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 Abstract 

This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-

rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was 

optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt/Ni/YSZ electrode. It 

was found that the NOx removal properties of the electrochemical cell were dramatically enhanced 

through this optimization, which was attributed to the extensive release of selective reaction sites for 

NOx species and a strong promotion for NOx reduction from the interaction of the directly connected 

adsorption layer with the electrode.  

Ag and (La0.85Sr0.15)0.99MnO3 (LSM) were investigated as electrode materials to substitute for Pt and Ni. 

Selective NOx reduction in the presence of excess O2 could be achieved for both Ag and 

LSM/Ce0.9Gd0.1O1.95 (CGO) electrodes by modifying the electrodes with NOx adsorbents. Performances of 

82% NOx conversion with 7.7% current efficiency and 100% N2 selectivity for the Ag electrode, and of 85% 

conversion with 4% current efficiency and 74% N2 selectivity for the LSM/CGO electrode were achieved 

in 1000 ppm NO and 8-10% O2 at 500 °C with the addition of a K-Pt-Al2O3 adsorption layer.  

The effects of the NOx adsorbents on the electrode processes were characterized by electrochemical 

impedance spectroscopy (EIS). The impedance analysis revealed that the NOx adsorbents greatly 

enhanced the electrode activity, mainly contributed by the promotion of adsorption, surface diffusion, 

and transfer of NOx and O2 species at/near the triple phase boundary region, and the formation of 

intermediate NO2. Severe degradation was observed on both electrodes following long-term operation, 

caused by the corrosion of the Ag electrode covered by a nitrate melt, or associated with a profound 

change in the microstructure for the LSM/CGO electrode.  

Two different approaches to modify the electrochemical cell with NOx adsorbents, adding a Ba-Pt-Al2O3 

adsorption layer on top of the electrode or impregnating of the BaO into the electrode, were studied on 

a LSM/CGO symmetric cell. A comprehensive comparison between the two approaches was provided 

based on systematic investigations, including conversion measurements, degradation tests, 

microstructure observations, and impedance characterization. It was found that both approaches 

significantly increased the activity and selectivity of NOx reduction on the LSM/CGO symmetric cell, by 

enhancing the adsorption and storage of NOx species, or by providing reaction sites for direct nitrate 
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reduction. Cells with adsorption layers exhibited a superior performance at low temperatures (350 and 

400 °C) and at low voltages (1.5 to 2 V) due to the NO oxidation ability of the Pt catalyst, although its 

performance was relatively poor at elevated temperatures and voltages due to the impedance of the 

diffusion of NOx to the reaction sites by the adsorption layer. The presence of a strong NO oxidation 

catalyst was important for lowering the operating temperature and minimizing the power consumption 

of the electrochemical cell. Square-wave (SV) polarization balanced the trapping and reduction rates of 

NOx species on the electrochemical cells, further improving the NOx reduction activity relative to that 

observed under direct current (DC) polarization. 
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Abstrakt 

I denne afhandling er elektrokemiske celler modificeret med NOx-adsorptionsmaterialer til NOx-

reduktion under iltrige forhold blevet undersøgt. Strukturen af en multilags elektrokemisk celle med et 

NOx-adsorptionslag blev optimeret ved at fjerne et yttriastabiliseret zirkonia (YSZ) dæklag på en 

Pt/Ni/YSZ-elektrode. Det blev konstateret, at reduktion af NOx vha. af den elektrokemiske celle blev 

øget vha. denne optimering. Dette blev tilskrevet frigivelse af selektive reaktionssites for NOx-specier og 

en stærk promovering af reduktionen af NOx grundet direkte kontakt mellem adsorption lag og 

elektroden.  

Ag og (La0.85Sr0.15)0.99MnO3 (LSM), blev undersøgt som elektrodematerialer til erstatning for Pt og Ni. 

Selektiv reduktion af NOx under netto oxiderende forhold kunne opnås for både Ag- og 

LSM/Ce0.9Gd0.1O1.95 (CGO)-elektroder ved at modificere elektroderne med NOx-adsorptionsmaterialer. En 

ydeevne på 82% NOx-omdannelse med 7,7% strømudbytte og 100% N2-selektivitet for Ag-elektroden, og 

85% omdannelse med 4% strømudbytte og 74% N2-selektivitet for LSM/CGO-elektroden blev opnået i 

1000 ppm NO og 8-10% O2 ved 500°C med tilsætning af et K-Pt-Al2O3 adsorptionslag.  

Virkningerne af NOx-adsorptionsmaterialer på elektrodeprocesserne blev undersøgt vha. af 

elektrokemisk impedansspektroskopi (EIS). Impedansanalysen viste, at NOx-adsorptionsmaterialer 

forbedrede elektrodeaktiviteten betydeligt, primært ved at fremme adsorption, overflade diffusion, og 

overførsel af NOx- og O2-specier på/ved tre-fasegrænsen, og gennem dannelsen af mellemproduktet 

NO2. Kraftig degradering blev observeret på begge elektroder efter langvarig drift, forårsaget af 

korrosion af Ag elektrode pga. smeltet nitrat, eller pga. en markant ændring i mikrostrukturen i 

LSM/CGO-elektroden. 

To forskellige metoder til at ændre den elektrokemiske celle med NOx-adsorptionsmaterialer, enten ved 

at tilføje et Ba-Pt-Al2O3-adsorptionslag oven på elektroden eller ved imprægnering af BaO i elektroden, 

blev undersøgt på en LSM/CGO symmetrisk celle. En omfattende sammenligning mellem de to metoder 

blev foretaget gennem systematiske undersøgelser, herunder omsætningsmålinger, degraderingstest, 

mikrostrukturobservationer, og impedanskarakterisering. Det blev konstateret, at begge tilgange 

signifikant øgede aktiviteten og selektiviteten mod NOx-reduktion på en LSM/CGO symmetrisk celle ved 

at forbedre adsorption og lagring af NOx-arter eller ved at danne reaktionssites for direkte reduktion af 
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nitrat. Celler med adsorptionslag udviste en overlegen ydeevne ved lave temperaturer (350° og 400° C) 

og ved lave spændinger (1,5 til 2 V) pga. Pt’s evne til at oxidere NO, selv om dens ydeevne var relativt 

ringe ved forhøjede temperaturer og spændinger på grund af diffusion af NOx til reaktionsstederne ved 

adsorption laget. Tilstedeværelsen af en stærk NO oxidationskatalysator var vigtigt for at sænke 

driftstemperaturen og minimere effektforbruget af den elektrokemiske celle. Square-wave (SV) 

polarisering balancerede adsorption- og reduktionsaktiviteten for NOX-arter på de elektrokemiske celler, 

hvilket yderligere forbedrede NOX-reduktionaktiviteten i forhold til hvad der blev observeret under 

jævnstrømspolarisering (DC).  
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Chapter 1 Introduction 

1.1 NOx emission from diesel engine exhaust 

Diesel engines offer superior fuel efficiency compared to gasoline engines (45% vs. 30%, respectively). 

Widespread use of diesel engines could lower the fuel consumption of transport vehicles, reducing 

emissions of greenhouse gases and decreasing dependencies on petroleum fuels.[1] In Europe, around 

50% of new cars are sold with a diesel engine.[2] In the USA and Japan, diesel engines only accounts for 

approximately 3% and 0.4%, respectively, of the car sales.[3, 4] One of the technical obstacles to broad 

implementation of diesel cars is the inherent difficulty of removing nitrogen oxides (NOx) from diesel 

exhaust. Unlike conventional gasoline exhaust, which is almost oxygen-free due to the stoichiometric 

combustion process, diesel exhaust contains excess oxygen from combustion at high air-to-fuel ratios 

(Table 1.1).[5] This oxygen-rich environment deactivates the traditional three-way-catalysts used to 

reduce NOx with CO or hydrocarbons, making the removal of NOx extremely challenging.  

Table 1.1 Example of exhaust compositions and conditions for diesel engines and gasoline engines.[5] 

Exhaust components 
And conditions 

Diesel Engines Gasoline Engines 

NOx 350-1000 ppm 100-200 ppm 

Hydrocarbon 50-330 ppm C 20,000-30,000 ppm C 

CO 300-1200 ppm 1-3% 

CO2 7% 10-13% 

O2 10-15% 0.2-2% 

H2O 1.4-7% 10-12% 

SOx 10-100 ppm ~20 ppm 

Particulate Matter 65 mg m
-3

  

Temperatures r.t.-650 °C r.t.-1000 °C 

Space Velocity 30,000-100,000 h
-1

 30,000-100,000 h
-1

 

Air-to-Fuel ~26 ~14.7 

 

The concentration of NOx in diesel exhaust is normally in the range of 300 to 1000 ppm, depending on 

the type of engine and the driving conditions, which is typically significantly higher than that in gasoline 

exhaust. NOx is the collective name for the compounds of nitric oxide (NO) and nitrogen dioxide (NO2). 
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NO is usually the dominant species of NOx in exhaust gases (90-95%)[6] and can be produced during the 

combustion process in three ways:[7] 1) thermal NO, formed from oxidation of atmospheric nitrogen; 2) 

prompt NO, formed by reaction of atmospheric nitrogen with hydrocarbon radicals in fuel-rich regions 

of the flames; and 3) fuel NO, formed from oxidation of nitrogen bound in the fuel. For diesel engines, 

thermal NO is the main source of NO emission due to the lean combustion conditions. The process of 

thermo-NO formation can be described by the Zeldovich mechanism:[8] 

                                                                                                                                        (1.1) 

                                                                                                                                   (1.2) 

NO2 is a secondary product, mainly formed by oxidation of NO with hydroperoxide redicals in cooler 

regions of the flames (< 800 °C) during combustion processes(Eq. 1.3) [9–11] or by the equilibrium of 

NO/NO2 when the exhaust gases are vented after combustion (Eq. 1.4).[12] 

                                                                                                                              (1.3) 

                                                                                                                                          (1.4) 

NOx is detrimental to human health[13] and contributes to the formation of acid rain,[14] the 

generation of photochemical smog,[15] and the depletion of the protective stratospheric ozone 

layer.[16] For these reasons, increasingly stringent limitations have been imposed worldwide on NOx 

emissions from mobile sources (Table 1.2).[17] Since the emerging standards are below what industry 

can achieve by adjusting diesel engines, the use of NOx control systems are required to meet these 

tighter limit on NOx emissions.[18]  

Table 1.2 Emission standards for diesel passenger cars in Europe and US.[17] 

Europe Implementation Year 
NOx 

(g km
-1

) 
US Implementation Year 

NOx 
(g mile

-1
) 

Euro 4 2005 0.25 Tier 1 1997 1.0 

Euro 5 2009 0.18 Tier 2 Bin 5 2007 0.07 

Euro 6 2014 0.08    
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1.2 NOx control technologies 

The process for removal of NOx from exhaust gases is to ‘unfix’ the molecules of NOx back to N2 at 

temperature lower than 700 °C, where NOx species are thermodynamically unstable, yet kinetically 

extremely stable.[12, 19] The direct catalytic decomposition without added any reductant was 

considered to be the most advantageous means for NOx removal, however, its NOx conversion in diesel 

exhaust is too low to be of practical use. One solution is to promote catalytic reduction with the addition 

of reductants, which are currently the main means of NOx removal from diesel exhaust. These include 

selective catalytic reduction (SCR), NOx storage and reduction (NSR), and lean NOx catalysts (LNC). This 

work is based on another option: electrochemical NOx reduction, which consisted of the use of electrical 

power (electrons) to replace the reductants and reduce NOx to N2 at the polarized electrodes of a solid 

state cell. Both SCR and NSR have been commercialized. The LNC and electrochemical NOx reduction are 

currently under development. Each of these technologies will be described in detail in the following 

sections. 

1.2.1 Selective catalytic reduction (SCR) 

The selective catalytic reduction (SCR) process has been used in stationary applications, such as power 

plants and generators, for decades. The application of SCR in automotive vehicles started on heavy-duty 

trucks in 2003 and has spread to most diesel passenger cars today.[20] The SCR employs the catalysts 

which are able to catalyze the selectively reduction of NOx to N2 with ammonia added into the exhaust 

stream, as showing in equations 1.5 and 1.6.[21–23] 

                                                                                                                     (1.5) 

                                                                                                                        (1.6) 

 The source of ammonia can be liquid or gaseous ammonia or liquid urea which decomposes in the 

exhaust stream to ammonia. For the mobile applications, a 32.5 wt% urea solution is used for the reason 

of toxicity and safety. Recently, a solid ammonia storage and delivery system has been developed by 

Amminex, which stores ammonia inside a solid SrCl2 cube, which has a volume density similar to that of 

liquid ammonia, and releases gaseous ammonia when heated.[24]  
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The catalysts used for SCR in industry are mainly TiO2-supported WO3/V2O5 or MoO2/V2O5. These 

catalysts can operate in the temperature range of 200 to 500 °C, but deactivate quickly if exposed to 

temperatures above 600 °C.[18, 25] Metal-exchanged zeolite catalysts have been proposed as a new 

type of SCR catalyst to broaden this temperature window, with most of the attention focused on Fe- and 

Cu-zeolites.[26]  

The SCR process achieves the highest deNOx efficiency (>90%) among the current NOx control 

technologies, but also has some drawbacks.[20] The use of ammonia requires the installment of an on-

board storage and delivery system and an electronic control module to meter out the ammonia, which 

increases the initial cost and introduces problems related to storage, transport management, and 

development of a distribution network. Ammonia is toxic; any extra ammonia in the exhaust gas will 

became a secondary pollutant, which increases the complexity of the required on-board system to 

ensure an accurate measurement and dosing of ammonia. 

1.2.2 NOx storage and reduction (NSR) 

The NOx storage and reduction (NSR) process is operated via cyclic switching of the state of the engine 

between lean- and rich-modes. The NSR catalysts adsorb and store NOx during the lean-mode until the 

storage sites are saturated; a rich spark is imposed afterwards to introduce rich exhaust to the catalysts 

to reduce the stored NOx to N2 using the surplus fuel or incompleted combustion products (hydrocarbon 

or CO) in the exhaust. NSR is currently the leading technology for smaller lean-burning passenger cars in 

Europe and is of interest in applications with limited space or in which urea usage is difficult.[20, 27] The 

NSR catalysts typically consist of 1-3 wt% Pt with 10-20 wt% K or Ba dispersed over an Al2O3 support.[25] 

The reaction mechanism of NSR is represented in figure 1.1.[28] 
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Figure 1.1 NOx storage and reduction mechanism of NSR catalysts.[28] (reprint permit from Elsevier 2013) 

The deNOx efficiency of NSR catalysts is usually 70-80% under realistic conditions.[20] Chief drawbacks 

of this technology are the low resistance against sulfur poisoning and the requirement of a sophisticated, 

adaptive control system to control the state of the engine.[25] 

1.2.3 Lean NOx catalysts (LNC) 

Lean NOx catalysts (LNC), also known as hydrocarbon-selective catalytic reduction (HC-SCR), utilize fuel 

as the reductant and potentially cheap catalysts such as Ag/Al2O3 and Cu-zeolites.[29] But the reductant 

has to be dosed continually, unlike with NSR where the reductant is needed merely during the rich-burn 

phase. Thus, the fuel penalties are relatively high (6%). Another drawback is that there is a restricted 

temperature window for LNC, typically 350 - 450 °C, only within this window can significant NOx 

reduction be achieved. Under real operating conditions, the deNOx efficiency of LNC is usually below 

40%.[27, 30]  

1.3 Electrochemical NOx reduction 

Electrochemical NOx reduction is an attractive alternative for lean NOx control compared to the 

aforementioned technologies. No reductants, other than electrons, are needed in this approach, thus 

eliminating the requirement of installing a secondary storage and delivery system for reductants or a 

complicated control system to switch the state of the engine inside the vehicle. The principle of 

electrochemical NOx reduction is illustrated in figure 1.2. The NOx species are reduced to nitrogen gas 
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and oxygen ions at the cathode under a negative polarization. Oxygen ions are transported through the 

ionically conductive electrolyte to the anode, where they are oxidized to oxygen. In an oxygen-rich 

environment, a competitive reaction of O2 reduction will take place on the cathode, as showing in 

equation 1.7.  

                                                                                                                                          (1.7) 

Based on theoretical calculations, it is possible to selectively reduce NOx rather than O2 by tuning the 

electrical potential and choosing suitable cathode materials.[31] In real diesel exhaust, the 

concentration of oxygen can be hundreds of times higher than that of NOx, it is therefore essential to 

have a highly selective cathode for NOx reduction otherwise the oxygen side reaction will consume most 

of the electrical power supplied to the cell.  

 

Figure 1.2 Illustration of the principle for the NOx reduction on a solid state electrochemical cell. 

The concept of electrochemical NOx reduction was first proposed by Pancharatnam et al. in 1975 on a 

zirconia-based electrochemical cell using porous Pt or Au electrodes.[32] Significant conversion of NO to 

N2 was observed at applied voltages higher than 1.0 V in a gas atmosphere containing no O2 from 600 to 

800 °C. As Au has no catalytic activity for NO decomposition, the authors suggested that the reaction did 

not occur on the electrode but on the surface of the electrolyte, which contained F-centers formed by 

partial reduction of zirconia at high voltages. The reaction sequence was suggested as follows: 

  
                      

                                                                                     (1.8) 

     
         

                                                                                                             (1.9) 
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                                                                                                (1.10) 

      
          

                                                                                                            (1.11) 

  
       

        
        

                                                                                               (1.12) 

where (s) denotes the surface and (b) the bulk of the electrolyte. In a later study by Gür and Huggins on 

Pt point electrode,[33] it was confirmed that F-centers generated on the surface of the 

electrochemically reduced zirconia were the reaction sites for NO reduction at large overpotentials. 

Since then, research efforts have been focused on increasing the selectivity of NOx reduction relative to 

O2 reduction by exploring suitable electrode materials and optimizing the electrode structure. The 

reaction mechanism has also been studied. Several reaction paths were proposed based on different 

electrodes and polarization conditions. The electrode materials that have been investigated can be 

broadly divided into three categories: metals, metal oxides, and combination of metals and metal oxides. 

1.3.1 Metals 

Hibino et al. did a series of studies on the electrochemical activities of Pd, Rh, Au, and Pt electrodes for 

NO removal in an oxidizing atmosphere on a yttria-stabilized zirconia electrolyte (YSZ)[34–36] or a 

samaria-doped ceria (SDC) electrolyte in the temperature range of 400 to 800 °C.[37]  It was shown that 

the removal of NO could be achieved in the presence of excess O2 on an electrochemical cell. Pd and Pt 

were found to have higher electrocatalytic activities than Rh and Au.[35] However, the activity and 

selectivity towards NO reduction decreased significantly with increasing oxygen concentration and the 

maximum current efficiency was below 2.5% in 750 ppm NO with 1% O2 at 800 °C on a Pd electrode.[35, 

37] Further, Hibino et al. suggested that NO was reduced at the cathode rather than on the electrolyte 

surface (F-centers). Later, the authors investigated the mechanism of NO decomposition on the 

electrochemical cell using solid electrolyte potentiometry (SEP).[36] It was found that the electrode, 

having poorer oxygen pumping properties, exhibited higher current efficiency for NO decomposition. 

The co-existence of H2O enhanced the NO reduction due to the formation of H2 through electrolysis. The 

co-existence of CO2 did not influence the NO reduction process because it was not electrolyzed. It was 

also observed that applying AC voltages rather than DC voltages lower than 6 V could promote the NOx 

reduction and avoid severe degradation of the cell.[35]  
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Walsh et al. performed a detailed kinetic study on Pt[38] and Ir[39] electrodes using an YSZ electrolyte 

at temperatures between 500 and 600 °C. The Pt electrode showed no performance for NO reduction in 

the presence of O2, whereas the Ir electrode showed a limited selectivity towards NO reduction with a 

ratio of these two reaction rates (NO/O2) lower than 1.6. The selectivity was found to increase with 

decreasing temperature. The following mechanism was proposed for reaction on the Ir electrode by the 

authors: 

                                                                                                                       (1.13) 

                                                                                                                                            (1.14) 

                                                                                                                                  (1.15) 

       
     

                                                                                                                      (1.16) 

where Se-e denotes a site at the interface between the electrode and electrolyte. 

Hansen studied the electrochemical reduction of NO and O2 on point electrodes of Au and Pt in the 

temperature range of 400 to 600 °C.[40] It was shown that Pt was more active towards O2 reduction 

than towards NO reduction, except at 400 °C when the activities of the NO and O2 reactions were almost 

the same. Au was nearly inactive towards NO reduction. These results indicated that the electrode 

materials have to be catalytically active in order to reduce NO electrochemically.[41] 

1.3.2 Metal oxides 

The use of metal oxides for electrochemical NO reduction was reported for the first time in 1990.[42] An 

electrochemical cell consisted of transition-metal electrodes and a YSZ electrolyte, removed up to 91% 

of NO in the presence of 8% O2 in the temperature range of 650 to 1050 °C. However, no detailed 

information about the composition of the electrode materials was provided. 

Later, Reinhardt et al. studied La0.8Sr0.2MnO3 electrodes on a YSZ electrolyte for reactions with O2, NO, 

and NO2 in the temperature range of 500 to 900 °C. A dramatic increase in current density of O2 

reduction was observed when NO or NO2 were present with oxygen, which has been explained as a 

contribution of a parallel electrode reaction between NO and NO2 proceeding much faster than that of 
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O2 reduction. However, as no gas analysis was undertaken in this study, it is also possible that the 

current increase with the addition of NOx can be attributed to the reduction of NOx itself.  

Hansen et al. performed a series of studies on the electrochemical properties of metal oxides for NO 

reduction using cone-shaped electrodes, including NiO,[40] CuO,[43] and the perovkites La1-xSrxMnO3 

(x=0.05-0.5),[44] La0.6Sr0.4Fe1-xMnxO3 (x=0.0-1.0)[45], and La0.85Sr0.15CoO3,[46] as well as the spinels Co3O4 

and Cu2CrO4,[44] between 300 and 600 °C. The results of cyclic voltammetry analysis showed that Cu 

was more active towards NO reduction than O2 reduction, whereas NiO was almost inactive towards NO 

reduction. The Co3O4 spinel exhibited no selectivity towards NO reduction and the Cu2CrO4 spinel 

showed activity only for NO oxidation but not NO reduction. For the perovskites, it was concluded that 

the redox capacity for the NO bond breaking and the oxygen vacancies for the adsorption and 

incorporation of oxygen species were crucial for the activity of the electrodes towards NO reduction. 

Among the various perovskites investigated, LSM15 showed the most promising performance for 

selective NO reduction. 

Simonsen et al. and Bræstrup et al. also investigated the spinel oxides for electrochemical reduction of 

NO and O2 using cone-shaped electrodes.[47–51] Various metal oxides have been examined, among 

which CuFe2O4, NiFe2O4, La2CuO4, MgFe2O4, and NiCr2O4 showed a higher activity towards NO reduction 

than towards O2 reduction. Especially the MgFe2O4 spinel, which had almost no activity towards O2 

reduction but a high activity for NO reduction.[50] However, when the Fe in MgFe2O4 was partly 

substituted by Mn to increase the electronic conductivity, the NO reduction activity was decreased.[51] 

Washsmen et al. tested a La0.8Sr0.2Co0.9Ru0.1O3 cathode on a YSZ electrolyte for electrochemical 

reduction of NOx at 750 °C.[52] The cathode achieved a complete conversion of NOx in an atmosphere 

containing 500 ppm NO, approximately 3% O2, 2.4% CO, and 9% CO2, but the current efficiency was 

lower than 2%. 

Hwang et al. studied perovskite-based thin film electrodes on YSZ electrolytes for NO reduction.[53, 54]  

The LaCoO3 thin film was found to be able to reduce up to 40% of NO in the presence of 2% O2 from 600 

to 800 °C at applied voltages above 2 V, but the current efficiency was lower than 1.5% and decreased 

with increasing temperature.[54] The LSM and LSM/YSZ composite thin film electrodes could also 

decompose NO in the presence of 2% O2 at 600 °C. The addition of YSZ promoted the NO reduction 
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relative to that observed on pure LSM at applied currents larger than 300 mA, but inhibited the NO 

reduction at currents below 300 mA.[53] The following mechanism was proposed by the authors to 

explain this observation: as the triple-phase boundaries (TPBs) increased by adding YSZ, more oxygen 

needed to be pumped out before the reaction of NO could start. Once O2 had been sufficiently removed, 

the increased TPBs provided more reaction sites for efficient NOx reduction.  

Finally, Werchmeister et al. analyzed perovskite-based electrodes in a NOx containing atmosphere using 

electrochemical impedance spectroscopy (EIS) and demonstrated that NO2 was an important reaction 

intermediate for electrochemical NOx reduction on LSM, LSF, and LSCF electrodes.[55–57] Furthermore, 

the authors performed a NOx conversion measurement on a porous LSM/gadolinia doped ceria (CGO) 

cell stack from 250 to 400 °C.[58] It was found that the deNOx performance of the cell stack was 

enhanced by the impregnation of ceria or doped ceria, but the selectivity towards NO reduction under 

oxygen-rich conditions needed to be improved further as the current efficiency was only 1% in 1000 

ppm NO with 5% O2 at 400 °C.  

1.3.3 Combination of metals and metal oxides 

In 1996, Nakatani et al. coated La1-xSrxCoO3 on a dense Pd electrode and observed an improvement of 

NO reduction due to this coating.[59] The Pd electrode was sintered at high temperatures to form a 

dense layer on the electrolyte in order to decrease the TPB region and inhibit O2 reduction. In a later 

study by the same group,[60] several metal oxides were added onto dense Pd electrodes and among 

them, RuO2 was reported to increase the activity most. Replacement of Pd with Ag could further 

increase the performance and decrease the operation temperature. A 31.9% NO conversion with 11.8% 

current efficiency was achieved at 500 °C in 1000 ppm NO with 6% O2. However, RuO2 is highly 

carcinogenic and is therefore not suitable for practical applications. 

Park et al. studied NO decomposition on a Pt cathode covered by a La2SnO7/YSZ composite in 2004.[61] 

The deNOx efficiency was observed to be higher on the coated Pt cathode compared to the pure Pt 

cathode. The NO conversion was 80-87% at 700 °C on the coated Pt cathodes, but the maximum current 

efficiency was 3% when 2% O2 was present and decreased to 1.3% when 4% O2 was present. Minimum 

currents to initiate NO decomposition were required when O2 was present in the gas atmosphere, 

indicating the preference for O2 adsorption of the reaction sites.  
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Bredikin et al. proposed the covering of a Pt cathode by a mixture of YSZ and NiO for NOx reduction 

under lean conditions.[62–64] It was shown that adding the NiO/YSZ layer enhanced the selectivity 

reduction of NO versus O2 reduction, most significantly when the layer was sintered at the highest 

temperature (1450 °C). Microstructural observation revealed that the NiO/YSZ layer was quite dense 

after being sintered at such high temperatures, but a nano-porous structure was formed during 

operation. The NiO in the NiO/YSZ interface region was reduced to Ni under polarization, which 

generated numerous nano-Ni grains (10-50 nm) and nano-pores inside the oxide layer (Eq. 1.17).[65]  

       
                                                                                                                          (1.17) 

The performance enhancement by adding the oxide layer was suggested to be due to the oxide layer 

impeding the direct penetration of O2 molecules to the TPB and the nano-Ni particles providing selective 

reaction sites for NO molecules. The NO molecules adsorbed and decomposed on the nano Ni-grains, 

oxidizing them to NiO (Eq. 1.18 and 1.19). The NiO was reduced back to Ni through reaction 17 to 

regenerate Ni grains continuously throughout cell operation.[65] 

                                                                                                                                       (1.18) 

                                                                                                                                      (1.19) 

The optimum NiO loading of this layer was found to be 35 vol%.[66] Control of oxide layer composition 

was able to enhance the activity towards NO reduction at lower operation voltages but could not 

improve the selectivity. Substitution of the Pt cathode by a Pt/YSZ composite cathode further decreased 

the operation voltage by improving the diffusion of oxygen ions from the NiO/YSZ layer to the 

electrolyte.[67] The best performance was observed on a cathode with a YSZ volume slight less than 

50%, but again the composition optimization did not improve the selectivity.[68] Later, a YSZ cover layer 

(2-3 µm) was added to the surface of the NiO/YSZ layer, which was shown to be able to increase the 

activity as well as the selectivity.[69, 70] The improvement was attributed to a suppression of O2 

adsorption by the dense YSZ layer and an increase of the amount of nano-Ni located in the NiO/YSZ 

interface region. The multilayered cathode using an YSZ electrolyte achieved approximately 30% NOx 

conversion with 10% current efficiency at 475 °C in 1000 ppm NO with 2% O2. The effect of the ionic 

conductivity of the electrolyte on NOx reduction was investigated by Hamamoto et al.[71] It was found 
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that increasing the ionic conductivity of the electrolyte lowered the operating temperature but 

decreased the current efficiency. 

In general, all the aforementioned studies on electrochemical NOx reduction followed the pattern of 

choosing selective electrode materials and/or densifying the electrode layers to increase the selectivity 

for NOx reduction. Although several materials have been found to be more electrochemically active 

towards NOx vs. O2, using these materials alone did not give satisfactory deNOx performance in the 

presence of excess O2. Densification of the electrodes increased the selectivity of NOx reduction by 

significantly suppressing the competing O2 reduction. However, the activity of NOx reduction was 

suppressed simultaneously as the amount of reaction sites was reduced and the gas diffusion was 

impeded by this densification. The desirable method should be able to improve both the selectivity and 

activity of NOx reduction relative to O2 reduction.  

1.4 Electrochemical NOx reduction with NOx adsorbents 

In 2008, Hamamoto et al. proposed a new type of electrochemical cell using a multilayered cathode and 

a NOx adsorption layer.[72] The multilayered cathode was almost identical to that developed by Bredikin 

et al. The adsorption layer coated on the top of the cathode was made of a typical NSR catalyst. It was 

demonstrated that the introduction of a NOx adsorption layer greatly improved both the activity and 

selectivity of the electrochemical cell towards NOx reduction under O2-rich conditions. An approximately 

80% NOx conversion and 17% current efficiency was achieved on the cell with a K-Pt-Al2O3 adsorption 

layer at 500°C in 1000 ppm NO with 2% O2, compared to a 20% NOx conversion and 5% current efficiency 

on the cell without the adsorption layer. In later work by the same group in 2011, the NOx adsorbents 

were introduced to the electrochemical cell by another method: impregnation.[73] The NOx storage 

material BaO was infiltrated into a Pt/Ni/CGO cathode covered by an LSM electrode. Effective NOx 

decomposition was realized on such a cell at low temperatures (< 300 °C) in the presence of 10% O2 but 

with a lower current efficiency. It was calculated that an electrode area of about 0.9 m2 was required to 

remove 500 ppm NO from the exhaust gas from a 1.6 L engines at 400 °C.[65] Yoshihara et al. reported 

the simultaneous removal of NOx and particulate matter (PM) by an electrochemical reactor in 2010.[74] 

The electrodes were made of a composite of Ag and YSZ (or CGO) mixed with BaO. It was confirmed that 

the addition of BaO was essential for NOx reduction. During the tests using real diesel exhaust, 97% of 
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the PM and 74% of the NOx were reduced with a fuel penalty of 2.4% to 9.0%. Traulsen et al. recently 

reported a series of studies on electrochemical NOx reduction using LSM/CGO or LSF/CGO electrodes 

impregnated with NOx storage compounds (K2O, MnOx, and BaO).[75–77] The LSM/CGO electrode with 

BaO impregnation showed a promising performance of 61% NO conversion and 8% current efficiency at 

400 °C in the presence of 10% O2. In the following section, the materials related with electrochemical 

NOx reduction with NOx adsorbents will be discussed in more detail. 

