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Abstract

Bioinformatics approaches to malaria

Malaria is a life threatening disease found in tropical and subtropical regions of
the world. Each year it kills 781 000 individuals; most of them are children under
the age of five in sub-Saharan Africa. The most severe form of malaria in humans
is caused by the parasite Plasmodium falciparum, which is the subject of the first
part of this thesis.

The PfEMP1 protein which is encoded by the highly variable var gene family
is important in the pathogenesis and immune evasion of malaria parasites. We
analyzed and classified these genes based on the upstream sequence in seven Plas-

modium falciparum clones. We show that the amount of nucleotide diversity is
just as big within each clone as it is between the clones.

DNA methylation is an important epigenetic mark in many eukaryotic species.
We are studying DNA methylation in the malaria parasite Plasmodium falciparum.
The work is still in progress and will be introduced here.

One of the biggest concerns regarding the treatment of malaria is the continued
development of resistance to existing drugs. Therefore, new drugs will be needed
in the future. The ApiAP2 proteins are a recently discovered family of putative
transcription factors. As they might perform important regulatory functions in
the parasite, they could be useful as drug targets. Here, we study one of these
proteins and describe our work on identifying small compounds that can interfere
with its DNA binding abilities.

Specific binding of short peptides by proteins of the major histocompatibility
complex (MHC) is an important event in the activation of immune responses to
various pathogens. The set of peptides that can bind a specific MHC molecule can
be characterized by a binding motif. In the second part of this thesis, we devel-
oped an algorithm that can distinguish several binding motifs within a mixture of
peptides from different motifs.
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Dansk resumé

Bioinformatiske tilgange til malaria

Malaria er en livstruende sygdom som findes i tropiske og subtropiske egne. Hvert
år dør 781 000 individer som følge af sygdommen; de fleste af dem er børn under fem
års alderen i Afrika syd for Sahara. Den alvorligste form for malaria i mennesker
er for̊arsaget af parasitten Plasmodium falciparum, der er emnet for første del af
denne afhandling.

PfEMP1 proteinet, der kodes for af den meget variable var gen familie er
vigtig for parasittens sygdomsfremkaldende egenskaber og dens evne til at undvi-
ge immunforsvaret. Vi analyserede og klassificerede disse gener baseret p̊a deres
opstrøms sekvens i syv Plasmodium falciparum kloner. Vi viser at mængden af nu-
kleotid diversitet er lige s̊a stort inden for hver klon som den er mellem klonerne.

DNA methylering er en vigtig epigenetisk markør i mange eukaryote arter.
Vi studerer DNA methylering i malaria parasitten Plasmodium falciparum. Dette
arbejde er stadig i gang og vil blive introduceret her.

En af de største bekymringer vedrørende behandlingen af malaria er den kon-
tinuerte udvikling af resistens over for de eksisterende lægemidler. Derfor vil der
blive brug for nye lægemidler i fremtiden. ApiAP2 proteinerne er en nyligt opda-
get familie af mulige transkriptions-faktorer. Da de måske har vigtige regulatoriske
funktioner i parasitten, kan de være brugbare mål for nye lægemidler. Vi studerer
et af disse proteiner og beskriver vores arbejde med at finde små stoffer, der kan
p̊avirke dens evne til at binde DNA.

MHC proteiners specifikke binding af korte peptider er en vigtig led i aktive-
ringen af et immun respons mod forskellige pathogener. Et sæt af peptider, der
kan binde et specifikt MHC molekyle kan karakteriseres ved et bindings motiv.
I anden del af denne afhandling udvikler vi en algoritme, der kan skelne mellem
adskillige bindings motiver i en blanding af peptider fra forskellige motiver.
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Chapter 1

Malaria

Malaria is an infectious disease caused by the protozoan parasite of the genus
Plasmodium. It is transmitted to humans by female anopheline mosquitoes. The
disease is widespread in tropical and subtropical regions where high temperatures
and significant amounts of rainfall ensure optimal conditions for uninterrupted
breeding of the mosquitoes. Classical symptoms of malaria are sudden coldness
followed by fever, shaking and sweating. These symptoms typically last for a few
hours and re-occur every two to three days.

Four species of Plasmodium are traditionally known to cause malaria in hu-
mans: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plas-

modium ovale. Recently, Plasmodium knowlesi has also been observed to infect
humans [1–5] although its main host is macaques [6]. P. falciparum is responsible
for the most severe form of malaria in humans and is the focus of part II of this
thesis.

Due to an intensified effort by the international community, the number of
malaria cases are on decline. This is in large part due to the increased distribution
and use of insecticide-treated nets and indoor residual spraying. Nevertheless,
malaria is still a major global cause of disease with an estimated 225 million cases
and 781 000 deaths in 2009 [7].

1.1 Plasmodium falciparum life cycle and pathogenesis

P. falciparum has a complex life cycle as illustrated in figure 1.1. Humans are
infected when bitten by an infected Anopheles mosquito. The sporozoites are in-
jected into the subcutaneous tissue and migrate to the liver where the first replica-

3



4 CHAPTER 1. MALARIA

which potentially exacerbates microvascular obstruction by reduc-
ing perfusion pressure. The destruction of RBCs is also an inevitable
part of malaria, and anaemia further compromises oxygen delivery.

The second and related shift in our concept of severe malaria is the
realization that there is no simple one-to-one correlation between
the clinical syndromes and the pathogenic processes. Thus, severe
anaemia may arise from many poorly understood mechanisms
including acute haemolysis of uninfected RBCs and dyserythro-
poiesis, as well as through the interaction of malarial infection with
other parasite infections and with nutritional deficiencies9. For many 
desperately sick children a simple ‘one pathogen/one disease’ model
is not adequate, as bacteraemia caused by common pathogens may be
present with acute malaria and may be a factor in mortality10,11. Even
the rigorously defined syndrome of cerebral malaria is used to
describe children who have arrived at the point of coma through 
different routes. In many of these children, coma seems to be a
response to overwhelming metabolic stress rather than a primary
problem in the brain. Such children are often profoundly acidotic
and may regain consciousness remarkably quickly after appropriate
resuscitation12, suggesting that cerebral malaria in this instance 
cannot be a consequence of the classical histologic picture.

Similarly, it has been recognized that a significant proportion of
children in coma are, in fact, experiencing covert status epilepticus13,
which responds rapidly to appropriate anticonvulsant therapy. The
pathogenesis of this condition is unknown, but again the speed of 
resolution argues against classical views of pathogenesis. The picture
that emerges is one in which many processes lead to a common 
outcome. These distinctions are much more than academic: they
have direct implications for therapy, and they also identify the
research issues needed to improve therapy for sick children.

Severe malaria is complex and probably cannot be represented
accurately by any single scheme; however, our current understanding
of the way in which several key pathogenic processes combine to
cause severe disease invokes several basic processes: rapid expansion

of infected RBC mass, destruction of both infected and uninfected
RBCs, microvascular obstruction, and inflammatory processes that
combine to lead to reduced tissue perfusion. This, in turn, may 
lead to downstream events at a cellular level that further exacerbate 
the situation.

These general processes, which affect many tissue beds, may also
be focused on specific organs in some situations, for instance the
brain in cerebral malaria or the placenta during malaria in pregnan-
cy. This could reflect both host-specific factors (for example, an
increased likelihood to express particular receptors on cerebral
endothelium) and parasite-specific factors (for example, the 
expression of molecules on the infected RBCs surface that that are
particularly suited for binding to certain receptors). In this article, we
review the main advances in our understanding of malaria pathogen-
esis with the hope that these advances will lead to new tools to prevent
disease before children become so sick that they need hospitalization.

Although the disease must ultimately be understood in humans,
much of our knowledge of pathogenesis depends on studies in non-
human species and in vitro cultures of P. falciparum. The parasitic
invasion of hepatocytes and RBCs studied in rodent malarias caused
by Plasmodium berghei and Plasmodium yoelii, and the rhesus 
malaria caused by Plasmodium knowlesi, respectively, have provided
insight into these processes. Inflammatory cytokines are often 
studied in rodent malarias. In addition, these parasite species are
important for the screening of drugs and vaccines, including those
targeted at human malarias, in New World primates.

Plasmodium life cycle and pathogenesis 
Plasmodium falciparum and, to a much lesser extent, Plasmodium
vivax14 are the main causes of disease and death from malaria. 
Mosquitoes inject parasites (sporozoites) into the subcutaneous 
tissue, and less-frequently directly into the bloodstream; from there,
sporozoites travel to the liver (Fig. 2). Evidence indicates that sporo-
zoites pass through several hepatocytes before invasion is followed by

insight review articles
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Figure 2 Parasite life cycle and pathogenesis of falciparum malaria. The molecular and
cellular events during the parasite life cycle influence the severity of the disease.
Disease occurs only as a result of the asexual blood stage after the parasite leaves the
liver and begins to invade and grow inside red blood cells (RBCs). All human
Plasmodium spp. invade by the same mechanism, but P. falciparum reaches high

parasitaemia because of greater flexibility in the receptor pathways that it can use to
invade all RBCs. RBCs infected with P. falciparum must bind to endothelium or placenta
for the parasite to avoid spleen-dependent killing mechanisms, but this binding also
leads to much of the pathology (see Fig. 4).
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Figure 1.1. The life cycle of Plasmodium falciparum. Picture from Miller et al.,
2002 [8].

tive stage is established. Inside the liver cells, each sporozoite develops into tens of
thousands of merozoites, which are released into the bloodstream, where they in-
vade the red blood cells. Inside the red blood cells, the parasites undergo multiple
rounds of asexual reproduction, also known as the intraerythrocytic developmental
cycle. It is during this stage that the severe conditions of malaria occur. A small
fraction of the asexual parasites develop into gametocytes, which might be ingested
by a mosquito taking a blood meal. Inside the mosquito, the sexual reproduction
is completed and new sporozoites are formed [8, 9].

Inside the red blood cells, the parasite modifies the red blood cell wall in a way
that enables it to adhere to the endothelial cells lining the blood vessels. This is
accomplished by the expression of Plasmodium falciparum Erythrocyte Membrane
Protein 1 (PfEMP1) on the surface of the red blood cell wall. PfEMP1 has the
ability to adhere to receptors found on the endothelial cells in various tissues and
causes the sequestration of infected red blood cells that would otherwise have been
cleared from circulation in the spleen. Different PfEMP1 variants are responsible
for the sequestration in different tissues by specific binding to different receptors,
e.g. CD36 in the microvasculature, ICAM-1 in the brain and CSA in the placenta.
PfEMP1 binding to uninfected red blood cells leads to the phenomenon called
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rosetting, in which several healthy red blood cells are bound by an infected cell.
Infected red blood cells also create clumps through platelet binding. It is the
sequestration of the infected red blood cells in the various tissues together with the
clumping of red blood cells that are responsible for the pathogenicity of malaria [8].

1.2 Genome sequence

The full genome sequence of P. falciparum clone 3D7 was published in 2002 [10].
It is being finished and re-annotated at the Wellcome Trust Sanger Institute. The
nuclear genome is 23.3 Mb in size and contain 14 chromosomes. The C+G content
is unusually low, only approximately 19 %.

The sequencing and annotation of several other P. falciparum clones are un-
derway at the Wellcome Trust Sanger Institute and the Broad Institute.
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Chapter 2

Classification and diversity of var
genes

2.1 Introduction

Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is encoded by
the var gene family. The var genes have been classified based on the their upstream
seqeunces in the Plasmodium falciparum clones 3D7, HB3 and IT4 [10–13]. Here,
we extend the previous classification by including four additional P. falciparum
clones (DD2, PFCLIN, RAJ116 and IGH-CR14) and one Plasmodium Reichenowi

clone (PREICH).

This project was a collaboration between Thomas Lavstsen and Thor Grundtvig
Theander from the Centre for Medical Parasitology, Department of International
Health, Immunology and Microbiology, University of Copenhagen; and Thomas
Rask, Anders Gorm Pedersen and myself at the Center for Biological Sequence
Analysis, Department of Systems Biology, Technical University of Denmark.

The project was published as part of a larger project where both the protein
coding sequence and the upstream sequence of the var genes were analyzed (paper
I, appendix A). Thomas Lavstsen and Thomas Rask performed the analysis on the
protein coding sequence and I performed the analysis on the upstream sequences.
Only the analysis of the upstream sequences is described here.

9



10 CHAPTER 2. CLASSIFICATION AND DIVERSITY OF VAR GENES

2.2 Background

The var gene family

PfEMP1, which mediates adhesion of infected red blood cells to the endothelial
cells of the blood vessels, is encoded by the var gene family [14,15]. This is a highly
variable multigene family with ∼60 copies in the 3D7 genome [10]. The majority
of the var genes are clustered in the sub-telomeric regions while the remaining
ones are located centrally in the chromosomes.

The diversity of the var genes is important for immune evasion of the parasite.
Only a single var gene is expressed at a time and transcriptional switching of the
expressed variant enables the parasite to evade the immune response [8].

Based on sequence similarity, the sequences upstream of the var genes can be
divided into upstream (Ups) classes (A, B, C and E). The Ups classes correlate
with the chromosomal location of the var genes as well as the domain organization
of the encoded protein [11, 12]. Subtelomeric UpsA and UpsB genes are oriented
tail to tail while central UpsC genes are oriented head to tail in a tandem repeat
manner [10]. Based on the classification of the upstream sequences, the var genes
has been assigned to group A, B and C and two intermediate groups B/A and
B/C.

Kraemer and co-workers further subdivided the Ups classes into subclasses
(UpsA1–2, UpsB1–4, UpsC1–2 and UpsE) based on clustering of the upstream
sequences in the three P. falciparum clones 3D7, HB3 and IT4 [13].

2.3 Methods

Data set

A data set containing protein coding sequences of 399 var genes in P. falciparum

clones 3D7, HB3, DD2, IT/FCR3, PFCLIN, RAJ116, IGH-CR14 and P. Re-

ichenowi clone PREICH had already been prepared by Thomas Lavstsen and
Thomas Rask. Annotated var genes were retrieved from PlasmoDB, Broad and
Sanger Institute servers. Further var genes were identified by BLAST [16] searches
with 3D7 var sequences against genome contigs retrieved from Broad and Sanger
Institute.

For all var genes with intact N-terminal segments, we extracted up to 2 000
nucleotides upstream of the coding sequence.

Neighbor joining tree

The sequences were aligned with MAFFT (version 6.240) using the L-INS-i al-
gorithm for multiple sequence alignment [17–19]. The neighbor joining tree was
created from the alignment and bootstrapped using Clustalw (version 2.0.9 for
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tree construction and version 1.83 for bootstrapping because version 2.0.9 crashed
during bootstrap) [20, 21].

Markov clustering

Sequences were clustered using the Markov cluster algorithm (version 08-312) [22,
23]. The Markov cluster algorithm is a graph-theoretical clustering method, which
uses an all-against-all pairwise sequence alignment as input, generated with the
blastn algorithm implemented in blastall (version 2.2.18) [16]. The inflation pa-
rameter of the Markov cluster algorithm was varied in steps of 0.2 from 1.2 to 5.0,
and resource scheme 7 (most accurate) was used. A distinct clustering was gener-
ated for each value of the inflation parameter, and all the clusters were summarized
in a consensus clustering. Briefly, each clustering was converted to a multifurcat-
ing tree with a branch representing each cluster. A consensus tree representing
the consensus clustering was then constructed, using the majority rule consensus
method (include all bipartitions with a frequency larger than 0.5) [24], with the ex-
tension that less frequent bipartitions were also included as long as they continued
to resolve the tree and did not contradict more frequent groups.

Trees were rendered and edited using Dendroscope (version 2.3) [25].

Nucleotide diversity

In this analysis, only 1 000 nucleotides upstream of the coding sequence were in-
cluded. Sequences shorter than 1 000 nucleotides were discarded, leaving a total of
293 sequences for the analysis. Global pairwise sequence alignments were obtained
using align [26].

2.4 Results

We created a data set of sequences found upstream of var genes in seven Plas-

modium falciparum clones (3D7, HB3, DD2, IT4/FCR3, PFCLIN, RAJ116, IGH-
CR14) and one Plasmodium Reichenowi clone (PREICH). P. Reichenowi is the
malaria parasite infecting chimpanzees and was thought to be the closest relative
of P. falciparum although recent reports question this [27, 28]. A data set con-
taining protein coding sequences of 399 var genes in these clones had already been
prepared by Thomas Lavstsen and Thomas Rask. Using this data set as a start-
ing point, we extracted up to 2 000 nucleotides upstream of the protein coding
sequence wherever possible. However, as most of these genomes were not fully
assembled and thus only available as contig sequences, it was not always possible
to obtain 2 000 nucleotides. In these cases we extracted as much sequence as pos-
sible. We were able to extract upstream sequences from a total of 360 var genes.
Of these, 229 were 2 000 nucleotides long. The length distribution of the upstream
sequences is shown in figure 2.1.
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Clone Number of sequences
3D7 62
HB3 41
DD2 48
IT4/FCR3 49
PFCLIN 53
RAJ116 37
IGH-CR14 41
PREICH 20
Other 9

Table 2.1. The distribution of sequences over the different Plasmodium clones.
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Figure 2.1. The length distribution of the sequences in the data set.

Clustering of var upstream sequences

We created a bootstrapped neighbor joining tree of the upstream sequences (fig-
ure 2.2 and figure 2.3). Monophyletic groups with a bootstrap support above 0.7
and containing sequences from at least four different P. falciparum clones were
identified and named in accordance with the assignment by Kraemer et al. [13].
These are highlighted with thick red branches in figure 2.2. The assignment by
Kraemer et al. is shown on figure S2O in appendix B.

