Φ
defined by (4.17). This combines the effect of the height and the speed of the obstacle,
and it leads to Φ

Hopf
low = −1 and Φ

Hopf
high = 1. On the basis of the more accurate NSW

equations, Φlow and Φhigh become weak functions of the relative height of the obstacle
Γm, but it turns out that they do not differ much from ±1 as long as Γm < 0.25 (see
e.g. figure 5).

The NSW equations are bidirectional and can be formulated in terms of a two-
family system of characteristics (§ 3.1). This system is straightforward to solve for
subcritical and supercritical conditions, but it is very difficult (if not impossible) to
solve for transcritical flow, where turning points appear in the characteristic tracks. To
solve this problem, we have analytically integrated and eliminated the backward-going
family and achieved a versatile unidirectional single-family formulation denoted as
the AMOC formulation, see §§ 3.2 and 3.3. Due to the incorporation of a memory
effect, the single-family AMOC formulation accounts for the backward-going as well
as the forward-going free waves, and it captures the bound solution over the obstacle
with much higher accuracy than the classical Hopf formulation. While being as easy
to solve as the Hopf formulation, it is (almost) as accurate as the original two-
family NSW formulation. Last, but not least, the AMOC formulation is applicable
not only to transcritical flow conditions, but also to subcritical and supercritical
conditions. An extensive verification of the new formulation is presented in § 6.1,
which covers the temporal and spatial evolution of the transient waves for a range of
flow conditions. Up to the point where dispersion becomes important, the results of the
AMOC formulation agree very well with numerical simulations based on a high-order
Boussinesq formulation.

In § 4, we have derived an analytical asymptotic (approximate) solution to the new
AMOC formulation, and this provides useful estimates of the asymptotic levels and
magnitudes of the bound and free waves surrounding the obstacle. On this basis, we
have discussed important concepts for transcritical flow such as turning points and
the limiting characteristic (§ 4.2.1), which governs the asymptotic bound solution
ηbound over the obstacle including the upstream setup η

up
bound and the downstream

setdown ηdownbound . The variation of these quantities with respect to Φ has been discussed
and depicted in § 6.2 and figures 13–15. Generally, these results are in very good
agreement with the numerical Boussinesq simulations.

We have also discussed the importance of the crest characteristic for transcritical
flow (§ 4.2.3): for lower-transcritical flow (i.e. for Φlow < Φ < Φmid ), the crest
characteristic governs the magnitude of the leading forward-going free wave, which
propagates in the upstream region ahead of the obstacle. Expressions for the
determination of η

up
free are provided in § 4.3.1. There is a continuous transition

of these expressions to subcritical flow (§ 4.4), and the variation of η
up
free with

respect to Φ (covering subcritical as well as lower-transcritical flow) has been
discussed and depicted in § 6.2 and figure 13. For higher-transcritical flow (i.e.
for Φmid < Φ < Φhigh), the crest-characteristic initially governs the magnitude of the
leading forward going free wave, which propagates in the downstream region behind
the obstacle. Expressions for the determination of ηdownfree are provided in § 4.3.1. Again,
there is a continuous transition of these expressions to supercritical flow (§ 4.4), and
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the variation of ηdownfree with respect to Φ (covering supercritical as well as higher-
transcritical flow) has been discussed and depicted in § 6.2 and figure 14.
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