1.4.1 Electrode materials  

1.4.1.1 Pt 

Pt is a good catalyst for NO oxidation, and is also capable of catalyzing the reduction of NOx by CO or 

hydrocarbons under O2-free conditions. As a cathode material in electrochemical cells, Pt shows a higher 

activity for O2 reduction than for NOx reduction and thus has no selectivity towards NOx reduction in the 

presence of excess O2. The amount of Pt added to the cathode needs to be higher than 30 vol% to form 

a continuous frame, which is much more than that typically used in NSR catalysts (0.02 vol% or 3.5 g Pt 

per L).[78] For practical applications, the use of Pt as cathode material is cost prohibited.  

1.4.1.2 Ni 

Ni has been the main anode material used in solid oxide fuel cells (SOFCs) for decades, primarily due to 

its known performance and economic benefits. In the case of deNOx cells, NiO was used to prepare the 

NiO/YSZ layer of the multilayered cathode and was subsequently reduced to Ni during cell operation.  

The electrical potential for reduction of NiO to Ni is calculated to be approximately -0.85 V vs. air at 

500 °C using FactSage.[79] According to the studies by Bredikin et al., new grains of Ni or NiO were 

observed in the NiO/YSZ and NiO/NiO interface boundaries at applied voltages above 1.0 V. The nano-Ni 

grains formed in the NiO/YSZ layer were proposed as selective reaction sites for NOx reduction (Eq. 1.18 

and 1.19).  

The adsorption of NO on Ni has been studies by femtomole adsorption calorimetry. The results showed 

that NO adsorbs both dissociatively and molecularly on the Ni surface and there is a threshold coverage 
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at which a switch in the adsorption mode takes place.[80–83] This is different from the Pt (100) surface 

where NO only adsorbs molecularly.[81] 

The main problem with Ni as the cathode material is the volume expansion. During cell operation, a 

redox cycle between Ni and NiO is proceeding continuously at the cathode. At high applied voltages (> 

2.5 V), this reaction will spread from the interface of NiO/YSZ to deep inside the NiO grains, resulting in 

large volume changes.[70] In theory, the bulk volume of a fully dense NiO grain should reduce by 40.9% 

upon reduction to Ni and expand by 69.2% upon oxidation back to NiO.[84] Consequently, the 

microstructure of the cathode is severely deteriorated by these redox reaction, leading to a significant 

degradation in the deNOx performance.[84] 

1.4.1.3 LSM 

LSM is widely used as a material for cathodes in SOFCs, due to its decent electronic conductivity, high 

catalytic activity, good thermal and chemical compatibility with a YSZ electrolyte, and high stability when 

operating at high temperatures (> 800 °C).[85] Extensive studies have been performed on LSM as an O2 

reduction electrode. It is generally accepted that the reaction sites for O2 reduction are confined to the 

TPB as the oxygen diffusion in LSM is quite low; for the La1-xSrxMnO3 (x = 0.15-0.25), the diffusion 

coefficient of oxygen was reported to be about 10-12 cm2 s-1.[85–87] In addition to O2 reduction, LSM has 

shown attractive performance for electrochemical NO reduction. LSM15, where the strontium dopant is 

present at 0.15 mol% (x = 0.15), exhibited the highest activity towards NO reduction among the various 

LSM compositions (x = 0.05 to 0.5).[44] The LSM15/CGO cell with BaO impregnation showed a high 

selectivity for NOx reduction in the presence of excess O2.[77]  

NO2 has been demonstrated to be a reaction intermediate for NOx reduction on the LSM cathode, which 

was proposed to be formed catalytically from the oxidation of NO. In this reaction, LSM was suggested 

to act as a heterogeneous catalyst,[55] which seems plausible as LSM has shown good catalytic activity 

towards NO oxidation and is a potential substitute for Pt as a NSR catalyst.[88]   
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1.4.1.4 Ag 

Ag is one of the most investigated metallic materials for the electrochemical reduction of oxygen 

because of its high catalytic activity, excellent electronic conductivity, and lower cost compared with 

other precious metals (Pt, Pd, etc.). As described in the previous sections, reports on an Ag catalyst for 

the electrochemical reduction of NOx have been rare. The pure Ag[60] or Ag/YSZ cathodes[74] were 

inactive for NOx reduction under lean-burning conditions. With a RuO2 coating or adding a NOx storage 

compound, a high NOx conversion can be achieved on a Ag-based cathode in the presence of excess 

O2.[60, 74] However, detailed characterizations of the cathode and an in-depth analysis on the electrode 

processes are missing. 

1.4.2 Electrolyte materials 

YSZ is commonly used as the electrolyte material for high temperature SOFCs (700-1000 °C). For lower 

temperature operation, CGO is proposed as the electrolyte material as it has higher ionic conductivity 

than YSZ below 600 °C.[89] In electrochemical deNOx, the electrolyte may be partially reduced on the 

cathode side when subjected to large voltages. In the case of YSZ as the electrolyte, partial reduction of 

zirconia produces F-centers on the surface of the electrolyte, which are suggested to be the reaction 

sites for NO reduction. However, in the case of CGO as the electrolyte, the reduction of ceria generates 

electronic conductivity in the electrolyte frame, resulting in current leakage inside the cell.[90] The 

current leakage was reported to decrease the current efficiency on a deNOx cell with an electrically 

reduced thin CGO electrolyte.[73] Thus, it is necessary to prevent this current leakage for highly 

effective NOx reduction. 

1.4.3 NOx adsorbents 

NOx adsorbents comprised NSR catalysts or sorbate components of NSR catalysts. The NSR catalysts 

typically consisted of 1-3 wt% noble metals and 10-20 wt% alkali- or alkaline-earth elements distributed 

over a support with high surface area (eg. Al2O3).[25, 28, 91, 92] Noble metals are capable of catalyzing 

the oxidation reaction of NO to NO2. Most of the NOx in exhaust gases is NO. Empirical evidence shows 

that NSR catalysts sorb NO2 more effectively than NO, or NO2 may be a necessary precursor for the NOx 

trapping process at the alkali- or alkaline-earth components.[25] Among various noble metals being 
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investigated, Pt is the most active one for NO oxidation[93–95] and has been the primary oxidation 

catalyst choice for NSR to date. Alkali- or alkaline-earth components work as the storage or trapping 

sites of NOx in the NSR catalysts. The exact mechanism of the trapping process is still being debated, but 

it is generally accepted that nitrate is the dominant species of NOx storage (Eq. 1.20), although nitrite 

may also be observed under certain conditions (Eq. 1.21).[25, 91] The basicity of the alkali- or alkaline-

earth components is demonstrated to be directly related to their NOx trapping performance. At 350 °C, 

the performance of the storage components of NSR were found to decrease in the order of K > Ba > Sr ≥ 

Na > Ca > Li > Mg.[96] Thus, most of the studies used Ba or K as the storage components of the NSR 

catalysts. 

                                                                                                                                            (1.20) 

                                                                                                                                   (1.21) 

As real exhaust gases contain significant amounts of CO2, H2O, and CO, the effect of these gas species on 

the NOx trapping ability of the NSR catalysts has been studied.[25, 28, 91, 97–99] The presence of CO2 

and H2O decreases the rate of NOx trapping, nitrate formation, or stability on the catalysts. CO competes 

against NOx for the sorption sites with a high selectivity. However, it is well established that the NSR 

catalysts can efficiently remove NOx species (90% conversion) in real exhaust gases,[25, 28] which 

indicated that the effects of CO2, H2O, and CO are not crucial for the NOx trapping ability of the catalysts. 

The main challenges left for the application of NSR catalysts are low resistance to sulfur poisoning from 

fuel or lube oil, and thermal degradation induced by periodic desulfurization operation.[25, 100, 101]  

When applied in electrochemical NOx reduction, the NOx adsorbents are not used in the same way as in 

NSR catalysts. The NSR catalysts operate through a periodic switch from lean to rich conditions in order 

to decompose the nitrate formed during lean operation conditions and subsequently reduce the 

released NOx using surplus fuels under rich condition. In the electrochemical cell, the decomposition of 

nitrate is induced by the concentration gradient of NOx species across the adsorption layer or the 

applied electrical potential near the interfacial region. The reduction of NOx is not accomplished near 

the trapping sites in the adsorption layer, but rather inside the electrode layer, which means the NOx 

species need to diffuse through the adsorption layer to the reaction sites in the electrode. Therefore, 
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the adsorption and desorption properties of the NOx adsorbent in the vicinity of the reaction sites may 

play an important role in NOx decomposition.[72, 73] 

1.5 Thesis objectives and outline 

Modification of the electrochemical cells using the NOx adsorbents has been shown to be an effective 

way to increase both the activity and selectivity of the cells towards NOx reduction under O2-rich 

conditions. However, several issues remained unsolved: 

-The multilayered cathode combined with a NOx adsorption layer so far exhibited the highest current 

efficiency reported in the literature. The structure of this cathode is complicated and is initially 

developed to be used without the addition of an adsorption layer. It is uncertain whether the structure 

of this cathode is optimal for operating with the adsorption layer. 

-The multilayered cathode in the previous study contained a large amount of noble metal Pt and 

reactive material Ni. Electrode materials with reduced cost and improved stability are needed for 

practical applications. 

-The modification of the electrochemical cell with NOx absorbents can be achieved in two different ways: 

adding an adsorption layer on top of the electrode or impregnating the storage components into the 

electrode.  It is not clear which way is preferable for NOx reduction because a meaningful comparison 

between the two approaches cannot be obtained from the previous studies based on various electrode 

materials, various cell structures, and various NOx adsorbents. 

-The reaction mechanism behind the performance improvement by this modification is not well 

understood. 

The aforementioned questions can be concisely summarized as: 

-What is the optimal structure of a cathode with an additional adsorption layer? 

-What are the suitable electrode materials for the electrochemical cell with the NOx adsorbents? 

-Which approach is better to modify the electrochemical cell with the NOx adsorbents?   
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-How does the modification improve the performance of the electrochemical cell? 

To answer these questions, the following studies have been performed in this project: 

First, the structure of the multilayered cathode has been optimized by eliminating the YSZ cover layer. 

Second, LSM and Ag have been evaluated as cathode materials of the electrochemical cells coated with 

a NOx adsorption layer.  

Third, the two approaches to modifying the electrochemical cells with the NOx adsorbents have been 

compared using a fully ceramic LSM/CGO cell. 

Finally, the electrode processes and the effect of modification with the NOx adsorbents on these 

processes have been investigated by impedance spectroscopy. 

Accordingly, the content of this thesis is arranged as follows: 

Chapter 1 introduces the significance of lean NOx control, the development of lean NOx control 

technologies, and includes a literature review of electrochemical NOx reduction. 

Chapter 2 describes the experimental instruments and techniques used in this work. 

Chapter 3 concerns the structure optimization of the multilayered cathode. 

Chapters 4 and 5 describe the exploration of Ag and LSM as cathode materials for the electrochemical 

NOx reduction with the NOx adsorption layers and the impedance analysis of the electrode processes. 

Chapters 6-8 include the comparison of the two approaches for modifying the electrochemical cells with 

NOx adsorbents and the investigation of reaction mechanism by impedance characterizations. 

Chapter 9 summarizes the research results and gives some recommendations for future research. 
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Chapter 2 Experimental 

2.1 Cell fabrication 

The cells were supported on a 200-300 µm thick dense electrolyte. The electrodes were screen printed 

or brush painted onto both sides of the electrolyte. The NOx adsorbents were introduced into the cells in 

two ways: coating an adsorption layer on top of the electrodes or impregnating the storage compounds 

into the electrodes. The details of preparation procedure can be found in chapters 3-8.  

2.2 Preparation of NOx adsorption layers 

Table 2.1 Comparison of the two kinds of alumina powder as the support materials of the adsorption layer. 

Properties Particle size (nm) 
Specific surface are 

(m
2
 g

-1
) 

Microstructure after 
sintering 

Adhesion with the 
electrode 

α-Al2O3 40-80 ~180 Agglomeration Poor 

α-Al2O3 100-300 8-10 Homogeneous Good 

 

   

Figure 2.1 SEM image of the Ba-Pt-Al2O3 powder made of the two kinds of alumina powder, a) with particle size of 100-300 nm, 

and b) with particle size of 40-80 nm. 

The adsorption layers consisted of nano-sized Pt and K or Ba supported on Al2O3 powders. Two kinds of 

alumina powders were examined as the support materials for the adsorption layer, as showing in table 

2.1 and figure 2.1. The alumina powder with a particle size of 40-80 nm have quite a high surface area, 

which may benefit the dispersion of the active components (Pt, and K or Ba) over the alumina support. 
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However, severe agglomeration was observed with this type of alumina powder after sintering. 

Additionally, the adhesion of the resulting adsorption layer to the electrode was too poor to use in 

testing. In contrast, the adsorption layer made from the larger grain alumina powder (100-300 nm) 

exhibited a homogenous microstructure and a good adhesion to the electrode layer. Therefore, the 

alumina powder with a particle size of 100-300 nm was chosen for preparing the adsorption layers.  

Two types of adsorption layers were prepared in this work: the Pt-K-Al2O3 layer and the Pt-Ba-Al2O3 layer. 

The K-Pt-Al2O3 layer consisted of 3 wt% Pt and 10 wt% K supported on Al2O3 powder, which is the same 

as that used for electrochemical NOx removal by Hamamoto et al.[72] For the Pt-Ba-Al2O3 system, which 

has not yet been reported for used in electrochemical applications, the starting composition was chosen 

to be 1 wt% Pt with 20 wt% Ba as in the studies on NSR catalysts. However, measurements on the 

electrochemical cells showed the Pt-Ba-Al2O3 layer with this composition could not effectively promote 

NOx conversion under O2-rich conditions (chapter 5). One possible reason could be that the Ba 

component was overloaded in the adsorption layer as the Al2O3 support used in this work had a smaller 

surface area than that used in typical NSR catalysts. Excessive loading may decrease the density of 

exposed Ba sites as the particles become larger rather than more numerous, or reduce the number of 

exposed Pt sites due to steric hindrance or coverage by the Ba component.[25] The composition of the 

Pt-Ba-Al2O3 adsorption layer was subsequently adjusted by decreasing the Ba loading to 10 wt% and 

increasing the Pt loading to 3 wt%. The addition of this adsorption layer was demonstrated to be able to 

improve the NOx removal performance of the electrochemical cell significantly under net-oxidizing 

conditions (chapters 6 and 7). 

2.3 Test set-up 

The apparatus used to test the electrochemical cells is illustrated in figure 2.2. The apparatus was placed 

inside a furnace and connected to a Gamry Reference 600 potentiostat. The cells were mounted 

between two alumina tubes containing channels for gas flow and measurement probes. Two pieces of 

Au mesh were placed on both sides of the cell as current collectors and contacted with the 

measurement probes. The electrochemical performance of the cells was measured by recording the 

current and monitoring the composition change in the outlet gas at applied voltages. The gas 
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composition was analyzed by chemiluminescence (Model 42i HL, Thermo Scientific, USA) for NO, NO2 

and NOx and mass spectrometry (Omnistar GSD 301, Pfeiffer Vacuum, Germany) for N2, N2O, and O2. 

 

Figure 2.2 Sketch of the test setup for electrochemical cells. 

2.4 Impedance characterization  

Electrochemical impedance spectroscopy (EIS) was used to characterize the electrodes in this work. A 

Gamry Reference 600 potentiostat was used to measure the impedance spectra. The obtained 

impedance spectra were modeled with equivalent circuits using ZView software.[102] The individual 

elements of the circuits can be related to physical, chemical, or electrochemical processes. Thus, 

deconvolution of the impedance spectra can give valuable information about the processes contributing 

to the polarization resistance of the electrodes and the influence of the presence of the NOx adsorbents 

on these processes.  

2.5 Analysis of gas composition 

2.5.1 Mass spectroscopy 

The mass spectrometer (MS) works by ionizing chemical compounds to generate charged molecules or 

molecular fragments and then detecting the ions as a function of mass-to-charge ratio. The MS can be 

used for determining the structure of gas molecules or for measuring the composition of a gas mixture. 
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In other words, it has both qualitative and quantitative uses. In this work, the MS was employed for 

monitoring the change in concentrations of N2, N2O, and O2 species in the outlet. The equipment was 

carefully calibrated using “standard” gases with accurate concentrations in advance of the measurement.  

2.5.2 Chemiluminescence NOx analysis 

 

Figure 2.3 Chemiluminescence NOx analyzer flow schematic.[103] 

A chemiluminescence NOx analyzer was used to measure the concentrations of NOx species. A sketch of 

the components in a chemiluminescence analyzer is shown in figure 2.3.[103] The analyzer utilizes the 

chemiluminiscent reactions between nitric oxide (NO) and ozone (O3) to produce optical emissions 

(luminescence) and then measures the intensity of the luminescence to determine the concentration of 

NO. The reactions are shown in the following equations: 

         
                                                                                                                                   (2.1) 

   
                                                                                                                                                (2.2) 

where the raised asterisk (*) denoted the excited state. 
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For detection of NO2, the sample gas is directed to a convertor, in which the NO2 is converted to NO. By 

comparing the signal measured under these conditions with that when the convertor is bypassed, the 

concentration of NO2 can be determined. 
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Chapter 3 Structure optimization of the multilayered cathode with a NOx 

adsorption layer  

This chapter is the manuscript “Optimization of an electrochemical cell with an adsorption layer for NOx 

removal” accepted for publication in the Journal of Solid State Electrochemistry.  

Abstract 

The structure of a multilayer electrochemical cell with an adsorption layer was optimized by removing 

an yttria-stabilized zirconia cover layer. It was found that the NOx removal properties of the 

electrochemical cell were dramatically enhanced through the optimization, especially under conditions 

of low voltage, intermediate temperature, and high O2 concentration. The pronounced increase in 

activity and selectivity for NOx decomposition after removing the ytrria-stabilized zirconia cover layer 

was attributed to the extensive release of selective reaction sites for NOx species and a strong 

promotion for NOx reduction from the interaction of the directly connected adsorption layer with both 

the Pt and catalytic layers. The optimized electrochemical cell may provide a promising solution for NOx 

emission control. 

3.1 Introduction  

Lean burn engines can greatly improve fuel economy, however, the amount of NOx emission also 

increases under lean conditions and cannot be removed by the traditional three-way catalyst due to the 

O2-rich environment.[104] NOx is dangerous for both human beings and the environment, causing heath 

problems,[13] acid rain, and depletion of the protective ozone layer.[14, 15] Government regulations to 

limit NOx emission are becoming increasingly more stringent in many countries.[17] Therefore, there is 

high demand to find an effective method to reduce NOx emission from lean burn engine exhaust. The 

electrochemical reduction of NOx using a solid oxide cell is an attractive technique for lean burn exhaust 

gas after treatment because it requires no additional reducing agents other than electrons and has the 

potential to form only N2 and O2.[41, 65] The challenge of this technique is to achieve both high 
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selectivity and activity towards NOx reduction in the presence of excess O2.  Thus, a lot of research effort 

has been made on searching suitable electrode materials and optimizing the cell structure.[41, 65]  

Recently, Hamamoto et al. proposed a new type of electrochemical cell with a multilayer cathode and a 

NOx adsorption layer or a NOx adsorbent for the NOx removal.[72, 73, 105] It was reported that the 

introduction of a NOx adsorption layer greatly improved both the activity and selectivity of the 

electrochemical cell towards NOx reduction.[72, 105] Figure 3.1 shows a sketch of such a cell with an 

adsorption layer for NOx decomposition.[72]  

 

Figure 3.1 A sketch of the electrochemical cell with a multilayered cathode and a NOx adsorption layer for removal of NOx.[72] 

During the cell operation, the external voltage was applied between the mesh-patterned Pt cathode and 

the Pt| yttria stabilized zirconia (YSZ) anode, which led to the polarization of the YSZ electrolyte and the 

reduction of NiO to nano-Ni grains in the vicinity of NiO|YSZ interfacial regions in the catalytic layer.[65, 

69–72, 106] The self-assembled nanopores and nano-Ni particles in the catalytic layer were suggested to 

provide a highly selective reaction site for NOx reduction[65, 69–71, 80–83, 106] and also suppress the 

unwanted reaction of oxygen decomposition.[63, 67] The adsorption layer, coated on the cathode side 

of the electrochemical cell, was made of a traditional NSR (NOx storage and reduction) catalyst that is 

normally used to trap and reduce NOx through a cyclic switch between lean and rich conditions.[25] It 

was previously proposed[72] that an additional adsorption layer could provide a NOx-rich atmosphere to 

the reaction sites in the NiO|YSZ catalytic layer to promote NOx reduction. A YSZ cover layer was 

deposited on the top of the catalytic layer in order to increase the NOx selectivity, because it was stated 
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that the YSZ upper layer led to inhibit the O2 decomposition on the open surface of the catalytic layer 

and increase the amount of nano-Ni grains in the interface region of YSZ|NiO.[65, 69, 70] 

However, for the electrochemical cell itself, the cathode with a YSZ cover layer was developed before 

the adsorption layer has been introduced.[63–65, 67, 69–71, 106] Although on a cell without the 

adsorption layer, the deposition of a YSZ upper layer led to improve NOx selectivity,[65, 69, 70] after 

adding the adsorption layer, we believe the presence of the YSZ cover layer will be harmful to NOx 

decomposition. First, the diffusion of NOx gas from the adsorption layer to the reaction sites in the 

catalytic layer should be severely impeded by the intervening YSZ layer, which could in turn inhibit the 

desorption of the NOx stored in the adsorption layer. Second, a promotion effect for NOx removal may 

be generated at the interface of the adsorption layer and the Pt layer or catalytic layer because the 

adsorption and desorption properties of the NOx adsorbent in the vicinity of the reaction site may play 

an important role in NOx decomposition.[72, 105] But this positive effect cannot be utilized with the YSZ 

cover layer because it blocks the direct contact between the adsorption layer and the other layers. 

Therefore, in this study, we modified the structure of the electrochemical cell by removing the YSZ cover 

layer to make the cell better cooperate with the adsorption layer.  

3.2 Experiment 

3.2.1 Cell preparation 

A schematic diagram of the electrochemical cell with a YSZ cover layer can be found in figure 3.1. The 

cell was supported on a 200-µm layer of YSZ (8% Y2O3-doped ZrO2) electrolyte with a multilayer cathode 

and a Pt|YSZ anode. An adsorption layer was applied to the surface of the cathode. Here, two kinds of 

electrochemical cells were prepared and tested for comparison: one with a YSZ cover layer, named S1; 

the other one without a YSZ cover layer, named S2.  Other than the YSZ cover layer, all the other parts of 

these two cells were fabricated in the same way. The preparation procedure of S1 is described below as 

an example. 

The catalytic layer was made by screen printing a composite paste of 55 mol% NiO–45 mol% YSZ (8% 

Y2O3-doped ZrO2) on a 5 x 5 cm YSZ tape. Then, the NiO|YSZ layer was sintered at 1,450 °C for 5 hours. A 

net-shaped Pt layer was screen printed over the NiO|YSZ layer and calcined at 1,250 °C for 1 hour. A YSZ 
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(8% Y2O3-doped ZrO2) cover layer was later screen printed over the Pt layer and sintered at 1,450 °C for 

3 hours. The Pt|YSZ paste (TR-7070, Tanaka Kikinzoku) was subsequently screen printed on the other 

side of the YSZ tape and sintered at 1,400 °C for 1 hour. Finally, the adsorption layer was coated by 

dripping several drops of an adsorbent solution on the top YSZ cover layer. The adsorbent solution was 

made by mixing 10 wt% adsorbent and 10 wt% Pluronic 123 surfactant (BASF) in water. The adsorbent 

was composed of 10 wt% K and 3 wt% Pt supported on Al2O3 powder. The adsorption layer was first 

dried at 110 °C for 12 hours, followed by heating at 600 °C for 1 hour. The preparation was similar to 

that of Hamamoto et al.[72] After the preparation, the large cell (5 x 5 cm) was laser cut into several 

small round cells with diameters of 14 mm.  

3.2.2 Electrochemical test 

For the electrochemical test, S1 and S2 were examined under the same conditions. The cells were set in 

a quartz tube reactor[58] inside a furnace and connected to a Gamry Reference 600 potentiostat. The 

cells were polarized under -1.5 to -4.5 V for a certain period in the temperature range of 375–500 °C, 

with 25 °C intervals. The gas composition was 1,000 ppm NO and 0%- 8% O2 in a balance gas of Ar with a 

flow rate of 2 L/h, maintained by Brooks mass flow controllers. The outlet gas composition was 

monitored throughout the test. The NO, NO2 and NOx concentration were measured by 

chemiluminescence (Model 42i HL, Thermo Scientific). The N2 and N2O were measured by mass 

spectrometry (Omnistar GSD 301, Pfeiffer Vacuum). No N2O was detected in all the tests.  

3.2.3 Microstructure characterization 

The microstructure and element composition of the cells before and after the test were investigated by 

scanning electron microscopy (Zeiss Supra 35) and energy dispersive spectroscopy (EDS). The cells were 

broken manually and the cross-section was polished and coated with carbon. In order to distinguish 

different elements on the cross-section, all the images were recorded with the backscattered detector.  
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3.3 Results  

The performance of the electrochemical cell can be evaluated by its activity and selectivity toward NOx 

reduction. The activity of the cell can be represented by the NOx conversion rate, a percentage of the 

NOx decomposed compared with the total NOx content. The selectivity can be evaluated by current 

efficiency (CE), a ratio of the current consumed by NOx reduction (INO) to the total current (Itot) flowing 

through the cell. INO is calculated using Faraday’s law, as shown in equation 3.1. The current consumed 

by O2 reduction is calculated by subtracting INO from Itot.  

                                                                                                                                                     (3.1) 

   
                                                                                                                                                                                                                                                        (3.2) 

ΔNOx is the amount of NOx decomposition; z is the charge change of N from NOx to N2 (for NO, z = 2; for 

NO2, z = 4), v is the total flow rate, and F is Faraday’s constant. Because NO2 concentration varies with O2 

concentration and temperature and it is usually lower than 30% of the total NOx concentration, we 

calculated CE as the minimum by assuming all of the NOx were NO (z = 2), in order to simplify the 

calculation and compare our results with the literature.[72]  

3.3.1 Dependence of NOx removal properties on O2 concentration 

The dependence of NOx removal properties of S1 (with the YSZ cover layer) and S2 (without the YSZ 

cover layer) on O2 concentration is shown in figures 3.2 and 3.3. The cells were polarized under -2.5 V at 

450 °C in 1,000 ppm NO and different O2 concentrations with balance Ar. The concentration of O2 was 

varied from 0 to 8%. The results reported by Hamamoto et al.[72] on an electrochemical cell with a YSZ 

cover layer, which has the same structure with S1, was also listed as a reference. The reference results, 

which were the best reported in the literature, were measured under the same polarization voltage (-2.5) 

but at a higher temperature (500 °C).  

It was observed that without O2, both S1 and S2 could decompose NOx with quite high activity and 

selectivity. After O2 was introduced, the activity of S1 sharply fell to less than 40% while the activity of S2 

only slightly decreased from 100% to greater than 85%; the current efficiencies of S1 and S2 both 

dropped to approximately 16%, but the CE of S2 became increasingly higher than that of S1 with 
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increasing O2 concentrations.  Because S1 and S2 were prepared and tested under the same conditions, 

the difference in their performance could be ascribed to the presence of the YSZ cover layer, which 

strongly supported the great improvement in NOx removal properties by removing the YSZ cover layer. 

In comparing the results of this work with that of the reference, the NOx conversion rate of S1 was 

obviously lower than that of the reference cell. Because S1 should have the same structure as the 

reference cell, we assumed that the deviation might be caused by the difference of the raw material and 

some other preparation details, which have not yet been clearly identified.  Other than the YSZ cover 

layer step, the cell S2 was prepared exactly in the same way as S1. Thus, if there was any negative effect 

on the structure brought by the preparation other than the YSZ cover layer, it should be equally present 

on S2. However, S2, showed a much higher NOx conversion rate than the reference cell. The current 

efficiency of S2 was slightly lower than that of the reference cell under low O2 concentrations, but 

became increasingly higher than the latter with increasing O2. Moreover, because the results of S2 were 

recorded at 50 °C lower than that in the reference [72], it indicated that by removing the YSZ cover layer, 

better performance could be achieved at a lower temperature, which further demonstrated that the 

modification of the structure was successful.  

 

Figure 3.2 Activity of different cells toward NOx decomposition at various O2 concentrations and 1,000 ppm NO with balance Ar 

under -2.5 V at 450 °C (S1: with a YSZ cover layer, S2: without a YSZ cover layer). 
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Figure 3.3 Selectivity of different cells toward NOx decomposition at various O2 concentrations and 1,000 ppm NO with balance 

Ar under -2.5 V at 450 °C (S1: with a YSZ cover layer, S2: without a YSZ cover layer) . 

There was an unusual increase of the activity and selectivity of S2 in 8% O2. The reason has not yet been 

identified, but it should not be ascribed to a measurement error because the result was reproducible. 

One possible reason for the promotion of NOx conversion under higher O2 concentration was the larger 

ratio of NO2 to NO because NO2 was a stronger oxidant and proposed as an intermediate for NO 

reduction on the LSM|CGO electrode.[55] However, it was unclear why the promotion was only 

revealed on S2 when 8% O2 was present. 

3.3.2 Dependence of NOx removal properties on temperature 

Figure 3.4 shows the performance of S1 and S2 for NOx decomposition at different temperatures under -

2.5 V in 1,000 ppm NO and 2% O2 with balance Ar. It was observed that S2 gave a greatly higher activity 

for NOx decomposition than S1 over the entire temperature range and completely removed all the NOx 

at 475 and 500 °C. Meanwhile, S1 decomposed less than 50% NOx under the same conditions.  



Chapter 3 Structure optimization of the multilayered cathode with a NOx adsorption layer 

31 
 

 

Figure 3.4 NOx removal properties of different cells as a function of temperature under -2.5 V in 1,000 ppm NO and 2% O2 with 

balance Ar (S1: with a YSZ cover layer, S2: without a YSZ cover layer). 

The selectivity of S2 was also markedly higher than that of S1 at lower temperatures, but fell close to 

that of S1 at 475 °C and slightly lower at 500 °C. S2 lost the advantage of selectivity over S1 at high 

temperature, as it was approaching the limit for NOx conversion. At 450 °C, the NOx conversion of S2 

achieved 92%, so with additional temperature increases, there was little room for further increases in 

NOx conversion. At 475 °C, S2 completely decomposed all the NOx in the system. The INO had reached the 

maximum and could not increase further at elevated temperatures. Under these conditions, the 

increased activity of the system at high temperatures resulted in increased O2 reduction rather than NOx 

reduction. As a result, the decline in selectivity of S2 was magnified at high temperatures. This result 

indicated that S2 might have the potential to give a higher selectivity at high temperature when a larger 

amount of NOx is presented. It is noteworthy that S2 showed a similar NOx conversion (8.5% lower) and 

a far greater CE (48.5% higher) at as low as 425 °C compared with the reference cell at 500 °C.[72] 

3.3.3 Dependence of NOx removal properties on polarization voltage 

Figure 3.5 shows the NOx removal properties at various voltages at 450 °C in 1,000 ppm NO and 2% O2 

with balance Ar. S2 reduced near 50% NOx under voltage as low as -1.5 V and completely removed all 

the NOx from -3.5 to -4.5 V, while the NOx conversion of S1 was below 50% over the entire voltage range. 
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Figure 3.5 NOx removal properties of different cells as a function of voltage at 450 °C in 1,000 ppm NO and 2% O2 with balance 

Ar (S1: with a YSZ cover layer, S2: without a YSZ cover layer). 