Some subclasses were further expanded (without bootstrap support) to form
larger monophyletic groups (shown with thick black branches in figure 2.2). UpsA2
and UpsB3 were expanded to include additional sequences annotated to UpsA2
and UpsB3 respectively by Kraemer et al. UpsB2 was expanded to include two
additional sequences where the coding sequence shared the same domain architec-



2.4. RESULTS 13

DD2var18

DD2var49

DD2var28

PFCLINvar40

MAL8P1.220

PFCLINvar11

PFCLINvar53

RAJ116var15

PFL0935c

DD2var39

IT4var44

IT4var25

RAJ116var09

PFA0765c

DD2var21

IT4var13

IT4var63

AAC05220

RAJ116var01

PFL2665c

RAJ116var30

PFA0005w

IGHvar25

IT4var54

HB3var13

RAJ116var29

PFC1120c

HB3var12

IGHvar38

PF10_0001

IGHvar13

IGHvar35

HB3var14

HB3var40

HB3var08

H
B3var16

IG
H
var20

D
D
2var40

IT4var60

IT4var09

H
B
3var1csa

P
FE
1640w

D
D
2var25

IG
H
var11

R
A
J116var02

P
F
C
LIN
var76

IT
4
va
r3
5

A
J4
2
0
4
1
1

IT
4
va
r1
8

P
F
C
LIN
var73

P
F
C
LIN
var4

8

IT
4
va
r2
2

P
F
C
L
IN
va
r6
8

H
B
3
va
r0
5

M
A
L
7
P
1
.1

P
F
D
1
2
3
5
w

P
F
D
0
0
2
0
c

P
F
1
1
_
0
0
0
8

P
F
1
1
_
0
5
2
1

H
B
3
v
a
r0
3

D
D
2
v
a
r3
2

IG
H
v
a
r2
7

H
B
3
v
a
r0
2

H
B
3
v
a
r0
1

IG
H
v
a
r0
9

IG
H
v
a
r2
6

H
B
3
v
a
r0
4

D
D
2
v
a
r0
9
b

P
F
1
3
_
0
0
0
3

IG
H
v
a
r2
3

D
D
2
v
a
r4
2

IT
4
v
a
r0
8

P
F
C
L
IN
v
a
r3
2

IT
4
v
a
r0
3

P
F
0
8
_
0
1
4
1

P
F
C
L
IN
v
a
r6
9

IT
4
v
a
r0
2

P
F
C
L
IN
v
a
r3
3

D
D
2
v
a
r0
3

IT
4
v
a
r6
4

R
A
J
1
1
6
v
a
r1
9

M
A
L
6
P
1
.3
1
4

R
A
J
1
1
6
v
a
r1
7

R
A
J
1
1
6
v
a
r0
5

R
A
J
1
1
6
v
a
r3
8

P
F
A
0
0
1
5
c

IG
H
v
a
r2
4

IG
H
v
a
r3
2 6

0r
a
v
3

B
H

6
1r

a
v
6
1
1
J

A
R

2
1r

a
v

H
GI

2
2r

a
v

H
GI P
F
I1
8
2
0
w

IG
H
v
a
r1
0

IG
H
v
a
r3
0

IG
H
v
a
r1
4

IG
H
v
a
r3
9

D
D
2
v
a
r4
3

P
R
E
IC
H
v
a
r4
3

P
R
E
IC
H
v
a
r2
9

P
R
E
IC
H
v
a
r7
1

A
A
Q
7
3
9
2
9

R
A
J
1
1
6
v
a
r0
7

P
F
C
L
IN
v
a
r4
9

P
F
C
L
IN
v
a
r7
5

P
F
C
L
IN
v
a
r3
4

P
F
C
L
IN
v
a
r6
2

D
D
2
v
a
r2
2

D
D
2
v
a
r0
9
a

A
A
Q
7
3
9
2
8

A
A
Q
7
3
9
2
7

D
Q
4
0
8
1
0
4

P
F
C
L
IN
v
a
r6
3

IT
4
v
a
r0
7

D
D
2
v
a
r5
2

P
F
L
0
0
3
0
c

H
B
3
v
a
r2
c
s
a
B

IG
H
v
a
r4
1

D
D
2
v
a
r0
6

R
A
J
1
1
6
v
a
r2
5

H
B
3
v
a
r2
c
s
a
A

P
F
C
L
IN
va
r3
5

P
F
C
L
IN
va
r7
2

A
A
Q
7
3
9
3
0

P
R
E
IC
H
va
r6
4

IT
4
v
a
r0
4

IT
4
v
a
r4
5

P
F
C
L
IN
va
r4
3

D
D
2
va
r1
6

P
F
L
1
9
5
0
w

H
B
3
va
r2
3

R
A
J1
16
va
r2
6

IG
H
va
r0
4

IT
4
va
r3
9

D
D
2v
ar
1
1

P
FC
LI
N
va
r5
4

P
R
E
IC
H
va
r6
1

P
R
E
IC
H
va
r2
8

P
R
E
IC
H
va
r9
2

PR
EI
C
H
va
r5
5

PR
EI
C
H
va
r5
3

PR
EI
C
H
va
r9
3

R
AJ
11
6v
ar
13

PR
EI
CH
va
r8
5

PR
EI
CH
va
r3
1

PR
EI
CH
va
r8
3

DD
2v
ar
04

PF
D1
00
0c

PF
D0
99
5c

DD
2v
ar
36

PF
07
_0
04
9

PF
CL
IN
va
r56

HB
3v
ar
32

PF
07
_0
05
1

DD
2v
ar1

0

HB
3v
ar2

8

HB
3v
ar2

9

PF
CL
INv

ar4
7

IT4
var

23

RA
J11

6va
r28

IGH
var

16

IGH
var

28

PFD
061

5c

PFD
101

5c

IGH
var0

6

DD2
var2

6

DD2
var0

7

PFCL
INvar

41

DD2v
ar41

HB3v
ar33

PFCLI
Nvar26

RAJ11
6var21

HB3var3
1

DD2var3
8

PF07_0048

HB3var26

PFD0625c

PFD0630c

PFL1960w

DD2var45

HB3var25

PFCLINvar67

PFCLINvar66
IT4var68
PFCLINvar46
PFCLINvar55
IT4var34
IT4var51
IT4var62
IT4var05
PFCLINvar64IT4var66
PFCLINvar60IT4var47MAL6P1.252IGHvar29PFCLINvar07RAJ116var27

HB3var34IGHvar34DD2var12DD2var51PF08_0107
IGHvar36DD2var34

IT4var01
PFCLINvar45

PREICHvar95

PREICHvar90

M
AL7P1.56

DD2var15

HB3var36

IT4var28
PFCLINvar61

RAJ116var35

PREICHvar62

D
D
2var01b

PF07_0050

IG
H
var02

R
A
J116var33

IG
H
var03

D
D
2var01a

P
F
D
0635c

H
B
3var50

R
A
J116var32

D
D
2
va
r3
5

H
B
3var2

4

IT
4
va
r2
7

D
D
2
va
r3
3

IG
H
va
r1
5

P
R
E
IC
H
var67

R
A
J1
1
6
va
r3
6

R
A
J1
1
6
va
r3
7

IT
4
v
a
r5
8

P
R
E
IC
H
va
r5
2

P
R
E
IC
H
va
r3
5

IT
4
v
a
r5
9

H
B
3
v
a
r2
7

P
F
C
L
IN
va
r6
5

P
R
E
IC
H
va
r5
4

M
A
L
6
P
1
.4

R
A
J
1
1
6
v
a
r1
0

P
F
L
0
0
2
0
w

R
A
J
1
1
6
v
a
r1
4

P
F
D
1
0
0
5
c

D
D
2
v
a
r4
4

P
F
C
L
IN
v
a
r4
4

P
F
C
L
IN
v
a
r3
0

P
F
0
8
_
0
1
0
3

H
B
3
v
a
r3
0

R
A
J
1
1
6
v
a
r3
1

IG
H
v
a
r0
7

R
A
J
1
1
6
v
a
r3
9

P
F
C
L
IN
v
a
r7
4

IT
4
v
a
r1
6

R
A
J
1
1
6
v
a
r2
3

M
A
L
6
P
1
.3
1
6

D
D
2
v
a
r4
7

P
F
0
8
_
0
1
4
0

IG
H
v
a
r1
9

IT
4
v
a
r2
0

A
A
B
6
0
2
5
1

R
A
J
1
1
6
v
a
r1
1

P
F
C
L
IN
v
a
r0
4

P
F
C
L
IN
v
a
r2
9

P
F
C
L
IN
v
a
r2
21
3r

a
v

NI
L

C
F

P

4
2r

a
v

NI
L

C
F

P

0
5.

1
P
7
L

A
M

6
0r

a
v
4

TI

0
4r

a
v
4

TI

5
5.

1
P
7
L

A
M

7
0r

a
v
3

B
HP
F
L
1
9
5
5
w

H
B
3
v
a
r1
7

P
F
0
8
_
0
1
0
6

IG
H
v
a
r2
1

H
B
3
v
a
r2
2

D
D
2
v
a
r1
3

IT
4
v
a
r1
5

D
D
2
v
a
r4
6

H
B
3
v
a
r2
1

IG
H
v
a
r0
1

P
F
C
L
IN
v
a
r2
8

IG
H
v
a
r0
5

IT
4
v
a
r2
4

P
F
C
L
IN
v
a
r5
8

IT
4
v
a
r2
6

P
F
C
L
IN
v
a
r2
3

P
F
C
L
IN
v
a
r2
5

P
F
C
L
IN
v
a
r0
8

H
B
3
v
a
r1
8

D
D
2
v
a
r1
9

IT
4
v
a
r1
7

D
D
2
v
a
r2
3

H
B
3
v
a
r1
9

P
F
C
L
IN
v
a
r3
7

IT
4
v
a
r3
2
b

IT
4
v
a
r1
9

M
A
L
7
P
1
.2
1
2

D
D
2
v
a
r3
7

IT
4
v
a
r1
1

P
F
C
L
IN
va
r7
1

IT
4
v
a
r6
1

IG
H
v
a
r3
3

P
F
I0
0
0
5
w

A
A
C
4
7
4
3
8

P
F
D
1
2
4
5
c

IT
4
va
r6
7

IT
4
va
r2
9

IT
4
va
r3
1

R
A
J1
16
va
r1
8

P
F
08
_0
14
2

D
D
2
va
r2
9

IG
H
va
r4
0

P
FC
LI
N
va
r2
7

P
FC
LI
N
va
r3
6

R
A
J1
16
va
r3
4

R
A
J1
16
va
r0
4

P
F1
0_
04
06

IT
4v
ar
33

IG
H
va
r3
7

R
AJ
11
6v
ar
22

IG
H
va
r1
8

D
D
2v
ar
48

HB
3v
ar
47

HB
3v
ar
09

IT
4v
ar
41

HB
3v
ar
48

RA
J1
16
va
r0
6

PF
C0
00
5w

PF
B1
05
5c

DD
2v
ar
30IT

4v
ar
46DD

2v
ar2

0PF
I18

30
c

HB
3v
ar1

0
PF
11
_0
00
7IGH

var
31IGH

var
17MA

L6P
1.1PF0

7_0
139RAJ

116
var2

4PFB
001

0wPFC
LINv

ar52RAJ
116v

ar08
PF13

_000
1PFE0

005w
HB3v

ar20
PFD0

005w
PFCLI

Nvar57
DD2va

r31
PFCLIN

var39
PF13_03

64
PFL0005w
DD2var50

IGHvar08

DD2var24

HB3var11

UpsB1

UpsB7 UpsB2
UpsB6

UpsB5

UpsB3

UpsC2

UpsC1

UpsB4/UpsF

UpsE

UpsA2

UpsA1

UpsA3

0.78 0.74 0.96

0.79

0.91

0.85
0.97

0.970.77

0.78

0.95

Figure 2.2. Neighbor joining tree of the upstream sequences. The assignment of
the sequences to Ups classes is shown. The numbers show the bootstrap support
for the monophyletic groups with red branches. See text for details.
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ture. UpsC1 was expanded to include three sequences that fell between UpsC1 and
UpsC2 but within the larger monophyletic group comprising all UpsC sequences.
The additional sequences included by this expansion were denoted with an asterisk
in the annotation in table C.1 – table C.5 in appendix C.

A large number of sequences did not fall within any of the identified classes.
Some of these clustered with the UpsA sequences and had previously been assigned
to UpsA by Kraemer et al. [13]. The sequences that clustered with the UpsA
sequences and had not been assigned to any other class were assigned to UpsA3.
Similarly, sequences that clustered with the UpsB sequences and had not been
assigned to any other class were assigned to UpsB1.

All the previously suggested subclasses (UpsA1–2, UpsB1–4, UpsC1–2 and
UpsE) were identified, although with some modifications. In addition we identified
four new subclasses (UpsA3 and UpsB5–7). It is worth noting that UpsB4 did not
cluster with the rest of the UpsB sequences.

We also clustered the sequences using the Markov cluster algorithm [22, 23].
The inflation parameter of the Markov cluster algorithm was varied in steps of 0.2
from 1.2 to 5.0. A distinct clustering was generated for each value of the inflation
parameter, and all the clusters were summarized in a consensus clustering, shown
as a tree in figure 2.4. The clusters were assigned to Ups classes in accordance
with the assignment by Kraemer et al. [13]. The assignment by Kraemer et al. is
shown on figure S2N in appendix B.

All the major classes (UpsA, UpsB, UpsC and UpsE) were also identified with
the Markov cluster algorithm but only UpsC was split into supclasses, UpsC1 and
UpsC2, and UpsB4 came out as an independent cluster. Based on the observation
that UpsB4 did not cluster with the other UpsB sequences in the neighbor joining
tree and that it formed its own cluster in the Markov clustering, we suggest that
it is renamed to UpsF.

The two methods agreed on the assignment of most sequences. Hence, we
derived the consensus annotation shown in table C.1 – table C.5 in appendix C.
When the two methods disagreed or they were unable to assign a sequence to any
group, the sequence was annotated as ND in the tables. This was only the case
for 11 of the 360 sequences.

Distribution of Ups classes

Based on the consensus annotation above, we analyzed the distribution of up-
stream sequences to Ups classes in the different genomes (figure 2.5). The relative
distribution between the Ups classes was similar in all the analyzed genomes. The
relative number of UpsC sequences seemed to be a little lower in RAJ116 and IGH-
CR14 but this could be explained by a lacking annotation of var genes in these
two genomes. Only ∼40 var genes had been identified in RAJ116 and IGH-CR14.
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Figure 2.4. Consensus tree of the Markov clustering. The assignment of the
sequences to Ups classes is shown. The numbers show the fraction of Markov
clusters with this group present. See text for details.
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Figure 2.5. The distribution of sequences to UpsA, B, C and E within each of
the Plasmodium clones.

Comparison Identical nucleotides
Within each clone 61 %
Between clones 59 %
Within Ups classes 76 %
Between Ups classes 58 %
Within 3D7 subclasses 83 %

Table 2.2. The nucleotide diversity in the upstream sequences of the var genes.

Nucleotide diversity

The nucleotide diversity of the upstream sequences of the var genes was examined
by making pairwise comparisons of the sequences and counting the number of iden-
tical nucleotides. The average of all the compared sequences was then calculated.
We calculated the diversity within each Plasmodium clone, between the clones,
within each Ups class, between the Ups classes and within the Ups subclasses in
the 3D7 clone (summarized in table 2.2).

The percent identity was ∼60 % both within each clone and between the clones.
This means that we saw as much diversity within the upstream sequences within
each genome as we saw between genomes. As expected, the diversity was lower
within the Ups classes and even lower within the Ups subclasses in 3D7.
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2.5 Discussion

We used neighbor joining and Markov clustering to cluster the upstream sequences
of the var genes and assign them to Ups classes. The two methods yielded con-
gruent results although additional subclusters could be identified in the neighbor
joining tree. All the previously suggested subclasses (UpsA1–2, UpsB1–4, UpsC1–
2 and UpsE) were identified, although with some modifications. In addition we
identified four new subclasses (UpsA3 and UpsB5–7).

UpsB4 did not cluster with the rest of the UpsB sequences in any of the two
methods. Hence, we suggest renaming it to UpsF.

Based on the consensus of the neighbor joining tree and the Markov clus-
tering, we derived a consensus annotation of the upstream sequences. The fact
that Markov clustering agreed with the neighbor joining tree on most sequences
strengthens the support for the major classes and some of the subclasses (UpsC1,
UpsC2 and UpsB4/UpsF).

As previously observed, var2csa genes had UpsE upstream sequences and
var1csa had UpsA2 upstream sequences [11, 12]. Type 3 var genes had UpsA3
upstream sequences. The group of var genes previously classified as group B/A
var genes were assigned to domain casette 8 in paper I (appendix A). These are
marked with black squares on the figure S2N and S2O in appendix B. Many of
these had upstream sequences of the UpsB2 class. The group of var genes previ-
ously classified as group B/C var genes did not have a common type of upstream
sequence.

We saw a similar distribution of sequences between the Ups classes in the dif-
ferent genomes. The small differences that could be observed was probably due
to a lacking identification of var genes in some of the clones. This was most pro-
nounced in RAJ116 and IGH-CR14 where only ∼40 var genes had been identified.
These var genes were identified by BLAST [16] searches with 3D7 var sequences
against genome contigs. Therefore, it is very likely that several var genes had been
missed.

The nucleotide diversity in the upstream sequences revealed that on average
the same amount of diversity was present among the upstream seqeunces of the
var genes within each clone as between the clones. As expected the nucleotide
diversity was lower within the Ups classes and Ups subclasses.



Chapter 3

DNA methylation in malaria

3.1 Introduction

DNA methylation is an epigenetic mark with importance for many aspects of gene
regulation in eukaryotes. Yet, very little is known about DNA methylation in the
malaria parasite Plasmodium falciparum. A couple of studies back in the 1980’ies
were unable to find any evidence of DNA methylation in this parasite [29, 30]
and although one instance of DNA methylation was later observed [31], the phe-
nomenon has not been studied using the tools that are available today. Hence, we
decided to perform a genome-wide analysis of DNA methylation in P. falciparum.

This project is a collaboration between Louise Jørgensen and Anja Tatiana
Ramstedt Jensen from the Centre for Medical Parasitology, Department of Inter-
national Health, Immunology and Microbiology, University of Copenhagen; Kim
Magnussen and Lars H. Hansen from the Department of Microbiology, Institute
of Biology, University of Copenhagen; and Thomas Rask, Anders Gorm Pedersen
and myself at the Center for Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark.

Louise and Anja from the Centre for Medical Parasitology are responsible for
delivering the P. falciparum DNA, and Kim and Lars from the Department of
Microbiology are responsible for bisulfite treatment and sequencing of the DNA.
Our group at the Center for Biological Sequence Analysis are overall responsible
for the project and the data analysis.

Unfortunately, the project has been delayed for several months and we are
still waiting for the DNA to be sequenced. Therefore, I am not able to present
any results on DNA methylation in P. falciparum. Instead, I will present some
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simulations we have done in preparation for the study and describe how to deal
with methylated DNA sequences in high-throughput sequencing.

3.2 Background

DNA methylation

DNA methylation is a feature found in many organisms. It involves the addition
of a methyl group to the pyrimidine ring of cytosine or the purine ring of adenine.
In prokaryotes and some lower eukaryotes both adenine and cytosine residues can
be methylated whereas in higher eukaryotes, only cytosine methylation has been
observed [31, 32]. Although cytosine methylation is conserved in many eukaryotic
groups including plants, animals and fungi, it has been lost from some model
organisms including the budding yeast Saccharomyces cerevisiae and the nematode
worm Caenorhabditis elegans [33].

DNA methylation is an inheritable epigenetic mark that adds an additional
layer of information to that encoded by the four nucleotides of the DNA code.
Yet it is a dynamic feature that can change during the differentiation of cells or
in response to diet and other environmental factors [34]. It is known to be impor-
tant for the correct onset of differentiation, genomic imprinting, X-chromosome
inactivation, silencing of transposons and regulation of gene expression. Estab-
lishment and maintenance of DNA methylation is performed by the DNA methyl-
trasferases [33, 34].

DNA methylation has been known and studied for many years but it is only
after the invention of next-generation high-throughput DNA sequencing technol-
ogy, it has become possible to study the genome-wide methylation patterns at
single-base resolution.