The selectivity of S2 was increasingly higher than that of S1 with voltage decreasing below -2.5 V. Above 

-2.5 V, the CE of S2 decreased to values near that of S1.  In the case of S2, the NOx conversion increased 

rather linearly by increasing the voltage up to -2.5 V, while eventually reached a steady state above -3.5 

V, which behavior could be an evidence of a diffusion controlled process taking place. Specifically, in the 

range of -2.5 and -3.5 V, the process could be likely a mixed controlled behavior, limited both by the 

mass transfer of NOx species towards the electrode or product species from the electrode, and by 

charge transfer or surface adsorption/desorption processes depended on the change of voltage. 

However, it is needed to point out that the application of voltage higher than -3.5 V resulted in a 100% 

conversion of NOx species present in the gas mixture. Therefore, even though the absolute value of the 

applied voltage increased, the NOx conversion could not further be increased, since NOx species in the 

system have been already completely reduced by S2. For sample S1, with YSZ cover layer, it seems not 

to be a simple diffusion controlled behavior, although the diffusion of NOx species to the electrode 

should be seriously impeded by the YSZ cover layer. One possible explanation is that not only the 

diffusion of NOx species was impeded, but also the other processes related with the electrochemical 

reduction of NOx were affected by the existence of YSZ cover layer. 
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3.3.4 Selectivity towards N2 formation      

On both S1 and S2, the amount of N2 formation measured by mass spectrometer was quite close to that 

calculated from NOx decomposition (see equation 3.4). The N2 selectivity (η, see equation 3.3) was 

approximately 90% under all the test conditions. Taking into account the N2 formation calculated for 

sample S2 at different O2 concentrations as an example (table 3.1), it was found that the selectivity 

towards N2 formation was as high as 91.5% without O2; While in presence of O2, the N2 selectivity 

decreased slightly below 90%. Besides, no N2O was detected by mass spectrometry in all the tests. 

Therefore, it is concluded that both S1 and S2 have high selectivity towards N2 formation.       

Table 3.1 Selectivity towards N2 formation on sample S2, without YSZ cover layer, in 1,000 ppm NO with various O2 

concentrations with balance Ar under -2.5 V at 450 °C.  

O2 concentrations 
/ % 

N2 formation ( ΔN2)      
/ppm 

NOx decomposition (ΔNOx) 
/ppm 

N2 selectivity (η)
a
 

/% 

0 455 995 91.5 

1 403 919 87.7 

2 396 899 88.1 

4 388 869 89.3 

8 411 939 87.5 

a
 N2 selectivity (η) is calculated as in equation 3.3, according to the decomposition reaction of NOx to N2 as showing in equation 

3.4: 

                                                                                                                                                            (3.3) 

                                                                                                                                                              (3.4) 

In summary, compared with the sample with the YSZ cover layer, the sample without a YSZ cover layer 

gave much higher activity for NOx decomposition under all the tested voltages, temperatures and O2 

concentrations, providing  better selectivity at low voltage (-1.5 to -2.75 V), intermediate temperature 

(375−450 °C) and high O2 concentrations (4−8%). Therefore, by removing the YSZ cover layer, the NOx 

removal properties of the electrochemical cell with an adsorption layer could be dramatically enhanced 

under harsh conditions.  
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3.4 Discussions 

3.4.1 Reasons for activity enhancement 

According to systematic research[65, 69–71, 106] on the NiO|YSZ catalytic layer by Bredikhin and 

colleagues, it is believed that there are two reaction sites for NO and O2 molecules in the catalytic layer.  

 

Figure 3.6 Schematic representation of the reaction sites for NO and oxygen gases in the catalytic layer.[65, 69–71, 106] 

As schematically shown in figure 3.6, one is the F-center near the three phase boundaries of YSZ|Pt|gas 

or YSZ|Ni|gas, which is dominated by O2 reduction in O2-rich environment. The other is the nanosized Ni 

particle generated by reducing NiO under cell operation, which was suggested to preferably adsorb and 

decompose NO in the presence of O2,[80–83] thus providing an effective reaction site for the selective 

reduction of NOx. The reaction mechanism can be modeled by the following equations. 

For O2 reduction: 

  
                   

                                                                                                                    (3.5) 

For NO reduction: 

                                                                                                                                                     (3.6) 

                                                                                                                                                 (3.7) 
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                                                                                                                             (3.8) 

In this study, one of the major reasons for the enhancement of NOx reduction activity by removing the 

YSZ cover layer was thought to be the increase in active reaction sites for NOx reduction. This 

assumption was corroborated by the microstructure observation and EDS analysis results of the NiO|YSZ 

layer.  

 

  

Figure 3.7 Microstructure images for the cathodes of different cells before and after testing. The images show: A: S1 cathode 

before testing, B: S1 cathode after testing, C: S2 cathode before testing, D: S2 cathode after testing (S1: with a YSZ cover layer; 

S2: without a YSZ cover layer). 

Figure 3.7 shows the microstructure images for the cathodes of S1 and S2 before and after 

measurement. It can be clearly seen that there were nanoparticles and nanopores generated in the 

NiO|YSZ catalytic layer after measurement, which was due to the reduction of NiO to Ni by the cell 
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operation. More importantly, it was found that there was a large amount of nano-Ni particles left on S1 

compared to S2, which was confirmed by composition analysis by EDS in figure 3.8. It was previously 

demonstrated that because the oxidation of Ni by O2 started at 350 °C,[84] most of the unconsumed Ni 

would be re-oxidized by O2 during the cooling period without the protection of applied voltage.[107] In 

this work, both S1 and S2 were held in 2% O2 at 500 °C for approximately 10 hours before cooling down. 

Therefore, the Ni particles should be almost fully re-oxidized unless they cannot be reached by O2. 

Significantly more residual Ni in the catalytic layer of S1 indicated that the gas path to the nano-Ni grains 

was severely impeded or even blocked compared with that of S2, which led to a large loss of active sites 

for NOx reduction. By removing the YSZ cover layer, a significant number of reaction sites for NOx 

reduction could be released, greatly enhancing the NOx reduction activity of S2. 

 

Figure 3.8 Microstructure image and EDS results for the NiO|YSZ catalytic layer of the cell (S1) with a YSZ cover layer after 

testing. 

3.4.2 Reasons for selectivity increase 

In addition to the activity enhancement for NOx reduction, the O2 reduction also increased after 

removing the YSZ cover layer, because the suppression of O2 adsorption and decomposition on the open 

surface of the catalytic layer by the YSZ layer was lost as well. On an electrochemical cell without an 

adsorption layer, omitting the YSZ cover layer resulted in a lower selectivity for NOx reduction. However, 

 



Chapter 3 Structure optimization of the multilayered cathode with a NOx adsorption layer 

37 
 

in the case with an adsorption layer, the cell without a YSZ cover layer showed much better selectivity 

under harsh conditions while simultaneously maintaining a high activity.  

The difference was most likely due to the introduction of the adsorption layer. The adsorption layer on 

the electrochemical cell is made of an NSR catalyst (Pt-K-Al2O3) but is not used in the same way as an 

NSR catalyst.[25] The NSR catalyst is operated via cyclic switches between lean and rich conditions. NOx 

gases are trapped and stored in the form of nitrate under lean condition. The nitrate is then induced to 

decompose by the switch to rich condition. The released NOx species are reduced near the trapping sites 

by the reducing agents. While on the electrochemical cell, there is no gas switch to induce the 

decomposition of nitrate. The reduction of NOx is not accomplished near the trapping sites in the 

adsorption layer, but rather inside the NiO|YSZ layer, which means the stored NOx species has to be 

released by the decomposition of the nitrate (KNO3 in this case) and then diffuse through the adsorption 

layer to the reaction sites in the NiO|YSZ layer. There are then two steps that likely become rather 

difficult by depositing an additional YSZ cover layer on the electrochemical cell. 

One step is the diffusion of the released NOx species from the storage sites to the reaction sites. With a 

YSZ cover layer in between, diffusion is severely impeded or even blocked, which has been 

demonstrated above. The other step is the decomposition of nitrate on the alkali component (KNO3), 

which is the prestep for NOx release and, more importantly, regeneration of the NOx storage sites to 

trap NOx continuously. Thus, this step is vital to the overall efficiency of the adsorption layer. Because of 

missing the strong driving force from gas switch, the decomposition of KNO3 on the electrochemical cell 

with the YSZ cover layer can only be driven by the concentration gradient of NOx species along the 

adsorption layer, which should be comparatively weak and insufficient. Consequentially, the adsorption 

layer was incapable of trapping NOx as effectively as possible. 

Correspondingly, by removing the YSZ cover layer, the aforementioned two steps can be significantly 

affected in a positive way. Firstly, the diffusion of NOx species from the trapping sites to the reaction 

sites could becomes unobstructed, which would in turn benefit the adsorption and desorption of NOx 

species inside the adsorption layer. Secondly, by removing the YSZ cover layer, the KNO3 on the trapping 

sites near the interface between the adsorption layer and the Pt layer was able to be directly 

decomposed by the negative polarization applied during the operation, which was essentially impossible 

with the presence of YSZ cover layer because it covered nearly the whole interface between these two 
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layers. According to the research on molten potassium nitrate (KNO3), the decomposition of KNO3 starts 

at a potential of -0.65 V (vs. Ag|Ag+|NO3
-) on a Pt cathode at 340 °C.[108] Because the electrochemical 

cell was polarized under the voltage from -1.5 to -4.5 V and operated above the melting point of KNO3, 

after removing the YSZ cover layer, the decomposition of KNO3 on the interface should be easily 

achieved while the electrochemical cell is running. As a result, the trapped NOx species could be 

effectively released and reduced on the reaction sites nearby. The trapping sites of the adsorption layer 

were able to be quickly regenerated near the interfacial area.  

Figure 3.9 shows the microstructure pictures and EDS analysis results for the interface of the adsorption 

layer and cathode of S1 and S2 after testing. On S2, many tiny Pt particles accumulated around the Pt 

surface bared in the adsorption layer, and a thin Pt layer deposited on the open surface of the YSZ 

nearby. On S1, a similar phenomenon was only observed on the Pt surface exposed to the adsorption 

layer through a few narrow gaps of the dense YSZ layer. It was reported that in the molten KNO3 with 

the cathodic potential increasing to greater than -1.5 V, Pt was extensively oxidized to Pt oxide by the 

potassium peroxide formed through the accumulation of O2- under continuous KNO3 

decomposition.[108] On a solid state fuel cell, it was reported that Pt could migrate via PtO2 gas 

vaporized from the Pt current collector and be deposited around the TPBs (three phase boundaries) 

because the volatility of PtO2 was comparatively higher among the Pt species.[109] Therefore, we 

concluded that the Pt particles accumulation and Pt layer deposition on our cells were caused by 

redistribution of Pt from the Pt layer through a mechanism of oxidation of Pt by the potassium peroxide, 

diffusion of gas phase Pt oxide, and subsequent decomposition or reduction of Pt oxide to Pt under 

negative polarization. It must be noted that the oxidation of Pt was not likely due to the reaction 

between Pt and O2 or NO because in that case, the oxidation should be much weaker and should only be 

able to result in an extremely small amount of Pt migration. The intensive redistribution of Pt provided 

an evidence for the decomposition of KNO3 by polarization at the interface of the Pt layer and 

adsorption layer. However, such benefits for KNO3 decomposition were negligible on the cell with the 

YSZ cover layer because the electronic insulated layer extensively broke the connection between the Pt 

layer and adsorption layer. Moreover, it should be noted that by removing the YSZ cover, there was a 

possibility for the KNO3 to be reduced directly to N2 over the potassium trapping sites adjacent to 

Pt|YSZ|gas TPBs (three phase boundaries) under negative polarization. The reduction of NOx through 

this short reaction path, as shown in equation 3.9, should be much more efficient than through a long 
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path of KNO3 decomposition, NOx diffusion to nano-Ni grains and finally NOx reduction to N2 over the Ni 

grains. Thus, the Pt|YSZ|gas TPBs could also work as the selective reaction sites for NOx reduction rather 

than only being dominated by O2 reduction if they remained connected with the adsorption layer. This 

effect might be one of the reasons for the selectivity improvement by removing the YSZ cover layer. 

                          
                                                                                                   (3.9) 

 

Figure 3.9 Microstructure images and EDS results for the Pt layer|adsorption layer interfaces of different cells after testing (S1: 

with a YSZ cover layer, S2: without a YSZ cover layer). 
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In summary, these two steps, diffusion of NOx species and regeneration of NOx trapping sites, which 

might limit the performance of the NSR adsorption layer on the electrochemical cell with a YSZ cover 

layer, were distinctly improved by removing the YSZ cover layer. These improvements gave rise to a 

much more efficient adsorption layer for NOx trapping and smoother transport for the NOx species to 

the reaction sites. Additionally, a short reaction path of direct reduction of KNO3 to N2 might be created 

at the interface of the Pt layer and adsorption layer. Combined, all of these positive effects could greatly 

promote the NOx reduction and make it more pronounced than the increase of O2 reduction. As a result, 

selectivity was not decreased, but rather increased by removing the YSZ cover layer.    

3.5 Conclusions 

By the optimization of removing the YSZ cover layer, the NOx removal properties of an electrochemical 

cell with an adsorption layer was dramatically enhanced, especially under conditions of low voltage, 

intermediate temperature, and high O2 concentration.   

The large increase of NOx decomposition activity was due to the extensive release of the reaction sites 

for NOx reduction by removing the YSZ cover layer. The improvement of selectivity for NOx reduction in 

spite of the increase of O2 reduction was attributed to the interaction of the adsorption layer with the Pt 

layer and the catalytic layer strongly promoting the reduction of NOx, which was specified as the 

following: 

1. The diffusion of NOx species from the adsorption layer into the reaction sites on the NiO|YSZ catalytic 

layer was greatly enhanced after optimization.  

2. The trapping sites of the adsorption layer in the interfacial area of the Pt layer and adsorption layer 

were quickly regenerated by the decomposition of nitrite under negative potential.  

3. The direct reduction of KNO3 to N2 could be realized over the Pt|YSZ|gas TPBs adjacent to the NOx 

storage sites of the adsorption layer.  

Through the structure optimization of removing the YSZ cover layer, an electrochemical cell with an 

adsorption layer was able to give good performance under harsh conditions, may providing a promising 

solution for NOx emission control. 

S2 
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Chapter 4 Ag electrodes with a NOx adsorption layer 

This chapter is the manuscript “NOx reduction on Ag electrochemical cells with a K-Pt-Al2O3 adsorption 

layer” accepted for publication in the Journal of the Electrochemical Society.  

Abstract 

Ag electrochemical cells with and without a K-Pt-Al2O3 adsorption layer were tested for NOx reduction 

under oxygen-rich conditions. The effect of the addition of the adsorption layer on the electrochemical 

reduction of NOx was investigated by a conversion measurement, an impedance analysis and a 

microstructure characterization. The blank Ag cell was incapable of converting NOx to N2 under any of 

the investigated conditions. In contrast, the Ag cell with an adsorption layer showed good NOx reduction 

activity. An 82% NOx conversion with 100% N2 selectivity and 7.7% current efficiency was achieved at -

1.25 V and 500 °C. An impedance analysis revealed that the adsorption layer promoted the adsorption 

and the surface diffusion of the NOx species at or near the triple phase boundaries (TPBs) and the 

formation of NO2. A severe degradation was also observed on the cell with the adsorption layer, which 

was caused by the corrosion of the Ag cathode and the subsequent migration of the Ag into the 

adsorption layer during the operation.   

4.1 Introduction 

Nitrogen oxides (NOx), the collective reference for nitric oxide (NO) and nitrogen dioxide (NO2), are 

detrimental to human health[13] and contribute to the formation of acid rain,[14] the generation of 

photochemical smog,[15] and the depletion of the ozone layer.[16] For these reasons, increasingly 

stringent limitations have been imposed worldwide on the NOx emissions from vehicle exhaust.[17] 

Unlike conventional gasoline engine exhaust, which is almost oxygen-free due to the stoichiometric 

combustion process, diesel engine exhaust contains excess oxygen from a combustion with high air-to-

fuel ratios.[88] This oxygen-rich environment deactivates the traditional three-way-catalysts, making the 

removal of NOx rather difficult.[25] The most mature technologies for reducing NOx under an oxygen-

rich environment are the ammonia selective catalytic reduction (SCR) and the NOx storage and reduction 

(NSR). The implementation of these technologies for mobile vehicles requires either an additional fluid 
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system of ammonia or sophisticated control strategies for the engine. [25] One attractive alternative 

process is the electrochemical removal of the NOx using a solid state cell.[32, 33, 37] The principle of this 

technology is shown in figure 4.1.[57] With this approach, the NOx are reduced to nitrogen at the 

polarized cathode, sparing the need to add any reducing agents or to change the operational state of 

the engine. Currently, this technology is limited by the low activity for selectively reducing the NOx 

under the oxygen-rich conditions. [41] 

 

Figure 4.1 Sketch of the principle for the NOx reduction on a solid state electrochemical cell. (reprinted with permission from ref. 

56; copyright 2012 Springer) 

An electrochemical cell using an Ag cathode with a K-Pt-Al2O3 adsorption layer was developed in this 

study to efficiently reduce the NOx to N2 in the presence of excess oxygen. The K-Pt-Al2O3 adsorption 

layer has been reported to improve the performance of an electrochemical cell for NOx reduction by 

Hamanmoto et al.[72, 73] and our group.[110] The cathode material used in the literatures, NiO, has 

been suffering from the continuous redox reaction between NiO and Ni during the cell operation that 

would eventually deteriorate the cell structure.[84] With a high catalytic activity, an excellent electronic 

conductivity, and a decreased cost compared with other precious metals (Pt, Pd, etc.),[111–113] Ag is 

one of the most investigated electrode materials for the electrochemical reduction of oxygen. Reports 

on an Ag catalyst for the electrochemical reduction of NOx have been rare. Iwayana and co-workers 

reported that an electrochemical cell using an Ag cathode with a RuO2 cover layer reached a 30% NOx 

conversion under oxygen-rich conditions,[60] but the use of the carcinogenic RuO2 limited its 

applications. Yoshinobu et al. reported a high NOx reduction rate (74%) for an electrochemical cell with 

an Ag/Ce0.9Gd0.1O1.95(CGO10) cathode mixed with BaO using a real diesel engine exhaust,[74] but the 

detailed characterizations of the cell and a deep analysis on the electrode processes were missing.  
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In the present study, an electrochemical cell with an Ag cathode and a K-Pt-Al2O3 adsorption layer were 

investigated for NOx reduction under oxygen-rich conditions. The Ag cell without an adsorption layer 

was also measured for comparison. Systematic impedance characterizations were performed to identify 

the processes for the electrochemical reduction of NOx and to determine the effects of the adsorption 

layer on these processes. The cells were also investigated by scanning electron microscopy and energy 

dispersive spectroscopy both before and after testing. 

4.2 Experimental 

4.2.1 Cell preparation 

The blank Ag cell consisted of a porous Ag cathode, a dense Ce0.9Gd0.1O1.95(CGO10) electrolyte, and a Pt 

anode. The electrolyte was approximately 200 µm thick. The anodes were prepared by painting Pt paste 

(Ferro GmbH, Germany) on one side of the electrolyte and sintering at 900 °C for 1 hour. The Ag cathode 

was prepared by painting silver paste (Ferro GmbH, Germany) mixed with 20% by weight of graphite 

(Graphit Kropfmühl AG, Germany) as a pore former on the other side of the electrolyte and sintering at 

700 °C for 1 hour. The active area of the cathode was 1.54 cm2, the same as that of the anode. The 

thicknesses of the cathode and anode layers were both approximately 8 µm and 10 µm, respectively. 

The Ag cell with the adsorption layer was prepared by coating a K-Pt-Al2O3 layer on top of the cathode 

and sintering at 600 °C for 1 h. The amount of the adsorption layer coated on the cathode was 

approximately 8 mgcm-2 with a thickness of approximately 50 µm. The adsorption layer consisted of 10 

wt% K with 3 wt% Pt supported on Al2O3 nanopowders. The composition was identical to a normal NSR 

catalyst.[25] The preparation of the adsorption layer can be found elsewhere.[110] An Au wire was 

connected to the Ag cathode as the cell was coated with the adsorption layer. 

4.2.2 Measurement of NOx reduction  

The cells were installed in a glass tube apparatus that was placed inside a furnace and connected to a 

Gamry Reference 600 potentiostat.[57] Before the conversion measurements, all the samples were 

pretreated in 1000 ppm NO with 10% O2 in Ar at 350 °C for 2 to 4 h in order to remove the carbonates 

and hydroxides of potassium that potentially co-existed in the adsorption layers with the oxide. The cells 
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were polarized at various voltages (-0.25 to -2.0 V) at temperatures ranging between 200 and 500 °C. 

The gas used to test the cells consisted of 1000 ppm NO with 10 % O2 in Ar maintained by Brooks mass 

flow controllers. The flow rate was fixed at 2 L/h. The outlet gas composition was monitored and 

recorded throughout the test using chemiluminescence (Model 42i HL, Thermo Scientific, USA) for NO, 

NO2 and NOx and mass spectrometry (Omnistar GSD 301, Pfeiffer Vacuum, Germany) for N2, N2O, and O2. 

The blank cell and the cell with the adsorption layer were examined using the same conditions. Three 

replicates for the blank cell and two for the cell with the adsorption layer were tested, giving results 

with good reproducibility.  

The NOx conversion, the current efficiency (CE), and the N2 selectivity (η) for the two types of cells were 

calculated to evaluate the NOx reduction performance. The NOx conversion was defined as the 

percentage of NOx decomposed relative to the total NOx content. The current efficiency is the ratio of 

the current consumed by the NOx reduction (INO) to the total current (Itot) flowing through the cell. The 

N2 selectivity demonstrates the extent of the decomposed NOx converted to N2. The calculation of η, 

shown in equation 4.1, corresponds to the reaction for the decomposition of NOx to N2 as shown in 

equation 4.2. 

                                                                                                                                                            (4.1) 

                                                                                                                                                              (4.2) 

4.2.3 EIS measurement 

A Gamry Reference 600 potentiostat was used to measure the EIS data over a frequency range from 

1x106 to 0.001 Hz with 6 data points per decade with a 36 mV rms amplitude under an open circuit 

voltage. To define the electrode processes of the NOx reduction and the effect of the adsorption layer on 

the processes, a series of variations in the experimental conditions were used during recording of the 

impedance spectra. The temperature was increased from 300 to 500 °C at 50 °C intervals. The 

concentrations of NO and O2 were varied in the range of 0 - 5000 ppm and 0 - 15%, respectively. The 

flow rate increased from 2 L/h to 6 L/h.  
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4.2.4 Microstructure characterization  

The microstructure and the element composition of the cells were investigated by scanning electron 

microscopy (Zeiss Supra 35) and EDS (energy dispersive spectroscopy). The cells were cracked manually 

and used directly for the SEM observations. The SEM images were recorded with a secondary electron 

detector with a 10 KeV acceleration voltage. For the EDS analysis, the acceleration voltage was increased 

to 15 KeV. To avoid the effect of surface irregularities and charging, the cross sections of the cells were 

fixed in epoxy, polished, and coated with carbon before being used for the EDS measurement. 

4.3 Results 

4.3.1 NOx removal properties 

To investigate the NOx removal properties in an oxygen-rich environment, the blank Ag cells and the 

cells with a K-Pt-Al2O3 adsorption layer were tested in an atmosphere of 1000 ppm NO with 10% O2. The 

temperature dependence of the cell performance was studied by testing the cells using a specific 

voltage for temperatures ranging of 200 - 500 °C. The results are shown in figures 4.2 and 4.3.  

 

Figure 4.2 NOx conversions for the blank cell and the cell with a K-Pt-Al2O3 adsorption layer at different temperatures in 1000 

ppm NO with 10% O2 under a polarization of -1.5 V. 
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Figure 4.3 N2 selectivity and current efficiency at different temperatures in 1000 ppm NO with 10% O2 under a polarization of -

1.5 V on the cell with a K-Pt-Al2O3 adsorption layer. 

For the blank cell, the NOx conversion fluctuated between 0% and 2% within the entire temperature 

range (figure 4.2). The conversion showed no temperature dependence and these variations could be 

considered to be within the experimental error. For the cell with a K-Pt-Al2O3 adsorption layer, the 

conversion of the NOx started at temperatures as low as 275 °C, gradually increasing to 12% at 350 °C 

and finally reaching 95% at 500 °C. The selectivity for the N2 formation on the cell with an adsorption 

layer increased with increasing temperature to levels that were greater than 80% above 400 °C, figure 

4.3. The CE decreased with decreasing temperature with the lowest values being maintained above 5%. 

The voltage dependence of the cell performance was studied by testing the cells at 500 °C with voltages 

varying from -0.25 to -2.0 V. The results are shown in figures 4.4 and 4.5. The conversion of NOx to N2 

was negligible with the blank cell. For the cell with the adsorption layer, the NOx conversion increased 

rather linearly from 0 to 82% with increasing voltages from -0.5 to -1.25 V, eventually reaching 100% at -

2.0 V. The N2 selectivity was maintained at 100% from -0.25 to -1 V, decreasing slightly for voltages 

exceeding -1.0 V. The CE increased with increasing voltages from 0 to -1.0 V, reaching a maximum value 

of approximately 12% at -1.0 V followed by a decrease for voltages exceeding -1.0 V. The decrease of CE 

above -1.0 V indicated that the increase in the activity of the NOx reduction was less significant than that 

of the O2 reduction, which could be explained by a mixed controlled behavior of the NOx conversion 

under these conditions. Figure 4.4 shows that the increase of the NOx conversion with increasing voltage 
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slowed down from -1.25 to -2.0  V as it approached a compete conversion of NOx. From -1.25 to -2.0 V, 

the NOx conversion on the cell was probably limited both by the mass transfer of NOx species towards 

the electrode or product species from the electrode, and by charge transfer or surface 

adsorption/desorption processes depended on the change of voltage. A 60% NOx conversion with a 12% 

CE and a 100% N2 selectivity was achieved at the rather low voltage of -1.0 V. 

 

Figure 4.4 NOx conversions for the blank cell and the cell with a K-Pt-Al2O3 adsorption layer under different voltages in 1000 

ppm NO with 10% O2 at 500 °C. 

 

Figure 4.5 N2 selectivity and current efficiency under different voltages in 1000 ppm NO with 10% O2 at 500 °C for the cell with a 

K-Pt-Al2O3 adsorption layer. 
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The voltage dependence of the cell performance was studied by testing the cells at 500 °C with voltages 

varying from -0.25 to -2.0 V. The results are shown in figures 4.4 and 4.5. The conversion of NOx to N2 

was negligible with the blank cell. For the cell with the adsorption layer, the NOx conversion increased 

rather linearly from 0 to 82% with increasing voltages from -0.5 to -1.25 V, eventually reaching 100% at -

2.0 V. The N2 selectivity was maintained at 100% from -0.25 to -1 V, decreasing slightly for voltages 

exceeding -1.0 V. The CE increased with increasing voltages from 0 to -1.0 V, reaching a maximum value 

of approximately 12% at -1.0 V followed by a decrease for voltages exceeding -1.0 V. The decrease of CE 

above -1.0 V indicated that the increase in the activity of the NOx reduction was less significant than that 

of the O2 reduction, which could be explained by a mixed controlled behavior of the NOx conversion 

under these conditions. Figure 4.4 shows that the increase of the NOx conversion with increasing voltage 

slowed down from -1.25 to -2.0  V as it approached a compete conversion of NOx. From -1.25 to -2.0 V, 

the NOx conversion on the cell was probably limited both by the mass transfer of NOx species towards 

the electrode or product species from the electrode, and by charge transfer or surface 

adsorption/desorption processes depended on the change of voltage. A 60% NOx conversion with a 12% 

CE and a 100% N2 selectivity was achieved at the rather low voltage of -1.0 V. 

Overall, the conversion of NOx to N2 was negligible for the blank Ag cell at any of the tested conditions 

with the presence of excess O2. With a K-Pt-Al2O3 adsorption layer, the NOx reduction activity of the cell 

was significantly enhanced. By tailoring the applied voltage, a good NOx conversion with a high 

selectivity towards both N2 formation and current usage can be achieved using the cell with an Ag 

cathode and a K-Pt-Al2O3 adsorption layer. 

4.3.2 Deconvolution of the impedance spectra 

The impedance spectra were fitted with between 3 and 5 RQ elements (the resistance (R) and the 

constant phase element (Q) were connected in parallel) in series with a serial resistance (Rs) and an 

inductance (L). The inductance of the experimental apparatus was measured and held fixed during the 

fitting procedure. The impedance of the constant phase element can be written as,[114] 

  
 

       
                                                                                                                                                                (4.3) 
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where Y0 is a constant, j is an imaginary number, ω is the angular frequency, and n is the frequency 

exponent. 

The equivalent capacitance (Cω) of the constant phase element can be calculated according to the 

formula,[115] 

   
     

 

 
  

                                                                                                                                                            (4.4) 

The summit frequency of the arc was calculated as follows, 

      
 

  
      

 
                                                                                                                                                (4.5) 

The activation energy (Ea) of the individual processes was calculated according to the Arrhenius 

equation, 

     
  

  
   

 
                                                                                                                                                          (4.6) 

where δ is the electrical conductivity, δo is the pre-exponential factor, kB is the Boltzmann’s constant, 

and T is the absolute temperature. 

Representative examples of the impedance spectra and their deconvolution for the blank Ag cell and the 

Ag cell with a K-Pt-Al2O3 adsorption layer are shown in figures 4.6 and 4.7. 
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Figure 4.6 Deconvolution of the impedance spectra for the blank Ag cell in a) 1000 ppm NO + 10% O2 and b) 1000 ppm NO in Ar 

at 500 °C under OCV. Note the different axis scales. The solid lines represent the fitting of the entire spectrum and the dashed 

lines represent the deconvolution of the individual processes. The frequency is shown for the data points marked with solid 

circles.  

 

Figure 4.7 Deconvolution of the impedance spectra for the Ag cell with a K-Pt-Al2O3 adsorption layer in a) 1000 ppm NO + 10% 

O2 and b) 1000 ppm NO in Ar at 500 °C under OCV. Note the different axis scales. The solid lines represent the fitting of the 

entire spectrum and the dashed lines represent the deconvolution of the individual processes. The frequency is shown for the 

data points marked with solid circles.  
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4.3.3 Effect of the adsorption layer on the EIS spectra 

To define the effect of the adsorption layer on the electrode processes for the electrochemical reduction 

of NOx, detailed EIS measurements were performed on the blank Ag cell and the cell with the adsorption 

layer. The characteristics of the different processes for the two types of cells are summarized in tables 

4.1 and 4.2. The serial resistance (Rs), the total polarization resistance (Rp), and the polarization 

resistances of the individual processes (R1 - R4) for the two types of cells are compared in figures 4.8 and 

4.9. The total polarization resistance (Rp) is the sum of the individual resistances (R1+R2+R3+R4). The 

values of the resistances were determined by fitting the impedance data using equivalent circuits. Four 

arcs were identified in the spectra for the blank cell, corresponding to processes 1 to 4 from the highest 

to the lowest frequency range, table 4.1. One additional arc was observed for the cell with the 

adsorption layer in an atmosphere of 1000 ppm NO above 400 °C, table 4.2. For processes 1 to 4, the 

addition of the adsorption layer decreased the activation energies and increased the summit 

frequencies without altering the dependences of each process on the temperature, the gas atmosphere, 

and the flow rate. In characterizing the effects on the resistances, the values of Rs for the two types of 

cells were similar, with the Rp of the cell with the adsorption layer increasingly lower than the 

resistances of the blank cell with decreasing temperature. In determining the resistances of the 

individual processes, the R1 values of the cell with the adsorption layer were slightly lower than the 

values for the blank cell below 450 °C. The R2 to R4 values were consistently lower for the cell with an 

adsorption layer than for the blank cell. The differences of R1 between the two types of cells were 

relatively small compared with the differences between those of R2 to R4. The decrease in the 

polarization resistance with the addition of the adsorption layer was primarily from the decrease in the 

resistances of processes 2 to 4. 