Types of methylation

DNA methylation is typically divided into three types, depending on the context
of the methylated cytosine. These are CG, CHG and CHH where H is either A,
C or T. CHG and CHH methylation is also referred to as non-CG methylation.
Methylation is most frequent in the CG context although it varies between species
and non-CG methylation is relatively more frequent in plants than in animals [34].
Regions enriched in CG (or CpG) dinucleotides are often associated with gene
regulatory regions and are referred to as CpG islands. Methylation of these regions
is usually associated with repression of translation of the downstream gene [35].

In a study of the human methylome, Lister et al. found a relative abundance of
non-CG methylation in the H1 human embryonic stem cell line. Non-CG methy-
lation accounted for almost 25 % of the total amount of methylated cytosines.
While almost all non-CG methylation disappeared upon induced differentiation of
the embryonic stem cells it could be re-established at the same loci in induced
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pluripotent stem cells. Non-CG methylation was not evenly distributed across the
genome but was enriched within the gene bodies of highly expressed genes [36].
Similarly CG-methylation of gene bodies has also been shown to be positively
correlated with gene expression in human cell lines [37].

Malaria parasites and DNA methylation

Very little is known about DNA methylation of the genome of the malaria para-
site. In 1982, Pollack reported a lack of 6-methyladenine and 5-methylcytosine in
high performance liquid chromatography analysis of hydrolyzed Plasmodium fal-

ciparum DNA [29]. They confirmed the lack of 5-methylcytosine by analyzing the
DNA fragments resulting from digestion of genomic P. falciparum DNA with the
restriction enzymes HpaII and MspI. Both enzymes recognize the DNA sequence
CCGG but while MspI is indifferent to the methylation state, HpaII will not cut
when the internal cytosine residue is methylated. By comparing the pattern of
fragments produced by the two enzymes, it is possible to estimate the degree of
methylation at the internal cytosine in the seqeunce CCGG [29].

In 1987, the lack of 5-methylcytosine in the P. falciparum genome was con-
firmed by restriction enzyme analysis of four genes with HpaII and MspI [30].

However, the low C+G content of the plasmodial genome and a general un-
derrepresentation of CpG dinucleotides coupled with low sensitivity of high per-
formance liquid chromatography could explain why previous attempts had failed
to identify any cytosine methylation. Underrepresentation of CpG dinucleotides
is a common feature of vertebrate genomes and has been shown to correlate with
the degree of cytosine methylation. It is speculated to be caused by mutation of
methylcytosine to thymine by deamination [38,39].

In 1991, Pollack examined the methylation status of the plasmodial DHFR-
TS gene using a range of different restriction enzymes. This time he was able to
identify partial cytosine methytlation of a single CpG dinucleotide in the GATCGA
context [31].

Methods to study DNA methylation

Methods to study DNA methylation on a genome-wide scale can be divided into
three types [34]. The first type is based on enrichment of a sample with methy-
lated genomic DNA fragments. This can be achieved through antibody cap-
ture of methylcytosines as in methylated DNA immunoprecipitation (MeDIP)
[40]. The second type is based on digesting a DNA sample with methylation-
sensitive restriction enzymes. The HpaII tiny fragment enrichment by ligation-
mediated PCR (HELP) assay is an example of this approach where the genome
is digested by a methylation-sensitive restriction enzyme and its methylation-
insensitive isoschizomer [41]. Both of these approaches are relatively cheap but
suffer from their limited resolution.
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Only the third type of methods, which is based on high-throughput sequencing
of bisulfite treated DNA, provides genome-wide single-base resolution of DNA
methylation. Two similar approaches, MethylC-seq [36,42] and BS-seq [43], exists.
They both rely on the conversion of unmethylated cytosines to uracil by sodium
bisulfite. After PCR amplification, the uracils have been replaced by thymines and
only cytosines that were originally methylated in the genomic DNA will remain as
cytosines. These can now be detected by deep sequencing.

Available methylomes

In 2008, MethylC-seq and BS-seq were applied to the genome of the flowering
plant Arabidopsis thaliana to generate the first genome-wide single-base resolu-
tion methylomes [42, 43]. A year later, the human methylome had been deter-
mined by MethylC-seq [36] and in 2010, several other eukaryotic methylomes were
publised [33,44,45], so that the methylome is now available at high resolution for
23 eukaryotic organisms (10 animals, 8 plants and 5 fungi).

3.3 Introduction to MethylC-seq

Bisulfite treatment of DNA coupled to Sanger sequencing has been used for several
years to detect the presence of cytosine methylation in DNA. However, with the in-
troduction of next-generation high-throughput DNA sequencing technologies, this
technique can now be applied at the genome level. The MethylC-seq method was
first published by Lister and co-workers in 2008 [42] and with minor modifications
in 2009 [36]. The main points of the experimental procedure of the MethylC-seq
method and processing of next-generation sequencing data are described below.

Experimental procedure

The genomic DNA of interest is purified and a small amount of unmethylated
Lambda DNA is added. The lambda DNA will be used to estimate the rate of cy-
tosine non-conversion and sequencing error. The DNA is then fragmentet to yield
pieces of suitable sizes for sequencing, and the ends are repaired using a mixture
of nucleotides without dCTP to avoid the inclusion of cytosines with unknown
methylation status. The 3’ ends are adenylated to prevent them from ligating to
one another during the adapter ligation reaction. Methylated adapters are then lig-
ated to the ends of the DNA fragments. The adapters are methylated to avoid any
conversion of their sequence during the bisulfite treatment. The ligation products
are purified and size selected before bisulfite treatment. The bisulfite treatment
is repeated to get maximal conversion of unmethylated cytosines to uracils. Next,
the bisulfite treated DNA fragments are amplified by PCR to enrich them for frag-
ments containing adapter sequences at both ends and to replace the uracils with
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thymines. The PCR primers also contain the necessary adapters for sequencing.
The number of PCR cycles are minimized to avoid skewing the representation
of the library. The final product is then purified, validated and quantified. To
generate the appropriate cluster density on the flow cell for sequencing, the DNA
concentration has to be precisely adjusted. The DNA is now ready for sequencing
on the Illumina Genome Analyzer II (Illumina GAII) platform.

Pre-processing of data

When the raw sequence reads are retrieved from the Illumina GAII platform some
pre-processing needs to be done. Usually, the data will be in the form of FASTQ
sequences which contain the read sequence together with quality scores for each
nucleotide. However, the reads might still contain adapter sequences from the
sequencing and it is generally advisable to filter the reads for low quality sequences.

The FASTX Toolkit provided by the Hannon Lab at Cold Spring Harbor Lab-
oratory [46] provides a collection of tools that can be used to pre-process the reads
in a FASTQ file. For example, the fastx clipper script can be used to remove
adapter sequences from the 3’ end of the reads and the fastq quality trimmer will
remove the sequence downstream of the first occurrence of a low quality nucleotide
(including that nucleotide).

During treatment with sodium bisulfite, some genomic cytosines might not
be converted regardless of their methylation state. This is called non-conversion

and can happen if a short stretch of DNA is not denatured as sodium bisulfite
acts on single-stranded DNA. Some studies try to filter reads that result from
non-conversion by eliminating reads that contain three consecutive CHH’s [43].

However, with the recent findings of the relative abundance of non-CG methy-
lation especially in plants [34], such filtering might not be biologically justifiable
and could introduce unwanted biases into the data.

Quality scores

The FASTQ format is a textbased format that contain both the sequence and its
corresponding quality scores. Over time, different quality scores have been used,
but the most common today is the Phred quality score [47,48]. The Phred quality
score of a nucleotide is:

QPhred = −10 log10 pe, (3.1)

where pe is the estimated probability of that nucleotide being wrong. The relation-
ship between Phred quality scores and the estimated error probability is shown in
table 3.1. The quality scores for raw reads are typically in the range 0–40 and are
encoded in ASCII text format. The encoding of quality scores varies with different
platforms and versions but in the Illumina 1.3+ pipeline, each quality score is rep-
resented by the ASCII character having the value of the Phred score + 64. So a
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QPhred pe
10 10−1

20 10−2

30 10−3

40 10−4

Table 3.1. The relationship between Phred quality scores (QPhred) and error
probabilities (pe).

quality score of 0 is encoded by the ASCII character having the value 64 (0 + 64),
which is @. A quality score of 40 is encoded by the ASCII character having the
value 104 (40 + 64), which is h. The complete range of characters, representing
scores from 0–40 is:

@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘abcdefgh

Alignment of reads

When the reads have been preprocessed, they need to be aligned to the reference
genome of the organism they came from. Due to the large number of reads typically
produced by each run of the sequencing machine, traditional alignment algorithms
are too slow for this task. Therefore, special software has been developed that are
optimized for fast alignment of millions of short reads to large genome sequences. A
popular category of programs is based on a Burrows-Wheeler index of the genome
sequence [49].

Bowtie [50] is one such program that has become popular due to its speed and
accuracy. In its default mode, Bowtie defines a seed region containing the first
28 nucleotides of each read. A valid alignment between a read and the genome
is only allowed to have two mismatches in the seed region and the sum of the
quality scores of all mismatches in the entire alignment are not allowed to exceed
70. When this sum is calculated, the quality scores are rounded to the nearest 10
and not allowed to exceed 30.

Due to the bisulfite treatment of the DNA, the alignment of reads in MethylC-
seq is more complex than in ordinary sequencing. Unmethylated cytosines are
converted to thymines on both DNA strands rendering the two strands non-
complementary. Furthermore, the conversion of many cytosines to thymines will
lead to many mismatches between the reads and the genome sequences unless some
transformations are performed in-silico before the alignment. This is illustrated
in figure 3.1.

In figure 3.1A, a short stretch of the original methylated DNA is shown. The
top strand is shown in green and labeled OT (Original Top) and the complementary
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A)              Me
 OT ACTGTAATAGCTCGATA
 OB TGACATTATCGAGCTAT
     Me
 
    Bisulfite treatment

 
B)              Me
 OT AUTGTAATAGUTCGATA
 
 OB TGACATTATUGAGUTAT
     Me
 
    PCR  Alignments:

      Read / Genome

C)      C  T / G  A  CB

 OT ATTGTAATAGTTCGATA  C  T / C  T  T

 CTOT TAACATTATCAAGCTAT  G  A / C  T  CT

      G  A / G  A  B

 
      G  A / G  A  T

 CTOB ACTGTAATAACTCAATA  G  A / C  T  CB

 OB TGACATTATTGAGTTAT  C  T / C  T  B

      C  T / G  A  CT

*

*

*

*

Figure 3.1. The modifications happening to a hypothetical stretch of DNA
sequence during the MethylC-seq protocol. (A) The original doublestranded piece
of DNA with cytosine methylations on both strands. (B) After bisulfite treatment,
the DNA is singlestranded and unmethylated cytosines have been converted to
uracils. (C) After PCR amplification, the uracils have been replaced by thymines
and new complementary strands have been formed. The boxes on the right hand
side of the figure show the possible ways that each sequence can be aligned to
the reference genome. The read and the reference genome have to be converted
as shown (see text for details). OT: original top; OB: original bottom; CTOT:
complementary to original top; CTOB: complementary to original bottom; T: top
strand in genome; B: bottom strand in genome; CT: complementary to top strand
in genome; CB: complementary to bottom strand in genome; *: alignments used
by Bismark (see text for details).
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strand is shown in red and labeled OB (Original Bottom). In figure 3.1B, the same
sequence is shown after bisulfite treatment. Now, the strands are separated and
non-methylated cytosines have been converted to uracils. As a result, the two
strands are no longer complementary. After PCR amplification (figure 3.1C), the
uracils have been replaced by thymines and two new complementary strands have
been generated (shown in dark grey). These are labeled CTOT (Complementary
To Original Top) and CTOB (Complementary To Original Bottom) respectively.
OT and CTOT provides information about methylation on the original top strand
while OB and CTOB carries information about methylation on the original bottom
strand.

Each of the four strands (OT, OB, CTOT, CTOB) can be aligned either to the
top or to the bottom strand of the reference genome. Some transformations of both
the reads and the genome sequence are necessary in order to avoid introducing
mismatches in the alignments as a result of the experimental procedure. The
possible ways to align each sequence is shown on the right hand side of figure 3.1C.
For example, one way to align the OT read (shown in green) is to convert C to
T in the read and C to T in the genome. It is then possible to align the read to
the top strand of the reference genome (indicated by the T). However, it is also
possible to convert C to T in the read and G to A in the genome. The read is then
complementary to the bottom strand of the reference genome (indicated by CB).

A convenient choice is to align all four types of reads (OT, OB, CTOT and
CTOB) to the top strand of the reference genome. Then it is not necessary to com-
pute the reverse complement of the reference genome and the alignment positions
do not need to be mapped from one strand to the other. The four transformations
that correspond to this choice are marked with an asterisk in figure 3.1. As it can
be seen from the figure, this requires that both C to T and G to A converted reads
are made as well as both C to T and G to A converted versions of the top strand of
the genome sequence. It is then necessary to align all four possible combinations
of these as illustrated in figure 3.2.

For a particular read, it is not known which of the four strands (OT, OB,
CTOT or CTOB) it represents. Hence, it is necessary to do all four alignments
for each read in the data set. A particular alignment of a read is only accepted if
it is the unique best alignment. To fulfill that, the alignment has to be the only
valid alignment with a particular number of mismatches. There can be other valid
alignments with more mismatches. But the read is discarded if there is more than
one valid alignment with the minimum number of mismatches.

Bismark [51] is a flexible tool for the analysis of bisulfite treated DNA se-
quences. It implements the strategy outlined above for aligning reads to a refer-
ence genome. It uses Bowtie [50] to perform the actual alignments. After aligning
the reads, Bismark determines the methylation status of all cytosine residues in
the reads.
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Figure 3.2. Alignment matrix, showing how the different combinations between
read sequence and genome sequence corresponds to aligning each of the four pos-
sible strands that results after bisulfite treatment and PCR amplification (see
figure 3.1) to the genome. The in silico conversions made to the read sequence
are shown on the left and the in silico conversions made to the top strand of the
genome sequence are shown on the top. OT: original top; OB: original bottom;
CTOT: complementary to original top; CTOB: complementary to original bottom.

Clonal amplification

When analyzing a large number of reads, some genomic positions will be covered
by several independent reads, that originate from different parent cells. This can
be used to estimate the fraction of cells that had its DNA mehtylated at a given
position. It can happen, however, that several reads are obtained from a single cell
because of clonal amplification during the PCR reaction. This will put too much
weight on the clonal fragments in the estimation of the methylation frequency.

Clonal reads will share the same start position and Charles Berry found that
in a sample of 10,000 randomly sampled positions in a MethylC-seq data set, more
reads shared the start position than would be expected, if it only happened by
chance. He analyzed the effect of the clonal reads on the variance of the estimated
fraction of methylated cells, and found that the optimal solution was to keep only
one random read when two or more reads shared the same start position [42, see
supplementary material].

Post-processing of data

The first step in post-processing of the data is to remove the clonal reads and only
keep one random read where two or more reads share the same start position. This
can be done using the script deduplicate bismark alignment output.pl which is part
of the Bismark package.
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Then aligned reads containing too many mismatches should be removed or
trimmed. Since the alignment procedure only limits the number of mismatches in
the seed region, a read can contain several mismatches in the entire alignment as
long as the sum of quality scores is below the limit. One strategy is to trim reads
containing more than three mismatches relative to the reference just before the
fourth mismatch [36]. Another strategy is to truncate reads at the point where
the next four nucleotides contain two or more mismatches [42].

Now, the aligned reads have to be compared to the reference sequence to de-
termine the original nucleotide at each position in the reads. In addition, the
methylation status of the cytosines has to be determined. This can be done using
the methylation extractor script, which is part of the Bismark package.

Identification of methylated cytosines

In order to determine the methylation status of each cytosine in the reference
genome, it is necessary to sum up the information provided by the reads overlap-
ping with this reference position. The fraction of reads with a methylated cytosine
at a given position is an estimate of the fraction of cells that had this cytosine
methylated in their genome. But due to sequencing error and non-conversion of
cytosines during bisulfite treatment, some reference cytosines might erroneously
appear to be methylated. Hence, it is necessary to test if the observed number
of methylated cytosines at each site is significant or not. This can be done using
the binomial distribution as described below. Since this test is performed at each
site in the genome, it is also necessary to control for multiple testing. One way
of dealing with multiple testing is to control the false discovery rate of methy-
lated cytosines. This can be done by the classical Benjamini-Hochberg procedure
for control of false discovery rate [52] or by an alternative approach published by
Lister and co-workers [36, personal communication].

In the method by Lister and co-workers, a binomial distribution is used to
calculate the probability of erroneously detecting k methylated cytosines at an
unmethylated position in the genome if the read coverage at that position is n and
the error rate is p:

f(k;n, p) =

�
n

k

�
pk(1− p)n−k (3.2)

The error rate, p, is determined from the frequency of sequenced cytosines in
reference cytosine positions in the unmethylated Lambda DNA that is added to
the genomic P. falciparum DNA before fragmentation. Since the Lambda DNA is
unmethylated, no cytosines should be left after bisulfite treatment. The frequency
of sequenced cytosines in the Lambda DNA is therefore an estimate of the error
due to sequencing error and non-conversion of cytosines.
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In order to keep the false discovery rate below, say 1 %, the probability f(k;n, p)
has to be less than the value M where:

M × nuC < 0.01× nmC . (3.3)

nuC is the number of unmethylated cytosines and nmC is the number of methylated
cytosines in the entire genome. In other words, the probability of erroneously
classifying an unmethylated cytosine as methylated multiplied by the number of
unmethylated cytosines in the genome has to be less than one percent of the
number of methylated cytosines in order to keep the false discovery rate below one
percent.

Since the numbers of methylated and unmethylated cytosines are not known
in advance, M has to be determined iteratively using the formula:

M = 0.01
nmC

nuC

(3.4)

In the first iteration, all reference cytosines where at least one methylated cyto-
sine has been sequenced are counted as methylated and the remaining reference
cytosines are counted as unmethylated. These values of nuC and nmC are used to
calculate M . In the second iteration, for every reference cytosine, f(k;n, p) is now
compared to the value of M to determine if this cytosine is methylated or not. If
f(k;n, p) < M , it is methylated. This yields new values of nuC and nmC , which
in turn are used to update M . This procedure is iterated until M converges to a
stable value and the final methylation calls can be made.

Consider the following hypothetical but realistic example where the error rate,
p, has been determined to be 0.005 and the value M has converged to the value
0.00043 after a number of iterations. The probability, f(k;n, p), for different combi-
nations of read deapth, n, and number methylated cytosines, k, at a given position
in the genome is shown in table 3.2.

From table 3.2 we see that if a reference cytosine is only covered by a single
read, i.e. the read depth, n, is equal to 1, we will never be able to call it as
methylated because the probability that this has happened by error is too large
(0.005). It has to be less than M , which in this example is 0.00043, in order to
be called as methylated. If the read depth is 2 and both reads are methylated at
that position, it will be called as methylated. If the read depth is 20, it requires 3
methylated reads to call it as methylated and if the read depth is 30, it requires 4
methylated reads.

3.4 Methods

Genome sequence

The complete sequence of the Plasmodium falciparum genome was downloaded
from PlasmoDB version 7.1 (genome version date 2010-06-01) [53]. The complete
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n k f(k;n, p)
1 1 0.0050
2 1 0.010
2 2 0.000025
3 1 0.015
3 2 0.000075
3 3 0.00000013
4 1 0.020
4 2 0.00015
4 3 0.00000050
20 1 0.091
20 2 0.0043
20 3 0.00013
30 1 0.13
30 2 0.0095
30 3 0.00044
30 4 0.000015

Table 3.2. The table shows the binomial probability (f(k;n, p)) of erroneously
observing k methylated cytosines out of n trials (read depth) if the error rate p is
0.005.

P. falciparum genome was publised in 2002 [10] and is being finished and system-
atically re-annotated by the Wellcome Trust Sanger Institute.

Simulated reads

To simulate the reads, we created an in silico bisulfite treated P. falciparum

genome. First, the reverse complement of the genome was created, because the
bisulfite treatment will render the two DNA strands different. Methylation was
introduced at a random rate to the cytosines on both strands but at different rates
in the different sequence contexts. In the CG context the simulated methylation
rate was 0.25, in the CHG context it was 0.10 and in the CHH context it was
0.02. These rates are similar to those found in Arabidopsis thaliana [43]. All non-
methylated cytosines were then converted to thymines to mimic the action of the
bisulfite treatment.

Short reads of either 35 nt or 75 nt were then sampled randomly from the
genome. In order to sample evenly from the entire genome, all chromosomes were
concatenated but with a marker separating the genomes. Reads were then sampled
at a uniform rate across the entire genome while discarding any reads containing
the chromosome separation marker.
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Errors were introduced in the sampled reads to mimic the sequencing error.
The sequencing error from the Illumina GAII platform is typically reported to
be in the order of 1–2 % but it varies a lot between experiments. The quality is
typically best in the 5’ end of the reads and decreases towards the 3’ end of the
reads. During pre-processing, the low quality part of the read will be removed so
the part that is used in the alignment will have a lower error rate than the one
reported here. It is very difficult to predict how the quality of the reads will be
in the final experiment and how it will be distributed in the read, so in order to
make things a little easier in the simulation, we decided to discard 30 % of the
reads and use an error rate of 0.002 in the remaining reads.

Discarding 30 % of the reads also accounts for the reads that will be filtered
out due to clonal amplification. A fraction of reads will still be filtered out because
they share the same start position as part of the post-processing of reads. They
share a common start position for random reasons but when the real experiment
is conducted, it is not possible to distinguish these from the truly clonal reads.

We are planning to run a single lane on the Illumina GAII sequencing machine
as a first trial. This generates around 40 000 000 reads. Discarding 30 % of these
corresponds to obtaining 28 000 000 useful reads.

Aligning and post-processing reads

Reads were aligned to the reference genome of P. falciparum using both Bowtie [50]
and Bismark [51]. Bismark is particularly suited for the analysis of bisulfite treated
DNA. It uses Bowtie to perform the alignements and then extracts information
about methylation status of the individual reads.

When Bowtie was used to align the reads, it was run in the default alignment
mode allowing 2 mismatches in the seed region, which was the first 28 nucleotides
of the read. The total sum of quality values of all mismatched positions were not
allowed to exceed 70. Quality values were rounded to the nearest 10 and saturated
at 30. Bowtie was run with the -m 1 and –all options which means that all valid
alignments were returned for a given read but only if there was only one valid
alignment to return. This way, only unique alignments were reported. Quality
scores of the Illumina 1.3+ pipeline were selected with the –solexa1.3-quals option,
and –chunkmbs 256 were set to assign enough memory to allow Bowtie to find all
valid alignments for each read.

Bismark was run with default options except for the options passed on to
Bowtie. The alignment options were either the default options as explained above,
the seed region was extended to 40 nucleotides with the -l 40 option, or the seed
region was extended to 40 nucleotides and only one mismatch was allowed with -l
40 -n 1. The –solexa1.3-quals and –chunkmbs 256 options were also set.

Clonal reads were removed after running Bismark using the script dedupli-
cate bismark alignment output.pl and methylation status was extracted using the
script methylation extractor. Both scripts were part of the Bismark package.
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Custom scripts were used to count the clonal reads after aligning with Bowtie
alone.

MethylC-seq library generation

Based on the work by Lister and co-workers [36,42] and Illuminas standard proto-
col for library generation for Illumina GAII (Paired-End sample preparation kit),
we deduced our own protocol for MethylC-seq library generation. Our protocol is
outlined below, paying special attention to the steps that deviates from the stan-
dard Illumina protocol. Illuminas protocol for paired-end analysis was used as a
starting point because Illumina only provided methylated adaptors for paired-end
sequencing. The generated libraries can be used for either single-end sequencing
(use Standard Cluster Generation Kit) or paired-end sequencing (use Paired-End
Cluster Generation Kit).

Protocol for MethylC-seq library generation

1. Prepare DNA
Purify 5 µg genomic DNA and add 25 ng unmethylated c1857 Sam7 Lambda
DNA (Promega).

2. Fragment the DNA
Fragment the DNA using sonication (with Bioruptor) to yield fragments
around 100–150 bp. These fragments will be appropriate for single-end se-
quencing of 75 bp. If the library is going to be used for paired-end sequencing,
the length of the fragments should be adjusted accordingly.

3. Perform end-repair
Convert heterogeneous ends to blunt ends using the T4 DNA polymerase and
Klenow enzyme provided by Illumina. Phosphorylate the 5’ ends of the DNA
by adding T4 PNK (Illumina). Use an alternative dNTP mixture lacking
dCTP to avoid insertion of cytosines with unknown methylation status.

4. Adenylate 3-ends
Adenylate the 3’ ends of the blunt-ended DNA fragmetns using reagents from
Illumina.

5. Ligate adapters
Ligate methylated adapters from Illumina (ME-100-0010) to the DNA frag-
ments containing a 3’ A overhang.

6. Purify and size select ligation products
Purify the ligation products by gel electrophoresis and band excision to re-
moved unligated adapters and adapter dimers. The excised band should be
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around 200–250 bp for single-end sequencing of 75 bp (each adapter is 60
bp).

7. Bisulfite conversion of DNA
Perform bisulfite treatment of the purified ligation product using the Qiagen
EpiTect Bisulfite Kit. The bisulfite treatment should be performed twice to
achieve the highest possible cytosine to uracil conversion rate.

8. Amplification of bisulfite converted DNA
Enrich the bisulfite converted DNA by PCR amplification. Use the uracil-
insensitive PfuTurbo Cx Hotstart DNA polymerase (Agilent Technologies)
because it is insensitive to the uracils. As a result the uracils will be replaced
by thymines after the PCR amplification. Use PCR primers from Illumina
containing the adapters required for cluster generation in the flow cell. PCR
reaction mixture:

• 2.5 U uracil-insensitive PfuTurbo Cx Hotstart DNA polymerase

• 5 µL 10X PfuTurbo reaction buffer

• 25 µM dNTPs

• 1 µL PCR Primer PE 1.0

• 1 µL PCR Primer PE 2.0

• Adjust the final volume to 50 µL

Run the PCR reaction for 10–12 cycles. The number of cycles might have
to be adjusted to get enough DNA for sequencing but should be kept as low
as possible to avoid clonal amplification.

9. Purify the PCR product
Purify the PCR product by gel electrophoresis and band excision.

10. Validate the DNA library
Check the size distribution of the DNA library, either by gel electrophoresis
or by the Agilent Bioanalyzer.

11. Library quantitation
Measure the final DNA concentration.

3.5 Results

Before sequencing the bisulfite treated genome of Plasmodium falciparum, we sim-
ulated the experiment. The simulated data gave us some indication of what results
we could expect and guided the decision of which sequencing strategy to use.
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35 nt reads 75 nt reads
Total reads 28 000 000 28 000 000
Not aligned 67 285 438 040
Not unique 8 107 061 2 212 856
Uniquely aligned reads 19 825 654 25 349 104
Clonal reads 13 063 937 8 898 166
Unique and non-clonal 6 761 717 16 450 938
Coverage per strand (X) 5.1 26.5

Table 3.3. The influence of read length on alignment results.

Simulated reads

We created an in silico bisulfite treated genome with a simulated methylation rate
of 0.25 in the CG context, 0,10 in the CHG context and 0.02 in the CHH context.
These rates are similar to those found in Arabidopsis thaliana [43]. Short reads
were sampled randomly from the genome and sequencing errors were introduced
at a rate of 0.002 in the reads. We generated 28 000 000 reads corresponding to
70 % of the reads obtained from running a single lane on the the Illumina GAII
sequencing machine (see methods, section 3.4, for details).

Read length

To study the effect of read length, we sampled reads of 35 and 75 nucleotides. We
used Bowtie to align the reads to both strands of a genome where all cytosines
were converted to thymines. Reads were only accepted if they had a unique valid
alignment. The result is shown in table 3.3. When using reads of 35 nt, only
67 285 could not be aligned compared to 438 040 when using 75 nt reads. However,
8 107 061 reads of 35 nt had more than one valid alignment in the genome and were
discarded compared to only 2 212 856 reads of 75 nt. As a result much more 75 nt
reads than 35 nt reads were successfully aligned to a unique position in the genome
(25 349 104 versus 19 825 654 reads). In addition, the 35 nt reads produced much
more apparently clonal reads compared to the 75 nt reads. In total 6 761 717 reads
of 35 nt and 16 450 938 reads of 75 nt were useful resulting in a per strand coverage
of 5.1 X and 26.5 X respectively.

Conversion of cytosines

In the previous paragraph, reads were aligned to a genome where cytosines were
converted to thymines. The purpose was to avoid too many mismatches between
the genome and the reads because all non-methylated cytosines had been converted
to thymines in the reads. However, mismatches still occurred at the methylated
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35 nt reads 75 nt reads
Total reads 28 000 000 28 000 000
Not aligned 7 723 17 916
Not unique 8 291 331 2 372 224
Uniquely aligned reads 19 700 946 25 609 860
Clonal reads 13 169 203 8 741 333
Unique and non-clonal 6 531 743 16 868 527
Coverage per strand (X) 4.9 27.1

Table 3.4. The effect of converting cytosines to thymines in the reads.

cytosines because they were not converted in the reads. This could create a bias
against heavily methylated regions. To avoid this, we also converted cytosines
to thymines in the reads before aligning them against both strands of a cytosine
to thymine converted reference genome. The result is shown in table 3.4. The
conversion increased the number of reads that could be aligned. Only 17 916 reads
of 75 nt could not be aligned compared to 438 040 in table 3.3. However, as the
conversion also decreased the information content of the reads, the number of reads
that did not align to a unique position in the genome increased. The outcome was
a slight decrease in coverage for the 35 nt reads but a slight increase in coverage
for the 75 nt reads.

Paired-end reads

The reads analyzes so far were single-end reads, where only a single stretch of
DNA was sequenced in each read. Another sequencing technique involves paired-
end reads, where a read is sequenced from both ends. The two ends that are being
sequenced will usually be on opposite strands and are separated by a stretch of
DNA called the linker. The advantage of using this technique is a higher coverage
as the number of sequenced nucleotides is doubled but also the ability to reach into
genome areas that are otherwise hard to sequence. Repeats are an example of such
an area, where it can be difficult to align the reads because there are several possible
valid alignments for each read. If one end of a paired-end read can be aligned to
a unique position and the length of the linker is known, then the position of the
other end of the read can also be determined with high reliability. We simulated
the alignment of paired end reads where the length of the linker was normally
distributed with a mean length of 400 nucleotides and a standard deviation of 5.
The paired-end reads were aligned against both strands of a cytosines to thymine
converted genome. The result is shown in table 3.5.

As expected, the coverage was much higher for both 35 nt reads and 75 nt
reads when using paired-end reads. This was not only because each read contained
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35 nt reads 75 nt reads
Total reads 28 000 000 28 000 000
Not aligned 1 076 166 1 176 492
Not unique 2 081 323 866 317
Uniquely aligned reads 24 842 511 25 957 191
Clonal reads 443 272 428 222
Unique and non-clonal 24 399 239 25 528 969
Coverage per strand (X) 36.7 82.2

Table 3.5. The effect of paired-end reads.

the double amount of information but also because more reads could be uniquely
aligned and the number of clonal reads decreased drastically (since both ends had
to be identical before it was regarded as clonal).

The cost of sequencing increases with the length of the reads and the number of
lanes to be used on the flow cell. One flow cell contains 8 lanes but the simulations
were based on using a single lane as this is cheaper than using an entire flow cell.
From the simulations it seems that we can get adequate coverage by using single-
end sequencing with a read length of 75 nt. This gives around 27 X coverage per
strand in the simulations. This will be adequate to allow us to determine the
methylation frequency at each methylated cytosine in the genome with reasonable
accuracy.

Aligning with Bismark

To simulate alignment and extraction of information about methylated residues
we used Bismark to align the reads against the genome of Plasmodium falciparum.
Only 75 nt reads were aligned. As described in details in section 3.3, Bismark used
Bowtie to align the reads against the genome. The result is shown in table 3.6.
When using Bismark, we were able to align more reads than we were with Bowtie,
because Bismark only required that a read had a unique best alignment whereas
with Bowtie, we only accepted reads that were fully unique.

Bismark was run with different options for the seed length and the number of
allowed mismatches in the seed. The results of using the different options did not
differ much in terms of the final coverage obtained but the running time decreased
markedly, from more than 63 hours with the default options to less than 7 hours
with the more stringent option of only allowing one mismatch in a 40 nucleotide
seed region.
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Default Faster Fastest
Bowtie options
- mismatches in seed 2 2 1
- length of seed 28 40 40
Total reads 28 000 000 28 000 000 28 000 000
Not aligned 13 888 13 198 65 337
Not unique 1 407 406 1 407 431 1 404 723
Uniquely aligned reads 26 578 706 26 579 371 26 529 940
Clonal reads 6 598 283 6 605 058 6 582 658
Unique and non-clonal 19 980 423 19 974 313 19 947 282
Coverage per strand (X) 32.2 32.1 32.1
OT and OB reads 26 564 194 26 564 901 26 515 025
CTOT and CTOB reads 14 512 14 470 14 915
Error 1.09× 10−3 1.09× 10−3 1.12× 10−3

Running time 63 h 47 min 29 h 58 min 6 h 34 min

Table 3.6. Aligning the reads with Bismark.

Estimating the alignment error

The simulated reads were only sampled from the original top (OT) and original
bottom (OB) strands (see figure 3.1). When performing the alignment, Bismark
classified the successfully aligned reads as belonging to one of the four possible
strands: OT, OB, CTOT and CTOB (see figure 3.1). Since the reads were only
sampled from the OT and OB strands, the number of reads reported to the CTOT
and CTOB strands could be used to estimate the amount of erroneous alignments.
Assuming that the same number of errors were made among the OT and OB
strands as among the CTOT and CTOB strands, the total number of errors was
calculated as twice the number of reads reported to align to the CTOT and CTOB
strands. The error rate was consistently around 10−3 (table 3.6).

Methylation status

Bismark also provided information about the methylation status of the cytosines
in the reads. In all the alignments performed, the methylation frequency in the
CG context in the reads were 0.251. In the CHG context it were 0.100 and in the
CHH context it were 0.021. These methylation frequencies are equal to those used
to simulate methylation in the reads.
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3.6 Discussion

We simulated reads generated by high-throughput sequencing of a bisulfite con-
verted Plasmodium falciparum genome that we imagined were methylated. Both
single-end and paired-end reads of 35 and 75 nt were generated. The reads were
aligned to the reference genome of P. falciparum.

The best coverage was obtained with paired-end reads of 75 nt when the reads
were aligned with Bowtie. But since reasonable coverage (27X per strand) was
also obtained with single-end reads of 75 nt and these are cheaper than paired-end
reads, we have decided to use single-end reads of 75 nt in the real experiments.

When single-end reads of 75 nt were aligned to the reference genome using
Bismark, a slightly higher coverage (32X per strand) were achieved because of small
differences in the alignment strategy. The alignment error rate was determined to
be in the order of 10−3.

The running time of Bismark differed markedly between the default mode (64
hours) and the more stringent alignment mode where fever mismatches were al-
lowed (7 hours). Despite this difference in running time, the performance in terms
of achieved coverage did not differ much. Therefore, the more stringent mode is
probably to be preferred in most cases, because it allows fewer mismatches in the
alignments in addition to being almost 10 times faster than the default mode. If it
is a problem to get enough coverage or if certain areas are hard to align, one can
consider trying the less stringent modes.

Reads were only sampled from the OT and OB strands during the simulation.
When reads of all four types (OT, OB, CTOT and CTOB) are generated, it will
most likely have the effect that fewer reads appear to be clonal due to random
sharing of the start position. This is because the reads are now distributed over
four types and not just two types. This will result in a higher coverage as less
reads are discarded.

It will be exciting to see what the study of DNA methylation in P. falciparum

can teach us about this parasite. Due to its complex life cycle, extensive gene
regulation is likely to take place and epigenetic factors such as DNA methylation
could play an important role in this.



Chapter 4

Novel drug targets in malaria

parasites

4.1 Introduction

Several drugs for treating malaria are already on the market and have been for
many years. Chloroquine was the first drug that was used systematically to com-
bat malaria, but it is virtually useless today due to the spread of drug-resistant
parasites. Other common drugs include sulfadoxine-pyrimethamine, mefloquine,
amodiaquine and quinine but they are all loosing their efficacy as a result of re-
sistant parasites appearing and spreading around the world [54]. The most ef-
fective drugs available today are artemisinin and its derivatives (artesunate and
artemether), which are used in combination therapies as the preferred first-line
treatment for all falciparum malaria in malaria endemic countries [55]. However,
recent reports from western Cambodia of artemisinin resistant Plasmodium falci-

parum parasites highlights the need for new alternatives in the ongoing struggle
to combat this deadly parasite [56, 57].

Recently, the ApiAP2 family of putative transcription factors in Plasmodium

falciparum and other apicomplexan species were discovered. It did not escape
our attention that these regulatory proteins could potentially act as drug targets
for new antimalarials [58]. When the crystal structure of one of these proteins,
PF14 0633, became available, we initiated a project with the aim of testing this
protein as a drug target.

The project was done in collaboration with Kasper Jensen, Irene Kouskoum-
vekaki and Gianni Panagiotou from the Computational Chemical Biology group

39
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at the Center for Biological Sequence Analysis, Department of Systems Biology,
Technical University of Denmark; Manuel Llinas and Erandi K De Silva at the De-
partment of Molecular Biology and the Lewis-Sigler Institute for Integrative Ge-
nomics, Princeton University; and Thomas Lavstsen and Thor Grundtvig Thean-
der from the Centre for Medical Parasitology, Department of International Health,
Immunology and Microbiology, University of Copenhagen.

Kasper Jensen performed the in silico molecular docking experiments at the
Technical University of Denmark and the in vitro binding assays were performed
by Manuel Llinas and Erandi K De Silva at Princeton University.

4.2 Background

The ApiAP2 family

The Apicomplexan Apetala2 (ApiAP2) family of putative transcription factors
were discovered in 2005 by Balaji and co-workers [59]. Until then, only one other
transcription factor had been identified in Plasmodium falciparum, PfMyb1 [60],
and comparative genomics studies had failed to reveal any specific transcription
factors with DNA binding domains similar to those known from other eukaryotic
species [59].