  



Chapter 4 Ag electrodes with a NOx adsorption layer 

53 
 

Table 4.1 Characteristics of the processes contributing to the impedance of the blank Ag cell in atmospheres containing 0 - 5000 

ppm NO and 0 - 15% O2 in Ar from 300 to 500 °C. The activation energy (Ea) was calculated for the impedance data recorded in 

1000 ppm NO with 10% O2 in Ar. 

Processes
/Arcs 

fmax  
(Hz) 

Cω  
(F cm

-2
) 

R  
(Ω cm

2
) 

Characteristics 

1 500 - 4 

x 10
4 

~ 5x10
-7

 

independent of temperature 

and gas atmosphere 

decreases with increasing 

temperature  

independent of gas atmosphere 

independent of gas atmosphere  

Ea = 1.01 ± 0.05 eV  

2 0.2 - 30 3x10
-5

 - 7x10
-5

 

depends on the presence of 

O2 

decreases with increasing 

temperature  

depends on the presence of O2 

dependent on temperature                                                                                                                             

and the presence of O2 

weak dependency on the 

variation of pNO 

Ea = 0.92 ± 0.10 eV  

3 0.02 - 4 4x10
-5

 - 3x10
-4

 

increases with increasing 

temperature 

 

decreases with increasing 

temperature 

decreases with increasing pNO 

and pO2 

dependent on temperature and 

gas composition 

independent of flow rate 

Ea = 1.10 ± 0.13 eV 

4 0.001 - 

0.2 

1x10
-4

 - 0.002 

increases with increasing 

temperature and decreasing 

pO2 

 

decreases with increasing 

temperature  

decreases with increasing pNO 

and decreasing pO2 

increases with increasing flow rate 

dependent on temperature, gas 

composition, and flow rate 

Ea = 1.11 ± 0.06 eV 
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Table 4.2 Characteristics of the processes contributing to the impedance of the Ag cell with a K-Pt-Al2O3 adsorption layer in 

atmospheres containing 0 - 5000 ppm NO and 0 - 15% O2 in Ar from 300 to 500 °C. The activation energy (Ea) was calculated for 

the impedance data recorded in 1000 ppm NO with 10% O2 in Ar. 

Processes
/Arcs 

fmax  
(Hz) 

Cω  
(F cm

-2
) 

R  
(Ω cm

2
) 

Characteristics 

1 4 x 10
3 

- 

7 x 10
4 

~ 1x10
-7

 

independent of temperature 

and gas atmosphere 

decreases with increasing 

temperature  

independent of gas atmosphere 

independent of gas atmosphere  

Ea = 0.80 ± 0.06 eV  

2 0.8 - 120 3x10
-5

 - 6x10
-5

 

depends on the presence of 

O2 

decreases with increasing 

temperature  

depends on the presence of O2 

dependent on temperature                                                                                                                             

and the presence of O2 

weak dependency on the 

variation of pNO 

Ea = 0.71 ± 0.06 eV  

3 0.04 - 5 7x10
-5

 - 2x10
-4

 

increases with increasing 

temperature 

decreases with increasing 

temperature 

decreases with increasing pNO 

and pO2 

dependent on temperature and 

gas composition 

independent of flow rate 

Ea = 0.76 ± 0.03 eV 

4 0.002 - 

0.2 

2x10
-4

 - 0.002 

increases with increasing 

temperature and decreasing 

pO2 

decreases with increasing 

temperature  

decreases with increasing pNO 

and decreasing pO2 

increases with increasing flow rate 

dependent on temperature, gas 

composition, and flow rate 

Ea = 0.82 ± 0.02 eV 

5 0.001-

0.03 

0.01 - 0.02 decreases with increasing flow 

rate 

appears in 1000 ppm NO above 

400 °C 

dependent on flow rate 
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Figure 4.8 Serial resistances (Rs) and polarization resistances (Rp) of the blank Ag cell and the Ag cell with a K-Pt-Al2O3 

adsorption layer in 1000 ppm NO with 10% O2 in Ar as a function of the inverse temperature.  

 

Figure 4.9 Polarization resistances of the individual processes (R1 - R4) for the blank Ag cell and the Ag cell with a K-Pt-Al2O3 

adsorption layer in 1000 ppm NO with 10% O2 in Ar as a function of the inverse temperature. 
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4.3.4 Microstructure and composition of the cathodes 

Figure 4.10 shows the SEM pictures for the cathodes of the blank cell and the cell with a K-Pt-Al2O3 

adsorption layer both before and after testing. For the Ag cathode in the blank cell, the effects of the 

testing conditions on the microstructure were negligible. For the cell with the adsorption layer, the 

amount of the Ag particles on the cathode was reduced, indicating a loss of the Ag on the cathode 

during operation. In the EDS analysis on the cell with the adsorption layer after the testing protocol 

(figure 4.11), a strong Ag peak was detected near the interfacial area between the adsorption layer and 

the Ag cathode, demonstrating a migration of the Ag from the cathode into the adsorption layer. 

  

  

Figure 4.10 Microstructure images for the cathodes of the blank cell and the cell with a K-Pt-Al2O3 adsorption layer before and 

after testing. The images include a) the blank cell before testing, b) the blank cell after testing, c) the cell with the adsorption 

layer before testing, and d) the cell with the adsorption layer after testing. 
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Figure 4.11 Microstructure image and the EDS results for the cathode of the cell with a K-Pt-Al2O3 adsorption layer after testing. 

4.3.5 Degradation in the NOx conversion and resistance  

The stabilities of the two types of cells were studied by comparing the NOx conversion and resistances 

both before and after a 150-hour operational time period (table 4.3). During this operation, the cells 

experienced two thermo cycles between 300 and 500 °C with frequent switches between the 

polarization and the OCV. For the blank cell, the NOx conversion after this long-term operation appeared 

lower than the values that were previously observed and had been considered to be within the 

experimental uncertainty. These results suggest that the conversion results were not sufficient to 

characterize the decrease in performance of the blank cell after the operation. The resistances data 

obtained from the impedance measurements provided some stability information. The Rs values before 

and after the operation, which were related to the conductivity of the electrolyte, were almost 

unchanged for the blank cell. The Rp decreased after the operation, especially at low temperatures, 

suggesting that the blank cell was actually activated by the operation. For the cell with the adsorption 

layer, an approximately 50% decrease in NOx conversion was observed for all the tested temperatures, 



Chapter 4 Ag electrodes with a NOx adsorption layer 

58 
 

with the Rs values remaining almost consistent before and after the operation as also observed with the 

blank cell. In contrast with the blank cell observations, the Rp increased after the operation for all tested 

temperatures, indicating that the electrochemical properties of the cell deteriorated. Considering the 

results from the two types of cells, the degradation was most likely not caused by the cell itself but by 

the interaction between the adsorption layer and the cell. 

Table 4.3 NOx conversions, serial resistances (Rs), and polarization resistances (Rp) for the blank cell and the cell with a K-Pt-

Al2O3 adsorption layer before and after a 150-hour operation. The NOx conversion was measured in 1000 ppm NO with 10% O2 

in Ar at -1.5 V. The resistances were obtained from the impedance spectra recorded in 1000 ppm NO with 10% O2 in Ar under 

an open circuit voltage. 

Temperature 
(°C) 

Blank K-Pt-Al2O3 adsorption layer 

NOx conversion (%) Rs (Ωcm
2) Rp (Ωcm2) NOx conversion (%) Rs (Ωcm

2) Rp(Ωcm
2) 

before after before after before after before after before after before after 

300 0.8 0.7 132 139 1.04x106 5.37x105 5.9 3.8 127 130 1.63x105 2.52x105 

400 1.4 0.5 15.3 16.6 6.04x104 4.71x104 39.6 17.0 15.5 16.3 1.85x104 2.85x104 

500 0.9 0.2 5.4 5.4 3,783 3,714 94.7 52.1 5.4 5.6 1,788 2,753 

 

4.4 Discussion 

4.4.1 Identification of the processes for the blank cell 

Four arcs were observed in the impedance spectra of the blank cell, table 4.1. Arc 1 appeared in the very 

high frequency range with a temperature independent Cω of ~ 5x10-7 Fcm-2 and an Ea of ~ 1 eV. This arc 

was not affected by the change in the gas atmosphere, which correlated well with the characteristics of 

the processes related with the transport or transfer of oxygen intermediates between the electrode and 

the electrolyte.[55, 56, 75, 116] Arc 2, appearing in the middle frequency range, was dependent on the 

presence of oxygen, indicating that oxygen was participating in this process. The Cω of this arc varied 

between 3x10-5 and 7x10-5 Fcm-2, which was within the range of the capacitance associated with the 

adsorption and the dissociation of oxygen on the cathode.[75, 77, 116] Arcs 3 and 4 were observed in 

the low frequency area of the impedance spectra. For both arcs, the Cω increased and the resistances 

decreased with increasing temperatures, suggesting that these two arcs were related with the extension 

of the three phase boundaries (TPBs) zone. For arc 3, the resistance decreased with increasing the 
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concentrations of NO and oxygen and was independent of the flow rate. Arc 3 was ascribed to the 

adsorption, the surface diffusion, and the transfer of the O2 species and the NOx species at or near the 

TPBs, which is in good agreement with previous observations of these processes on composite 

electrodes.[75, 77] For arc 4, the resistance decreased with decreasing oxygen concentrations, indicating 

that this low frequency process was dependent on the concentration of the oxygen vacancies.[77] As 

this arc was also characterized by increasing resistances with either increasing flow rates or decreasing 

NO concentrations, this arc was ascribed to the conversion of the reaction intermediate NO2, which was 

consistent with previous findings in our group.[55, 56, 75, 77] 

As a two electrode configuration was used in this study, the response of the Pt counter electrode could 

also be included in the impedance spectra. The impedance results in this work were compared with the 

results obtained on the Pt electrodes.[117–119] An arc similar to arc 2 was observed for the Pt 

electrodes in the temperature range of 400 - 800 °C in the gas atmospheres of O2 in Ar or N2, which was 

identified as the dissociation of oxygen or charge transfer reaction.[117] Therefore, the middle 

frequency process could also be due to the dissociative adsorption of O2 and/or charge transfer 

reactions on the Pt electrode. 

4.4.2 Effect of the adsorption layer on the processes 

The most obvious effect of the adsorption layer on the electrode processes was an additional arc 

appearing in the low frequency end in the atmosphere of 1000 ppm NO at temperatures above 400 °C, 

figure 4.7. The frequency exponent (n) of this arc was rather high (~ 0.8) with decreasing resistances 

with increasing flow rates. These observations were consistent with the characteristics of a typical 

conversion arc.[120] This arc only appeared in the presence of the adsorption layer, suggesting that it 

was probably generated by the interaction between the NO and the adsorption layer, which could be 

the oxidation of the NO on the Pt sites,[121–123] the storage of NOx into nitrate on the K sites,[96, 124] 

or the decomposition of the nitrate on the K sites.[125, 126] The first two processes would be impeded 

with increasing flow rates as the residual time of the necessary intermediates is shortened. The last 

process would benefit from increasing flow rates, as the product gas species from the nitrate 

decomposition can be removed. Arc 5 could be identified as a conversion arc associated with the 

decomposition of the nitrate in the adsorption layer.  
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For arcs 1 to 4, the characteristics of every individual arc for the cell with the adsorption layer were 

similar with those for the blank cell, although the values of Ea were lower and the values of fmax were 

larger. These results suggested that the addition of the adsorption layer did not completely alter the 

reaction mechanism but did increase the activity levels and fastened the reaction speed of each process. 

The identifications of these four arcs for the cell with the adsorption layer were consistent with those 

for the blank cell. In addition to the changes in Ea and fmax, the decrease in Rp also demonstrated the 

promotion effect on the electrode processes with the addition of the adsorption layer. According to the 

resistance changes of the individual processes, the promotion effects were significant on the middle and 

low frequency processes, which were related to the adsorption and dissociation of oxygen on the 

electrode, the adsorption, surface diffusion, and transfer of the O2 species and NOx species at or near 

the TPBs, and the conversion of the reaction intermediate NO2.  

The K-Pt-Al2O3 adsorption layer, consisting of nano-sized Pt and K2O distributed over Al2O3 nanopowders, 

was able to effectively oxidize NO to NO2 by Pt and to trap NO2 into nitrate by K2O. The trapped nitrate 

was decomposed under heating or polarization, releasing NOx. As reported in the literature, an 

additional adsorption layer could provide a rich NOx atmosphere for the reaction zones in the 

electrode.[72, 110] From the SEM observations (figure 4.10), the adsorption layer contacted directly 

with the TPBs on the cathode/electrolyte interface through the thin Ag cathode. From the FTIR studies, 

the adsorbed NOx is known to be capable of moving from the K-adsorption sites to the CGO-adsorption 

sites.[127] Therefore, it can be concluded that the presence of a K-Pt-Al2O3 adsorption layer improved 

the adsorption and the surface diffusion of the NOx species at or near the TPBs of the electrode. For the 

NO2 conversion process that was hindered by lack of the reaction intermediate NO2, the strong 

oxidation ability of the Pt and the rich NOx atmosphere brought by the adsorption layer could 

significantly promote the formation of NO2. In addition to the effects on the NOx related processes, the 

adsorption layer could also facilitate the adsorption, the dissociation, and the surface diffusion of the 

oxygen species, due to the large surface area and the active components (Pt and K).[25]  

4.4.3 Degradation of the cell with the adsorption layer 

A comparison of the NOx conversion and the impedance results for the two types of cells indicated that 

the degradation of the NOx removal performance on the cell with an adsorption layer was related to the 
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interactions between the cell and the adsorption layer rather than the cell itself. A correlation with the 

microstructure and the composition analysis suggested that the degradation was due to the corrosion of 

the Ag cathode and the subsequent migration of the Ag into the adsorption layer. For the cathode, the 

loss of the Ag resulted in a loss of the TPBs region and the electronic conductivity. For the adsorption 

layer, the loading of the Ag decreased the exposed Pt and K surface area, reducing the NOx trapping 

ability.  

During the operation, the cells were heated to temperatures ranging from 300 to 500 °C and polarized 

at negative potentials. At operational temperatures above the melting point of potassium nitrate 

(334 °C), at least part of the Ag cathode was covered by the nitrate melts. Silver metal is unstable in 

molten nitrate under negative polarization and will be corroded as shown in equation 4.7.[128, 129] 

                            (            )                                                                          (4.7) 

The formed silver nitrate subsequently evaporated, diffused into the adsorption layer, and decomposed 

to silver metal, as the boiling and decomposition points of silver nitrate are rather low (440 °C). To 

overcome these limitations, the use of Ba instead of K in the adsorption layer may avoid a corrosion of 

the Ag cathode, as the melting point of barium nitrate is increased (592 °C) relative to potassium nitrate 

and Ba is also commonly used as the NOx-strorage component in NSR catalysts.[25] 

It should be noted that the gas mixtures that only contained NOx and O2 were used in this study to 

simplify the understanding of the underlying electrode processes for the electrochemical NOx reduction. 

As real exhaust gases contain significant amounts of CO2, H2O, and CO, the effect of these gas species on 

the deNOx performance of the cells with the NSR adsorption layers may be important in practical 

situations. The harmful effects of these gas species on the NOx trapping ability of the NSR catalysts have 

been extensively studied.[91, 97–99] The presence of CO2 and H2O decreases the rate of NOx trapping, 

nitrate formation, or stability on the catalysts. CO competes against NOx for the sorption sites with a 

high selectivity. However, it is well established that the NSR catalysts (K-Pt-Al2O3) can efficiently remove 

NOx species (90% conversion) in real exhaust gases,[28] indicating that the effects of CO2, H2O, and CO 

are not crucial for the NOx trapping ability of the catalysts.  
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4.5 Conclusion 

In the present work, the electrochemical reduction of NOx on a blank Ag cell and an Ag cell with a K-Pt-

Al2O3 adsorption layer was investigated. Detailed impedance characterizations were performed to 

determine the processes for the electrochemical reduction of NOx and the effect of the adsorption layer 

on these processes. The blank Ag cell was incapable of converting NOx to N2 under any of the 

investigated conditions. In contrast, the Ag cell with the adsorption layer had a high NOx conversion with 

good N2 selectivity and current efficiency. An impedance analysis revealed that the addition of the 

adsorption layer improved the adsorption and the surface diffusion of the NOx species at or near the 

TPBs as well as the formation of NO2. The cell with the adsorption layer degraded severely after a 150-

hour operation. An analysis of the SEM observations and the EDS data suggested that the degradation 

was from a corrosion of the Ag cathode with a subsequent migration of the Ag into the adsorption layer. 

To avoid to this degradation, the use of Ba instead of K in the adsorption layer may be advantageous. 
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Chapter 5 LSM electrodes with a NOx adsorption layer 

This chapter is the manuscript “Enhancement of NOx removal performance for 

(La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NOx storage/reduction adsorption layers” 

accepted for publication in Electrochimica Acta.  

Abstract 

This study investigated the effect of adding a NOx adsorption layer to the cathode of an electrochemical 

cell on the removal of NOx from gaseous mixtures. The cathode was a composite of (La0.85Sr0.15)0.99MnO3 

(LSM15) and Ce0.9Gd0.1O1.95 (CGO10). Two different kinds of adsorption layers, K-Pt-Al2O3 layer and Ba-Pt-

Al2O3 layer (known as NOx storage/reduction (NSR) catalyst), were studied.  The effects of the NSR 

adsorption layers on the electrode processes were characterized by electrochemical impedance 

spectroscopy (EIS). Both adsorption layers increased the reduction of NOx to N2 in an atmosphere that 

contained only NO. When O2 was present with NO in the atmosphere, the K-Pt-Al2O3 adsorption layer 

significantly enhanced the conversion of NOx to N2, but the Ba-Pt-Al2O3 adsorption layer had no effect. 

The selective removal of NOx under O2-rich conditions was achieved by modifying the LSM15/CGO10 cell 

with a suitable NSR adsorption layer. The improvement for NOx reduction by the adsorption layers was 

mainly contributed by the promotion of the adsorption and surface diffusion of NOx species at/near the 

triple phase boundary (TPB) regions of the electrode and probably the formation of a short and effective 

reaction path for NOx reduction. A stronger capability for oxidizing NO and/or trapping NOx under the 

test conditions may have contributed to the superior performance of the K-Pt-Al2O3 adsorption layer 

relative to the Ba-Pt-Al2O3 layer.  

5.1 Introduction 

The use of diesel engines is becoming more widespread because their fuel economy is superior to and 

their emission levels of carbon monoxide and carbon dioxide are considerably lower than those of 

gasoline engines.[1] However, the high-temperature combustion in diesel engines generates significant 

amounts of nitrogen oxides (NOx), which have harmful effects on the environment[14–16] and human 

beings,[13] and are limited by increasingly stringent government regulations worldwide.[17] Traditional 



Chapter 5 LSM electrodes with a NOx adsorption layer 

64 
 

three-way catalysts are incapable of reducing NOx in O2-rich diesel engine exhaust.[104]  Therefore, 

there is a great demand for new technology to control NOx emissions in diesel engine exhaust. Research 

efforts currently focus on two approaches.[25] The first approach uses selective catalytic reduction (SCR) 

catalysts to selectively reduce NOx but requires additional reducing agents (ammonia, urea, and so forth), 

which introduce problems related to storage, spill management, and development of a distribution 

network. The second approach, represented by NOx storage/reduction (NSR) catalysts, achieves NOx 

reduction by selectively storing NOx under lean conditions, and subsequently reducing the stored NOx 

under rich switch. However, a sophisticated, adaptive control system is needed to implement this 

approach in mobile applications. 

An alternate approach is to reduce NOx  to N2 on the polarized cathode in a solid state electrochemical 

cell, figure 5.1.[57] This technology was first introduced by Pancharatnam et al.[32] in 1975 for a 

zirconia-based cell under O2-free conditions. Hibino et al.[34, 36, 37] and Cicero[42] subsequently 

demonstrated that this approach can also work in the presence of O2. Since then, different studies[41, 

52, 58, 60, 65, 77, 130] have identified suitable cathode materials or optimized the cell structure to 

improve its NOx removal properties. With this approach, the inherent challenge is to selectively reduce 

NOx (rather than O2) in an O2-rich environment without consuming large amounts of electrical power.  

 

Figure 5.1 Illustration of NOx reduction on a solid state electrochemical cell. (reprinted with permission from ref. 56; copyright 

2012 springer) 

In this study, (La0.85Sr0.15)0.99MnO3 (LSM15)/Ce0.9Gd0.1O1.95 (CGO10) cathodes are coated with NOx 

adsorption layers made of NSR catalysts. The NOx removal performance of blank cells (with uncoated 

cathodes) and cells with cathodes coated with two different kinds of NSR adsorption layers are tested 



Chapter 5 LSM electrodes with a NOx adsorption layer 

65 
 

and compared. The underlying motivation of this study is to solve the selectivity challenge of 

electrochemical cells by combining it with NSR catalyst and using electrical polarization instead of rich 

conditions to reduce stored NOx on an NSR catalyst. With this approach, the engine is operated 

continuously under lean conditions (to avoid the fuel penalty), and a complicated control system is no 

longer needed. Furthermore, no additional reducing agents are needed other than electrons. Previous 

work by Hamamoto et al.[72, 73] and our group[110] showed that NSR adsorption layers improved the 

performance of electrochemical cells. However, the cathode materials in the current work involve the 

use of noble metals (Pt, Pd) and a reactive material (Ni). The continuous redox reaction between Ni and 

NiO during cell operation causes volume expansion that would eventually deteriorate the cell 

structure.[84] In this work, LSM15 and CGO10 were chosen as the cathode materials. LSM15 has good 

stability and is widely used as a material for cathodes in solid state fuel cells (SOFC).[85] The ionic 

conductivity of CGO10 at low temperatures (<600 °C) is superior to that of YSZ.[89] In addition to 

performance measurements, detailed characterizations by electrochemical impedance spectroscopy (EIS) 

were also performed to identify the effects of adsorption layers on electrode processes for the 

electrochemical reduction of NOx. 

5.2 Experimental 

5.2.1 Cell fabrication 

Three kinds of cells were prepared and tested in this study: 

1) Blank cells 

2) Cells with K-Pt-Al2O3 adsorption layers  

3) Cells with Ba-Pt-Al2O3 adsorption layers  

The last two types of cells were prepared by coating an adsorption layer on the cathode side of the 

blank cell. The blank cell was supported on a 200 µm thick CGO10 tape (Kerafol, Germany). The 

cathodes were prepared by screen printing a composite slurry on one side of the tape and sintering at 

1150 °C for 2 hours. The slurries contained equal amount of LSM15 (Haldor Topsøe, Denmark) and 
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CGO10 (Rhodia, France) powders. The anodes were prepared by painting Pt paste (Ferro) on the other 

side of the tape and sintering at 900 °C for 1 hour. The active area of the cathode was 1.54 cm2, the 

same as that of the anode. The thicknesses of the cathode and anode layers were both approximately 

10 µm. A mesh-patterned Au layer was painted over the cathode, sintered at 700 °C for 1 hour, and used 

to collect the current. An Au wire was connected to the Au layer when the cell was coated with an 

adsorption layer. 

The adsorption layer was applied by dripping several drops of adsorbent solution on top of the cathode, 

drying at 110 °C for 12 hours, and heating at 550 °C for 1 hour. The amount of the adsorption layer 

coated on the cathode was approximately 8 mg cm-2 with a thickness of approximately 50 µm. The 

adsorbent solution was prepared by dispersing the adsorbents in distilled water with some surfactants. 

The adsorbents consisted of 10 wt% K with 3 wt% Pt supported on Al2O3 nanopowders for the K-Pt-Al2O3 

system, and 20 wt% Ba with 1 wt% Pt for the Ba-Pt-Al2O3 system. These two compositions were chosen 

because they are commonly used as NSR catalysts. The adsorbents were prepared from Al2O3 powders 

(Alfa Aesar, Germany, metal basis) that were dissolved in distilled water with vigorous stirring. The Al2O3 

suspensions were mixed with a solution of KNO3 (Alfa Aesar, Germany, 99%) or Ba(NO3)2 (E. Merck Dam., 

Germany, 99+%) and a solution of Pt(NH3)4(NO3)2 (Aldrich, Germany, 99.995%). Each mixture was stirred 

and heated until a thick paste remained. Each paste was stored at 120 °C overnight and then at 200 °C 

for 2 hours to completely dry the powder. Then, the powders were milled and sintered at 600 °C for 1 

hour.  

5.2.2 Performance measurement of NOx removal 

The three kinds of cells were examined under the same conditions. The cells were installed in a glass 

tube apparatus, figure 5.2. Two pieces of Au mesh were placed on both sides of each cell as current 

collectors. The apparatus was placed inside a furnace and connected to a Gamry Reference 600 

potentiostat. Before the conversion measurements, all the samples were pretreated in 1000 ppm NO 

with 8% O2 in Ar at 350 °C for 2 to 4 h in order to remove the carbonates and hydroxides of potassium or 

barium that potentially co-existed in the adsorption layers with the oxide. The cells were polarized from 

-1 to -2.5 V for 10 - 15 minutes in the temperature range between 300 and 500 °C. The gases used to 

test the cells consisted of 1000 ppm NO and 1000 ppm NO with 8% O2 in Ar with a flow rate of 2 L/h that 
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was maintained by Brooks mass flow controllers. The outlet gas composition was monitored throughout 

the test by chemiluminescence (Model 42i HL, Thermo Scientific, USA) for NO, NO2 and NOx and mass 

spectrometry (Omnistar GSD 301, Pfeiffer Vacuum, Germany) for N2, N2O, and O2. A small leak (250-300 

ppm N2 and 70 -100 ppm O2) in the gas lines was detected by mass spectrometry. Two replicates of each 

kind of cell were tested and gave results with good reproducibility.  

 

Figure 5.2 Sketch of the test setup for electrochemical cells. 

5.2.3 Impedance characterization of electrode performance 

Impedance spectra were recorded with a Gamry Reference 600 potentiostat over a frequency range 

from 1x106 to 0.001 Hz with 6 data points per decade and 36 mV rms amplitude. To study the 

characteristics of the impedance spectra, a series of variations in the experimental conditions were 

made, including temperature, gas composition, and polarization. The temperature was varied in the 

300-500 °C range. Three different atmospheres were supplied during the test, 1000 ppm NO (5000 ppm 

NO only in the case of the blank cell), 8% O2, and 1000 ppm NO + 8% O2. The majority of the impedance 

spectra were recorded at open circuit voltage (OCV). However, to study the effect of polarization, a DC 

voltage of -500 mV was applied at 500 °C in the presence of O2 for comparison. 
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5.2.4 Microstructure observation 

The microstructure of the cells was investigated by scanning electron microscopy (SEM, Zeiss Supra 35). 

The cells were cracked manually and used directly for the SEM observations. The SEM images were 

recorded with a secondary electron detector with a 10 KeV acceleration voltage. 

5.3 Results 

5.3.1 Microstructure of the cathodes 

The SEM images of the as-prepared cathodes in the blank cell and the cells with two types of adsorption 

layers are shown in figure 5.3. The adsorption layers were rather porous, consisting of nano-sized 

particles covering the whole surface area of the cathode. The morphologies of the two types of 

adsorption layer were similar. 

5.3.2 Performance results for NOx removal 

Simplified gas mixtures that only contained NOx and O2 were used in this study. As real exhaust gases 

contain significant amounts of CO2, H2O, and CO, the effect of these gas species on the deNOx 

performance of the cells with the NSR adsorption layers may be important in practical situations. The 

harmful effects of these gas species on the NOx trapping ability of the NSR catalysts have been 

extensively studied.[25, 91, 97–99] The presence of CO2 and H2O decreases the rate of NOx trapping, 

nitrate formation, or stability on the catalysts. CO competes against NOx for the sorption sites with a 

high selectivity. However, it is well established that the NSR catalysts (both K-Pt-Al2O3 and Ba-Pt-Al2O3) 

can efficiently remove NOx species (90% conversion) in real exhaust gases,[25, 28] which indicated that 

the effects of CO2, H2O, and CO are not crucial for the NOx trapping ability of the catalysts. Therefore, it 

is reasonable to use the simplified gas mixtures as to facilitate the understanding of the underlying 

electrode processes for the electrochemical NOx reduction.   
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Figure 5.3 SEM images of the cathodes in a) the blank cell, b) the cell with a K-Pt-Al2O3 adsorption layer, and c) the cell with a 

Ba-Pt-Al2O3 adsorption layer. 

The activity of an electrochemical cell with respect to removal of NOx is usually evaluated by the NOx 

conversion parameter, which is the percentage of NOx decomposed relative to the total NOx content. 

The selectivity of an electrochemical cell is represented by its current efficiency (CE), which is the ratio 
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of the current consumed by NOx reduction (INO) to the total current (Itot) flowing through the cell. 

Faraday’s Law is used to calculate INO, as shown in equation 5.1.  

                                                                                                                                                     (5.1) 

where ΔNOx is the amount of NOx decomposition; z is the charge change of N when it is reduced from 

NOx to N2 (for NO, z = 2; for NO2, z = 4); v is the total flow rate; and F is Faraday’s constant. Another 

important parameter is N2 selectivity (η), which shows how much of the decomposed NOx is converted 

to N2. The calculation of η shown in equation 5.2 corresponds to the reaction for the decomposition of 

NOx to N2 shown in equation 5.3. 

                                                                                                                                                            (5.2) 

                                                                                                                                                              (5.3) 

In an atmosphere of 1000 ppm NO without O2, the NOx removal properties of the electrochemical cell 

are improved by both types of adsorption layers, although the improvement was more pronounced with 

the K-Pt-Al2O3 adsorption layer than with the Ba-Pt-Al2O3 adsorption layer. Figure 5.4 shows the results 

for NOx reduction in 1000 ppm NO at 500 °C during polarization in the blank cell and in the cells with 

different adsorption layers.  

 

Figure 5.4 NOx conversion and current efficiency (CE) for the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell 

with a Ba-Pt-Al2O3 adsorption layer under different applied cell potentials in 1000 ppm NO at 500 °C 
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Table 5.1 NOx conversion, current efficiency, and N2 selectivity at different temperatures in 1000 ppm NO under polarization of 

-2 V on the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell with a Ba-Pt-Al2O3 adsorption layer. 

Temperature 
(°C) 

NOx conversion (%) Current efficiency (%) N2 selectivity (%) 

Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 

300 0.2 9.6 5.8 2.4 61 48 67 77 11 

400 14 80 49 34 49 24 60 94 53 

500 60 97 71 5.3 5.0 2.9 95 100 86 

 

When O2 was present in the atmosphere with NO, no significant conversion of NOx to N2 was detected 

for the blank cell and the cell with a Ba-Pt-Al2O3 adsorption layer, figure 5.5 and table 5.2. However, a 

significant improvement in NOx removal was observed for the cell with a K-Pt-Al2O3 adsorption layer. An 

85% NOx conversion with 4% CE and 74% N2 selectivity was achieved at -2 V and 500 °C. For the cell with 

a K-Pt-Al2O3 adsorption layer, the NOx conversion started at a rather low voltage of -1 V and gradually 

increased to 90% with increasing voltage (figure 5.5). This cell’s CE reached a maximum value of 6% and 

then decreased to approximately 3% as the voltage increased. Below 500 °C, the activity and selectivity 

for NOx reduction decreased in the cell with a K-Pt-Al2O3 adsorption layer, but a small conversion of NOx 

(3%) was observed, even at 300 °C, in the presence of 8% O2. Both N2 and N2O were detected during the 

cell operation. The selectivity towards N2 formation was approximately 30% at 300 and 400 °C, but it 

increased to more than 70% when the temperature rose to 500 °C. The high selectivity at 500 °C was 

expected because the stability of N2O decreased at high temperatures. 

Table 5.2 NOx conversion, current efficiency, and N2 selectivity at different temperatures in 1000 ppm NO with 8% O2 under 

polarization of -2 V on the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell with a Ba-Pt-Al2O3 adsorption layer.  

Temperature 
(°C) 

NOx conversion (%) Current efficiency (%) N2 selectivity (%) 

Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 

300 0 3 0 0 26 0 - 35 - 

400 -0.7
a 

42 -0.9
a 

-0.1
a 

13 -0.2
a 

-30
a 

26 -120
a 

500 1.1 85 -0.7
a 

0 4 0 50 74 -166
a 

a 
Because the variation of NOx and N2 concentration was less than 10 ppm under these conditions, the negative values stated 

for the blank cell and the cell with a Ba-Pt-Al2O3 adsorption layer are considered to be within the general uncertainty of the 

experiments. 
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Figure 5.5 NOx conversion and current efficiency (CE) for the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell 

with a Ba-Pt-Al2O3 adsorption layer under different applied cell potentials in 1000 ppm NO with 8% O2 at 500 °C. 

 

Figure 5.6 Total current density vs. overpotential curves for the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the 

cell with a Ba-Pt-Al2O3 adsorption layer in atmospheres of 1000 ppm NO in Ar and 1000 ppm NO + 8% O2 in Ar at 500 °C. 

Figure 5.6 shows the total current (Itot) vs. electrode overpotential curves for the three types of cells in 

atmospheres of 1000 ppm NO in Ar and 1000 ppm + 8% O2 in Ar at 500 °C. The overpotentials were 

calculated by subtracting ohmic losses from the applied voltages. In the presence of oxygen, the values 

of Itot increased rather linearly with increasing overpotential, showing no electronic behavior of CGO. In 

the absence of oxygen, the values of Itot rose sharply when overpotential exceeded approximately -1.4 V, 

which was most likely due to a significant electronic conductivity arising from the partial reduction of 
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CGO. This could also explain the drastic drop in CE with increasing voltages in 1000 ppm NO in the 

absence of oxygen. It should be noted that under OCV conditions, the electronic conductivity of CGO is 

negligible even under the most extreme experiment conditions in this study (oxygen partial pressure of 

~10-4 atm in 1000 ppm NO in Ar with a 70 - 100 ppm O2 leak at 500 °C), as these conditions are still 

below the boundary conditions  for the ionic domain of doped ceria (oxygen partial pressure of 10-13 atm 

at 600 °C).[90] 

5.3.3 Fitting the EIS spectra 

 An equivalent circuit, which contained an inductance (L), a serial resistance (Rs), and a number of sub-

circuits (RQ, where the resistance (R) and constant phase element (Q) were connected in parallel) that 

were all connected in series, was used to fit the impedance spectra. The constant phase element was 

used to replace the capacitance, in order to characterize the non-ideal behavior of the electrochemical 

system under realistic conditions. The impedance of the constant phase element can be written as[114] 

  
 

       
                                                                                                                                                              (5.4) 

where Y0 is a constant, j is an imaginary number, ω is the angular frequency, and n is the frequency 

exponent. 

The equivalent capacitance (Cω) of the constant phase element can be calculated according to the 

formula.[115] 

   
     

 

 
  

                                                                                                                                                            (5.5) 

The summit frequency of the arc was calculated as follows. 

      
 

  
      

 
                                                                                                                                                (5.6) 

The inductance of the experimental apparatus was measured and held fixed during the fitting procedure. 

All of the impedance spectra were fitted with between 2 and 4 sub-circuits. In every case, the smallest 

number of RQ elements was used to obtain a reasonable and satisfactory fit (chi-squared < 5x10-4) 

because an additional arc, which usually improves the fit, does not necessarily correlate with the 
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physical processes. In addition, trying to fit more unknown parameters from the same amount of data 

will increase the uncertainty of their values. Representative examples of impedance spectra and their 

deconvolution for the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell with a Ba-Pt-

Al2O3 adsorption layer are shown in figure 5.7. 

 

 

 

Figure 5.7 Impedance spectra for the different cells in 1000 ppm NO + 8% O2 in Ar at 500 °C under OCV. Note the different axis 

scales. The solid lines represent the fitting of the entire spectrum and the dashed lines represent the deconvolution of the 

individual processes. The frequency is shown for the data points identified with solid circles. The spectra are: a) the blank cell; b) 

the cell with a K-Pt-Al2O3 adsorption layer; and c) the cell with a Ba-Pt-Al2O3 adsorption layer. 
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5.3.4 Characteristics of processes 

During the collection of the impedance spectra, the experimental conditions (temperature, gas 

composition, and polarization) were varied to identify the processes that occurred in the systems. 

Temperatures were changed from 300 to 500 °C. Three atmospheres were supplied: 1000 ppm NO 

(5000 ppm NO in the blank cell), 8% O2, and 1000 ppm NO + 8% O2. Impedance spectra were recorded 

both under polarization and OCV. The characteristics of the impedance response on the three types of 

cells are summarized in tables 5.3 to 5.5.  

Table 5.3 Characteristics of processes contributing to the impedance of the blank cell in an atmosphere of 1000 ppm NO, 5000 

ppm NO, 8% O2, and 1000 ppm NO + 8% O2 in Ar in the temperature range of 300-500 °C. (HF-high frequency, MF-middle 

frequency, LF-low frequency) 

Processes Arcs fmax (Hz) Cω (Fcm
-2

) R (Ωcm
2
) Characteristics 

HF 1 10
3 

- 10
4 

~ 2x10
-7

 

Temperature independent  

Decreases with increasing 

temperature  

Independent of gas 

atmosphere  

Dependent on temperature 

Ea= 1.01 eV (R
2
=0.991) 

MF 2 2 - 330 1x10
-5

 - 1x10
-4

 

 Increases with increasing 

temperature 

Depends on presence of O2 

Decreases with increasing 

temperature  

depends on presence of O2 

Dependent on temperature                                                                                                                             

and presence of O2 

Ea= 1.44 eV (R
2
=0.955) 

LF 3, 4 0.01- 3 Increases with increasing 

temperature 

Increases under polarization 

decreases with increasing 

pNO 

Dependent on gas 

composition  

 

 Decreases with increasing 

temperature 

Decreases with increasing 

pNO 

Dependent on gas 

composition  

Magnitude decreases under 

polarization 

One or two arcs depending 

on test conditions 

Dependent on temperature, 

gas composition, and 

polarization 
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Table 5.4 Characteristics of processes that contributed to the impedance of the cell with a K-Pt-Al2O3  adsorption layer in 

atmosphere of 1000 ppm NO, 8% O2, and 1000 ppm NO+ 8% O2 in Ar in the temperature range of 300-500 °C. (HF-high 

frequency, MF-middle frequency, LF-low frequency) 

Processes Arcs fmax (Hz) Cω (F cm
-2

) R (Ω cm
2
) Characteristics 

 HF 1 

 

10
3 

- 10
4
 ~ 2x10

-7
 

Independent of temperature 

from 300 to 400 °C 

Decreases with increasing 

temperature from 300 to 

400 °C 

 Dependent on temperature 

 disappears at 500 °C  

  

 MF 2 

 

120 - 160 ~ 2x10
-4

   Only appears in 1000 ppm NO 

+ 8% O2 under polarization  

LF 3, 4 

 

0.03 - 8  Increases with increasing 

temperature 

Increases under polarization 

Dependent on gas 

composition  

 

Decreases with increasing 

temperature 

Dependent on gas 

composition  

Magnitude decreases under 

polarization 

One or two arcs depending on 

test conditions 

Dependent on temperature, 

gas composition, and 

polarization 

LF-I 5 0.004 ~ 0.24 ~ 180 Only appears in 1000 ppm NO 

Table 5.5 Characteristics of processes contributing to the impedance of the cell with a Ba-Pt-Al2O3 adsorption layer in an 

atmosphere of 1000 ppm NO, 8% O2, and 1000 ppm NO+ 8% O2 in Ar in the temperature range of 300-500 °C. (HF-high 

frequency, MF-middle frequency, LF-low frequency) 

Processes Arcs fmax (Hz) Cω (F cm
-2

) R (Ω cm
2
) Characteristics 

HF 1 

 

500-10
4
 ~ 3x10

-7
 

Independent of temperature 

from 300 to 400 °C 

Decreases with increasing 

temperature from 300 to 

400 °C 

Dependent on temperature 

 arc 1 disappears at 500 °C  

MF 2 100 - 500 2x10
-5

 - 1x10
-4

  Occasionally appears at 

500 °C                                                                                                               

LF 3, 4 

 

0.01-6 Increases with increasing 

temperature 

Increases under polarization 

Dependent on gas 

composition  

 

Decreases with increasing 

temperature 

Dependent on gas 

composition  

Magnitude decreases under 

polarization 

One or two arcs depending on 

test conditions 

Dependent on temperature, 

gas composition, and 

polarization 

LF-I 5 0.002 ~ 0.13 ~ 640 Only appears in 1000 ppm NO 
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5.3.5 Effects of adsorption layers on impedance spectra 

The serial resistances and polarization resistances corresponding to the blank cell and cells with 

adsorption layers were compared (table 5.6). Due to the occasional appearance of the middle frequency 

arc and strong overlap of the low frequency arcs, the corresponding resistances were calculated 

together. The serial resistances of the cells with adsorption layers were similar to those of the blank cell, 

taking into account the variation between replicates. For the high-frequency process, the resistances 

were lower in the cells with adsorption layers than in the blank cell at 300 °C and 400 °C. When the 

temperature increased to 500 °C, the HF arc disappeared from the cells with adsorption layers (or 

became too small to be separated with sufficient accuracy). For the middle- and low-frequency 

processes, the decrease in the resistance for the cell with a Ba-Pt-Al2O3 adsorption layer was significantly 

greater than that for the blank cell at all temperatures. In the case of the cell with a K-Pt-Al2O3 

adsorption layer, the resistances differed the most from the blank cell at 300 °C but decreased as the 

temperature increased. Overall, the introduction of an adsorption layer decreased the polarization 

resistance of the electrochemical cell at all of the test temperatures for 1000 ppm NO with 8% O2. This 

trend was mainly caused by the decrease of the LF resistances because the LF arcs dominated the 

impedance spectra.  

Table 5.6 The serial resistance (Rs), the high-frequency process resistance (R1), and the sum of the middle-and low-frequency 

process resistances (R2+R3+R4) for the blank cell, the cell with a K-Pt-Al2O3 adsorption layer, and the cell with a Ba-Pt-Al2O3 

adsorption layer. The percentage change of the resistances between the blank cell and the cells with adsorption layers is also 

shown. The impedance spectra were recorded in an atmosphere of 1000 ppm NO + 8% O2 in Ar under OCV. 

Temperature 
 (°C) 

Rs (Ω cm
2
) R1 (Ω cm

2
) R2+R3+R4 (Ω cm

2
) 

Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 Blank K-Pt-Al2O3 Ba-Pt-Al2O3 

300 
 

145  
 

151 
(4.1%) 

152 
(4.8%) 

956 
 

668  
(-30%) 

746 
(-22%) 

4.35E6 
 

7.75E4 
(-98%) 

1.04E6 
(-76%) 

400 
 

18 
 

17 
(-5.5%) 

20 
(11%) 

34 
 

17  
(-50%) 

15 
 (-55%) 

9.36E4 
 

23,708  
 (-74%) 

2.77E4 
 (-70%) 

500 
 

6.1 
 

5.7 
(-6.5%) 

6.7 
(9.8%) 

4.9 
 

- 
 

- 
 

2,182 
 

2085  
(-4.4%) 

555  
(-69%) 
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Figure 5.8 Impedance spectra for different cells in 1000 ppm NO, 8% O2, and 1000 ppm NO + 8% O2 in Ar at 500 °C under OCV. 

Note the different axis scales. The frequency is shown for the data points marked with solid circles. The spectra are: a) the blank 

cell; b) the cell with a K-Pt-Al2O3 adsorption layer; and c) the cell with a Ba-Pt-Al2O3 adsorption layer. 

The effect of the adsorption layers on the electrochemical properties of the cells in different 

atmospheres was also investigated. The impedance spectra of the three kinds of cells were recorded in 

1000 ppm NO, 8% O2, and 1000 ppm NO + 8% O2 (figure 5.8). In the blank cell, Rp was minimal in 1000 

ppm NO with 8% O2, slightly larger in 1000 ppm NO, and approximately twice as large in 8% O2. After 
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adding the adsorption layers, the resistances in all three atmospheres were lower, and the relative sizes 

of the resistances in the different atmospheres were altered. In the case of the cell with a K-Pt-Al2O3 

adsorption layer, the decrease of Rp in 1000 ppm NO was the most pronounced among all the 

atmospheres. Consequently, the Rp in 1000 ppm NO was the lowest for this case, which was 

approximately 50% smaller than in O2-containing atmospheres. In the cell with a Ba-Pt-Al2O3 adsorption 

layer, the decrease of Rp in O2-containing atmospheres was more significant that in 1000 ppm NO. As a 

result, the Rp in 1000 ppm NO was the largest, approximately twice as large as that in O2-containing 

atmospheres. 

For spectra collected in the 1000 ppm NO atmosphere, an additional arc (denoted arc 5) appeared in the 

lowest frequency range (< 0.02 Hz). This arc was observed only in the presence of the adsorption layers. 

The resistance of arc 5 was notably larger for the cell with a Ba-Pt-Al2O3 adsorption layer than for the 

cell with a K-Pt-Al2O3 adsorption layer (figure 5.8; tables 5.4 and 5.5). 

5.4 Discussion 

5.4.1 Identification of processes 

In the high-frequency range, arc 1 was observed in all the impedance plots for the blank cell both under 

OCV and under polarization (-0.5 V) and the impedance plots from 300 to 400 °C for the cells with 

adsorption layers. For the blank cell, this arc was not affected by changes in the gaseous atmosphere 

and had an activation energy of 1.01 eV under OCV conditions. The equivalent capacitances of this arc 

for all three cells were approximately 10-7 Fcm-2 and independent of temperature. These characteristics 

are consistent with those for the process related to the transfer of oxygen ions across the interface 

between the electrode and electrolyte and through the electrolyte frame of the composite electrode, as 

reported for LSM/YSZ[116] and LSM/CGO[55, 75, 77] electrodes. The resistances of the high-frequency 

process were consistently lower in the cells with adsorption layers than in the blank cell from 300 to 

400 °C. At 500 °C, the resistance for the cells with adsorption layers could not be estimated, probably 

because this arc was so small that it could not be separated from the impedance plot.  

A middle-frequency arc, arc 2, in most of the impedance spectra for the blank cell both under OCV and 

polarization (-0.5 V) conditions, was only found in very few impedance spectra for the cells with 
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adsorption layers. For this reason, arc 2 will be discussed only for the blank cell. In the case of the blank 

cell, arc 2 was dependent on the presence of O2 in the atmosphere. While the Cω and resistance of this 

arc were almost identical in O2-containing atmospheres (1000 ppm NO + 8% O2 and 8% O2), their values 

varied considerably in 1000 ppm NO without O2. The Cω of arc 2 increased with temperature in the range 

of 1x10-5 to 1x10-4 Fcm-2 and agreed fairly well with the capacitance associated with the adsorption and 

dissociation of O2 and/or charge transfer reaction on the composite cathode[56, 77, 116] or in the 

platinum/zirconia system.[117] The activation energy of the middle-frequency process in the blank cell 

was calculated to be 1.44 eV, which was lower than the activation energy reported for dissociative 

adsorption of O2 in the platinum/zirconia system (2-2.5 eV),[117] but in good agreement with values 

observed on perovskite/CGO composite electrodes (1.2-1.5 eV).[56] As a two electrode configuration 

was used in this study, the response of the Pt counter electrode could also be included in the impedance 

spectra. For the blank cell, the middle-frequency arc was attributed to the dissociative adsorption of O2 

and/or charge transfer reactions on the LSM/CGO10 electrode and/or the Pt electrode.  

In the low-frequency area of the impedance spectra, one or two arcs (arcs 3 and 4) were identified 

under certain test conditions. Due to their strong overlap and similar dependence on the test conditions, 

these two arcs were combined and denoted as the low-frequency process. No new or missing processes 

were observed in the spectra recorded under polarization (-0.5 V) when compared with those under 

OCV. The characteristics of the low-frequency process were similar for the blank cell and the cells with 

adsorption layers. The increase of Cω and decrease of the resistance with increasing temperature or 

applied polarization showed that this process was related to the extension or broadening of the triple 

phase boundary (TPB) zone. The dependence of this arc on the NO and O2 concentrations indicated that 

O2-related species and NOx-related species participated in the low-frequency process. As a result, the 

low-frequency process was ascribed to adsorption, surface diffusion, and transfer of O2 species and/or 

NOx species at or near TPBs, which was in good agreement with previous findings on perovskite/CGO 

electrodes in our group.[75, 77] However, a profound decrease in the resistance of the low-frequency 

process was observed for almost every temperature and gas composition in the cells with adsorption 

layers relative to that in the blank cell, except for the cell with the K-Pt-Al2O3 adsorption layer in 1000 

ppm NO + 8% O2 at 500 °C, where the resistance was slightly (4.4%) lower than that in the blank cell.  

The fourth process, arc 5, located in the lowest frequency range of the impedance plots, was observed 

in 1000 ppm NO only when the adsorption layers were present under OCV. The equivalent capacitances 
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and resistances of this arc, although of the same magnitude, clearly differed from the two adsorption 

layers. An arc present in a very low frequency range in NO-containing atmosphere could be related with 

the formation of NO2 from NO which was catalyzed by LSM, as identified by Werchmeister on an 

LSM/CGO electrode.[55, 57] However, the absence of arc 5 from the LSM/CGO blank cell made it 

unlikely that the arc observed in this study was caused by the same process. The dependence of arc 5 on 

the presence and type of adsorption layers indicated that this arc arose from a process related to the 

interaction between NO and the adsorption layer, which could be oxidation of NO on Pt sites,[121–123] 

trapping of NOx (mainly in the form of a nitrate) on K or Ba sites,[96, 124] or decomposition of nitrate on 

the trapping sites,[125, 126] as shown in the following equations. 

NO oxidation: 

                                                                                                                                                          (5.7) 

NOx trapping: 

                                                                                                                                         (5.8) 

                                                                                                                                          (5.9) 

Nitrate decomposition: 

                                                                                                                                         (5.10) 

                                                                                                                                        (5.11) 

where O* represents a dissociated oxygen atom. The reactions on K sites are similar to those on Ba sites 

and have been omitted. 

In addition, the absence of arc 5 from the impedance recorded in NO with O2 suggested that it must be 

related to a process that was somehow limited by the lack of oxygen. Among the processes inside the 

adsorption layers (mentioned above), the first two, NO oxidation and NOx trapping, are hindered by the 

shortage of oxygen species; whereas the last one, nitrate decomposition, is facilitated by low partial 

pressure of oxygen because the equilibrium stability of nitrate species is dramatically lower.[25] 
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Therefore, it is reasonable to attribute arc 5 to a process related to the oxidation of NO on Pt sites 

and/or the trapping of NOx on K or Ba sites in the adsorption layers. 

5.4.2 Enhancement of activity by adding the adsorption layers 

 The impedance spectra were obtained by measuring the AC current response of an electrochemical 

system under a small alternating voltage signal. The impedance of an electrode reveals the degree to 

which it resists polarization. In other words, the impedance corresponds to the activity of the electrode. 

Therefore, the impedance of the three cells under different experimental conditions provided 

information about how the activity of the cell was affected by the adsorption layer. In figure 5.8, the 

resistance of the blank cell in NO with O2 was the lowest among the three atmospheres, while the 

resistance in an atmosphere only containing O2 was quite large. The significant decrease in resistance 

due to the addition of NO to the atmosphere was probably due to the improvement in the activity of the 

electrode for reducing O2 by means of the formation of more reactive oxygen surface species from the 

interaction between NO and O2, as suggested by Reinhardt et al.[131]. After adding adsorption layers, 

the resistance in an atmosphere  containing only NO and in an atmosphere containing only O2 decreased 

significantly relative to the blank cell, indicating a general increase in activity towards reduction of both 

NO and O2. However, the resistance in O2 with NO and the resistance in O2 without NO were similar, 

indicating that the activity increase for O2 reduction with the addition of NO was negligible after it was 

enhanced by the adsorption layer. 

Although there was a general increase in activity for both NO and O2 reduction by the adsorption layers, 

the extent of enhancement for NO and O2 reductions differed for each type of adsorption layer. For NO 

reduction, the resistance in an atmosphere that contained only NO was lowered more significantly by 

the K-Pt-Al2O3 adsorption layer than by the Ba-Pt-Al2O3 adsorption layer, indicating that the former 

enhanced NO reduction to a greater extent than the latter. This finding provided an explanation for the 

observations that both adsorption layers improved the NOx removal performance in 1000 ppm NO 

without O2, while the performance with the former was even better. For O2 reduction, the resistance in 

the O2-containing atmosphere was decreased dramatically in the cell with a Ba-Pt-Al2O3 adsorption layer 

compared to the blank cell; whereas in the cell with a K-Pt-Al2O3 adsorption layer, the decrease was 

relatively small. Combined with the effect on NO reduction, applying a K-Pt-Al2O3 adsorption layer led to 



Chapter 5 LSM electrodes with a NOx adsorption layer 

83 
 

a large enhancement of NO reduction and a relatively small improvement in O2 reduction, therefore, the 

selectivity for NO reduction increased. While using a Ba-Pt-Al2O3 adsorption layer significantly improved 

the O2 reduction, but with a less pronounced enhancement of NO reduction, as a result, the selectivity 

deteriorated. This statement also explains the experimental results that when excess O2 was supplied to 

the atmosphere together with NO, no improvement was observed in the cell with a Ba-Pt-Al2O3 

adsorption layer compared to the blank cell, whereas a significant enhancement of NOx removal was 

observed for the cell with a K-Pt-Al2O3 adsorption layer. 

5.4.3 Reasons for activity enhancement 

It is of great interest to understand how the electrode processes are affected by the adsorption layers, 

and especially whether any processes are generated by the interactions between the adsorption layers 

and the NOx. This understanding could help to reveal the mechanism behind the activity enhancement 

by adsorption layers. Therefore, the different processes that were recognized in the impedance spectra 

of the three cells were carefully identified, and their characteristics were compared between the blank 

cell and the cells with adsorption layers. To summarize, four processes were identified in the impedance 

spectra of the blank cell: one high-frequency process, one middle-frequency process, and two low-

frequency processes. All of the processes were affected by adding the adsorption layers, and an 

additional process was observed in an atmosphere of NO without O2. However, the changes in the low-

frequency processes were primarily responsible for the overall variations in the impedance spectra, 

which were dominated by the low-frequency arcs (figures 5.7 and 5.8). Accordingly, the decreases in the 

resistances of the low-frequency processes were mainly responsible for the activity enhancement by the 

adsorption layers. The low-frequency processes were identified as adsorption, surface diffusion, and 

transfer of O2 species and/or NOx species at or near the TPB region and oxidation of NO and/or trapping 

of NOx in the adsorption layer, for the additional process that appeared only in the presence of the 

adsorption layers in NO without O2. The NSR catalyst has a strong NOx-trapping ability, which is realized 

by oxidizing NO to NO2 on Pt sites and subsequently storing NO and NO2 in the form of nitrates on K or 

Ba sites. The trapped NOx species need to be released via the decomposition of the nitrates before the 

final reduction step can happen. This decomposition is driven by a switch from lean to rich gas 

conditions under the normal operation mode of the NSR catalyst. In the case of this work, it is induced 

by applying a negative polarization to the cell. Afterwards, the NOx species on the trapping sites can 
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reach the TPBs in the electrode by two pathways, surface diffusion and desorption, and then gas 

diffusion. The FTRI research by Traulsen et al. verified that adsorbed NOx is capable of moving between 

CGO-adsorption sites and K- or Ba-adsorption sites[127]. Therefore, the presence of an NSR adsorption 

layer could promote the adsorption and surface diffusion of NOx species at/near TPB regions of the 

electrode in this work, especially in the interfacial area between the electrode and adsorption layers. 

Moreover, there is a possibility that the trapped nitrate was reduced directly to N2 under polarization 

over the trapping sites adjacent to TPBs (equations 12 and 13). This may provide a short and efficient 

reaction path for reduction of NOx. 

                          
                                                                                                      (5.12) 

                             
                                                                                                 (5.13) 

Comparing the impedance spectra of the cells with the two adsorption layers in 1000 ppm NO (figure 

5.8), the difference in the impedance resulted from the additional process in the low-frequency end, 

which was ascribed to the oxidation of NO on Pt sites and/or the trapping of NOx on K or Ba sites in the 

adsorption layers. The resistance associated with this process was significantly lower for the cell with a 

K-Pt-Al2O3 layer compared to the cell with a Ba-Pt-Al2O3 layer. This result indicated that the capability of 

the K-Pt-Al2O3 layer for oxidizing NO and/or trapping NOx might be stronger than that of the Ba-Pt-Al2O3 

layer under this circumstance, which could be one of the reasons that adding a K-Pt-Al2O3 adsorption 

layer gave rise to a more pronounced enhancement for NOx reduction. The differences in the capability 

of these two adsorption layers with respect to NO oxidation and NOx trapping could be caused by a 

number of factors, such as the loading of the individual components, the interactions between Pt and K 

or Ba, the basicity of K or Ba, and the stability and mobility of the nitrates of K or Ba, which have been 

intensively investigated for the NSR catalyst[25] and will not be discussed in detail here. 

With respect to the impedance spectra recorded in 8% O2, the resistances of the low-frequency 

processes were also lowered by adding the adsorption layers. One possible explanation is that the 

adsorption layers, which consisted of nano-sized (50-100 nm) Al2O3 infiltrated with Pt and K2O or BaO, 

promoted O2 reduction of the electrode due to its large surface area and active components (Pt, K, Ba) 

that facilitated the adsorption and dissociation of oxygen molecules[25] at the TPBs, at least near the 

interfacial region. However, the exact cause of the activity enhancement for O2 reduction by the 
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adsorption layers is not well understood at this time. Additional experiments are needed to clarify the 

role of the adsorption layers in O2 reduction. 

5.5 Conclusions 

The NOx removal performance by the blank LSM15/CGO10 cell, the LSM15/CGO10 cell with a K-Pt-Al2O3 

adsorption layer, and the LSM15/CGO10 cell with a Ba-Pt-Al2O3 adsorption layer were investigated. The 

impedance spectra were analyzed in detail to identify the effects of the adsorption layers. In an 

atmosphere of only NO in Ar, both types of adsorption layers noticeably increased the activity of 

reducing NOx to N2, but the enhancement by the K-Pt-Al2O3 adsorption layer was greater. When O2 was 

present in the atmosphere with NO, almost no conversion of NOx to N2 was observed in the blank cell 

and the cell with a Ba-Pt-Al2O3 adsorption layer, whereas a significant increase was observed for the cell 

with a K-Pt-Al2O3 adsorption layer. Performance of 85% NOx conversion with 4% CE and 74% N2 

selectivity was achieved by the cell with a K-Pt-Al2O3 adsorption layer and polarized at -2 V at 500 °C in 

1000 ppm NO with 8% O2. This selective NOx removal under O2-rich conditions was achieved for the 

LSM15/CGO10 cell by combining it with a suitable NSR adsorption layer. 

The impedance analysis revealed that the absorption layers increased the general activity of the 

electrochemical cell towards both NOx and O2 reduction. In the case of the K-Pt-Al2O3 adsorption layer, 

the enhancement of NOx reduction was more pronounced than the O2 reduction. The improvement of 

NOx reduction by the adsorption layers was mainly caused by the promotion of adsorption and surface 

diffusion of NOx species at/near TPB regions of the electrode and, possibly, by a short and effective 

reaction path for NOx reduction generated at the interface between the electrode and adsorption layer. 

The better NOx removal performance observed for the cell with a K-Pt-Al2O3 adsorption layer compared 

to that for a cell with a Ba-Pt-Al2O3 adsorption layer could be due to a stronger capability for oxidizing 

NO and/or trapping NOx under the experimental conditions. The presence of an adsorption layer on the 

bare surface of the electrode might also facilitate the adsorption and dissociation of oxygen molecules 

at TPBs of the electrode to enhance the activity for O2 reduction, but the exact cause of this behavior 

must be investigated further. 
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Chapter 6 Comparison of the approaches for modifying an LSM/CGO cell 

with NOx adsorbents 

This chapter is the manuscript “Electrochemical NOx reduction on an LSM/CGO symmetric cell modified 

by NOx adsorbents” accepted for publication in the Journal of Materials Chemistry A.  

Abstract 

This study investigated the effect of modifying a (La0.85Sr0.15)0.99MnO3 (LSM)/Ce0.9Gd0.1O1.95 (CGO) 

symmetric cell by NOx adsorbents on the electrochemical reduction of NOx under O2-rich conditions. The 

modification was based on a full ceramic cell structure without any noble metals. Three cells were 

prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO/Pt/Al2O3 

layer. The electrochemical reduction of NOx on the three cells was studied by conversion measurement, 

degradation testing, and microstructure characterization. The modification, either by impregnating the 

BaO into the electrode or by coating the Ba/Pt/Al2O3 layer on the surface of the electrode, significantly 

increased the activity and selectivity of the NOx reduction on the LSM/CGO symmetric cell by enhancing 

the adsorption and storage of the NOx species or providing reaction sites for direct nitrate reduction. 

The cell with the BaO/Pt/Al2O3 layer exhibited a preferable performance at low temperatures (350 and 

400 °C) and low voltages (1.5 to 2 V) due to the NO oxidation ability of the Pt catalyst, although it 

performance was relatively poor at elevated temperatures and voltages due to the impedance of the 

diffusion of NOx to the reaction sites by the adsorption layer. For lowering the operation temperature 

and minimizing the power consumption, adding an adsorption layer was shown to be the optimum 

approach for modifying the electrochemical cell by NOx adsorbents. The square-wave (SV) polarization 

can balance the trapping and reduction rates of NOx species on the electrochemical cells as to further 

improve the NOx reduction relative to the direct current (DC) polarization.  

6.1 Introduction 

Due to the harmful effects of NOx (NO and NO2) gases on the environment [14–16] and human 

health,[13] governmental regulations concerning NOx emissions are becoming increasingly stringent 
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worldwide.[17] The emission control technology for NOx is therefore in high demand, especially in the 

case of diesel engine exhaust, where the O2-rich environment deactivates the traditional three-way 

catalysts that work effectively in gasoline engine exhaust. The most extensively researched technologies 

in this area are currently selective catalytic reduction with ammonia (NH3-SCR) and NOx reduction and 

storage catalysts (NSR), both of which require a reducing agent, either from a secondary supply system 

or by switching the operation state of the engine between lean and rich conditions.[25] One attractive 

alternative to these approaches is electrochemical NOx reduction, as schematically illustrated in figure 

6.1. Using this approach, NOx is reduced to nitrogen at the polarized cathode, thereby eliminating the 

need for the addition of reducing agents or changes in the operational state of the engine. The main 

obstacle to the practical application of this technology is the achievement of high selectivity for NOx 

reduction in the presence of excess O2.[41] 

 

Figure 6.1 Schematic of the principle for the electrochemical reduction of NOx. 