The ApiAP2 proteins are found in all apicomplexan species studied to date and
contain one or more Apetala2 (AP2) domains [59,61]. This domain is known from
plant transcription factors, e.g. the AP2/ERF DNA-binding proteins, which com-
prises the second largest group of transcription factors in Arabidopsis thaliana [62].

In P. falciparum 26 ApiAP2 proteins have been identified and 22 of them were
shown to be expressed in specific developmental stages duing the intraerythrocytic
developmental cycle, suggesting that they could be involved in the regulation of
stage-specific gene expression [59].

PF14 0633

The X-ray crystal structure of the AP2 domain in the plasmodial ApiAP2 protein
PF14 0633 revealed that the AP2 domain contains three anti-parallel beta sheets
supported by an alpha helix. DNA binding requires the formation of AP2 dimers
in which the alpha helices of the two domains swap place to support the beta sheets
of the other subunit (see figure 4.1). The beta sheets of the AP2 domains wrap
into the major groove of the DNA double-helix and contain all the residues that
are in contact with the bound DNA. These residues are Asn-72, Arg-74, Arg-88
and Ser-90 [63].

Using protein-binding microarrays, De Silva and co-workers showed that PF14 0633
binds the consensus DNA sequence TGCATGCA, with the core CATGC being
most important [61]. Gene Ontology analysis showed that genes containing at
least one instance of the binding site are most enriched for ”cytoadherence to the
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Figure 4.1. Two PF14 0633 AP2 domains (blue and red) in complex with double-
stranded DNA (green). The AP2 domains are forming a dimer, which is stabilized
by a disulfide bond (yellow) between Cys-76 of the two subunits.

microvasculature”. Among the possible target genes were members of the UpsB
and UpsC var gene subfamilies. Furthermore, the consensus sequence CATGCA
was found to correspond to the SPE1 site, shown to be associated with subtelom-
eric UpsB promoters [64]. The expression of a nuclear factor binding to the SPE1
site was shown to correlate with the expression of subtelomeric var genes. In ad-
dition, the PF14 0633 binding motif was highly similar to a motif associated with
genes whose expression peaked within a short window of the intraerythrocytic
development cycle [65]. These data suggest that PF14 0633 are involved in the
regulation of var gene expression. The PF14 0633 binding motif was also found
upstream of another ApiAP2 protein, PFF0200c, suggesting a regulatory cascade
of ApiAP2 transcription factors [61].
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4.3 Methods

Protein-protein interaction network

Protein-protein interactions from the large scale yeast two-hybrid study by La
Count and co-workers were downloaded from the publishers website [66]. Custom
scripts were used to query the interactions.

Molecular docking

The crystal structure of PF14 0633 with PDB ID: 3IGM were retrieved from the
Protein Data Bank [67]. The Tres Cantos data set was downloaded from the pub-
lishers website [68] and the DrugBank data set was downloaded from the DrugBank
version 2.5 [69].

Molecular docking was performed using AutoDock with the lamarckian genetic
algorithm used as the search algorithm [70]. All compounds were initially docked
with a maximum of 25 000 energy evaluations and 20 repeats. The 1 000 best hits
in each data set were docked again using a maximum of 250 000 energy evaluations
and 100 repeats.

Gel-shift assays

Gel-shift assays were performed using the LightShift Chemiluminescent EMSA kit
(Pierce). Briefly, 100 ng puried protein was incubated with varying concentrations
of compound inhibitor in 1X binding buffer at room temperature for 10 minutes.
10 fmol of biotinylated probe was then added along with 50 ng poly(dI-dC), 5
mM MgCl2, 1 mM EDTA, 50 mM KCl in binding buffer. Reactions were incu-
bated at room temperature for a further 20 minutes before being separated on 6
% non-denaturing acrylamide gels run in 0.5X TBE. Probes were transferred to
Hybond nylon membrane and visualized using the Chemiluminescent Nucleic Acid
Detection Module (Pierce) according to the manufacturers instructions.

4.4 Results

Protein-protein interaction network of PF14 0633

Except for an AT-hook in PF14 0633, the ApiAP2 proteins in P. falciparum have
not been found to contain any other known functional domains from the Pfam
repository [61]. This has lead to the speculation that they exert their functions
through protein-protein interactions.

To investigate this we created a protein-protein interaction network for PF14 0633
(figure 4.2). We used data from a yeast two-hybrid study, which is the only large
scale study of protein-protein interactions in P. falciparum [66].
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Figure 4.2. Protein-protein interaction network of PF14 0633.

The network was very small and contained only two interaction partners for
PF14 0633. One of them, PF11 0313, were the 60S ribosomal protein P0, thought
to be part of the large ribosomal subunit [71].

The other, PF14 0344, were the translocon component PTEX150. This pro-
tein is part of the Plasmodium falciparum translocon of exported proteins (PTEX),
which is located in the vacuole membrane and mediates export of proteins con-
taining the PEXEL motif [72].

The same two interaction partners were found when querying the STRING
database [73] and the MINT database [74].

We could not immediately draw any conclusion about the function of PF14 0633
based on these two interaction partners. It is possible that they are false positives
but the interactions could also have functions we do not yet understand.

Molecular docking of small compounds to PF14 0633

In 2010, a large scale study of antimalarial activity of nearly two million com-
pounds in GlaxoSmithKline’s chemical library were published. Of the 1 986 056
compounds tested, 13 533 inhibited P. falciparum growth by at least 80 % at 2
µM concentration [68]. The chemical structure of the 13 533 compounds, also
referred to as the Tres Cantos data set, were made publicly available.

DrugBank is a publicly available database of drug and drug target informa-
tion [69]. Although the majority of drugs in DrugBank are not known to have
antimalarial activity, it might well be that some of them have. If an already ap-
proved drug can be used to target malaria, a lot of developmental costs will be
saved because the drug has already been extensively tested.

The 13 533 compounds in the Tres Cantos data set and 4 603 compounds from
DrugBank were docked to PF14 0633 using AutoDock. The resulting free energy
of binding of each compound is shown in figure 4.3 and figure 4.4. The sense strand
of the DNA sequence known to bind PF14 0633 were used as a positive control of
docking, and the free energy of binding was plotted as a function of the distance
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Figure 21: The free energy of binding of the GSK compounds, as a function of the
distance from the binding location of the PF14_0633 binding sequence. The
peak at the distance 5 - 10 Å indicates that a binding pocket exists close to
the location of sense-strand binding.

3.3.2 Compounds with a High Binding Score

The goal here was to identify GSK compounds likely to bind in a pocket close to the
location of the sense strand binding. The free energy of binding was plotted as a func-
tion of the distance to the location of the sense-strand binding. The plot is shown in
figure 21. The plot indicates that several compounds binds strongly at a location close
to the location of the sense-strand PF14_0633 sequence binding. This is seen by the
peaks at the distance 5 - 10 Å and provides a strong indication that a binding pocket
exists close to the position of the PF14_0633 sequence binding.
Subsequently we identified the best docking hits based on a combination of location
of binding and the free energy, by evaluating the docking conformations based on dis-
tance to the location of the sense-strand binding and the free energy. The evaluation is
shown in table 4.
The compound TCMDC-125441, which is the one target that binds the strongest to

the protein, binds at the intersection of the α- and β -chain as shown in figure 22. The
free energy of binding is−10.51 kcal/mol. The compound does not directly block any
of the residues involved in DNA binding, however, it seems to fit in the pocket found
in the chain-intersection. The pocket at the chain-intersection is known to be critical
for DNA binding[43].
The compound TCMDC-124220 is found to bind the pocket at the chain-intersection
of the α- and β -chain. The binding is shown in figure 3.3.2. This compound binds
with a free energy of −9.26 kcal/mol.

35

Figure 4.3. The free energy of binding of Tres Cantos compounds to PF14 0633.

to the geometric center of the bound DNA. The energy plots show that several
compounds bound strongly within a distance of 5–10 Å from the positive control.
The peak in free energy at this distance suggests that a binding pocket might exist
within 5–10 Å of the DNA binding site.

Figure 4.5 shows the result of docking TCMDC-124220 from the Tres Cantos
data set to PF14 0633. The figure reveals a binding pocket at the interface between
the two ApiAP2 domains. Furthermore, it can be seen that TCMDC-124220
extends out of the binding pocket and possibly interferes with the residues Asn-72
and Arg-74 of one of the ApiAP2 domains. Both of these residues are involved
in DNA binding and TCMDC-124220 could be interfering with the DNA-binding
capabilities of PF14 0633.

We were interested in identifying compounds that could interfere with the DNA
binding ability of PF14 0633. Hence, we selected the best binders within a short
distance of the positive control. In addition, we screened the binding data for
compounds with a geometric center no more than 5 Å from the center of at least
two of the DNA binding residues in PF14 0633, and selected those with the lowest
free energy of binding. The final list of compounds selected for in vitro testing are
shown in table 4.1.

Unfortunately, not all the compounds we selected were commercially available
or in the case of DB02633, it was only available in solution cross-linked to agarose
beads. In some of these cases, we were able to find available compounds with a
structure very similar to the ones we had selected. We accepted compounds with
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Figure 48: The free energy of the DrugBank compounds as a function of the dis-
tance from the binding location of the PF14_0633 binding sequence, reveals
that several molecules bind strongly at a site close to the location of the
PF14_0633 binding sequence. The peaks found at the distance 5 - 10 Å pro-
vide a strong indication that a binding pocket exists, close to the location of
the sense-strand PF14_0633 sequence binding.

3.8.2 Compounds with a High Binding Score

To identify compounds in DrugBank which are likely to bind a given pocket at the
transcription factor, the free energy of binding is plotted as a function of distance from
the location of binding to the location of the sense-strand binding location. The plot
in figure 48 shows that several molecules binds strongly at a location close to the lo-
cation of the sense-strand PF14_0633 sequence binding. The peaks at the distance 5
- 10 Å provides a strong indication that a binding pocket exists close to position of
PF14_0633 sense-strand binding.
Subsequently we identified the best docking hits based on a combination of location
of binding and the free energy, by evaluating the docking conformations based on dis-
tance to the location of the sense-strand binding and the free energy. The evaluation
is shown in table 15. The compounds DB02633 and DB04409 were found to bind
strongly to the protein and contribute to the peaks observed at 5 - 10 Å. The binding
of the compound DB02633 is shown in figure 49. This compound is listed as an ex-
perimental drug for the treatment of HIV-1[35]. The binding site is located in a pocket
in the intersection of the α- and β -chain of the protein. The compound DB04409 has
been found to contribute to the 5 - 10 Å peak and binds in the same pocket as the
DB02633 compound. This compound is listed in DrugBank as an experimental drug
against the development of tumours. The binding of the compound is shown in 50.
The finding of the binding pocket in the intersection of the α- and β -chain and that
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Figure 4.4. The free energy of binding of DrugBank compounds to PF14 0633.

a vendor listed in PubChem [75] and with a Tanimoto score of at least 0.9 to the
original compound. The Tanimoto score is a measure of the similarity between
two compounds (or their fingerprints) and is on the scale 0.0–1.0, where a score of
1.0 means that the fingerprints are identical. Those compounds were also docked
to PF14 0633 and the best ones were included in the list for in vitro testing.

The in silico docking experiments and identification of interesting compounds
for in vitro testing were performed by Kasper Jensen.

In vitro testing of protein-compound binding

The compounds shown in table 4.1 were tested for binding to PF14 0633 using
gel-shift assays. The compounds were incubated at different concentrations with
the purified PF14 0633 protein. The results are shown in figure 4.6 and figure 4.7.
The blue arrows indicate binding between the compound and PF14 0633.

Most of the tested compounds were able to bind PF14 0633. DB00562 showed
binding at only 125 nM while DB02633 bound at 0.2 µM. CID5751169, CID5750730,
CID4541005, CID1365835, AG-690/09705007, Procion blue MX-R and DB04640
all showed binding at 2.5 µM. Only TCMDC-123924, DB04409 and DB01219 did
not show any binding activity at the tested concentrations.

The gel-shift assays were performed by Manuel Llinas and Erandi K De Silva
at Princeton University.
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Figure 23: The TCMDC-124220 compound binds the pocket found at the the intersec-
tion of the α- and β -chain, critical for DNA binding, critical for DNA bind-
ing. The compound binds with a −9.26 kcal/mol free energy of binding.
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Figure 4.5. TCMDC-124220 docked to PF14 0633.

4.5 Discussion

The study of the protein-protein interaction network for PF14 0633 revealed two
interaction partners (PF14 0344 and PF11 0313). Although we could not im-
mediately draw any conclusion about the function of PF14 0633 based on these
interaction partners, it is possible that they are involved in functions we do not
yet understand.

However, the complete protein-protein interaction network that the interactions
were extracted from covers only 25 % of all predicted proteins in Plasmodium

falciparum [66]. Hence, it is possible that PF14 0633 may have other interaction
partners and exerts its function through them.

We performed in silico molecular docking on the Tres Cantos data set and
on a data set of compounds from DrugBank. Many compounds docked with a
low free energy and in proximity to the DNA binding residues of PF14 0633.
The binding between the compounds and PF14 0633 was confirmed in vitro using
gel-shift assays. 9 out of 12 tested compounds were able to bind PF14 0633 at
concentrations of 2.5 µM or lower.
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Figure 42: The five compounds were tested in vitro in a concentration of 125nM,
2.5µM and 50µM compound with 100ng purified protein. The compound
TCMDC-123924 did not bind any binding activity in vitro. However, the
four compounds CID5751169, CID5750730, CID4541005 and CID1365835
were all found to bind the protein at a 2.5µM concentration.

64

Figure 4.6. Gel-shift assays of five compounds selected based on the Tres Cantos
data set. The compounds were incubated at different concentrations (shown below
each lane) with 100 ng purified PF14 0633 protein. The blue arrows indicate
evidence of binding between the compound and the protein.
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Figure 51: The compounds AG-690/09705007, Procion blue MX-R, DB04409,
DB04640, DB00562 and DB01219 were incubated in a concentration
of 125nM, 2.5µM, 50µM with 100ng purified protein. The compound
DB02633 was incubated in a concentration of 0.2µM, 0.5µM and 0.7µM
with 100ng purified protein. The compound DB02633 seems to bind the pro-
tein at all concentrations. The two similar compounds AG-690/09705007,
Procion blue MX-R binds at a 2.5µM concentration. The compounds
DB04409 and DB01219 did not show any binding activity at the tested con-
centrations. The compound DB04640 was found to bind at a concentration
of 2.5µM and the compound DB00562 binds strongly to the transcription
factor at a concentration of 125µM.
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Figure 4.7. Gel-shift assays of seven compounds selected based on the DrugBank
data set. The compounds were incubated at different concentrations (shown below
each lane) with 100 ng purified PF14 0633 protein. The blue arrows indicate
evidence of binding between the compound and the protein.
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Tested compound Selected compound Tanimoto Therapeutic area
TCMDC-123924 TCMDC-123924 1.001 -
CID5751169 TCMDC-124220 0.901 -
CID5750730 TCMDC-124220 0.931 -
CID4541005 TCMDC-124220 0.921 -
CID1365835 TCMDC-124220 0.911 -
DB02633 DB02633 1.002 HIV-1
AG-690/09705007 DB02633 0.922 HIV-1
Procion blue MX-R DB02633 0.922 HIV-1
DB04409 DB04409 1.002 Tumours
DB04640 DB04640 1.002 Parasitic/bacterial infections
DB00562 DB00562 1.002 High blood pressure/edema
DB01219 DB01219 1.002 Muscle relaxant agent

Table 4.1. The compounds selected for in vitro testing. The tested compounds
as well as the compounds originally selected are shown as well as the Tanimoto
score between the two compounds. For the DrugBank compounds, the current
therapeutic area according to DrugBank is also shown. 1: Tanimoto score based
on CACTVS keys, 2: Tanimoto score based on MACCS keys.

The Tres Cantos compound TCMDC-124220 was shown to inhibit parasite
growth by at least 80 % at 2 µM concentration [68]. Furthermore, molecular
docking predicted that it could bind PF14 0633. Although we were not able to
obtain this compound from any vendor, we obtained four structurally similar com-
pounds that were also predicted to bind PF14 0633. All of these compounds were
able to bind PF14 0633 in vitro at 2.5 µM concentration. Hence, it is likely that
TCMDC-124220 also binds PF14 0633.

Figure 4.5 shows the docking of TCMDC-124220 to PF14 0633. From the figure
it can be seen that one end of TCMDC-124220 extends out of the binding pocket
between the two ApiAP2 domains and possibly interferes with the residues Asn-72
and Arg-74, both of which are involved in DNA binding. In this manner, TCMDC-
124220 might be interfering with the DNA-binding capabilities of PF14 0633.

Whether this is the reason for the inhibition of parasite growth by TCMDC-
124220 is hard to say, and more experiments are needed to test this hypothesis.
The prediction that PF14 0633 regulates var genes and other genes involved in
cytoadherence to the microvasculature does not seem to support this, as the im-
portance of these genes should be somewhat limited when the parasites are grown
under laboratory conditions. However, PF14 0633 was also predicted to regu-
late another ApiAP2 protein, PFF0200c, which in turn was predicted to regulate
late-stage genes involved in the critical process of preparing the parasite for host
cell rupture and re-invasion [61]. If this is the case, TCMDC-124220 might pre-
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vent PF14 0633 from activating these downstream genes and thereby halt parasite
growth.

The compound DB04640 which is used in experimental treatment of parasitic
and bacterial infections, were able to bind PF14 0633 at 2.5 µM concentration.
According to DrugBank, this compound is also known to bind lactate dehydro-
genase. Interestingly, lactate dehydrogenase is also the target of the well-known
antimalarial chloroquine [76].

The next step will be to confirm whether the compounds that are able to bind
PF14 0633 interfere with its DNA binding capabilities. If they do, it will be very
interesting to see the downstream effects of this. One possibility is that it kills
the parasites. If the parasites are not killed, it will be interesting to study the
downstream effect on gene expression. This will give us further insight into the
function of PF14 0633 and gene regulation P. falciparum. Ultimately, these studies
will show whether PF14 0633 is a suitable drug target in malaria parasites.
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Chapter 5

Classification of MHC-binding

peptides

5.1 Introduction

Short peptides binding to major histocompatibility complex (MHC) proteins are
important for correct activation of our immune system in response to various
pathogens. This binding is a specific event since a particular MHC molecule will
only bind certain peptides. The genetic variation within the MHC region is enor-
mous, leading to a wide variety in the binding capacities of MHC proteins. The
experimental determination of which peptides are bound by which MHC alleles
has been an ongoing effort for many years [77, 78] and computational efforts to
predict peptide binding has followed [79,80].

The aim of this project was to develop a computational method that is able
to distinguish several binding motifs in a mixture of peptides binding to different
MHC molecules or to a single molecule but in different binding modes. Exper-
imental evidence suggests, that at least some MHC molecules are able to bind
peptides in different modes, or in other words, that they are characterized by two
or more distinct binding motifs. This has been shown for the MHC class I allele
HLA-A*0101 [81–83] and the MHC class II allele HLA-DR3 [84–87].