Recent studies on electrochemical NOx reduction show that modifying the electrochemical cell by NOx 

adsorbents can significantly increase the selectivity for NOx reduction in an O2-rich atmosphere.[72, 73, 

77, 110, 132, 133] This modification is achieved by two different approaches: adding an NOx adsorption 

layer comprised of NSR catalysts on top of the electrode[72, 110, 132, 133]  or impregnating the active 

component for NOx adsorption (K2O or BaO) into the electrode.[73, 77] It would be of interest to know 

which approach is preferable for the NOx reduction properties and the mechanism behind the difference 

in performance between the approaches. However, the results of previous studies do not facilitate a 

meaningful comparison because they are based on various electrode materials (NiO/Pt[72, 73, 110], 

Ag[133], and La1-xSrxMnO3[77, 132]), various cell designs (planate cells[72, 110, 132, 133], tubular 

cells[73], and multilayered cell stacks[77]), and various NOx adsorbents (K/Pt/Al2O3[72, 110, 132, 133], 

K2O[73], and BaO[77]).   
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To investigate the NOx reduction properties of the cells modified with the NOx adsorbents by different 

approaches, three types of cells were fabricated in this study: a symmetric (La0.85Sr0.15)0.99MnO3 (LSM) 

/Ce0.9Gd0.1O1.95 (CGO) cell, an LSM/CGO cell impregnated with BaO, and an LSM/CGO cell coated with a 

BaO/Pt/Al2O3 layer. LSM was chosen as the electrode material because of its good stability and wide use 

as a material for cathodes in solid-state fuel cells (SOFCs).[85] CGO was chosen as the electrolyte and 

component of the electrode because the ionic conductivity of CGO at low temperatures (<600 °C) is 

superior to that of yttria-stabilized zirconia (YSZ).[89] The backbone of the electrochemical cells used in 

this study is therefore of an entirely ceramic structure, free of any expensive noble metals such as Pt or 

Pd. The effect of the impregnation and the adsorption layer on the cell performance was studied by 

measurements of the NOx reduction as function of temperature, polarization voltage, and polarization 

frequency. The stability of the cells was studied in a degradation test. The microstructure of the cells 

was also investigated by scanning electron microscopy before and after testing. 

6.2 Experimental 

6.2.1 Cell fabrication 

Three cells were prepared and tested in this study: 

(1) Blank cells 

(2) Cells impregnated with BaO 

(3) Cells with BaO/Pt/Al2O3 layers 

The blank cell was supported on a 300-µm-thick dense CGO tape (Kerafol, Germany). The electrodes 

were prepared by screen printing a composite slurry on both sides of the tape and sintering at 1150 °C 

for 2 h. The slurries contained equal amounts of LSM (Haldor Topsøe, Denmark) and CGO (Rhodia, 

France) powders. The electrodes were identical on both sides of the electrolyte, with an active area of 

1.54 cm2. The electrode layer was approximately 60 µm thick. A Au paste (ESL Electro-Science, UK) 

mixed with 20 wt% graphite (Graphit Kropfmühl AG, Germany) was painted over the electrodes and 

sintered at 700 °C for 1 h to create porous Au current collectors.  
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For the impregnation of the cell with BaO, a 0.32 M Ba(NO3)2 (Merck, UK) aqueous solution with 10 wt% 

P123 (BASF, USA) was prepared. The cell was soaked in the Ba(NO3)2 solution and placed under vacuum 

for approximately 10 s. Excess impregnation solution was wiped of the surface. The cell was then heated 

at 700 °C for 1 h to decompose the Ba(NO3)2 to BaO.  

The BaO/Pt/Al2O3 layer was applied by dripping several drops of adsorbent solution on top of the 

electrodes, drying at 110 °C for 12 h, and heating at 600 °C for 1 h. Approximately 20 mgcm-2 of the 

adsorption layer was coated on the electrode, with a thickness of approximately 80 µm. The adsorption 

layer consisted of 10 wt% Ba with 2 wt% Pt supported on Al2O3 nanopowders. The composition was 

identical to that of a normal NSR catalyst.[25] The adsorbent solution was prepared by dispersing the 

adsorbents in distilled water with some surfactants. The adsorbents were prepared from Al2O3 powders 

(Alfa Aesar, Germany, metal basis) that were dissolved in distilled water with vigorous stirring. The Al2O3 

suspensions were then mixed with a solution of Ba(NO3)2 (E. Merck Dam., Germany, 99+%) and a 

solution of Pt(NH3)4(NO3)2 (Aldrich, Germany, 99.995%). The mixture was stirred and heated until a thick 

paste remained. The paste was stored at 120 °C overnight and then at 200 °C for 2 hours to completely 

dry the powder. Then, the powders were milled and sintered at 600 °C for 1 hour. An Au wire was 

connected to the Au current collector as the electrode was coated with the BaO/Pt/Al2O3 layer. 

6.2.2 Electrochemical test  

The cells were installed in a glass tube apparatus that was placed inside a furnace and connected to a 

Gamry Reference 600 potentiostat.[132] Before the conversion measurements, the samples were 

pretreated in 1000 ppm NO with 10% O2 in Ar at 350 °C for 2 to 4 h to remove the barium carbonates 

and hydroxides that potentially existed in the cells with the NOx adsorbents. The measurements were 

carried out in the temperature range of 250-450 °C, close to that of the exhaust gas from diesel engines 

(100-400 °C). The gas used to test the cells consisted of 1000 ppm NO with 10% O2 in Ar maintained by 

Brooks mass flow controllers. The flow rate was fixed at 2 L/h. The concentrations of NO and O2 were 

chosen to resemble the concentrations of the relative gas species in the diesel engine exhaust. With the 

co-existence of O2, a certain amount of NO will convert to NO2 due to the equilibrium: 

                                                                                                                                                             (6.1) 
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The cells were polarized under two different modes: direct current (DC) mode and square wave (SV) 

mode. Under the DC mode, the voltage was applied in the negative (cathodic) direction and the positive 

(anodic) direction relative to the up-side electrode. The absolute value of the voltage was varied in the 

range of 1.5 to 2.5 V in 0.25 V intervals. Under the SV mode, the direction of the voltage was switched 

continuously at a certain time interval (τ), as illustrated in figure 6.2. The frequency of the SV 

polarization is calculated as in equation 6.2. For the frequency variation, the amplitude of the voltage 

was fixed at 2.25 V, with a frequency varying between 0.0083 and 1 Hz. For the amplitude variation, the 

absolute value was varied between 1.5 and 2.5 V in 0.25 V intervals at a fixed frequency of 0.5 Hz.  

   
 

  
                      (6.2) 

 

Figure 6.2 Illustration of the square wave polarization. 

The outlet gas composition was monitored and recorded throughout the test using chemiluminescence 

(Model 42i HL, Thermo Scientific, USA) for NO, NO2, and NOx and mass spectrometry (Omnistar GSD 301, 

Pfeiffer Vacuum, Germany) for N2, N2O, and O2. The three types of cells were examined under the same 

conditions. Two replicates for the blank cells and three replicates for the BaO-impregnated cells and the 

cells with the BaO/Pt/Al2O3 layer were tested. 

Simplified gas mixtures that only contained NOx and O2 were used in this study. As real exhaust gases 

contain significant amounts of CO2, H2O, and CO, the effect of these gas species on the deNOx 

performance of the cells with the NSR adsorption layers may be important in practical situations. The 

harmful effects of these gas species on the NOx trapping ability of the NSR catalysts have been 

extensively studied.[25, 28, 91, 97–99] The presence of CO2 and H2O decreases the rate of NOx trapping, 

nitrate formation, or stability on the catalysts. CO competes against NOx for the sorption sites with a 

high selectivity. However, it is well established that the NSR catalysts (Ba-Pt-Al2O3) can efficiently 



Chapter 6 Comparison of the approaches for modifying an LSM/CGO cell with NOx adsorbents 

92 
 

remove NOx species (90% conversion) in real exhaust gases,[25, 28] which indicated that the effects of 

CO2, H2O, and CO are not crucial for the NOx trapping ability of the catalysts. Therefore, it is reasonable 

to use the simplified gas mixtures to facilitate the understanding of the underlying electrode processes 

for the electrochemical NOx reduction. 

6.2.3 SEM observation 

The microstructure of the cells was investigated by scanning electron microscopy (SEM) (Zeiss Supra 35). 

The cells were cracked manually and used directly for the SEM observations. The SEM images were 

recorded using two types of detectors. To obtain high-magnification images of the electrode 

microstructure, an in-lens detector was used with a 3 keV acceleration voltage. To investigate the 

electrode structure on a slightly larger scale, a secondary electron detector was used with a 15 keV 

acceleration voltage. 

6.3 Results  

6.3.1 NOx removal properties 

The NOx removal properties are usually evaluated by the NOx conversion, current efficiency (CE), and N2 

selectivity. The NOx conversion represents the activity of NOx reduction, which is defined as the 

percentage of NOx decomposed relative to the total NOx content. The CE is used to evaluate the 

selectivity of the NOx reduction, which is the ratio of the current consumed by NOx reduction (INO) to the 

total current flowing through the cell (Itot) (Eq. 6.3).  The Itot is the sum of the current for NOx reduction 

and the current for O2 reduction (IO2) (Eq. 6.4).  The value of CE depends not only on the activity of NOx 

reduction but also on that of O2 reduction.  

                                          (6.3) 

            
                             (6.4) 

The N2 selectivity (η) indicates the extent of the decomposed NOx converted to N2, which is calculated as 

in equation 6.5, according to the decomposition reaction of NOx to N2 as showing in equation 6.6: 
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                                   (6.5) 

                                      (6.6) 

In the case of a complete conversion of NOx to N2, η is equal to 100%. Due to the formation of side 

products (eg. N2O), η is usually below 100%. The value of η relies only on the thoroughness of NOx 

reduction. 

6.3.2 Dependence on temperature 

The dependence of the cell performance on temperature was studied by testing the cells at a specific 

voltage (square wave polarization of ±2.25 V with frequency of 0.5 Hz) in the temperatures range of 250 

to 450 °C. Figures 6.3 to 6.5 show the average values and standard deviation of the NOx conversion, CE, 

and N2 selectivity of the three types of cells as a function of temperature. On the blank cell, the NOx 

conversion increased slowly with increasing temperature, being less than 10% at 450 °C. On the cells 

with the NOx adsorbents, significant increases in NOx conversion were observed (from less than 20% to 

at least 60%) when the temperature increased from 350 to 450 °C. Below 350 °C, the NOx conversion 

was equal to or less than 2% for all three types of cells, which could be considered to be within the 

experimental uncertainty. Therefore, the error values of the CE and N2 selectivity were quite large at 

these temperatures. With respect to the CE (figure 6.4), the value decreased with increasing 

temperature on the blank cell above 300 °C. On the cells with the NOx adsorbents, the effect of 

temperature on the CE was comparatively weak. For the N2 selectivity (figure 6.5), the values were 

significantly higher on the cells with NOx adsorbents compared to the blank cell from 300 to 450 °C, 

whereas increases with increasing temperature were only observed on the cell with the BaO/Pt/Al2O3 

layer. Between the two types of cells modified with the NOx adsorbents, the cells with the BaO/Pt/Al2O3 

layer showed a higher NOx conversion and CE at 350 and 400 °C. When temperature increased to 450 °C, 

the NOx conversion and CE on the BaO-impregnated cell were higher.  
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Figure 6.3 NOx conversions on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 

0.5 Hz. 

 

Figure 6.4 Current efficiencies on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 

0.5 Hz. 
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Figure 6.5 N2 selectivities on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 

0.5 Hz. 

6.3.3 Dependence on polarization mode 

The influence of the polarization mode on the NOx reduction was investigated by applying the voltage in 

two different ways: DC mode and SV mode. Under the DC mode, the cell was polarized by a negative 

(cathodic) voltage and a positive (anodic) voltage. Under the SV mode, the frequency of the polarization 

was fixed at 0.5 Hz. In each mode, the measurement was first made as the voltage increased from 1.5 to 

2.5 V and then repeated as the voltage decreased from 2.5 to 1.5 V. The results recorded under the DC 

and SV modes are compared in figures 6.6 to 6.8. No evident activation or degradation effect was 

observed in either mode. For the blank cell, varying the voltage had no effect on the NOx reduction 

under the DC mode, as almost no NOx conversion was found under these conditions. Under the SV mode, 

the NOx conversion and CE on the blank cell increased with increasing voltage, but only to a small extent 

(< 10%). For the cells modified with NOx adsorbents, increases in the NOx conversion and CE were clearly 

observed relative to the blank cell for both polarization modes, with the improvement being much more 

significant under the SV mode, especially from 2 to 2.5 V. Under the DC mode, the NOx conversion and 

CE measured under the positive voltages were higher than those under the negative voltages. 

Comparing the two types of cells modified with NOx adsorbents, the cell with the BaO/Pt/Al2O3 layer 
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showed a higher NOx conversion from 1.5 to 2 V (except at the negative DC voltage) but exhibited 

diffusion-limited behavior above 2 V.  

With respect to the N2 selectivity (figure 6.8), a superior performance was observed on the cell with the 

BaO/Pt/Al2O3 layer at all the tested voltages. The values recorded under the DC mode on the cells with 

the NOx adsorbents remained almost stable as the voltage was varied. In the case of the blank cell, the 

values recorded under the DC mode were thought to be within the experimental error, as the NOx 

conversion under this condition was below 1%. Under the square wave mode, the N2 selectivity 

increased as the voltage increased from 2 to 2.5 V for all three types of cells.  

 

Figure 6.6 NOx conversions on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of voltage under the DC mode (left figure) and the SV mode (right figure) in 1000 ppm NO with 

10% O2 at 450 °C. The symbols labeled “n” were measured under negative DC voltages, and those labeled “p” were measured 

under positive DC voltages. The symbols labeled “a” were recorded during the voltage increase from 1.5 to 2.5 V, whereas 

those labeled “b” were recorded during the voltage decrease from 2.5 to 1.5 V.  
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Figure 6.7 Current efficiencies on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of voltage under the DC mode (left figure) and the SV mode (right figure) in 1000 ppm NO with 

10% O2 at 450 °C. The symbols labeled “n” were measured under negative DC voltages, and those labeled “p” were measured 

under positive DC voltages. The symbols labeled “a” were recorded during the voltage increase from 1.5 to 2.5 V, whereas 

those labeled “b” were recorded during the voltage decrease from 2.5 to 1.5 V.  

 

Figure 6.8 N2 selectivities on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of voltage under the DC mode (left figure) and the SV mode (right figure) in 1000 ppm NO with 

10% O2 at 450 °C. The symbols labeled “n” were measured under negative DC voltages, and those labeled “p” were measured 

under positive DC voltages. The symbols labeled “a” were recorded during the voltage increase from 1.5 to 2.5 V, whereas 

those labeled “b” were recorded during the voltage decrease from 2.5 to 1.5 V.  
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6.3.4 Dependence on polarization frequency  

As a greater increase in NOx conversion and CE was observed for the square wave voltage than the DC 

voltage for all three cells, it is of interest to determine how the frequency of the square wave 

polarization affects the NOx reduction. Figures 6.9 to 6.11 show the results for the three types of cells 

measured at various frequencies in 1000 ppm NO with 10% O2 at 450 °C. The amplitude of the square 

wave polarization was fixed at 2.25 V. The data were recorded as the frequency increased from 0.0083 

and 1 Hz and then as the frequency decreased from 1 to 0.0083 Hz. As in the case of the voltage 

variation, similar results were obtained during both halves of the measurement. With respect to the 

blank cell, a monotonic increase in the NOx conversion and CE with increasing frequency was observed 

in the tested frequency range. Unlike the blank cell, “turning points” for the increase of the NOx 

conversion and CE with increasing the frequency were observed on the cells with the NOx adsorbents, 

where the NOx conversion and CE began to decrease with increasing frequency beyond certain values. 

The maximum NOx conversion and CE were achieved at 0.1 Hz for the cell with the BaO/Pt/Al2O3 layer 

and 0.5 Hz for the BaO-impregnated cell. For the N2 selectivity, the effect of frequency appeared to be 

negligible. Regarding the reproducibility of the frequency test, similar trends were observed with the 

replicates of the cells with the NOx adsorbents, with only slight shifts in the optimum frequencies (to 

0.06 Hz for the cell with the BaO/Pt/Al2O3 layer and 0.2 Hz for the BaO-impregnated cell). 

 

Figure 6.9 NOx conversions on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of frequency under the SV mode in 1000 ppm NO with 10% O2 at 450 °C. The symbols labeled 
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“a” were recorded during the frequency increase from 0.0083 to 1 Hz, whereas those labeled “b” were recorded during the 

frequency decrease from 1 to 0.0083 Hz.  

 

Figure 6.10 Current efficiencies on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of frequency under the SV mode in 1000 ppm NO with 10% O2 at 450 °C. The symbols labeled 

“a” were recorded during the frequency increase from 0.0083 to 1 Hz, whereas those labeled “b” were recorded during the 

frequency decrease from 1 to 0.0083 Hz.  

 

Figure 6.11 N2 selectivities on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO/Pt/Al2O3 layer as a function of frequency under the SV mode in 1000 ppm NO with 10% O2 at 450 °C. The symbols labeled 

“a” were recorded during the frequency increase from 0.0083 to 1 Hz, while those labeled “b” were recorded during the 

frequency decrease from 1 to 0.0083 Hz.  
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6.3.5 Degradation test 

The stability of the cells for NOx reduction was studied by running a degradation test after the 

temperature, voltage, and frequency tests. The degradation test was performed on one of the replicates 

for the three types of cells by operating the cells at 450 °C for approximately 100 h. During this period, 

the cells experienced frequent switches between the polarization and the open circuit states as well as 

variations in the gas concentration (0-5000 ppm NO with 0-20% O2). The results of NOx reduction on the 

cells before and after the degradation test are listed in table 6.1. For the blank cell, the variation in the 

NOx conversion and CE was negligible considering the deviation caused by the experimental uncertainty. 

In contrast, a 30-40% decrease in NOx conversion and an approximately 10% decrease in CE were 

observed for the cells with the NOx adsorbents, indicating that the NOx reduction performance 

deteriorated after 100 h of operation. With respect to the N2 selectivity, the values generally remained 

constant throughout the long-term operation.  

Table 6.1 NOx conversions, current efficiencies, and N2 selectivities on the blank LSM/CGO cell, the BaO-impregnated LSM/CGO 

cell, and the LSM/CGO cell with the BaO/Pt/Al2O3 layer measured at a square wave polarization of 2.25 V with a frequency of 

0.5 Hz in 1000 ppm NO with 10% O2 in Ar at 450 °C before and after 100 h of operation.  

 
Before (%) After (%) 

NOX conversion  Current efficiency N2 selectivity NOX conversion  Current efficiency N2 selectivity 

Blank 8.11 1.42 38.3 7.64 1.22 40.0 

BaO 70.6 5.86 58.3 40.8 5.17 62.2 

BaO/Pt/Al2O3 65.1 5.85 86.3 45.8 5.05 84.9 
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6.3.6 Microstructure of the electrodes 

Figure 6.12 shows the microstructure of the electrodes on the three types of cells before and after the 

electrochemical test. Before the testing, the blank cell showed well-defined electrode grains with a 

smooth surface (figure 6.12 a). The BaO formed distinct nano-grains distributed over the surface of 

electrode on the BaO-impregnated cell (figure 6.12 c). The BaO/Pt/Al2O3 layer was porous, consisting of 

nano-sized particles covering the electrode. The Pt and BaO were recognized as ultra-fine particles 

dispersed over the surface of the Al2O3 support (figure 6.12 e). The electrode of the cell with the 

BaO/Pt/Al2O3 layer appeared similar to that of the blank cell before testing (figure 6.12 g). After testing, 

no evident change was observed on the electrode of the blank cell or the BaO/Pt/Al2O3 layer (figure 6.12 

b and f). A profound change in the microstructure was observed on both the electrode of the BaO-

impregnated cell and that of the cell with the BaO/Pt/Al2O3 layer (figure 6.12 d and h). The surface of the 

two electrodes became “fluffy”, being covered by small grains. Moreover, most of the distinct particles 

introduced by the impregnation disappeared on the BaO-impregnated cells after testing.  
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Figure 6.12 Microstructure images for the electrodes of the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the 

LSM/CGO cell with the BaO/Pt/Al2O3 layer before and after testing. The images include a) the blank electrode before testing, b) 
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the blank electrode after testing, c) the BaO-impregnated electrode before testing, d) the BaO-impregnated electrode after 

testing, e) the BaO/Pt/Al2O3 layer before testing , f) the BaO/Pt/Al2O3 layer after testing, g) the electrode with the BaO/Pt/Al2O3 

layer before testing, and g) the electrode with the BaO/Pt/Al2O3 layer after testing. 

6.4 Discussion 

6.4.1 Effect of the impregnation and the adsorption layer 

For the practical application of the electrochemical NOx reduction, the major barrier is the low selectivity 

of the NOx reduction in the O2-rich atmosphere. The experimental results showed that not only the NOx 

conversion but also the CE and N2 selectivity were significantly increased by introducing the NOx 

adsorbents to the blank LSM/CGO cell, either by adding an adsorption layer on top of the electrodes or 

by impregnating the adsorbent into the electrodes. This finding indicated that the presence of the NOx 

adsorbents was able to effectively improve the selectivity of the NOx reduction over O2 reduction and 

enhance the thoroughness of reducing NOx to N2.  

For the LSM/CGO electrode, Werchmeister et al.[55] proposed NO2 as an intermediate for the 

electrochemical reduction of NOx based on a study of model electrodes. Later studies on LSM/CGO cell 

stacks[77] and single cells[132] also supported this assumption. Therefore, NO2 was suggested as the 

intermediate for the NOx reduction in this study. Moreover, NO2 has been found to be the sorption 

precursor or a required intermediate in the NOx storage process (Eq. 6.10).[25] The formation of NO2 is 

spontaneous in the O2-rich atmosphere due to the thermodynamic equilibrium between NO and NO2 

(Eq. 6.1), whereas this reaction is kinetically limited within a small fraction, especially at low 

temperatures.[25] In the case of the electrochemical cell, NO2 can also been generated from NO 

oxidation under positive (anodic) polarization, which may be an important factor in the superior 

performance of NOx reduction under positive polarization relative to that under negative polarization, as 

illustrated in figure 6.13. 
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Figure 6.13 Schematic representation of the electrochemical NOx reduction under the positive DC polarization. 

On the blank LSM/CGO cell, the electrochemical reduction of NOx can be generally described as 

proceeding according to the following steps: (1) gas-phase diffusion and adsorption of NO2 on the 

surface of the electrodes (Eq.6. 7), (2) surface diffusion from the adsorption sites to the reaction sites at 

the triple-phase boundaries (TPBs) (Eq. 6.8), and (3) the electrochemical reduction of NO2 to N2 on the 

TPBs under the negative polarization (Eq. 6.9). However, as the concentration ratio of O2 : NOx was as 

high as 100 : 1 in the atmosphere, most of the adsorption and reaction sites will be dominated by O2. 

The NOx reduction is therefore negligible on the blank cell.  

                                                                                                                                 (6.7) 

                                                                                                                                                   (6.8) 

             
             

                                                                                                              (6.9) 

On the BaO-impregnated cell, the adsorption of NO2 was significantly enhanced because BaO is capable 

of selectively absorbing and storing NO2 in the form of nitrates (Eq. 6.10).[25, 124] The stored NO2 must 

be released via the decomposition of the nitrates before the final reduction step can occur. The 

decomposition of nitrates is induced by applying a negative polarization to the cell.[110] Afterwards, the 

NO2 species on the trapping sites can reach the TPBs by two pathways, surface diffusion (Eq. 6.11)[127] 

and desorption, followed by gas diffusion. Moreover, the trapped nitrate may be reduced directly to N2 

under negative polarization over the trapping sites, as they are adjacent to the TPBs (Eq. 6.12). This 

process may provide a short and efficient reaction path for the reduction of NOx.
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                                                                                                                                      (6.10) 

                                                                                                                                                       (6.11) 

                  
                  

                                                                          (6.12) 

On the cell with the BaO/Pt/Al2O3 layer, the adsorption and storage of NOx can also be promoted as on 

the BaO-impregnated cell. However, unlike the impregnated cell, the storage sites are distant from the 

reaction sites; thus, the direct reduction of the nitrates seems impossible. Another difference is the Pt 

particles in the adsorption layer, which are absent in the case of the impregnated cell. As an efficient NO 

oxidation catalyst, Pt is able to increase the NO2 fraction[25, 121, 122], which in turn improves the NOx 

storage and reduction. This factor may explain why the NOx conversion on the cell with the BaO/Pt/Al2O3 

layer was superior to that on the BaO-impregnated cell at low temperatures and low voltages, where 

the formation of NO2 from the NO/NO2 equilibrium and the electrochemical oxidation were insufficient. 

However, with increasing temperature and voltage, the NOx conversion on the BaO-impregnated cells 

increased distinctly, whereas the conversion on the cell with the BaO/Pt/Al2O3 layer increased slowly or 

showed a diffusion-limited behavior, indicating that the additional layer inhibited the gas diffusion of 

the NOx species to the reaction sites in the electrode.  

In summary, introducing the NOx adsorbents to the LSM/CGO electrochemical cell selectively promoted 

NOx reduction by enhancing the adsorption and storage of the NOx species or providing reaction sites for 

direct nitrate reduction (the impregnated cell). The cell with the BaO/Pt/Al2O3 layer performed better 

than the impregnated cell at low temperatures (350 and 400 °C) and low voltages (1.5 to 2 V) due to the 

NO oxidation ability of the Pt catalyst, whereas the additional layer impeded the diffusion of the NOx 

species to the reaction sites, resulting a worse performance than the impregnated cell at elevated 

temperatures and voltages.  

6.4.2 NOx storage and reduction 

When polarized under SV mode instead of DC mode, an increase in the NOx conversion and CE was 

clearly observed from 2 to 2.5 V for all three cells. During the SV polarization, the direction of the 

voltage was switched continuously. The instantaneous voltage at the moment of the switch should be 

twice that of the steady state, which was verified by the “spark” of the current recorded simultaneously. 
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From this viewpoint, it seems that the improvement in the NOx reduction by the SV mode was partially 

due to the effect of magnifying the voltage. Thus, the higher the frequency of the SV polarization, the 

larger the effect should be. However, the experimental results showed that the NOx conversion did not 

increase monotonically with frequency, instead decreasing with frequency after reaching peak values on 

the cells with the NOx adsorbents. Moreover, based on the results that the CE decreased with increasing 

DC voltage above 2.25 V, the value of CE was expected to be lower under the SV mode than the DC 

mode. Therefore, the effect of magnifying the instant voltage cannot be the primary reason for the 

improvement of NOx reduction by the SV polarization.  

Based on the analysis of the reaction mechanism provided in the previous section, the process of the 

NOx conversion on the electrochemical cell with the NOx adsorbents can be divided into two steps: the 

NOx trapping step, including the gas phase diffusion, the adsorption, and the storage of NOx as nitrate on 

the storage sites (BaO), followed by the reducing step, including the decomposition of nitrate, the 

surface diffusion or gas diffusion of the released NOx species, and the electrochemical reduction of NOx 

to N2 under polarization on the reaction sites (TPBs). If the overall reaction was limited by the second 

step, the difference in the activities of NOx reduction between the DC mode and the SV mode would not 

be significant. If the first step is the rate-limiting step, under the DC mode, the NOx stored at the BaO 

sites will soon be depleted by the following reduction step and the slow NOx trapping rate will 

subsequently impede the overall reaction. Using the SV mode, the reduction step can be switched to the 

other electrode after the stored NOx has been exhausted on the current electrode, consequently 

improving the overall NOx reduction. Therefore, the improvement of NOx reduction by the SV mode was 

most likely due to the balance of the trapping and reduction rates of NOx species on the electrochemical 

cells, which is also suggested as the cause of the better NOx removal properties at the SV voltages than 

the DC voltages on a NiO/YSZ cell with a NOx adsorption layer by Hamamoto et al.[72]. Accordingly, the 

optimum frequency of the SV polarization is dependent on the rate of NOx trapping and reduction on 

the electrochemical cells. On the BaO-impregnated cell, the storage sites was adjacent to the reaction 

sites, which may benefit the surface diffusion and gas diffusion of the released NOx species to the 

reaction sites, in turn promoting the decomposition of nitrate on the storage sites and potentially 

enabling the direct reduction of nitrate to N2 under polarization. Moreover, the impregnated cell 

avoided the limitation of gas diffusion by the additional layer compared with the cell with the 

BaO/Pt/Al2O3 layer. These factors could accelerate the storage and/or reduction rate of the NOx species 
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on the BaO-impregnated cell, thus leading to a higher optimum frequency on the impregnated cell. In 

the case of the blank cell, as the NOx conversion and CE increased with increasing frequency in the 

tested range, no optimum frequency was observed. One possible reason is that the optimum frequency 

is above the test limit because the adsorption and reduction rate of NOx on the blank cell might be 

comparatively fast due to the absence of nitrate formation and decomposition. However, omitting the 

NOx storage step also resulted in a poor activity of the NOx reduction in the O2-rich atmosphere.  

6.4.3 Degradation related with the microstructure change 

The correlation of the degradation test with the microstructure observations indicates that the 

degradation of the NOx removal performance on the BaO-impregnated cell and the cell with the 

BaO/Pt/Al2O3 layer may be due to the profound change in the microstructure. Between these two types 

of cells, the microstructure appears fairly similar after testing despite being quite different before 

testing. One possible explanation of this observation is that the microstructure change could be caused 

by the same type of reaction on the two different cells, such as the reaction between the electrode 

materials with the Ba compounds (BaO and or Ba(NO3)2) either dispersing over the surface of the 

electrode or diffusing from the BaO/Pt/Al2O3 layer to the electrode. With respect to the reactivity 

between LSM/CGO and Ba compounds under heating, no significant reaction between CGO and the Ba-

containing materials has been found below 1000 °C in the literature.[134–138] Most of the studies on 

LSM indicate that LSM does not react with the Ba-containing materials.[139–141] However, considering 

the polarization effect, especially the strong corrosivity of nitrate under polarization and heating,[108, 

129, 142] the reaction between the electrode materials and the Ba compounds is possible. Traulsen et 

al.[77] reported a distinct change in the microstructure on the LSM/CGO cell stacks infiltrated with BaO 

after the electrochemical test and attributed it to the reaction between BaO and LSM/CGO under the 

test conditions. Our study on the NiO/YSZ/Pt electrode[110] shows that the electrodes can be corroded 

by potassium nitrate under polarization, which changed the microstructure of the electrodes after 

testing. Nevertheless, further microstructure and elemental analysis is needed to investigate the exact 

cause of the microstructure change, whether new phases are formed, and what the compositions of the 

phases are on the cells with the NOx adsorbents.   
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With respect to the degradation of the BaO/Pt/Al2O3 layer, it is reported that Pt agglomeration begins at 

600 °C when exposed to an oxidizing atmosphere[100] and the BaO will react with the AI2O3 support at 

temperatures exceeding 600 °C.[101] The sintering of Pt is not definitively detrimental to all the catalyst 

functions, but the formation of Ba- and Al- containing compounds is directly related to the loss in NOx 

trapping ability.[25, 100, 101] As all the measurements were performed at temperatures far below 

600 °C in this study, no significant degradation is expected in the adsorption layer. The microstructure 

observation that the morphology of the adsorption layer remained almost identical before and after the 

tests also confirms this assumption. 

6.5 Conclusions 

The electrochemical reduction of NOx on a blank symmetric LSM/CGO cell, an LSM/CGO cell 

impregnated with BaO, and an LSM/CGO cell with a BaO/Pt/Al2O3 layer has been investigated to 

evaluate the two main approaches for modifying the electrochemical cells by NOx adsorbents based on a 

full ceramic cell structure. The NOx conversion on the blank LSM/CGO cell was negligible at the DC 

voltages and was less than 10% at the SV voltages in 1000 ppm NO with 10% O2. For the BaO-

impregnated cell and the cell with the BaO/Pt/Al2O3 layer, the activity and selectivity of the NOx 

reduction were significantly increased under DC and SV voltages due to the enhancement of the 

adsorption and storage of the NOx species or the availability of reaction sites for direct nitrate reduction 

(the impregnated cell). The cell with the BaO/Pt/Al2O3 layer showed a preferable performance at low 

temperatures (350 and 400 °C) and low voltages (1.5 to 2 V) relative to the impregnated cell due to the 

NO oxidation ability of the Pt catalyst, but the adsorption layer impeded the diffusion of the NOx species 

to the reaction sites, which resulted in a worse performance at elevated temperatures and voltages than 

the impregnated cell. From the aspect of lowering the operation temperature and minimizing the 

electrical consumption, the approach of adding a NOx adsorption layer appeared to be more favorable 

than that of the impregnation. Moreover, the electrochemical cells were suggested to be operated 

under SV mode instead of DC mode because the SV polarization can balance the trapping and reduction 

rates of the NOx species on the cells as to further improve the NOx conversion and CE relative to the DC 

polarization. The optimum frequencies for the SV polarization were recorded on the BaO-impregnated 

cell (0.06-0.1 Hz) and the cell with the BaO/Pt/Al2O3 layer (0.2-0.5 Hz). The higher optimum frequency on 

the impregnated cell was most likely due to the storage sites’ being close to the reaction sites, 
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accelerating the trapping and/or reduction rate of the NOx species with respect to the cell with the 

BaO/Pt/Al2O3 layer. A 30-40% decrease in NOx conversion and approximately 10% decrease in CE were 

observed on the BaO-impregnated cell and the cell with the BaO/Pt/Al2O3 layer after 100 h of operation, 

which may have been associated with the profound microstructure change after testing. The exact cause 

of the microstructure change requires further investigation. 
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Chapter 7 Impedance characterization of LSM/CGO cells modified with 

NOx adsorbents 

This chapter is the manuscript “Characterization of LSM/CGO symmetric cells modified by NOx 

adsorbents for electrochemical NOx removal with impedance spectroscopy” accepted for publication in 

the Journal of the Electrochemical Society.  

Abstract 

This study uses electrochemical impedance spectroscopy (EIS) to characterize an LSM/CGO symmetric 

cell modified by NOx adsorbents for the application of electrochemical NOx reduction. Three cells were 

prepared and tested: a blank cell, a cell impregnated with BaO, and a cell coated with a BaO-Pt-Al2O3 

layer. The impedance analysis revealed that modification with the NOx adsorbents, either by 

impregnating the BaO into the electrode or by adding a BaO-Pt-Al2O3 layer on top of the electrode 

significantly enhanced the electrode activity. This activity enhancement was mainly due to the decrease 

in the resistance of the low-frequency processes, which were ascribed to adsorption, diffusion, and 

transfer of O2 species and NOx species at or near the triple phase boundary (TPB) region and the 

formation of the reaction intermediate NO2. The BaO impregnation improved the adsorption of NOx on 

the LSM/CGO electrode by selectively trapping NO2 in the form of nitrate over the BaO sites and 

provided availability for a direct reduction of the stored nitrate. The BaO-Pt-Al2O3 layer enhanced the 

NOx adsorption and promoted the formation of NO2 due to the NO oxidation ability of the Pt catalyst, 

but hindered the gas diffusion to the reaction sites.  

7.1 Introduction 

The fuel consumption of transportation vehicles must be lowered to decrease greenhouse gas emissions 

and dependence on fossil fuels. Diesel engines offer superior fuel economy and reduced emissions of CO 

and CO2 relative to gasoline engines.[1] However, the oxygen-rich exhaust produced by diesel engines 

prevents the reduction of nitrogen oxides (NOx) via the traditional three-way catalyst commonly used 

for gasoline engines.[25] NOx is dangerous for both human beings and the environment, causing heath 
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problems,[13] acid rain,[14] photochemical smog,[15]  and depletion of the protective ozone layer.[16] 

The emission of NOx is limited by increasingly stringent government regulations worldwide.[17] 

Therefore, an effective method to reduce NOx emissions from diesel engine exhaust is needed. The most 

extensively researched technologies at present are selective catalytic reduction (SCR) catalysts and NOx 

storage/reduction (NSR) catalysts.[25] The implementation of these two technologies for automotive 

applications requires either a secondary fluid system for the reducing agents such as ammonia or a 

sophisticated control system to switch the mode of operation of the engine.  

One attractive alternative is electrochemical NOx reduction,[32, 33, 37] which reduces NOx to N2 on the 

polarized cathode in a solid state electrochemical cell, as illustrated in Figure 7.1.  

 

Figure 7.1 Illustration of the principle of the NOx reduction on a solid state electrochemical cell.  

This approach requires no additional reducing agents other than electrons and no variations in the state 

of operation of the engine. The main challenge of this technology is to achieve selective reduction of 

NOx in the presence of excess O2. Modification of the electrochemical cell by the NOx adsorbents has 

been proven to significantly increase the selectivity for NOx reduction in the oxygen-rich 

environment.[72, 73, 77, 110, 132, 133] This modification is mainly achieved by two different 

approaches: adding an NOx adsorption layer comprised of NSR catalysts on top of the electrode[72, 110, 

132, 133]  or impregnating the adsorbents (K2O or BaO) into the electrode.[73, 77] One topic of interest 

is to understand the reaction mechanism behind the activity enhancement achieved by the modification 

and the difference in performance between these two approaches. However, it is difficult to 

meaningfully compare how the electrode processes are affected by the two different approaches base 
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on the results from previous studies as these were based on various electrode materials (NiO/Pt[72, 73, 

110], Ag[133], and La1-xSrxMnO3 [77, 132]), various cell designs (planate cells[72, 110, 132, 133],  tubular 

cells [73], and multilayered cell stacks [77]), and various NOx adsorbents (K-Pt-Al2O3[72, 110, 132, 133], 

K2O [73], and BaO[77]).  

Three cells were prepared in this study: a symmetric (La0.85Sr0.15)0.99MnO3 (LSM) /Ce0.9Gd0.1O1.95 (CGO) cell, 

an LSM/CGO cell impregnated with BaO, and an LSM/CGO cell coated with a BaO-Pt-Al2O3 layer. The 

modification was based on the backbone of a fully ceramic structure. The impedance of the three cells 

were systematically tested to identify the electrode processes for electrochemical reduction of NOx and 

to determine the effects of the two approaches to electrochemical cell modification on these processes. 

The stability of the cells was studied in a degradation test. The microstructure of the cells was also 

investigated by scanning electron microscopy before and after testing. 

7.2 Experimental 

7.2.1 Cell fabrication 

Three cells were prepared and tested in this study: 

(1) Blank cells 

(2) Cells impregnated with BaO 

(3) Cells with BaO-Pt-Al2O3 layers 

The blank cell was supported on a 300 µm thick dense CGO tape (Kerafol, Germany). The electrodes 

were prepared by screen printing a composite slurry on both sides of the tape and sintering at 1150 °C 

for 2 h. The slurries contained equal amounts of LSM (Haldor Topsøe, Denmark) and CGO (Rhodia, 

France) powders. The electrodes were identical on both sides of the electrolyte, with an active area of 

1.54 cm2. The electrode layer was approximately 60 µm thick. An Au paste (ESL Electro-Science, UK) 

mixed with 20 wt% graphite (Graphit Kropfmühl AG, Germany) was painted over the electrodes and 

sintered at 700 °C for 1 h to create porous Au current collectors.  
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For the impregnation of the cell with BaO, a 0.32 M Ba(NO3)2 (Merck, UK) aqueous solution with 10 wt% 

P123 (BASF, USA) was prepared. The cell was soaked in the Ba(NO3)2 solution and placed under vacuum 

for approximately 10 s. The cell was then heated at 700 °C for 1 h to decompose the Ba(NO3)2 to BaO.  

The BaO-Pt-Al2O3 layer was applied by dripping several drops of adsorbent solution on top of the 

electrodes, drying at 110 °C for 12 h, and heating at 600 °C for 1 h. Approximately 20 mgcm-2 of the 

adsorption layer was coated on the electrode, with a thickness of approximately 80 µm. The adsorption 

layer consisted of 10 wt% Ba with 2 wt% Pt supported on Al2O3 nanopowders. The composition was 

identical to that of a normal NSR catalyst.[25] The detailed procedure used to prepare the adsorption 

layer can be found elsewhere.[110]  An Au wire was connected to the Au current collector as the 

electrode was coated with the BaO-Pt-Al2O3 layer. 

7.2.2 Impedance characterization 

The cells were installed in a glass tube apparatus that was placed inside a furnace.[132] The gas 

composition and flow rate were maintained by Brooks mass flow controllers. The outlet gas composition 

was monitored throughout the test by chemiluminescence (Model 42i HL, Thermo Scientific, USA) for 

NO, NO2 and NOx and mass spectrometry (Omnistar GSD 301, Pfeiffer Vacuum, Germany) for N2, N2O, 

and O2. A small leak (250-300 ppm N2 and 70 -100 ppm O2) in the gas lines was detected by mass 

spectrometry. Before any measurements, the samples were pretreated in 1000 ppm NO with 10% O2 in 

Ar at 350 °C for 2 to 4 h to remove any barium carbonates and hydroxides that potentially existed in the 

cells with the NOx adsorbents.   

The electrochemical impedance was measured using a Gamry Reference 600 potentiostat. The 

measurement was performed over a frequency range from 1x106 to 2 or 1 mHz with 6 or 12 data points 

per decade and 36 mV rms amplitude at the open circuit voltage (OCV). To study the characteristics of 

the impedance spectra, the experimental conditions were varied, including temperature, gas 

composition, and flow rate. The temperature was varied from 300-500 °C with 50 °C intervals. Three 

kinds of gas atmosphere were used: NO with O2 in Ar, NO without O2 in Ar, and only O2 in Ar.  For the 

atmosphere of NO with O2 in Ar, the concentrations of NO and O2 were varied from 1000-5000 ppm and 

1-10%, respectively. For the atmosphere of NO without O2 in Ar, the flow rate increased from 2 L/h to 6 

L/h.  
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7.2.3 Microstructural observations 

The microstructure of the cells was investigated by scanning electron microscopy (SEM) (Zeiss Supra 35). 

The cells were manually cracked and directly subjected to SEM observation. The SEM images were 

recorded using two types of detectors. To obtain high-magnification images of the electrode 

microstructure, an in-lens detector was used with a 3 keV acceleration voltage. To investigate the 

electrode structure on a slightly larger scale, a secondary electron detector was used with a 15 keV 

acceleration voltage. 

7.3 Results 

7.3.1 Data processing 

An equivalent circuit that contained an inductance (L), a serial resistance (Rs), and a number of sub-

circuits (RQ, where the resistance (R) and constant phase element (Q) were connected in parallel) was 

used to fit the impedance spectra, as demonstrated in Figure 7.2. The constant phase element was used 

to replace the capacitance to characterize the non-ideal behavior of the electrochemical system under 

realistic conditions. The impedance of the constant phase element can be written as[114]  

  
 

       
                                  (7.1) 

where Y0 is a constant, j is an imaginary number, ω is the angular frequency, and n is the frequency 

exponent. 

The equivalent capacitance (Cω) of the constant phase element can be calculated according to the 

following formula.[115] 

   
     

 

 
  

                                 (7.2) 

The summit frequency of the arc was calculated as follows. 

      
 

  
      

 
                      (7.3) 
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The inductance of the experimental apparatus was measured and held constant during the fitting 

procedure. Approximately 30 impedance spectra were recorded for one tested cell. Two replicates for 

the blank cells and the cells with the BaO-Pt-Al2O3 layer and three replicates for the BaO-impregnated 

cells were tested. In total, approximately 210 impedance spectra were obtained. The impedance spectra 

were fit in the following steps:  

First, every set of impedance spectra was fit with an equivalent circuit without restrictions on the values 

of the parameters (except the inductance) and the number of arcs. In every case, the smallest number 

of RQ elements was used to obtain a reasonable and satisfactory fit (chi-squared < 5x10-4) because an 

additional arc, which usually improves the fit, does not necessarily correlate with the physical processes. 

In addition, trying to fit more unknown parameters from the same amount of data will increase the 

uncertainty of the resulting values. 

Second, the resulting equivalent circuits were compared. Arcs sharing similar capacitances, n values, and 

characteristic frequencies were identified. 

Then, the average n values were calculated for the identified arcs. 

Finally, all the data were fitted again with the identified number of arcs and a fixed average n value. 

All of the impedance spectra were fit with between 3 and 4 sub-circuits. Figure 7.2 shows a 

representative example in which the fit was obtained for the impedance plot recorded on the blank cell 

at 400 °C in 1000 ppm NO with 10% O2 with an equivalent circuit of 4 RQ elements.  

The serial resistances (Rs) and polarization resistances of the individual arcs (R1-R4) were obtained by 

fitting the impedance spectra. The total polarization resistances (Rp) were the sum of the individual 

polarization resistances. The apparent activation energy (Ea) of the individual processes was calculated 

according to the Arrhenius equation, 

     
  

  
   

 
                             (7.4) 

where δ is the electrical conductivity, δo is the pre-exponential factor, kB is the Boltzmann constant, and 

T is the absolute temperature. 
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Figure 7.2 Deconvolution of the impedance spectra recorded on the blank cell in 1000 ppm NO with 10% O2 in Ar at 450 °C as a 

typical example of fitting the impedance data using the equivalent circuits: a) aNyquist plot with a magnification of the high 

frequency part and the applied equivalent circuit, b) a Bode plot of magnitude vs. frequency, and c) a Bode plot of phase angle 
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vs. frequency. The solid lines represent the fitting of the entire spectrum and the dashed lines represent the deconvolution of 

the individual processes. The frequency is shown for the data points marked with solid circles in the Nyquist plot. 

7.3.2 Temperature dependence 

The impedance spectra were recorded from 300-500 °C with 50 °C intervals in 1000 ppm NO with 10% 

O2 in Ar to investigate the dependence of the electrode processes on temperature. The characteristics of 

the individual processes (arcs) for the blank cell, the BaO impregnated cell, and the cell with a Ba-Pt-

Al2O3 layer at various temperatures were listed in Tables 7.1 to 7.3.  

Table 7.1 Characteristics of the four arcs (RQ elements) used to fit the impedance spectra recorded in 1000 ppm NO with 10% 

O2 in Ar for the blank LSM/CGO symmetric cell.  

Arcs n Ea (eV) Cω (F cm
-2

) fmax (Hz) 

   300 °C 400 °C 500 °C 300 °C 400 °C 500 °C 

1 0.80 1.03 ± 0.01 1.6E-7 1.3E-7 - 1,432 38,044 - 

2 0.56 0.81 ± 0.04 1.4E-5 2.4E-5 4.4E-5 4.8 13 117 

3 0.59 1.06 ± 0.04 4.3E-4 6.1E-4 1.4E-3 0.002 0.1 0.5 

4 0.82 1.01 ± 0.06 9.2E-4 2.4E-3 2.4E-3 0.001 0.02 0.14 

 

Table 7.2 Characteristics of the four arcs (RQ elements) used to fit the impedance spectra recorded in 1000 ppm NO with 10% 

O2 in Ar for the BaO impregnated LSM/CGO cell. 

Arcs n Ea (eV) Cω (F cm
-2

) fmax (Hz) 

   300 °C 400 °C 500 °C 300 °C 400 °C 500 °C 

1 0.90 1.11 ± 0.02 1.3E-7 1.4E-7 - 2,341 60,406 - 

2 0.56 0.89 ± 0.03 1.7E-5 3.0E-5 5.9E-5 17 80 480 

3 0.62 0.90 ± 0.12 7.3E-4 1.1E-4 2.0E-4 0.1 0.9 16 

4 0.72 1.16 ± 0.08 9.3E-4 2.5E-3 2.3E-3 0.002 0.02 0.9 

 

Table 7.3 Characteristics of the four arcs (RQ elements) used to fit the impedance spectra recorded in 1000 ppm NO with 10% 

O2 in Ar for the LSM/CGO cell with a BaO-Pt-Al2O3 layer. 

Arcs n Ea (eV) Cω (F cm
-2

) fmax (Hz) 

   300 °C 400 °C 500 °C 300 °C 400 °C 500 °C 

1 0.85 1.10 ± 0.03 1.3E-7 1.1E-7 - 1,980 64,775 - 

2 0.59 1.00 ± 0.13 1.5E-5 2.6E-5 6.2E-5 11 48 288 

3 0.62 0.48 ± 0.06 8.8E-5 2.1E-4 2.7E-4 0.8 0.6 2.7 

4 0.65 1.06 ± 0.10 6.3E-4 2.2E-3 3.6E-3 0.008 0.03 0.3 
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Four arcs were identified for the majority of the impedance spectra, except at 500 °C, where the arc 

located at the very high frequency end (arc 1) could not be observed. The capacitance of arc 1 was 

almost constant at different temperatures, with values ranging from 1E-7 to 2E-7 F cm-2 across all the 

cells. Arc 2 appeared in the frequency range of several Hz to several hundred Hz for all the cells with a 

capacitance increasing with increasing temperature in the range of 1E-5 to 1E-4 F cm-2.  Arcs 3 and 4 

were observed in the low-frequency range of 20 Hz to 1 mHz. The capacitance of arc 3 increased with 

increasing temperature from 1E-4 to 1E-3 F cm-2. In the case of arc 4, the capacitance varied at different 

temperatures, but did not show a clear monotonic increasing or decreasing trend with increasing 

temperature. The activation energy values of arc 1, arc 2, and arc 4 were similar across the three cells, 

whereas the value of arc 3 was significantly lower for the cell with a Ba-Pt-Al2O3 layer relative to the 

other two cells. 

 

Figure 7.3 Serial resistances (Rs) and polarization resistances (Rp) of the blank cell, the BaO impregnated cell, and the cell with a 

BaO-Pt-Al2O3 adsorption layer in 1000 ppm NO with 10% O2 in Ar as a function of the inverse temperature. The values reported 

here are the average values of two or three replicates, and the deviations between replicates were within 9%. 
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Figure 7.4 Polarization resistances of the individual processes for the blank cell, the BaO impregnated cell, and the cell with a 

BaO-Pt-Al2O3 adsorption layer in 1000 ppm NO with 10% O2 in Ar as a function of the inverse temperature: a) the resistances of 

arc 1, b) the resistances of arc 2, c) the resistances of arc 3, and d) the resistances of arc 4. The values reported here represent 

the average values of two or three replicates, and the deviations between replicates were within 15%. Note the different scale 

of the vertical axis. 

Figure 7.3 shows the serial resistances and the total polarization resistances for the three cells as a 

function of temperature. The serial resistances were almost the same among the three cells as the 

electrolytes of the three cells were identical. However, the polarization resistances were consistently 

lower in the cells modified with the NOx adsorbents than in the blank cell, indicating an activation effect 

of adding the NOx adsorption materials. To estimate which of the processes (arcs) mainly contributed to 

this activation effect, the resistances of the individual processes were calculated and compared in Figure 
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7.4. The resistances of arc 1 for the cells with the NOx adsorbents were close to or slightly lower than 

those for the blank cell. For arc 2, the resistances for the cells with the NOx adsorbents were lower than 

that for the blank cell, with this difference increasing as temperature increased. For arcs 3 and 4, the 

resistances of the BaO impregnated cell were consistently lower than those of the blank cell. The 

resistances of the two arcs for the cell with the Ba-Pt-Al2O3 layer were the lowest among the three cells 

from 300 to 400 °C, but the resistance tended to decrease more slowly with increasing  temperature 

than those of the BaO impregnated cell, especially in the case of arc 3. Consequently, the resistances of 

the cell with the adsorption layer became greater than (for arc 3) or close to (for arc 4) those of the 

impregnated cell at temperatures above 400 °C. Because the resistances of these two low-frequency 

process, arc 3 and 4, dominated the polarization resistances at all temperatures tested for the three 

cells, the activation effect of adding the NOx adsorbents was primarily contributed by the decrease in 

the resistances of the low-frequency processes. 

7.3.3 Impedance spectra in different gas atmospheres 

To investigate the effect of the gas atmospheres on these electrode processes, the impedance spectra 

were recorded in three different kinds of gas atmospheres at 450 °C for all three cells: 1000 ppm NO 

with 10% O2 in Ar, 10% O2 in Ar, and 1000 ppm NO in Ar, as shown in Figures 7.5 to 7.7. For all three cells, 

the spectra in 1000 ppm NO with 10% O2 appeared similar to those in 10% O2 without NO. However, the 

polarization resistances were noticeably lower in the atmosphere containing both NO and O2 than those 

in the atmosphere containing only O2. This observation was consistent with those reported by 

Werchmeister et al. and Reinhardt et al., which were suggested to be due to the formation of NO2 or 

more reactive oxygen surface species from the interaction between NO and O2, increasing the activity of 

the electrode for O2 reduction. In contrast with the spectra recorded in the O2 containing atmospheres, 

a distinctive low-frequency arc was observed in the spectra recorded in 1000 ppm NO without O2, as arc 

4 moved into even lower frequency range and was well separated from the rest of the arcs.  

The Rp was much lower for the cells with the NOx adsorbents than for the blank cell regardless of the 

atmosphere. Comparing the two types of cells modified with NOx adsorbents, the Rp of the BaO 

impregnated cell was smaller in the O2 containing atmospheres, whereas in the atmosphere with NO but 
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without O2, the Rp of the cell with a Ba-Pt-Al2O3 layer became smaller as arc 4 was significantly reduced 

by adding the adsorption layer.   

 

Figure 7.5 Impedance spectra for the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO-Pt-Al2O3 layer in 1000 ppm NO with 10% O2 in Ar at 450 °C. 

. 

 

Figure 7.6 Impedance spectra for the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO-Pt-Al2O3 layer in 10% O2 in Ar at 450 °C. 
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Figure 7.7 Impedance spectra for the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the LSM/CGO cell with the 

BaO-Pt-Al2O3 layer in 1000 ppm NO in Ar at 450 °C. 

7.3.4 Dependence on gas concentration 

During the impedance measurements, both the NO and O2 concentrations were varied at 450 °C. The O2 

content was fixed at 10% while the NO concentration was varied to 1000, 2500, and 5000 ppm. For the 

variation of O2 concentration, the NO concentration was kept constant at 1000 ppm and the O2 

concentration was offset to 1, 4, and 10%. Table 7.4 lists the resistances and equivalent capacitances of 

the three cells at different in NO concentrations, while Table 7.5 presents the results at different O2 

concentrations. The resistances of arc 1 were not affected by the changes in either NO or O2 

concentrations in any of the cells. The resistances of arc 2 were almost constant with varying NO 

concentration, but decreased with increasing O2 concentration. The resistances of arc 3 decreased with 

increasing NO and O2 concentrations. The resistances of arc 4 decreased with increasing NO 

concentration, but increased with increasing O2 concentration. The variations in resistance with gas 

concentration were much more significant for arc 4 than for arc 3. With respect to the Cω, variations in 

the gas concentration almost did not affect the Cω of arc 1 for any the three cells. The Cω of arc 2 

remained more or less constant when the NO concentration was changed, while it decreased with 

increasing O2 concentration. The Cω of arc 3 changed with the variation in both NO and O2 concentration, 
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behaving differently in different cells. For arc 4, the Cω varied in a similar manner in all three cells, 

increasing with increasing NO concentration and decreasing with increasing O2 concentration. 

Table 7.4 Resistances and equivalent capacitances for the three cells as various NO concentrations. The data were recorded at 

450 °C and the oxygen concentration was constant at 10%. 

  R (Ω cm
-2

) Cω (F cm
-2

) 

  
1000 ppm 
NO 

2500 ppm 
NO 

5000 ppm 
NO 

1000 ppm 
NO 

2500 ppm 
NO 

5000 ppm 
NO 

Blank 

Arc 1 8.6 9.0 8.2 1.2E-7 1.2E-7 1.2E-7 

Arc 2 89 88 92 2.9E-5 2.6E-5 3.2E-5 

Arc 3 604 567 431 8.5E-4 8.1E-4 7.4E-4 

Arc 4 1726 1499 862 2.0E-3 2.2E-3 2.5E-3 

BaO  

Arc 1 5.5 5.7 5.9 2.5E-7 2.1E-7 2.1E-7 

Arc 2 16 16 17 5.2E-5 5.1E-5 5.3E-5 

Arc 3 202 177 141 1.7E-4 3.8E-4 3.4E-4 

Arc 4 693 441 339 1.5E-3 2.7E-3 3.0E-3 

BaO-Pt-Al2O3  

Arc 1 7.4 7.4 7.4 1.5E-7 1.5E-7 1.5E-7 

Arc 2 24 23 23 4.3E-5 4.3E-5 4.3E-5 

Arc 3 505 466 390 2.3E-4 2.0E-4 1.8E-4 

Arc 4 456 234 181 5.0E-3 1.1E-2 1.6E-2 

 

Table 7.5 Resistances and equivalent capacitances for the three cells at various oxygen concentrations. The data were recorded 

at 450 °C and the NO concentration was constant at 1000 ppm. 

  R (Ω cm
-2

) Cω (F cm
-2

) 

  1% O2 4% O2 10% O2 1% O2 4% O2 10% O2 

Blank  

Arc 1 9.0 8.8 8.6 1.4E-7 1.4E-7 1.2E-7 

Arc 2 101 90 89 3.7E-5 3.0E-5 2.9E-5 

Arc 3 763 649 604 7.6E-4 8.0E-5 8.5E-4 

Arc 4 850 1490 1726 4.8E-3 2.7E-3 2.0E-3 

BaO  

Arc 1 5.6 5.2 5.5 2.1E-7 2.0E-7 2.5E-7 

Arc 2 24 19 16 6.1E-5 5.4E-5 5.2E-5 

Arc 3 264 217 202 3.2E-4 2.0E-4 1.7E-4 

Arc 4 361 441 693 3.2E-3 2.1E-3 1.5E-3 

BaO-Pt-Al2O3  

Arc 1 7.3 7.0 7.4 1.7E-7 1.5E-7 1.5E-7 

Arc 2 30 26 24 5.1E-5 4.4E-5 4.3E-5 

Arc 3 660 536 505 4.2E-4 2.3E-4 2.3E-4 

Arc 4 202 376 456 1.1E-2 5.2E-3 5.0E-3 
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7.3.5 Dependence on flow rate 

The flow rate was varied in 1000 ppm NO in Ar at 450 °C. Table 7.6 compares the resistances and the Cω 

of the individual arcs for the blank cell, the BaO impregnated cell, and the cell with a Ba-Pt-Al2O3 layer at 

gas flow rate of 2 L/h and 6 L/h. Increasing the flow rate has almost no influence on arcs 1 and 2 for the 

three cells. A small increase in the resistance of arc 3 and a large increase in that of arc 4 were observed 

when the flow rate increased from 2 to 6 L/h. The Cω of arcs 3 and 4 decreased at an increased flow rate 

for the three cells, except for that of arc 3 for the blank cell, which increased slightly with increasing the 

flow rate. 

Table 7.6 Resistances and equivalent capacitances for the three cells with different flow rates. The data were recorded in an 

atmosphere of 1000 ppm NO in Ar without oxygen at 450 °C. 

  R (Ω cm
-2

) Cω (F cm
-2

) 

  2 L 6 L 2 L 6 L 

Blank cell 

Arc 1 8.5 8.3 1.3E-7 1.3E-7 

Arc 2 19 20 1.3E-5 1.1E-5 

Arc 3 459 501 5.7E-4 5.9E-4 

Arc 4 759 939 6.0E-2 5.0E-2 

BaO  

Arc 1 5.8 5.7 2.4E-7 2.2E-7 

Arc 2 38 39 6.7E-5 6.2E-5 

Arc 3 386 408 4.7E-4 3.6E-4 

Arc 4 383 567 2.4E-1 1.6E-1 

BaO-Pt-Al2O3  

Arc 1 7.5 8.0 1.6E-7 1.3E-7 

Arc 2 36 34 9.1E-5 8.7E-5 

Arc 3 434 471 4.5E-4 3.9E-4 

Arc 4 221 254 3.1E-1 2.2E-1 

 

7.3.6 Degradation 

The stability of the cells for electrochemical NOx reduction was studied by performing a degradation test. 

The test was performed on the cells at 400 to 500 °C for 70 to 200 h. During this period, the cells 

experienced frequent switches between the polarization and the open circuit states as well as variations 

in the gas concentration (0-5000 ppm NO with 0-20% O2). The impedance data recorded before and 

after the degradation test were compared. Table 7.7 shows the results of the percentage changes in 

resistances for one of the replicates for the three cells before and after the degradation test at 450 °C 
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for approximately 100 h. In general, the variation in Rs was negligible for the three cells and the change 

in Rp depended on the change in R3 and R4 due to the dominant effect of the two low-frequency arcs on 

the impedance spectra. For the blank cell, a small increase in R1 was observed along with a large 

decrease in R2, R3, and R4. For the BaO impregnated cell, the increase in R1 was minor, similar to that for 

the blank cell; the R2, R3, and R4 increased significantly after the test, indicating severe degradation on 

the impregnated cell. Less degradation occurred in the cell with a Ba-Pt-Al2O3 layer, but the degradation 

followed a similar trend.  

Table 7.7 Percentage changes in resistances of the three cells before and after a degradation test at 450 °C for approximately 

100 h. The resistances were obtained by fitting the impedance spectra recorded at 450 °C in 1000 ppm NO with 10% O2 in Ar. 

Positive values indicate that the resistance increases, while negative values represent a decrease in resistance. 

 Rs Rp R1 R2 R3 R4 

Blank cell 3 -36 12 -1 -22 -45 

BaO  1 38 9 91 30 38 

BaO-Pt-Al2O3  4 24 14 81 17 29 

 

7.3.7 Microstructure  

The microstructures of the electrodes on the three cells before and after the test were observed by the 

microscopy as shown in Figure 7.8. No obvious change was observed in the electrode of the blank cell 

before and after testing. The electrode grains were well defined and the surface was smooth. For the 

BaO impregnated cell, a profound change was observed in the electrode microstructure (Fig. 7.8 a and 

b). The surface of the electrode became “fluffy” and was fully covered by tiny particles, which were 

much smaller than the distinct BaO particle distributed over the surface of the electrode before testing 

(Fig. 7.8 c and d).  With respect to the cell with a Ba-Pt-Al2O3 layer, no evident change was observed on 

the Ba-Pt-Al2O3 layer coated on the top of the electrode after testing (Fig. 7.8 e and f), whereas a clear 

change was observed on the electrode, which was similar with that on the BaO impregnated cell (Fig. 7.8 

g and h). Note that the large particles underneath the adsorption layer in Figure 7.8 e and f are part of 

the Au current collector layer. 
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Figure 7.8 Microstructural images for the electrodes of the blank LSM/CGO cell, the BaO-impregnated LSM/CGO cell, and the 

LSM/CGO cell with the BaO-Pt-Al2O3 layer before and after testing. The images include a) the blank electrode before testing, b) 

the blank electrode after testing, c) the BaO-impregnated electrode before testing, d) the BaO-impregnated electrode after 
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testing, e) the BaO-Pt-Al2O3 layer before testing, f) the BaO-Pt-Al2O3 layer after testing, g) the electrode with a BaO-Pt-Al2O3 

layer before testing, and g) the electrode with the BaO-Pt-Al2O3 layer after testing. 

7.4 Discussion 

7.4.1 Identification of the electrode processes 

In general, four arcs were identified on the impedance spectra for the three cells. No new or missing 

process was observed on the spectra recorded on the cells modified with the NOx adsorbents compared 

with the blank cell. 

Arc 1 was observed in the very high frequency range on most of the impedance spectra for the three 

cells with a n value of 0.8 to 0.9 and an Ea of approximately 1 eV (1000 ppm NO + 10% O2). The Cω of this 

arc was independent of the temperature and atmosphere with a value of 1E-7 to 2E-7 F cm-2. These 

characteristics are consistent with those of the process related to the transfer of oxygen ions across the 

interface between the electrode and electrolyte and through the electrolyte frame of the composite 

electrode, as reported for the LSM/YSZ[116] and LSM/CGO[55, 75, 77, 132] electrodes. At 500 °C, the 

high frequency arc could not be estimated, probably because this arc was so small that it could not be 

separated from the impedance spectra. 