Being able to distinguish the different binding modes of MHC molecules should
enable us to better predict peptide binding by MHC molecules. Some binding
modes might lead to stable peptide binding while others could be more unstable
and a precise definition of the binding motifs could help us understand these issues.
This might in turn aid the development of peptide based vaccines, by focusing on
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stable peptide binders and avoiding performing assays on unstable binders with a
very low immunogenicity.

This project was done in collaboration with Massimo Andreatta and Morten
Nielsen from the Immunological Bioinformatics group at the Center for Biolog-
ical Sequence Analysis, Department of Systems Biology, Technical University of
Denmark.

5.2 Background

Antigen presentation by the major histocompatibility complex
proteins

The proteins of the major histocompatibility complex (MHC), in humans referred
to as human leukocyte antigen (HLA) proteins, are proteins involved in the pre-
sentation of peptides on the cell surface to the immune system.

Proteins from intracellular pathogens as well as the organisms own proteins are
degraded by the proteasome to yield small peptide fragments. Some of these are
transported into the endoplasmatic reticulum by the transporter associated with
antigen presentation (TAP). Here they are presented to partially folded MHC class
I molecules, which will complete folding upon successful binding of a short peptide.
This process is facilitated by the tapasin protein. The MHC class I molecule in
complex with the bound peptide is exported to the cell surface where it can be
recognized by the T-cell receptor of CD8+ cytotoxic T lymphocytes and thereby
initiate an adaptive immune response. The presentation of peptides by MHC class
I molecules happens on all nucleated cells [79, 88].

Extracellular antigens are taken up by the antigen presenting cells of the im-
mune system (e.g. macrophages, B lymphocytes and dendritic cells). The proteins
are being degraded by proteases in specialized compartments such as phagosomes,
endosomes and lysosomes before they are transferred to the MHC-II containing
compartment where they are loaded onto MHC class II molecules. The MHC
class II molecules are folded and pre-loaded with a CLIP fragment, which is ex-
changed for the antigenic peptide. This process is facilitated by the chaperone
DM. The MHC class II molecule in complex with the bound peptide is trans-
ported to the cell surface where they can be recognized by CD4+ T helper cells.
Cross-presentation—the presentation of extracellular anitigens by MHC class I
proteins—also occurs [88, 89].

The binding of a peptide to an MHC molecule is a specific event; a particu-
lar MHC molecule will only bind certain peptides (only 0.5–2 % of the peptides
within a given source protein will bind to a given MHC molecule [90,91]), and this
specificity is important for the specificity of the adaptive immune system as it is
the peptide in complex with the MHC molecule that is recognized by the T-cell
receptor.
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Peptide motifs

A set of peptides binding to a particular MHC molecule can be summarized in a
weight matrix describing the amino acid preference at each position in the peptide
motif. The weight matrix contains the log-odds scores for each amino acid at each
position in the motif:

Wia = 2 log2
pia
qa

, (5.1)

where pia is the frequency of amino acid a at position i in the motif and qa is the
background frequency of amino acid a.

The peptides have to be aligned, which is straight forward if the peptides all
have the same length. Peptides binding to MHC class I molecules are typically 9
amino acids long although they can vary a little. Peptides binding to MHC class II
molecules are of different lengths and can be aligned using Gibbs sampling [92,93].
The part of the alignment that is important for binding specificity of the peptide
to the MHC molecule is referred to as the core and corresponds to the binding
motif.

The peptides known to bind a specific MHC molecule is most likely just a
sample of all the peptides that can bind this MHC molecule. As a result, some
amino acids that are allowed in certain positions in the motif, might not have been
observed in these positions. This problem, referred to as low counts, can be some-
what corrected for by the inclusion of pseudocounts. This involves the addition of
a small count to all the counts in the frequency matrix. The simplest would be
to add one to all counts but it is also possible to calculate a more sophisticated
pseudocount based on the observed frequencies and substitution frequencies from
e.g. the Blosum substitution matrices (see methods, section 5.3) [16, 94].

Data sets of peptides known to bind a specific MHC molecule might be biased
and contain an overrepresentation of some sequence signals. This could result in
the erroneous impression that a particular amino acid might be more important
at a given position than is actually the case. A number of methods can be used
to account for redundancy in the sequences including homology reduction [95],
clustering [92] and position based sequence weighting [96]. In homology reduction,
sequences are removed from the data set in such a way that none of the remaining
sequences are more similar to each other than a predefined threshold. In clustering,
similar sequences are clustered together and assigned a weight reciprocal to the size
of the cluster it belongs to. In position based sequence weighting, each sequence
is assigned a weight depending on how similar it is to the other sequences in the
data set.

Sequence logos

A peptide motif can be visualized in a convenient way using a sequence logo [97].
A sequence logo consists of a stack of letters for each position in the sequence. The
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Figure 5.1. Sequence logo for the MHC class I allele HLA-A*0101. The logo was
created from 300 peptides known to bind this protein. The logo shows conservation
of position 2, 3 and 9 within the motif. Position 9 is most conserved (it has
the highest information content) with a strong preference for tyrosine (Y) at this
position.

height of the stack is a measure of the information content (i.e. the conservation)
on that position and the height of each letter within the stack indicates the relative
frequency of that amino acid at that position. The information content at a given
position, i, is defined as the difference between the maximum possible entropy and
the observed entropy at that position [97]:

Ii = log2(N) +
�

a

pia log2(pia). (5.2)

Here, pia is the observed (possibly corrected) frequency of amino acid a at position
i in the alignment. N is the total number of different amino acids, which is 20.
The summation is over the 20 amino acids. An example sequence logo for the
MHC class I allele HLA-A*0101 is shown in figure 5.1.

Akaike’s information criterion

Akaike’s information criterion (AIC) is a measure of the relative Kullback-Leibler
distance between a model and the unknown true mechanism that generated the
observed data [98]. It is given by:

AIC = −2 log(L(θ̂|data)) + 2k, (5.3)

where L(θ̂|data) is the likelihood of the estimated parameter values, θ̂, given the
data at its maximum point and k is the number of estimable parameters [98, 99].
For a given set of candidate models, the best model is the one with the lowest AIC
value. The term 2k is a penalty term that prevents overfitting by the inclusion of
too many parameters in the model.

If there are too many parameters compared to the sample size, n, AIC may
perform poorly. In this case a correction for small (or finite) sample size should
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be added [100]:

AICc = AIC +
2k(k + 1)

n− k − 1
. (5.4)

The extra term in equation 5.4 is merely an extra penalty on the number of pa-
rameters in relation to the sample size. If the sample is large compared to the
number of parameters, this term will be negligible and AIC should perform well.
A rule of thumb is that if n/k < 40 then AICc should be used [98].

Given a set of R models and AIC (or AICc) values for each model, it is possible
to calculate the probability that each model is best in terms of Kullback-Leibler
distance. This requires that there are only R models and that one of them must be
the best model [98]. These probabilities are also referred to as the Akaike weights,
wi (i = 1...R), for the models.

5.3 Methods

Data sets

Peptides known to bind specific MHC alleles were downloaded from the Immune
Epitope Database (IEDB) [101].

A neural network was trained to learn several peptide motifs simultaneously.
The network was trained with data from 1 000 peptides from each allele (both
binders and non-binders). 100 000 random peptides were then scored with the
neural network and the top 1 % were regarded as the best binders. These 1 000
peptides were then used as a data set. The test data set consisted of 2 000 peptides.
This work was performed by Massimo Andreatta.

Simulated data were generated manually by creating count matrices with high
counts on the desired positions. Random counts on the remaining positions were
either chosen manually or copied from positions in existing motifs without any
significant information content.

The first set of simulated data sets contained 40 data sets to be clustered. These
data sets consisted of peptides generated from 14 different frequency matrices
described in table 5.1. The frequencies in matrix number 2 were used as the
background frequencies for matrix 3–14. These matrices then had one inflated
amino acid on one position as shown in the table. Logos for the 14 weight matrices
are shown in appendix D, (figure D.1 – figure D.14).

The 40 data sets were created by generating random peptides using the fre-
quencies in the matrices. These peptides were then mixed as shown in table 5.2.
Notice that data set 1–30 are balanced data sets containing 100 peptides from each
matrix, data set 31–36 are balanced data sets containing 300 peptides from each
matrix, while data set 37–40 are unbalanced data sets containing 100 peptides
from one matrix and 300 from another.
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Matrix Description
1 flat, all amino acids have the same frequency
2 flat, but with small random variation in the frequencies
3 N on position 2: ×5
4 N on position 2: ×10
5 N on position 2: ×20
6 N on position 2: ×40
7 L on position 2: ×5
8 L on position 2: ×10
9 L on position 2: ×20
10 L on position 2: ×40
11 N on position 3: ×5
12 N on position 3: ×10
13 N on position 3: ×20
14 N on position 3: ×40

Table 5.1. Simulated matrix 1–14. Matrix number 2 was used as the background
for matrix 3–14. These matrices had one amino acid on one position inflated
compared to the background. The table shows that in matrix number 3, for
example, N on position 2 is 5 times more frequent than the background frequency.
N: Asparagine, L: Leucine.

The second set of simulated data sets contained 18 data sets to be clustered.
These data sets consisted of peptides generated from 9 different frequency matrices
described in table 5.3. These matrices had randomized background frequencies
taken from existing matrices to get more realistic background frequencies. One or
two positions in these matrices were inflated as described in the table. Logos for
the 9 weight matrices are shown in appendix D, (figure D.15 – figure D.23).

The 18 data sets were created by generating random peptides using the frequen-
cies in the matrices. These peptides were then mixed as shown in table 5.4. Notice
that data set 101–106 are balanced data sets containing 100 peptides from each
matrix, data set 107–112 are balanced data sets containing 300 peptides form each
matrix, while data set 113–118 are unbalanced data sets containing 100 peptides
form on matrix and 300 from another.

In the predictive performance approach to model selection, a measured affinity
value is needed in order to calculate the correlation. For the simulated data, these
affinities (aS) were constructed using:

aS = −
l�

i=1

log(fia), (5.5)

where fia is the frequency of amino acid a at position i in the peptide and l is the



5.3. METHODS 59

Data set Description
1 matrix 1 (100)
2 matrix 2 (100)
3 matrix 2 (100) + matrix 3 (100)
4 matrix 2 (100) + matrix 4 (100)
5 matrix 2 (100) + matrix 5 (100)
6 matrix 2 (100) + matrix 6 (100)
7 matrix 2 (100) + matrix 3 (100) + matrix 07 (100)
8 matrix 2 (100) + matrix 4 (100) + matrix 08 (100)
9 matrix 2 (100) + matrix 5 (100) + matrix 09 (100)
10 matrix 2 (100) + matrix 6 (100) + matrix 10 (100)
11 matrix 2 (100) + matrix 3 (100) + matrix 11 (100)
12 matrix 2 (100) + matrix 4 (100) + matrix 12 (100)
13 matrix 2 (100) + matrix 5 (100) + matrix 13 (100)
14 matrix 2 (100) + matrix 6 (100) + matrix 14 (100)
15 matrix 3 (100)
16 matrix 4 (100)
17 matrix 5 (100)
18 matrix 6 (100)
19 matrix 3 (100) + matrix 7 (100)
20 matrix 4 (100) + matrix 8 (100)
21 matrix 5 (100) + matrix 9 (100)
22 matrix 6 (100) + matrix 10 (100)
23 matrix 3 (100) + matrix 11 (100)
24 matrix 4 (100) + matrix 12 (100)
25 matrix 5 (100) + matrix 13 (100)
26 matrix 6 (100) + matrix 14 (100)
27 matrix 3 (100) + matrix 7 (100) + matrix 11 (100)
28 matrix 4 (100) + matrix 8 (100) + matrix 12 (100)
29 matrix 5 (100) + matrix 9 (100) + matrix 13 (100)
30 matrix 6 (100) + matrix 10 (100) + matrix 14 (100)
31 matrix 1 (300)
32 matrix 2 (300)
33 matrix 3 (300) + matrix 7 (300) + matrix 11 (300)
34 matrix 4 (300) + matrix 8 (300) + matrix 12 (300)
35 matrix 5 (300) + matrix 9 (300) + matrix 13 (300)
36 matrix 6 (300) + matrix 10 (300) + matrix 14 (300)
37 matrix 3 (100) + matrix 11 (300)
38 matrix 4 (100) + matrix 12 (300)
39 matrix 5 (100) + matrix 13 (300)
40 matrix 6 (100) + matrix 14 (300)

Table 5.2. Simulated data set 1–40. The table shows which matrices were used
to generate the peptides for each of the 40 simulated data sets. The number of
peptides from each matrix is shown in parenthesis.
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Matrix Description
101 strong signal on pos 2 og 3
102 strong signal on pos 2 og 3 (differs from matrix101)
103 strong signal on pos 6 og 7
104 strong signal on pos 2
105 strong signal on pos 2 (differs from matrix104)
106 strong signal on pos 6
107 medium signal on pos 2
108 medium signal on pos 2 (differs from matrix107)
109 medium signal on pos 6

Table 5.3. Simulated matrix 101–109.

Data set Description
101 matrix 101 (100) + matrix 102 (100)
102 matrix 101 (100) + matrix 103 (100)
103 matrix 104 (100) + matrix 105 (100)
104 matrix 104 (100) + matrix 106 (100)
105 matrix 107 (100) + matrix 108 (100)
106 matrix 107 (100) + matrix 109 (100)
107 matrix 101 (300) + matrix 102 (300)
108 matrix 101 (300) + matrix 103 (300)
109 matrix 104 (300) + matrix 105 (300)
110 matrix 104 (300) + matrix 106 (300)
111 matrix 107 (300) + matrix 108 (300)
112 matrix 107 (300) + matrix 109 (300)
113 matrix 101 (300) + matrix 102 (100)
114 matrix 101 (300) + matrix 103 (100)
115 matrix 104 (300) + matrix 105 (100)
116 matrix 104 (300) + matrix 106 (100)
117 matrix 107 (300) + matrix 108 (100)
118 matrix 107 (300) + matrix 109 (100)

Table 5.4. Simulated data set 101–118. The table shows which matrices were
used to generate the peptides for each of the 18 simulated data sets. The number
of peptides from each matrix is shown in parenthesis.
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length of the peptide. This yielded aS values in the range 23 – 28 for the binders,
which corresponds to very strong binders.

Clustering of peptides

Peptides were clustered using two different clustering algorithms. The first and
simplest one, referred to as clustering algorithm 1, randomly assigns the peptides
to different clusters. Then, it iteratively updates the clusters based on how well
the peptides score against the weight matrix of each cluster. The algorithm is as
follows:

Step 1: Assign each peptide to a random cluster.

Step 2: Calculate a weight matrix for each cluster based on the peptides
assigned to that cluster.

Step 3: Score all peptides against all weight matrices and assign each pep-
tide to the cluster where it gets the highest score.

Step 4: Evaluate whether the stop criterion has been met. If not, go to
step 2.

The input to the program is a list of peptides and the output is the assignment of
the peptides to the different clusters. We started with the easiest case of clustering
MHC class I peptides that were all of the same length (9 amino acids) so no
alignment of the peptides were needed. The number of clusters were also fixed.
The stop criteria were either that no sequences changed cluster or that a maximum
of 10 000 iterations had been reached.

The other clustering algorithm, referred to as clustering algorithm 2, is similar
to the above but uses a Monte Carlo Gibbs sampling approach to escape from local
minima in the energy landscape. The algorithm is as follows:

Step 1: Assign each peptide to a random cluster.

Step 2: Select a random peptide and remove it from its cluster (C0).

Step 3: Update the weight matrix of C0.

Step 4: Select a new random cluster (Cn).

Step 5: Score the peptide against both C0 and Cn to get the scores S0 and
Sn respectively.

Step 6: Assign the peptide to Cn with probability P given below; otherwise
assign it to C0:

P = min

�
1, exp

�
∆E

T

��
, (5.6)

where ∆E = Sn − S0 and T is the temperature, which is lowered in
regular steps during the iterations.
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Step 7: Evaluate whether the stop criterion has been met. If not, go to
step 2.

Again, the algorithm requires pre-aligned peptides and the number of clusters is
also fixed. The stop criterion was that a maximum number of iterations had been
reached. This was set to 100 times the number of peptides times the number of
temperature steps (10). The algorithm was implemented by Massimo Andreatta.

Weight matrices

Weight matrices were constructed using equation 5.1. When pseudocounts were
used, the effective amino acid frequencies were calculated according to [16]:

pia =
α× fia + β × gia

α+ β
. (5.7)

Here, α is the effective number of sequences minus one in the alignment, β is the
weight on pseudocounts, fia is the observed frequency of amino acid a at position i
and gia is the pseudocount of amino acid a at position i. If no sequence weighting is
performed, the effective number of sequences is equal to the number of sequences.

Pseudocounts were calculated using [94]:

gia =
�

b

fib × q(a|b), (5.8)

where fib is the observed frequency of amino acid b at position i and q(a|b) is the
substitution frequency for amino acid a, conditional on the observation of amino
acid b obtained from the Blosum62 substitution matrix [102].

Sequence weighting was performed using the weighting scheme proposed by
Henikoff and Henikoff [96]. The weight on peptide k is given by:

wk =
�

i

1

ri × sia
, (5.9)

where ri is the number of different amino acids at position i in the motif and sia
is the number of occurrences of amino acid a at position i in the motif. When this
scheme was used for sequence weighting, the effective number of sequences, α, was
calculated as the mean number of different amino acids on each position in the
alignment:

α =
1

L

�

i

ri, (5.10)

where L is the length of the sequence motif.

Sequence logos

Sequence logos were created using WebLogo [103].
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Akaike weights

Akaike’s information criterion (AIC and AICc) was calculated using equation 5.3
and equation 5.4 respectively. Akaike weights, also referred to as model probabili-
ties, were calculated as described by Burnham and Anderson [98]. Briefly, given a
set of R models, the difference in AIC (or AICc) between each model, i (i = 1...R),
and the best model, AICmin, i.e. the model with the lowest AIC, was calculated
as:

∆i = AICi −AICmin. (5.11)

The relative likelihood of each model given the data was then calculated as:

L(modeli|data) ∝ exp

�
−1

2
∆i

�
, (5.12)

where ∝ means proportional to. The Akaike weights, wi, were then calculated by
normalizing the relative likelihoods:

wi =
exp(− 1

2∆i)
�R

r=1 exp(− 1
2∆r)

. (5.13)

The Akaike weights are positive values summing to one and are therefore also
interpreted as the model probabilities [98].

Multidimensional small sample AIC

Fujikoshi and Satoh’s small sample AIC for multivariate linear regression [104]:

CAIC = AIC + 2
K(k + 1 + p)

n− k − 1− p
, (5.14)

where K = kp+p(p+1)/2, k is the number of regressors, n the number of samples
and p the number of regressions.