Arc 2 was observed in the intermediate frequency range on all the impedance spectra. This arc was fit 

with an n value of 0.59 for the cell with a Ba-Pt-Al2O3 layer and 0.56 for the blank cell and the BaO 

impregnated cell. The Ea of this arc was approximately 0.81 eV for the blank cell, 0.89 eV for the 

impregnated cell, and 1 eV for the cell with the adsorption layer in the atmosphere of 1000 ppm NO 

with 10% O2. This arc showed no dependence on the flow rate or NO concentration but a significant 

dependence on O2 concentration. The resistance and Cω of this arc decreased with increasing O2 

concentration. Moreover, the Cω increased from 1E-5 to 1E-4 F cm-2 with increasing temperature, in 

fairly good agreement with the capacitance associated with the adsorption and dissociation of O2 and/or 

the charge transfer reaction at the triple phase boundaries (TPBs) on the composite cathode. [132, 117]  

Arc 3 was fit with the n values of 0.59 for the blank cell and 0.62 for the BaO impregnated cell and the 

cell with the Ba-Pt-Al2O3 layer. The increase in Cω and the decrease in the resistance with increasing 
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temperature showed that this process was related to the extension or broadening of the TPB zone. For 

this arc, the dependence on the flow rate was weak but the dependence on the gas atmosphere was 

strong. The resistance of this arc decreased with increasing NO or O2 concentration, indicating the 

participation of O2-related species and NOx-related species in this process. According to the previous 

findings on perovskite/CGO electrodes in our group,[55, 75, 132] a similar process could be ascribed to 

adsorption, surface diffusion, and transfer of species at or near TPBs. The Ea for this process was 

reported to be in the range of 0.7-1.2 eV in the NOx containing atmosphere,[55, 75] overlapping with the 

values of Ea obtained in this study for the blank cell (1.06 eV) and the impregnated cell (0.9 eV ), but 

higher than the value for the cell with the adsorption layer (0.48 eV). The significant decrease in Ea for 

the cell with the adsorption layer indicated that the decrease in resistance resulting from increasing 

temperature was greatly lessened by the addition of the adsorption layer, which was probably due to 

the limitation of gas diffusion by the additional adsorption layer. Therefore, arc 3 was ascribed to the 

adsorption, diffusion, and transfer of O2 species and NOx species at or near TPBs.  

In the lowest frequency range of the impedance spectra, arc 4 was identified with a n value of 0.82 for 

the blank cell, 0.72 for the BaO impregnated cell, and 0.65 for the cell with a Ba-Pt-Al2O3 layer. The 

resistance of this arc decreased with decreasing oxygen concentration, indicating that this low-

frequency process depended on the concentration of the oxygen vacancies.[75] As this arc was also 

characterized by significant increases in resistance with either an increasing flow rate in 1000 ppm NO 

without O2 or a decreasing NO concentration in the atmosphere of NO with O2, this arc could be 

associated with the formation of the reaction intermediate NO2 in the NO containing atmospheres.[55, 

75, 132, 133] The Ea of this arc was similar among the three cells with a value of approximately 1.1 eV in 

1000 ppm NO with 10 % O2, greater than the value reported by Werchmeister et al. (0.34 eV) for the 

identical process in 1% NO,[55] but close to the values reported by Traulsen et al. (0.9 eV) in the same 

atmosphere.[75]   

7.4.2 Effect of the modification with the NOx adsorbents on the electrode processes 

A significant decrease in the Rp was observed for the BaO impregnated cell and the cell with the Ba-Pt-

Al2O3 layer relative to the blank cell, demonstrating that the addition of the NOx adsorbents activates 

the electrode processes. Comparing the changes in the individual processes, the resistances of the four 
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processes were all reduced by the addition of the NOx adsorbents; however, the changes in the low-

frequency processes (arcs 3 and 4) were primarily responsible for the overall variations in the 

impedance spectra, as the impedance spectra were dominated by these arcs. Accordingly, the decreases 

in the resistances of the low-frequency processes were mainly responsible for the activity enhancement 

by the NOx adsorbents. The low-frequency processes were identified as adsorption, diffusion, the 

transfer of O2 species and NOx species at or near the TPB region and the formation of the reaction 

intermediate NO2.  

The introduction of nano-particles into the electrode in the BaO impregnated cell could expand the 

length of the TPB and/or modify the surface chemistry of the electrode, making it more 

electrochemically active.[58] These factors should affect both the NOx- and O2-related processes and 

lead to a general increase in the activity of the electrode, which could explain the decrease in resistance 

of the impregnated cell relative to the blank cell in all tested atmospheres. Besides, the BaO particles are 

capable of selectively absorbing and storing NO2 in the form of nitrates (Eq. 5) to effectively enhance the 

adsorption of NO2 on the LSM/CGO electrode, which in turn may benefit the formation of NO2 from the 

NO/NO2 equilibrium.[25, 124] Over the BaO sites adjacent to the TPBs, the stored nitrate may be 

reduced directly to N2 (Eq. 6), a process that provides a short and efficient reaction path to the reduction 

of NOx. Therefore, BaO impregnation can greatly improve the electrode activity of the low-frequency 

processes related with the NOx and O2 species at or near the TPB region and the formation of NO2.  

                                             (7.5) 

                  
                  

                           (7.6) 

For the cell with the BaO-Pt-Al2O3 layer, the large surface area (~100 nm particles) and active 

components (Pt and BaO) of the adsorption layer could lead to a general increase in the electrode 

activity.[25] The adsorption of NOx can also be selectively promoted as on the BaO-impregnated cell.[25] 

However, unlike the impregnated cell, the direct reduction of the nitrates seems to be impossible as the 

storage sites are distant from the reaction sites. Another difference is the Pt particles in the adsorption 

layer, which are absent in the case of the impregnated cell. The strong NO oxidation ability of Pt 

catalysts could significantly promote the formation of NO2, especially under the conditions where the 

formation of NO2 from the NO/NO2 equilibrium was kinetically limited, such as low temperatures.[25], 
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[121, 122] Therefore, the resistance of the NO2 formation arc (arc 4) was the lowest for the cell with the 

BaO-Pt-Al2O3 layer among the three cells, and the reduction in the resistance resulting from the 

adsorption layer was greater at low temperatures (300 and 350 °C). For arc 3, which was ascribed to 

adsorption, diffusion, and the transfer of O2 species and NOx species at or near the TPB region, the large 

decrease in the resistance below 400 °C relative to the BaO impregnated cell may also be related to the 

promotion of NO2 formation because NO2 was suggested to be the reaction intermediate for the NOx 

adsorption and reduction. However, above 400 °C, the resistance of arc 3 significantly increased for the 

cell with the adsorption layer relative to the BaO impregnated cell, as the resistance decreased slowly 

with increasing temperature for the cell with the adsorption layer, most likely due to the limitation of 

gas diffusion by the additional adsorption layer.  

7.4.3 Degradation correlated with microstructural changes 

As shown in the results section, the activity of the electrodes decreased after long-term operation for 

the BaO impregnated cell and the cell with the BaO-Pt-Al2O3 layer. The degradation was generally similar 

between the two types of cells modified with the NOx adsorbents and was mainly caused by the increase 

in the resistance of the processes related with the TPBs (arc 2 and 3) and the NO2 formation (arc 4). The 

SEM images reveal a profound change in the microstructure of the electrode on the BaO impregnated 

cell and the cell with a BaO-Pt-Al2O3 layer after testing, which may correlate with the deterioration in 

the electrode activity. Between the two types of cells with the NOx adsorbents, the microstructure 

appears fairly similar after testing despite being quite different before testing. One possible explanation 

of this observation is that the microstructural changes could be caused by the same type of reaction on 

the two different cells, such as the reaction between the electrode materials with the Ba compounds 

(BaO and or Ba(NO3)2) either dispersing over the surface of the electrode[77] or diffusing from the BaO-

Pt-Al2O3 layer to the electrode. The microstructural changes have been discussed in detail elsewhere 

and thus this discussion will not be repeated here.[143]  

7.5 Conclusion 

This study investigated the effect of modifying the LSM/CGO cell with the NOx adsorbents on the 

electrode processes for the electrochemical reduction of NOx by characterizing the cells using the 
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electrochemical impedance spectra. Three types of cells were prepared and tested, including a blank 

symmetric LSM/CGO cell, an LSM/CGO cell impregnated with BaO, and an LSM/CGO cell coated with a 

BaO-Pt-Al2O3 layer. The impedance analysis revealed that the modification with the NOx adsorbents, 

either by impregnation of BaO or by adding a BaO-Pt-Al2O3 layer significantly enhanced the activity of 

the electrode processes. The activity enhancement achieved by the NOx adsorbents was mainly resulted 

from the decrease in the resistance of the low-frequency processes (arcs 3 and 4), which were ascribed 

to the adsorption, diffusion, and transfer of O2 species and NOx species at or near the TPB region and the 

formation of the reaction intermediate NO2. BaO impregnation increased the overall activity of the 

electrode and enhanced the adsorption of NOx by selectively trapping NO2 in the form of nitrate, which 

also enabled direct reduction of the stored nitrate to N2 over the BaO sites adjacent to the TPBs. The 

BaO-Pt-Al2O3 layer also increased the general activity of the electrode and improved NOx adsorption. 

Moreover, the adsorption layer was capable of promoting the formation of NO2 due to the strong NO 

oxidation ability of the Pt catalyst. However, the additional adsorption layer hindered the gas diffusion 

to the reaction sites, which resulted in a larger resistance of arc 3 at elevated temperatures relative to 

the impregnated cell. The activity of the electrodes deteriorated on the cells with the NOx adsorbents 

after a long-term operation. The degradation may be related to the profound microstructural changes 

observed on the electrodes after testing, which could be due to the reaction between the electrodes 

and the Ba compounds. 
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Chapter 8 Impregnating a LSM/CGO cell with both BaO and Pt 

8.1 Introduction 

According to the previous studies on the (La0.85Sr0.15)0.99MnO3 (LSM) /Ce0.9Gd0.1O1.95 (CGO) symmetric 

cells modified by NOx adsorbents, it has been indicated that the presence of  NO oxidation catalysts is 

important for the NOx reduction at low temperatures and low voltages, as under these conditions the 

NOx reduction is probably limited by the lack of intermediate NO2. Thus, by introducing the Pt 

component into the BaO impregnated electrode, the performance of the electrode at low temperatures 

and voltages could be improved. This chapter described the preliminary work on preparing and testing a 

LSM/CGO symmetric cell impregnated with both BaO and Pt for the NOx reduction in an O2-rich 

environment.   

8.2 Experimental 

The blank LSM/CGO symmetric cells used in this chapter are identical with that used in chapters 6 and 7, 

and their active electrode area is 1.54 cm2. Firstly, three blank LSM/CGO cells were impregnated with 

BaO, following the same procedure as described in the previous two chapters. Next, two of the cells 

were soaked in a 0.034 M Pt(NH3)4(NO3)2 (Aldrich, Germany) aqueous solution with 3 wt% Triton-45 

(Fluka, Belgium) and one was soaked in a 0.068 M Pt(NH3)4(NO3)2 solution (table 8.1).  

Table 8.1 Preparation parameters of impregnation with BaO and Pt.  

Names Concentration of Pt precursor solution No. of impregnation 

Ba+Pt-1 0.034M 1 

Ba+Pt-2 0.034M 1 

Ba+Pt-3 0.068M 2 

 

All the cells were placed under vacuum for approximately 2 min. Excess impregnation solution was 

wiped of the surface. The cells were then heated at 270 °C for 1 h to decompose the Pt(NH3)4(NO3)2 to Pt. 

The first two cells were impregnated for one time and the last cell was impregnated twice. The two cells 

impregnated once in a 0.034 M solution was denoted as Ba+Pt-1 and Ba+Pt-2. The cell impregnated 

twice in a 0.068 M solution was denoted as Ba+Pt-3. Usually the loading of impregnation components 
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was determined by measuring the weight increase after impregnation, but in this case the weight 

increase was too small to be detected. The exact loading of BaO and Pt is thusly unknown. 

The cells were installed in a test set up and connected to a Gamry Reference 600 potentiostat. The NOx 

conversion were measured from 300 to 450 °C in 1000 ppm NO with 10% O2 in Ar with a flow rate of 2 

L/h maintained by Brooks mass flow controllers. The cells were polarized under square wave (SV) mode 

from 1.5 to 2.5 V. The outlet gas composition was monitored using chemiluminescence (Model 42i HL, 

Thermo Scientific, USA) for NO, NO2, and NOx and mass spectrometry (Omnistar GSD 301, Pfeiffer 

Vacuum, Germany) for N2, N2O, and O2.  

The electrochemical impedance was measured by the Gamry Reference 600 potentiostat from 1x106 to 

2 or 1 mHz with 6 or 12 data points per decade and 36 mV rms amplitude at the open circuit voltage 

(OCV) in 1000 ppm NO with or without 10% O2 in Ar from 300 to 450 °C. 

The microstructure of the cells was investigated by scanning electron microscopy (SEM) (Zeiss Supra 35). 

The cells were cracked manually and directly subjected to the SEM observations. The SEM images were 

recorded using an in-lens detector with a 3 keV acceleration voltage and a secondary electron detector 

with a 15 keV acceleration voltage. 

8.3 Results and discussion 

8.3.1 Microstructure observation 

Figure 8.1 illustrates the difference in microstructure between the electrodes being impregnated with 

both BaO and Pt and the ones only with BaO, before and after testing. By comparing the SEM 

micrographs of the impregnated cells, regardless the different impregnation solutions that they have 

been immersed into, it is obvious that before testing, many more distinct nano-particles could be 

observed, evenly distributed throughout the cells  microstructure. According to the EDS measurements 

performed on these particles, it has been indicated to be formed out of BaO, whereas the presence of Pt 

has not been confirmed. This could be attributed either to the low Pt loading that has been applied or to 

the fact that the particle size of the Pt is too small to be observed by SEM. If this was due to a negligible 

Pt loading, by increasing the concentration of the precursor solution and the number of impregnation 
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cycles, it should result in an increase of the Pt loading. However, no evident difference was observed 

between the electrodes Ba+Pt-2 and Ba+Pt-3. It seems necessary to further investigate the 

microstructure and composition of the impregnated electrode by transmission electron microscopy 

(TEM).  

  

  

  

Figure 8.1 SEM images of the LSM/CGO electrodes impregnated with BaO and that impregnated with BaO plus Pt, before and 

after testing. The images include a) the electrode impregnated with BaO before testing, b) the electrode impregnated with BaO 

 

Before testing     Ba+Pt-1 After testing     Ba+Pt-1 

Before testing     Ba+Pt-3 After testing     Ba+Pt-3 

Before testing     Ba After testing     Ba 
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after testing, c), the electrode of Ba+Pt-1 before testing, d) the electrode of Ba+Pt-1 after testing, e) the electrode of Ba+Pt-3 

before testing, and f) the electrode of Ba+Pt-3 after testing. 

8.3.2 NOx conversion measurement 

The NOx removal properties of the LSM/CGO cells impregnated with BaO and Pt in 1000 ppm NO with 10% 

O2 at various temperatures are compared with that of the cells impregnated with BaO in figures 8.2-8.4. 

The values of NOx conversion and current efficiency for the BaO and Pt impregnated cells were close to 

the values for the BaO impregnated cells in the tested temperature range especially considering the 

experimental uncertainty at low temperatures and the deviation between different samples. With 

respect to the N2 selectivity, the values measured on the cells of Ba+Pt-1 and Ba+Pt-2 were similar with 

the values measured on the cells impregnated with only BaO and the values on the cell of Ba-Pt+3 were 

higher than those on the BaO-impregnated cells. The NOx removal properties were almost identical 

between the cells impregnated with BaO and the cells impregnated with both BaO and Pt. By increasing 

the concentration of Pt precursor and the times of Pt impregnations the N2 selectivity increased but no 

profound iimprovement of the NOx conversion and current efficiency has been dectected.   

 

Figure 8.2 NOx conversions on the LSM/CGO cell impregnated with BaO and the LSM/CGO cell impregnated with BaO and Pt, as 

a function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 0.5 Hz. 
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Figure 8.3 Current efficiency on the LSM/CGO cell impregnated with BaO and the LSM/CGO cell impregnated with BaO and Pt as 

a function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 0.5 Hz. 

 

Figure 8.4 N2 selectivity on the LSM/CGO cell impregnated with BaO and the LSM/CGO cell impregnated with BaO and Pt as a 

function of temperature in 1000 ppm NO with 10% O2 under a square wave polarization of 2.25 V and 0.5 Hz. 
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8.3.3 Impedance characterization 

Figure 8.5 shows the impedance spectra for the cell impregnated with BaO and the cell impregnated 

with BaO and Pt in 1000 ppm NO at 450 °C. While, figure 8.6 lists the polarization resistances of the two 

different type of cells in 1000 ppm NO and 10 % O2 from 300 to 450 °C. No significant difference was 

observed between the impedance data for the two types of cells recorded in the different atmospheres 

and at various temperatures. The influence of Pt impregnation seemed to be negligible on the 

impedance spectra. In an attempt to correlate the results coming out of impedance characterization 

with those of conversion measurements and microstructure observation, it can be concluded that the Pt 

impregnation is having almost no effect either on the microstructure, nor the NOx removal properties or 

the impedance spectra of the electrodes, which was the most likely due to the fact that the amount of 

Pt impregnated into the electrode was negligible. The SEM images of the electrodes showed that most 

of the electrode surface was occupied by the BaO particles before being impregnated with Pt, which 

may be one of the reasons why the Pt cannot be successfully impregnated into the electrode. As a result, 

the preparation parameters for the Pt impregnation need to be further optimized in order to get a 

sufficient Pt loading.  

 

Figure 8.5 Impedance spectra of the LSM/CGO symmetric cells impregnated with BaO and that with BaO and Pt, in 1000 ppm 

NO at 450 °C. 
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Figure 8.6 Polarization resistances for the LSM/CGO cell impregnated with BaO and the LSM/CGO cell impregnated with BaO 

and Pt as a function of temperature in 1000 ppm NO with 10% O2. 

8.4 Conclusion 

The LSM/CGO symmetric cells impregnated with both BaO and Pt were prepared and tested for the NOx 

reduction in O2-rich environment. The microstructure, the NOx conversion, and the impedance spectra 

measured on the cells impregnated both BaO and Pt were compared with those measured on the cells 

impregnated only with BaO. No significant difference caused by the Pt impregnation was observed 

under the testing conditions, which was probably due to the low Pt loading in the electrode. As a 

conclusion, the preparation procedure of impregnating the electrode with both BaO and Pt needs to be 

optimized further. 
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Chapter 9 Summary and outlook 

9.1 Discussion 

9.1.1 Optimization of electrode structure 

Before the NOx adsorbents were introduced to the electrochemical cells, the optimization of electrode 

structure was primarily focus on inhibiting the competitive reaction of O2. For this purpose, the 

electrodes were made to be rather dense or coated with cover layers. After adding the NOx adsorbents, 

the benefit of using such structures decreased. It may be necessary to optimize the electrode structure 

for facilitating the “cooperation” between the cell and the adsorption layer. In this work, the structure 

of a multilayered electrochemical cell with a NOx adsorption layer was modified by removing the 

intervening YSZ layer, which was deposited on the surface of the cathode to inhibit the O2 

decomposition reaction. By removing the YSZ layer, the diffusion of NOx species from the adsorption 

layer to the cathode became unobstructed, which in turn improved the NOx trapping efficiency of the 

adsorption layer. Moreover, the decomposition of NOx could be promoted at the interface between the 

directly connected adsorption layer and the cathode. As a result, both the activity and selectivity for NOx 

reduction were significantly enhanced by omitting the YSZ layer in spite of the increase in O2 reduction. 

The simplified electrode was more suitable for combining with the adsorption layer relative to the 

multilayered electrode. This demonstrated the importance of the interaction between the electrode and 

the adsorption layer on the NOx removal properties.  

9.1.2 Exploration of electrode materials 

Structure optimization was based on an electrode consisted of precious metal Pt and reactive material 

Ni. Although the optimized electrode exhibited quite high activity and selectivity for NOx reduction, 

materials with lower cost and higher stability were needed for practical applications. Therefore, Ag and 

LSM were evaluated as the electrode materials for the electrochemical cell modified with the NOx 

adsorbents. The blank Ag and LSM/CGO electrodes were almost incapable of converting NOx to N2 in an 

O2-rich environment. After adding the NOx adsorption layer, both the electrodes could effectively reduce 

NOx to N2 in the presence of excess O2. With the addition of a K-Pt-Al2O3 adsorption layer, 82% NOx 



Chapter 9 Summary and outlook 

140 
 

conversion with 7.7% current efficiency and 100% N2 selectivity were achieved on the Ag electrode and 

a 85% conversion with 4% current efficiency and 74% N2 selectivity on the LSM/CGO electrode, both at 

500 °C in 1000 ppm NO and 8-10% O2.  

With respect to the stability of the electrodes, significant degradation was observed on the Ag electrode 

coated with the K-Pt-Al2O3 layer after long-term operation, due to the corrosion of the Ag electrode by 

molten potassium nitrate under negative polarization, a species present as the melting point of 

potassium nitrate is rather low (334 °C). Therefore, Ba was used instead of K as the storage components 

for the LSM/CGO electrode as the melting point of barium nitrate is much higher (592 °C). However, a 

30-40% decrease in NOx conversion was observed on the LSM/CGO electrode with Ba-based adsorbent 

materials after 100 h of operation. The degradation may be associated with the profound change in 

microstructure after testing. One possible reason for the microstructure change is that the electrode 

material reacted with the Ba-related compounds, especially the nitrate, under operation conditions, but 

the exact cause of this microstructure change requires further investigation. 

9.1.3 Comparison of modification approaches 

The two main approaches for modifying the electrochemical cells using NOx adsorbents were compared 

for a symmetric LSM/CGO cell. Both of the approaches, adding a Ba-Pt-Al2O3 layer on top of the 

electrode or impregnating the BaO into the electrode could effectively enhance NOx reduction on the 

LSM/CGO cell. The cell with the adsorption layer showed a superior performance relative to the 

impregnated cell at low temperatures and low voltages due to the NO oxidation ability of the Pt catalyst, 

whereas the impregnated cell performed better at elevated temperatures and voltages as there was no 

diffusion limitation of NOx species caused by the additional adsorption layer. The trapping and reduction 

rates of the NOx species on the electrodes could be balanced by applying a square wave (SV) polarization 

with an optimum frequency. The higher optimum frequency on the impregnated cell indicated that the 

trapping and/or reduction rates of the NOx species were faster on the impregnated cell than on the cell 

with the adsorption layer, which was probably due to the storage sites being close to the reaction sites 

on the impregnated cell. From the perspective of lowering the operating temperature and minimizing 

the electrical consumption of the electrochemical NOx reduction cell, the approach of adding an 

adsorption layer seems more favorable than that of impregnating, but it may be possible to improve the 
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performance of the BaO impregnated cell at low temperatures and voltages by introducing Pt into the 

electrode. The preliminary experimental results showed no significant difference in performance 

between the cell impregnated with both BaO and Pt and that impregnated with only BaO, which was 

most likely due to the Pt loading in the electrode being negligible with respect to the BaO loading.  The 

impregnation procedure needs to be adjusted further to obtain sufficient Pt loading. 

9.1.4 Identification of reaction mechanism 

The impedance spectra of the cells modified with the NOx adsorbents were measured under various 

experimental conditions to identify the effect of NOx adsorbents on the electrode processes related to 

electrochemical NOx reduction. The impedance analysis revealed that the modification by NOx 

adsorbents did not completely alter the reaction mechanism but did enhance the electrode activity. This 

activity enhancement was primarily caused by the promotion of adsorption, surface diffusion, and 

transfer of the NOx and O2 species at/near the triple phase boundary region and the formation of NO2. 

The contact of the adsorption layer with the electrode or the impregnation of NOx trapping materials 

into the electrode may also allow for the direct reduction of the stored nitrate.  

9.1.5 Potential for realistic applications 

The energy consumption of the cells, with different electrodes and NOx adsorbents, required to achieve 

their best deNOx efficiency under the experimental conditions were calculated and are listed in table 9.1.  

Table 9.1 Comparison of the deNOx efficiency and power consumption of the cells investigated in this study. The conversion of 

NOx to N2 is calculated by multiplying NOx conversion with N2 selectivity. The test atmosphere is 1000 ppm NO and 8-10% O2 in 

Ar with a flow rate of 2L/h.  

Electrodes NOx adsorbents Temperature (°C) 
Conversion of NOx to N2 

(%) 
Energy consumption (W) 

Ni/Pt/YSZ K-Pt-Al2O3 450 84 0.062 

Ag K-Pt-Al2O3 500 58 0.024 

LSM/CGO K-Pt-Al2O3 500 63 0.216 

LSM/CGO BaO 450 41 0.146 

LSM/CGO Ba-Pt-Al2O3 450 56 0.121 
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The current EU emission standards (Euro 4) require more than 60% reduction of NOx in diesel exhaust. 

The Ag electrode with the K-Pt-Al2O3 layer consumed the lowest amount of electrical power to reach 

approximately 60% NOx reduction among the electrodes investigated in this work. For a 1.4 L 69 PS 

diesel engine with an output of around 51.4 kW, the exhaust flow at the maximum speed (4000 rpm) is 

approximately 42 L/s (20°C, 1 bar). Assuming the concentrations of NOx and O2 in the exhaust gases are 

the same with those used in this study, the energy consumption to clean 60% NOx at 500 °C by using the 

Ag electrode is approximately 1.8 kW, equal to a fuel penalty of 3.5%. This result is promising, but still 

needs to be improved upon to reach commercial levels, as a fuel penalty below 1% and operation 

temperatures below 300 °C are required for practical applications.  
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9.2 Conclusion 

The structure of a multilayered electrode has been optimized by eliminating the YSZ cover layer to make 

the electrode structure more compatible with the NOx adsorption layer. The NOx removal properties of 

the electrochemical cell were dramatically enhanced through this optimization, especially under 

conditions of low voltages, intermediate temperatures, and high O2 concentrations. The pronounced 

increase in activity and selectivity for NOx decomposition after removing the YSZ cover layer was 

attributed to the extensive opening up of selective reaction sites for NOx species and a strong promotion 

for NOx reduction from the interaction of the directly connected adsorption layer and the electrode. This 

structural optimization was performed on an electrode consisted of Pt and Ni, which are cost prohibitive 

or too unstable for practical applications. Later, Ag and LSM were investigated to substitute Pt and Ni as 

the electrode materials. Selective NOx reduction in the presence of excess O2 was achieved for both Ag 

and LSM electrodes by modifying the electrodes with NOx adsorbents. Performances of 82% NOx 

conversion with 7.7% current efficiency and 100% N2 selectivity for the Ag electrode, and of 85% 

conversion with 4% current efficiency and 74% N2 selectivity for the LSM/CGO electrode were achieved 

in 1000 ppm NO and 8-10% O2 at 500 °C with the addition of a K-Pt-Al2O3 adsorption layer. The reaction 

mechanism behind the performance improvement was investigated using electrochemical impedance 

spectroscopy (EIS). The impedance analysis revealed that the NOx adsorbents greatly enhanced the 

electrode activity, which was mainly contributed through the promotion of adsorption, surface diffusion, 

and transfer of the NOx and O2 species at/near the triple phase boundary region, the formation of 

intermediate NO2, and possible formation of a short and effective reaction pathway for NOx reduction. 

The stability of the Ag electrode and the LSM/CGO electrode in the presence of the NOx adsorbents was 

studied using a degradation test. Severe degradation was observed on both the electrodes, which was 

caused by the corrosion of electrode covered by a nitrate melt for the Ag electrode or associated with a 

profound change in the microstructure after testing for the LSM/CGO electrode. The exact cause of the 

microstructure change on the LSM/CGO electrode needs further investigation.  

The two main approaches to modifying the electrochemical cells with NOx adsorbents were compared 

through systematic investigations of conversion measurements, degradation tests, microstructure 

observation, and impedance characterization. The modifications were performed on a LSM/CGO 

symmetric cell, a full ceramic structure without any noble metals. Both of the approaches, adding an 
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adsorption layer on top of the electrode or impregnating the storage components into the electrode, 

significantly increased the activity and selectivity of the NOx reduction of the LSM/CGO symmetric cell by 

enhancing the adsorption and storage of the NOx species or providing reaction sites for direct nitrate 

reduction. The cell with the Ba-Pt-Al2O3 layer exhibited a better performance at low temperatures (350 

and 400 °C) and low voltages (1.5 to 2 V) relative to the BaO impregnated cell due to the NO oxidation 

ability of the Pt catalyst, although it performance was relatively poor at elevated temperatures and 

voltages due to impedance of the diffusion of NOx to the reaction sites by the adsorption layer. This 

finding indicated that the presence of an NO oxidation catalyst was important for lowering the 

operation temperature and minimizing the power consumption of the electrochemical cell. Square-wave 

(SV) polarization can balance the trapping and reduction rates of NOx species on the electrochemical 

cells to further improve the NOx reduction activity relative to the performance under the direct current 

(DC) polarization. To the best of the author’s knowledge, this is the first time a comprehensive 

comparison between the two main approaches for modifying the electrochemical cells by NOx 

adsorbents was reported. The electrochemical cell with the Ag or LSM/CGO electrodes modified with 

NOx adsorbents may provide a promising solution for NOx emission control under lean-burning engine 

operation.  
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9.3 Outlook 

To shorten the time to the development of this technology in realistic applications, future work should 

include decreasing the operating temperature and power consumption, and improving the stability of 

the Ag or LSM/CGO electrochemical cells in the presence of NOx adsorbents. According to previous 

studies, the applied voltage and operation temperature can be reduced by optimizing the structure of 

the electrode or increasing the ionic conductivity of the electrolyte. The current electrochemical cells 

were support on a 200-300 µm thick electrolyte. By using an electrode-supported cell structure, it is 

possible to reduce the thickness of the electrolyte to 10-20 µm, thus decreasing the resistance of the 

electrolyte by 10 times. For electrode optimization, it is first necessary to perform more detailed studies 

on the influence of the electrode thickness, porosity, and particle size on the NOx removal performance 

for the Ag and LSM/CGO electrodes to determine the optimum backbone structure of these two 

electrodes. For modification by NOx adsorbents, as the performance of the BaO impregnated cells 

appeared to be limited by the lack of a strong NO oxidation ability, it is suggested to focus on co-

infiltration of Pt with BaO to promote the NOx reduction at low temperatures and low voltages. The 

preparation procedure needs to be modified to get sufficient loading of Pt into the electrode.  

With respect to the stability of the electrode, future work should first be focused on clarifying the exact 

cause of the microstructure change of the LSM/CGO electrode modified with the Ba-related absorbents, 

whether new phases are formed, and what the compositions of the phases are on the cells with the NOx 

adsorbents. Furthermore, it is also important to identify under what conditions (temperatures and 

voltages) the reaction between the electrode materials and the absorbents will happen on the LSM/CGO 

electrode and the Ag electrode in order to determine the boundary conditions for operating the cells 

with the NOx adsorbents remaining stable. 

The majority of the impedance spectra in this work were recorded under OCV conditions, which was 

dictated by the two electrode configuration used here lacking a reference electrode with constant 

potentials. In general, the OCV results appeared to correlate well with the conversion measurements, 

but a dramatic decrease was observed in the resistances of impedance spectra recorded under 

polarization. The impedance data under current loading may provide more realistic information about 

the reactions proceeding on the electrode during cell operation. For this reason, it is suggested to use a 

three electrode configuration setup to better measure the impedance spectra under polarization. 
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Finally, simplified gas mixtures that only contained NOx and O2 were used in this study to facilitate the 

understanding of the electrode processes. As the electrochemical cell is developed for use in real diesel 

exhaust ultimately, the effect of other gas components in the exhaust gases, such as CO2, CO, H2O, soot, 

hydrocarbon, and SO2 on the cell performance need to be investigated in future studies.  
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