Burnham and Anderson’s hypothesized multidimensional small sampleAIC [98]:

AICc = AIC + 2
K(K + v)

np−K − v
, (5.15)

where v is the number of distinct parameters in the variance-covariance matrix
and falls in the interval 1 ≤ v ≤ p(p+ 1)/2, K is the total number of parameters,
n the number of samples and p the number of dimensions.

Predictive performance

The predictive performance of a model was evaluated using an independent test
set of peptides containing both binders and non-binders to each of the alleles that
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were clustered. Any peptides included in the clustering were excluded from the
test set. The peptides in the test set had a measured binding affinity against one
or more of the clustered alleles. If a peptide was present multiple times, i.e. if
its binding affinity had been measured against several of the alleles, the one with
the best binding affinity was selected for the test set. The binding affinities were
transformed to be on a scale between 0 and 1 using the formula [105]:

y = 1− log(a)

log(50 000)
, (5.16)

where a is the measured affinity and y is the transformed affinity. High binding
peptides with a measured affinity stronger than 50 nM will have a value above
0.638 after this transformation and intermediate binders with a measured affinity
stronger than 500 nM will have a value above 0.426.

All peptides in the test set were scored against all the clusters in a particular
clustering using the log-odds matrices representing the clusters. Each peptide was
assigned to the cluster where it got the highest log-odds score. The correlation
between the log-odds scores and the transformed affinity values, y, was then calcu-
lated. Both Pearson’s product-moment correlation coefficient, rP , and Spearman’s
rank correlation coefficient, rS , were calculated using R [106].

5.4 Results

Clustering of peptides

We implemented a clustering algorithm, clustering algorithm 1 (see methods, sec-
tion 5.3), which clustered the peptides into a predefined number of clusters.

We used clustering algorithm 1 to cluster a balanced data set of 500 peptides,
with 100 peptides known to bind each of the 5 MHC class I alleles HLA-A*0201,
HLA-A*0301, HLA-B*0702, HLA-B*1501 and HLA-B*4402. The outcome of clus-
tering these sequences using both sequence weighting and pseudocounts in the
weight matrix is shown in table 5.5. The algorithm terminated after 12 iterations.
As can be seen from table 5.5, the assignment of peptides to the clusters appear
to be more or less random. Furthermore, the result was not reproducible as an-
other run of the program ended up with completely different clusters. We ran
the program with different values of β (the weight on pseudocounts) and we also
tried turning off sequence weighting and/or pseudocounts but it did not make any
difference. The results still appeared to be completely random.

However, when the peptides were assigned to the correct clusters from the
beginning, they more or less stayed in those clusters. See table 5.6 for an example.

We also tried to cluster the strong binders only (binding affinity < 50 nM) as
we observed relatively less misclassifications among them. However, when they
were randomly distributed from the beginning, the result still looked more or less
random.
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Cluster HLA-A*0201 HLA-A*0301 HLA-B*0702 HLA-B*1501 HLA-B*4402
1 7 11 29 26 18
2 12 11 8 6 49
3 45 15 20 22 12
4 23 6 41 31 9
5 13 57 2 15 12

Table 5.5. The result of clustering peptides from the five MHC class I alleles
HLA-A*0201, HLA-A*0301, HLA-B*0702, HLA-B*1501 and HLA-B*4402 into
five clusters. The table shows how many peptides from each allele that ended up in
each of the five clusters. The program terminated after 12 iterations. Pseudocounts
and sequence weighting were used.

Cluster HLA-A*0201 HLA-A*0301 HLA-B*0702 HLA-B*1501 HLA-B*4402
1 93 0 1 11 0
2 0 98 0 1 0
3 2 0 97 6 0
4 5 2 1 80 0
5 0 0 1 2 100

Table 5.6. The result of clustering peptides from the five MHC class I alleles
HLA-A*0201, HLA-A*0301, HLA-B*0702, HLA-B*1501 and HLA-B*4402 into
five clusters when they were assigned to the correct clusters in the first iteration.
The table shows how many peptides from each allele that ended up in each of the
five clusters. The program terminated after 4 iterations. Pseudocounts were not
included in this example but sequence weighting was.

We modified the algorithm such that only one peptide was moved in each
iteration (step 3 in clustering algorithm 1). In other words, the weight matrices
were updated every time a peptide was moved to a new cluster instead of when
all peptides had been moved. This did not improve the clustering either.

Based on these results we came to the conclusion that the algorithm probably
got stuck in a local minimum, when trying to find the optimal clustering. Hence,
we decided to use a Monte Carlo Gibbs sampling approach to get out of local
minima.

Clustering of peptides using Gibbs sampling

We implemented clustering algorithm 2 (see methods, section 5.3), which cluster
the sequences into a predefined number of clusters and use Gibbs sampling to get
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Cluster HLA-A*0101 HLA-A*0301 HLA-B*4402
1 295 6 1
2 2 0 99
3 3 44 0

Table 5.7. The result of clustering peptides from the three alleles: HLA-A*0101,
HLA-A*0301 and HLA-B*4402 into three clusters. The table shows how many
peptides from each allele that ended up in each of the three clusters. Sequence
weighting and pseudocounts were used.

out of local minima in the energy landscape. The algorithm was implemented by
Massimo Andreatta.

We created a data set of peptides consisting of 300 peptides known to bind the
HLA-A*0101 allele, 50 peptides known to bind the HLA-A*0301 allele and 100
peptides known to bind the HLA-B*4402 allele. All peptides were 9 amino acids
long. The data set was clustered using clustering algorithm 2. The clustering
was repeated ten times with parameters set such that each clustering resulted in
a different number of clusters, starting with one cluster and ending with ten clus-
ters. Sequence weighting and pseudocounts were used in this and all subsequent
clusterings.

The result of the clustering that resulted in three clusters are shown in ta-
ble 5.7. The table shows how the peptides binding the different alleles were dis-
tributed among the three clusters. Cluster 1 mainly contains peptides from the
HLA-A*0101 allele, cluster 2 mainly contains peptides from the HLA-B*4402 al-
lele and cluster 3 mainly contains peptides from the HLA-A*0301 allele. If the
three clusters each are said to represent the allele from which it contain the most
peptides, the algorithm is able to classify 97 % of the peptides to their original
allele. The remaining peptides are not necessarily classified wrongly because they
might actually also bind the other alleles, whether experimentally tested or not.

The problem is to select the correct number of clusters, since the number of
clusters is controlled by the parameters of the clustering algorithm. We tried two
different approaches described below. The first approach is based on Akaike’s
information criterion (AIC) as a basis for model selection. The second approach
is based on the predictive performance of the resulting weight matrices.

Model selection with Akaike’s information criterion

Each result of the clustering was considered to be a model that described the data.
The model consisted of a number of clusters represented by the frequency matrices.
As a result of running the clustering algorithm ten times yielding from one to ten
clusters, we had ten models which were considered to cover the model space.
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The likelihood of each model was calculated by scoring each peptide, o, against
the raw frequency matrix of the cluster, c, it was assigned to. The observed, un-
adjusted frequency of each amino acid at each position is the maximum likelihood
estimate of the probability of observing that particular amino acid at that po-
sition. The frequencies for each position in a peptide was multiplied to get the
overall probability of that peptide, and all the peptide probabilities were then mul-
tiplied to get the overall model probability. For convenience and to avoid underflow
problems, the logarithm of the frequencies were summed instead of multiplying the
frequencies themselves:

logL(θ̂|data) =
O�

o=1

l�

i=1

log foc

ia , (5.17)

where foc
ia

is the frequency of amino acid a at position i in peptide o belonging to
cluster c. The total number of peptides is O and l is the length of the peptide.

The number of estimable parameters in a model was calculated as:

k = cl(m− 1), (5.18)

where c is the number of clusters, l is the length of the peptides and m is the
number of amino acids. Since the number of amino acids is fixed and so is the
length of the peptides for this study, k is given by:

k = cl(m− 1) = c× 9× (20− 1) = 171c. (5.19)

The number of samples, n, were set equal to the number of amino acids in all
peptides in the data set.

AIC and AICc was calculated for all the considered models and the model
probabilities (or Akaike weights), w, were then calculated according to equa-
tion 5.13. The result of clustering the three alleles HLA-A*0101, HLA-A*0301
and HLA-B*4402 is shown in table 5.8. The model that is assigned the high-
est probability when using AIC is the one with seven clusters. However, since
n/k < 40, AIC should be corrected for small sample size and it is more correct
to use AICc, which assigns the highest probability to the model with only four
clusters.

Figure 5.2 shows the logos of the three alleles that were clustered. If we com-
pare these with the logos of the four clusters that were suggested by the AICc

criterion for model selection (figure 5.3) we see that they are very similar except
that HLA-A*0101 have been split into two clusters (figure 5.3a and figure 5.3b).
The two HLA-A*0101 clusters are very similar and does not correspond to the two
different binding modes of HLA-A*0101 specific binding peptides that have been
observed [81–83]. According to these studies, the two binding modes are charac-
terized by a preference for tyrosine (Y) at their C terminus and either serine (S),
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c n k L(θ̂|data) AIC AICc w wc

1 4 050 171 −10 451.6 21 245.3 21 260.3 0.000000 0.000000
2 4 050 342 −9 878.3 20 440.7 20 503.7 0.000000 0.000000
3 4 050 513 −9 575.6 20 177.2 20 326.2 0.000000 0.000000
4 4 050 684 −9 277.0 19 921.9 20 199.9 0.000000 0.999999
5 4 050 855 −9 029.7 19 769.3 20 227.3 0.000000 0.000001
6 4 050 1 026 −8 778.9 19 609.8 20 306.8 0.000000 0.000000
7 4 050 1 197 −8 568.6 19 531.2 20 536.2 1.000000 0.000000
8 4 050 1 368 −8 439.1 19 614.3 21 011.3 0.000000 0.000000
9 4 050 1 539 −8 302.8 19 683.6 21 571.6 0.000000 0.000000
10 4 050 1 710 −8 079.3 19 578.6 22 079.6 0.000000 0.000000

Table 5.8. Comparison of models and model probabilities for models with dif-
ferent number of clusters. c: number of clusters in the model, n: sample size, k:
estimable parameters, L(θ̂|data): likelihood, AIC: Akaike’s information criterion,
AICc: AIC corrected for small sample size, w: Akaike weight or model probability
based on AIC, wc Akaike weight or model probability based on AICc.

threonine (T) or glutamic acid (E) in position 2 or aspartic acid (D) or glutamic
acid (E) in position 3. The two motifs we identified did not distinguish clearly
between those two binding modes although the relative importance of position 3
differed a little.

Model selection using predictive performance

We selected an independent test set of peptides containing both binders and non-
binders to each of the three alleles HLA-A*0101, HLA-A*0301 and HLA-B*4402
that were clustered above.

All peptides in the test set were scored against all the clusters in a particular
clustering using the log-odds matrices representing the clusters. Each peptide
was assigned to the cluster where it got the highest log-odds score. Finally, the
correlation between the log-odds scores and the transformed affinity values, y, was
calculated. We calculated both Pearson’s product-moment correlation coefficient,
rP , and Spearman’s rank correlation coefficient, rS . The results for the clustering
of the three alleles HLA-A*0101, HLA-A*0301 and HLA-B*4402 are shown in
figure 5.4.

From figure 5.4 it can be seen that both the Pearson and the Spearman corre-
lation peaked at 3 clusters suggesting that this was the optimal way to cluster the
sequences.
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(c) Logo of the allele HLA-B*4402

Figure 5.2. Logos of three MHC class I alleles.

Clustering balanced data sets

We created five data sets based on peptides belonging to known MHC motifs. The
data sets contained peptides mixed from 1 to 5 different MHC motifs as shown in
table 5.9. Each data set was clustered ten times resulting in one to ten clusters.
We used both the AIC based approach and the predictive performance approach
to model selection, and the optimal number of clusters suggested by each approach
is shown in table 5.10. Again AIC suggested more clusters than there were alleles
in each data set, whereas the other methods ended up with the original number of
clusters except for the 5 allele case where AICc only suggested 4 clusters.

Clustering based on neural network data

We created two artificial data sets using a neural network. For the first data set,
the neural network was trained to learn two different peptide motifs (HLA-A*0101
and HLA-A*0201). For the second data set, three different peptide motifs were
learned (HLA-A*0101, HLA-A*0201 and HLA-A*0301). 100 000 random peptides
were then scored with the neural network and the top 1 % were regarded as good
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(c) Logo of cluster 3
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Figure 5.3. Logos of the four clusters suggested by AICc (see text).
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Data set Alleles # peptides
1 HLA-A*0201 100
2 HLA-A*0301 100

HLA-B*0702 100
3 HLA-A*0101 100

HLA-A*0301 100
HLA-B*4402 100

4 HLA-A*0201 100
HLA-A*0301 100
HLA-B*0702 100
HLA-B*4402 100

5 HLA-A*0101 100
HLA-A*0201 100
HLA-A*0301 100
HLA-B*0702 100
HLA-B*4402 100

Table 5.9. Data sets used to test the model selection algorithms. The five data
sets were created by mixing peptides from the listed motifs.

Data set # alleles AIC AICc rP rS
1 1 2 1 1 1
2 2 4 2 2 2
3 3 7 3 3 3
4 4 8 4 4 4
5 5 9 4 5 5

Table 5.10. Result of clustering the five balanced data sets shown in table 5.9.
The table shows the number of clusters suggested by using Akaike’s information
criterion or predictive performance for model selection. AIC: Akaike’s information
criterion, AICc: AIC corrected for small sample size, rP : Pearson correlation, rS :
Spearman correlation.
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Figure 5.4. The result of using the predictive performance approach to select
the optimal number of clusters after clustering peptides from the three alleles
HLA-A*0101, HLA-A*0301 and HLA-B*4402.

binders to the two motifs. These 1 000 peptides were then clustered with clustering
algorithm 2 and Akaike’s information criterion and the correlation coefficients of
the predictive performance was evaluated. The neural networks were developed
by Massimo Andreatta for another project and we just used them here to generate
the two data sets.

The result is shown in table 5.11. AIC og AICc suggests 9-10 clusters for these
data, whereas the predictive performance suggests the correct number of clusters
when the Pearson correlation is considered. The Spearman correlation suggests
only 2 clusters for the case when 3 motifs were used, although the correlation
coefficients for 2 and 3 clusters are very similar (figure 5.5).

Simulated data sets

The simulated data sets were created as described in the methods (section 5.3).
Data set 1–40 were clustered and the number of clusters were evaluated using
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Data set Alleles AIC AICc rP rS
1 2 10 9 2 2
2 3 9 9 3 2

Table 5.11. The result of clustering two data sets based on a neural network.
The table shows the number of clusters suggested by using Akaike’s information
criterion or predictive performance for model selection. AIC: Akaike’s information
criterion, AICc: AIC corrected for small sample size, rP : Pearson correlation, rS :
Spearman correlation.
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Figure 5.5. The result of using the predictive performance approach to select
the optimal number of clusters in the neural network data for three alleles.
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Akaike’s information criterion and predictive performance (table 5.12). For the
predictive performance approach, test data were created in the same way as the
clustered data. 300 peptides were generated from each matrix.

Data set 101–118 were also clustered and the number of clusters were evalu-
ated using Akaike’s information criterion and predictive performance (table 5.13).
For the predictive performance approach, the test data were created by generat-
ing random peptides from a flat distribution and then scoring them against the
matrices. 3000 random peptides were created for each matrix.

The general observation from these data were that AIC tended to predict too
many clusters while AICc predicted the expected number of clusters as long as
there were only 100 peptides from each allele in the data set (data set 1–30 and
101–106). When there were more than 100 peptides from each allele in the data
set (data set 31–40 and 107–118) AICc tended to predict too many clusters and
the number of clusters seemed to correlate with the total size of the data set.

The predictive performance approach generally performed poorly on the simu-
lated data sets. Typical correlation curves for these data are shown in figure 5.6.
This was probably because of the artificial construction of the affinity values. An-
other possibility would be to use log-odds scores instead of the constructed affinity
values. However, the method is based on the correlation between experimentally
measured affinity values and the predicted log-odds scores. Any result that we
could produce by using scores that are somehow related to the weight matrices
would not validate the method. Therefore, it does not make sense to validate the
predictive performance using simulated data sets.

In the calculations of AICc, the number of samples were equated with the
number of amino acids in all peptides in the data set. This is one way to count
the number of samples in multiple alignments, but it is not obvious that it is
the correct way. In particular, the samples are not independent when counting
the amino acids. First of all, the amino acids are linked together in sequences,
making them dependent on each other, and the sequences also depend on each
other through their evolutionary relationships. These dependencies makes it very
hard to determine the effective sample size and the choice might influence the
result of model selection with AICc as discussed by Posada and Buckley [107].

To see if our choice of sample size had an effect on the dependency of AICc on
the size of the data set, we calculated AICc for all the data sets above with the
sample size equal to the number of sequences in the data set (AIC1

c ). However, this
did not work well and did not remove the size dependency of AICc (appendix D,
table D.2 – table D.4).

Another way to consider the data is to consider each sequence as a sample in
multiple dimensions with the number of dimensions equal to the length of the se-
quence. AIC is also valid for multidimensional data but AICc is not generally valid
in this case. No generally valid AIC corrected for small sample size exists for the
multidimensional case, however, Fujikoshi and Satoh have developed a small sam-



5.4. RESULTS 75

Data set Alleles AIC AICc rP rS
1 1 2 1 - -
2 1 2 1 9 9
3 2 5 2 2 2
4 2 4 2 1 2
5 2 4 2 1 1
6 2 4 2 1 1
7 3 8 3 1 2
8 3 8 3 1 1
9 3 6 3 2 2
10 3 7 3 1 1
11 3 8 3 1 1
12 3 7 3 1 1
13 3 7 3 2 2
14 3 7 3 2 2
15 1 2 1 1 1
16 1 3 1 1 1
17 1 2 1 1 1
18 1 2 1 1 2
19 2 5 2 1 1
20 2 5 2 1 1
21 2 5 2 3 2
22 2 5 2 2 1
23 2 4 2 1 1
24 2 5 2 2 2
25 2 5 2 2 2
26 2 4 2 2 1
27 3 6 3 1 1
28 3 8 3 1 1
29 3 6 3 2 2
30 3 6 2 3 2
31 1 6 3 - -
32 1 7 3 2 2
33 3 10 10 1 4
34 3 10 10 3 2
35 3 10 8 3 3
36 3 10 10 3 7
37 2 8 3 8 1
38 2 10 4 1 1
39 2 9 4 3 3
40 2 9 3 2 2

Table 5.12. The result of clustering simulated data set 1–40. The table shows the
number of clusters suggested by using Akaike’s information criterion or predictive
performance for model selection. AIC: Akaike’s information criterion, AICc: AIC
corrected for small sample size, rP : Pearson correlation, rS : Spearman correlation.
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Data set Alleles AIC AICc rP rS
101 2 2 2 1 1
102 2 2 2 1 1
103 2 2 2 1 1
104 2 3 2 1 1
105 2 3 2 1 1
106 2 3 2 1 1
107 2 8 4 1 1
108 2 8 4 1 1
109 2 9 5 1 1
110 2 7 4 1 1
111 2 9 5 1 1
112 2 9 5 1 1
113 2 7 3 1 1
114 2 6 3 1 1
115 2 7 3 1 1
116 2 7 2 2 2
117 2 6 4 1 1
118 2 6 3 2 2

Table 5.13. The result of clustering simulated data set 101–118. The table
shows the number of clusters suggested by using Akaike’s information criterion or
predictive performance for model selection. AIC: Akaike’s information criterion,
AICc: AIC corrected for small sample size, rP : Pearson correlation, rS : Spearman
correlation.

ple AIC for multivariate linear regression, termed CAIC, which is valid under the
assumption that a general p×p variance-covariance matrix applies for the residual
vector of each observation, where p is the number regressions (equation 5.14) [104].
In addition, Burnham and Anderson hypothesized a generally valid multidimen-
sional small sample AIC, simple termed AICc (equation 5.15) [98].

We also calculated these measures of the multidimensional small sample AIC
although CAIC is not valid for our case as it is not a multiple linear regression.
Burnham and Anderson’s multidimensional small sample AIC depends on the
number of parameters, v, in the variance-covariance matrix, which is in the inter-
val 1 ≤ v ≤ p(p+1)/2. Since we do not know this value, the small sample AIC was
calcuated for v equal to each of the boundary conditions (1 (AIC2

c ) and p(p+1)/2
(AIC4

c )) and the midpoint ((p(p + 1)/2 − 1)/2 (AIC3
c )). As a result, a total of

four new estimates of the small sample AIC were calcualted for each data set (ap-
pendix D, table D.2 – table D.4). In general, these multidimensional small sample
AIC values agreed with each other and with the univariate AICc (equation 5.4)
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Figure 5.6. The result of using the predictive performance approach to select the
optimal number of clusters in simulated data set 104. This is a typical example of
how the correlation curves looked like for the simulated data sets.

although they made a few more mistakes than the univariate AICc. However, they
depended on the size of the data set, the same way that the univariate AICc did.

When calculating AIC and AICc above, the observed amino acid frequencies
were used to calculate the likelihood as these are the maximum likelihood estimates
for the probabilities of observing a particular amino acid. We also calculated AIC
(AIC5) and AICc (AIC5

c ) using frequencies that had been adjusted for pseudo-
counts and sequence weighting to calculate the likelihood (appendix D, table D.1
– table D.4). The result was that AIC usually estimated the correct number of
clusters, while AICc estimated too few clusters. However, the dependency of the
size of the data set was still present.
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5.5 Discussion

We developed a clustering algorithm based on Gibbs sampling that were able to
cluster mixed data sets of peptides belonging to different MHC class I alleles. The
number of clusters had to be selected before running the algorithm and we tested
two different approaches for selecting the optimal number of clusters after the
clustering had been performed. One approach was based on Akaike’s information
criterion (AIC) while the other was based on the predictive performance measured
on independent data.

Due to the relatively small sample sizes compared to the number of estimable
parameters in these models, we used a version of AIC corrected for small sample
size, AICc. AICc performed well on both real and simulated data sets as long as
only 100 peptides from each allele were included in the data set. When more than
100 peptides from each allele were included, AICc predicted too many clusters. We
tested different versions of AICc for multidimensional data and we also attempted
different ways of counting the number of samples or calculating the likelihood used
to calculate AIC, but the dependency on the size of the data set did not disappear.

It is difficult to say why AIC has this dependency on the size of the data set
but it was robust over the different ways we calculated AIC. We can not exclude
that it is due to dependencies in the data. Another explanation could be that
when more data are added, it becomes more likely that subsets of peptides share
certain sub-patterns for random reasons, and that it is these sub-patterns that
causes AIC to suggest a higher number of clusters.

It would need more investigation to confirm that this is actually the case, but
as an example consider the clustering of the simulated data set number 115. It
is a mixture of peptides from two matrices: 300 peptides from matrix 104 and
100 peptides from matrix 105. The clustering algorithm makes an almost perfect
separation of the two data sets; only five mistakes are made when it is clustered into
two clusters and four mistakes are made when it is clustered into three clusters.
Nonetheless, AICc suggests that the optimal clustering is the one consisting of
three clusters. Here, most of the 100 peptides from matrix 105 ends up in one
cluster while the 300 peptides from matrix 104 are split into two clusters (see
table 5.14).

The logos for the three resulting clusters are shown in figure 5.7. When com-
paring the logos from cluster 1 and 3 it is obvious that, while the amino acid
preferences for most positions are the same (strong preference for tyrosine (Y) at
position 2 and no preference on positions 1, 3, 8 and 9), cluster 1 has a preference
for alanine (A) on position 6 and 7, which is not seen in cluster 3, and cluster 3
has a preference for leucine (L) on position 4 and tryptophan (W) on position 5,
which is not seen in cluster 1. These preferences, although weaker, are also visible
in the logo for matrix 104 (figure D.18). But since there were no dependencies
between the different positions when we simulated the data, it is due to random
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Cluster Matrix 104 Matrix 105
1 121 1
2 2 98
3 177 1

Table 5.14. The result of clustering peptides from matrix 104 and 105 into three
clusters. The table shows how many peptides from each matrix that ended up in
each of the three clusters.
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Figure 5.7. Logos of the clusters that results form clustering peptides from
matrix 104 and 105 into three clusters.

reasons that they show up as sub-patterns in the peptide motifs.
The predictive performance, measured as the correlation between log-odds

scores and measured binding affinities for an independent set of peptides, per-
formed well on all the data sets that contained peptides with experimentally mea-
sured binding affinities. It did not work on the simulated data sets, but we think
this is primarily because we were not able to create realistic artificial binding affin-
ity for the peptides. The predictive performance did not show any dependency on
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the size of the data set as AIC did, although this conclusion is based on very
few observations, since we can not use those based on the simulated data sets. It
would be beneficial to test the size dependency of both AIC and the predictive
performance further on peptides with experimentally measured binding affinities
to known MHC class I molecules.

The drawback of the predictive performance approach is that it requires that
peptides with measured binding affinities against the MHC alleles in question are
available. This is certainly not always the case and limits the usability of this
method for detecting the correct number of clusters.

We were not able to detect any sub-motifs in the known MHC class I binding
motifs. In one clustering, the HLA-A*0101 motif was split into two sub-motifs but
they did not correspond to the previously observed sub-motifs for this allele [81–83].

The next step will be to develop the clustering algorithm to be able to deal
with MHC class II motifs. Since these peptides are of different lengths, they will
have to be simultaneously aligned and clustered. This can be achieved by a Gibbs
sampling strategy, where the sequences are not only moved between clusters but
also shifted back and forth in the alignment [93].

As mentioned in the introduction, it would be beneficial if we could detect
different binding modes of MHC molecules. But the method would also be useful
in the detection of antibody specificities. Blood serum from a patient with a
response to a given disease will usually be poly-clonal. If the antibody specificities
are investigated on a peptide chip, the result will be a mixture of peptides from
antibodies with different specificities. Here our method could be used to identify
the individual specificities in the blood serum. This could be useful e.g. in a study
of cross-reactive antibodies.
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Abstract

The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates
cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators
of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural
acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation
against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven
genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes,
and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated
with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied,
allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence.
Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were
found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered
between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and
homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found,
including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2)
potential integrin binding sites in DBLa domains, (3) an acylation motif conserved in group A var genes suggesting N-
terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several
conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for
future studies on var/PfEMP1 expression and function.
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Introduction

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)
mediates adhesion of infected erythrocytes (IE) to various host cells
on the vascular lining, during the blood stage of malaria infection
[1–2]. Naturally acquired protective antibodies in malaria-exposed
individuals target PfEMP1, suggesting it is possible to develop
PfEMP1 based vaccines [3–9].
The majority of the parasite’s ,60 PfEMP1-encoding var genes

are situated in subtelomeric regions close to other variant antigen-
encoding genes such as the rif and stevor gene families, while the
remaining ,40% are found centrally in the chromosomes. Based
on sequence similarity, var 59 UTR sequences can be divided into
upstream sequence (UPS) classes A, B, C or E. These UPS classes
correlate with chromosomal position of the genes, as well as
domain complexity of the encoded PfEMP1 [10–11]. Subtelo-
meric UPSA and UPSB genes are oriented tail to tail (39 to 39),
while central UPSC genes are oriented head to tail in a tandem
repeat manner [12], which has lead to the definition of group A, B

and C var/PfEMP1, and two intermediate groups B/A and B/C,
that contain var/PfEMP1 with chromosomal position or domain
composition different from that predicted from their UPS class.
The hyper-variable var gene repertoire is to a large extent
generated by frequent meiotic ectopic recombination in the
mosquito abdomen, probably facilitated by alignment of var genes
in the nuclear periphery [13–14]. There is also evidence suggesting
that mitotic recombination occur, and that this allows further
diversification of the var gene repertoire during human infection
[15]. Comparison of the clones 3D7, IT4 and HB3 revealed only
two var genes, var1 and var2csa, that were conserved in all three
genomes, and a semi-conserved gene, var3, found in IT4 and 3D7.
The three conserved var genes are more than 75% identical over
multiple domains, whereas most other PfEMP1 (even proteins with
the same domain architecture) display less than 50% amino acid
sequence identity between individual domains [16]. Var2csa is
particularly unique as it has a unique UPSE, encodes unique Duffy
binding-like (DBL) domains, as well as a distinct acidic terminal
segment (ATS) [17].
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Thus, parasite genomes appear to harbor essentially similar var
repertoires, each reflecting the worldwide var diversity that has
ensured the optimal survival of the parasite population. The
clinical significance of the described var groups has been
demonstrated in several studies, and indicates the existence of
underlying functional differences in adhesion characteristics of the
expressed PfEMP1 variants. This relationship is best illustrated by
the malaria syndrome occurring in pregnant women, which is
precipitated by the accumulation, in the placenta, of parasites
expressing VAR2CSA that mediates binding to proteoglycans on
syncytiotrophoblasts [17–21]. Several lines of evidence indicate
that the relatively rapid development of immunity to severe
childhood malaria is mediated through antibodies directed against
a restricted semi-conserved subset of parasite antigens [22–23] that
are associated with the development of severe disease [24–25]. In
particular group A and to some extent group B var genes have
been linked to disease severity in studies of expression of these
variants in patients with symptomatic and asymptomatic infections
[26–33]. A recent study has corroborated these findings and
qualified which group A and B PfEMP1 variants may be
associated with severe malaria disease, by demonstrating a
sequential and ordered acquisition of antibodies to PfEMP1
domains in Tanzanian plasma donors [34].
In contrast to pregnancy malaria, it is still unclear which

human receptor binding, if any particular, is linked to severe
forms of childhood malaria. Parasite adhesion has been
demonstrated to endothelial cells, immune system cells, unin-
fected erythrocytes and platelets. Several human cell receptors,
including the extensively studied CD36 and intercellular
adhesion molecule 1 (ICAM-1), have been implicated in adhe-
sion, although no consensus on association between receptor
binding and severe malaria has been reached (reviewed in [35]).
PfEMP1 is responsible for parasite adhesion, as several single
domains of the large multi-domain PfEMP1 molecules have been
shown to bind human receptors. From N- to C-terminal,
PfEMP1 has previously been described as composed of an N-
terminal segment (NTS), Duffy binding-like (DBL) domains, Cys
rich inter-domain regions (CIDR), C2 domains, one transmem-

brane region (TM) and the acidic terminal segment (ATS)
(Figure 1A). Six major classes of DBL domains have been
proposed based on amino acid sequence similarity: DBLa, b, c,
d, f, and e. DBL domains have been further characterized by
definition of 10 semi-conserved homology blocks (HBa-j)
interspersed by hyper-variable regions [36], and by definition
of three structural subdomains (S1–3) [37] (Figure 1D). It has
been shown that various DBLb domains have affinity for ICAM-
1 [38–40], whereas DBLd adheres to platelet-endothelial cell
adhesion molecule 1 (PECAM-1) and DBLa has been associated
with binding to heparin sulfate (HS), blood group A antigen
and complement receptor 1 (CR1) [41–42]. CR1 binding is
associated with IE adhesion to uninfected erythrocytes, a
phenomenon known as rosetting, which appears to be mediated
to some degree by group A PfEMP1 [42–44].
CIDR domains have been divided into three classes: CIDRa, b,

and c [2,10,16,36], and described as consisting of three regions,
those being the minimal CD36 binding region denoted M2,
flanked by less conserved M1 and M3 regions [36,45]. Several
CIDRa class domains have been found to mediate binding to the
human CD36 receptor [1,45–46], however, such binding is limited
to group B and C PfEMP1, indicating that group A variants have
a distinct function [47]. Furthermore, CIDRa domains have been
found to bind immunoglobulin M and PECAM-1 [41].
Although it is evident that the organization of PfEMP1

sequence diversity is of relevance for malaria pathogenicity, the
vast sequence variation of the protein family continues to impede
experimental procedures and interpretations. In order to better
understand and determine the potential targets for a PfEMP1-
based vaccine against severe malaria, it is therefore essential to
establish a rigorous classification and solid reference frame of
PfEMP1 diversity.
In this work, PfEMP1 repertoires from seven genomes are

annotated with updated domain boundary definitions. The data
includes four thoroughly sequenced P. falciparum genomes that
have not previously been classified: DD2 from Indochina (9.556
coverage), RAJ116 from India (7.36 coverage), IGH-CR14 from
India (10.196 coverage), and the Ghanaian isolate PFCLIN (86
coverage). Domain architectures of 399 PfEMP1 are aligned,
revealing conserved domain architectural features. The homology
block concept, first described by Smith et al. (2000) [36], is
extended from DBL domains to the entire PfEMP1 by application
of a novel iterative homology search technique, defining 628
homology blocks covering on average 83% of any PfEMP1 with
only 4% self-overlap. The homology blocks describe relations
between sequences in finer detail than domains, revealing that
domain subclasses often consist of fragments from different
domain super-classes, probably as a result of extensive recombi-
nation. Evidence for a recombination hotspot is also found. The
definition of conserved blocks in PfEMP1 allows identification of
conserved functional elements, such as predicted sites for post-
translational modifications, which may significantly affect both
substrate binding and immune evasion.

Results/Discussion

The var gene sequence analysis was based on two different
bioinformatics approaches. First, phylogenetic trees were con-
structed using re-assessed PfEMP1 domain borders, with the aim
of reclassifying and annotating the main PfEMP1 features UPS,
NTS, DBL, CIDR and ATS. Secondly, a novel iterative homology
detection method, defining a set of homology blocks, was used to
describe domain similarities and to guide var gene recombination
site and functional predictions.

Author Summary

About one million African children die from malaria every
year. The severity of malaria infections in part depends on
which type of the parasitic protein PfEMP1 is expressed on
the surface of the infected red blood cells. Natural
immunity to malaria is mediated through antibodies to
PfEMP1. Therefore hopes for a malaria vaccine based on
PfEMP1 proteins have been raised. However, the large
sequence variation among PfEMP1 molecules has caused
great difficulties in executing and interpreting studies on
PfEMP1. Here, we present an extensive sequence analysis
of all currently available PfEMP1 sequences and show that
PfEMP1 variation is ordered and can be categorized at
different levels. In this way, PfEMP1 belong to group A–E
and are composed of up to four components, each
component containing specific DBL or CIDR domain
subclasses, which in some cases form entire conserved
domain combinations. Finally, each PfEMP1 can be
described in high detail as a combination of 628 homology
blocks. This dissection of PfEMP1 diversity also enables
predictions of several functional sequence motifs relevant
to the fold of PfEMP1 proteins and their ability to bind
human receptors. We therefore believe that this descrip-
tion of PfEMP1 diversity is necessary and helpful for the
design and interpretation of future PfEMP1 studies.
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Grouping and componential composition of PfEMP1
In total 399 PfEMP1 sequences were annotated and their domains

aligned. The alignments confirmed what recent studies of the DBL fold
[48–49] and binding affinities [38] have implied; that the domain
borders, by which PfEMP1 domain subclasses have been classified
[36], needed revision. The redefined domain borders introduced by
this study are specified in Text S1, and lead to two fundamental
nomenclature changes: omitting the term ‘‘C2’’ from DBLb domains,
as also suggested in [39]; and the separation of M3 sequences from
CIDR domains. Distance tree analysis of all DBL domains confirmed
the expected phylogenetic grouping of DBL into six major classes
(DBLa, b, c, d, e, and f), as well as five smaller distinct classes (the four
N-terminal DBL domains of VAR2CSA [10], and the DBLa of VAR3
which grouped in a separate cluster between DBLa and DBLf). Five
major CIDR domain classes were defined: CIDRa, b, c, d, and pam
(Figure S1). The CIDRd class has not previously been identified,
probably due to the difference in sequence depth between this and
previous CIDR classification (655 vs. 36) [36]. The inter-domain 2

(ID2) of VAR2CSA is partially homologous to CIDR domains [50],
and was therefore included here as CIDRpam, although particularly
different from other CIDR domains. NTS sequences were divided into
three classes, NTSA, NTSB, and NTSpam (Figure S2L and Figure
S3Y), while ATS sequences were divided into ATSA, ATSB,
ATSpam, ATSvar1, and ATSvar3 (Figure S2M).
The 59 upstream sequences of var genes were analyzed by two

different methods: Markov clustering (MCL) [51–53], and
neighbor joining (NJ) clustering (based on multiple sequence
alignments). The two analyses yielded congruent trees, although
additional subclusters could be identified in the NJ tree (Figure
S2N and O). All previously suggested UPS subgroups [16]
(UPSA1–2, UPSB1–4, UPSC1–2 and UPSE) could be identified,
although with some modifications and four additional subgroups
(UPSA3 and UPSB5–7).
Although the number of available var sequences varied between

the seven studied genomes (39 to 63), the genomes contained
similar var UPS distributions (Figure 1), and as expected, UPSE

Figure 1. PfEMP1 annotation overview. (A) Schematic of the var gene locus. (B) 399 var exon1 annotated with UPS class and encoded major NTS,
DBL and CIDR domain classes and their arrangement in four components. Color code for UPS column: Green: UPSA; Red: UPSB; Orange: UPSC; Pink:
UPSE. Color code for NTS column: Green NTSA, Red: NTSB, Cream: NTSpam. Color code for DBL and CIDR domains (D columns): Bright Green: DBLa;
Orange: DBLb; Yellow: DBLc; Olive green: DBLd; Pink: DBLe; Blue: DBLf; Blue stripes: DBLa of VAR3. Grey: CIDRa; Red: CIDRb; Light purple: CIDRc; Dark
purple: CIDRd. (C) Average distribution (% +/2 95% confidence intervals) of UPSA–E flanked and component 1–4 containing genes in the seven
sequenced genomes 3D7, HB3, DD2, IT4, PFCLIN, RAJ116 and IGH. (D) Schematic presentation of DBL and CIDR subdomains and homology blocks.
The numbered blocks represent the core homology blocks found in all DBL domains (HB2, 3, 4 and 5), all CIDR domains (HB8 and 10) or both domain
types (HB1), further described in Figure 5.
doi:10.1371/journal.pcbi.1000933.g001

PfEMP1 Diversity in Seven Genomes

PLoS Computational Biology | www.ploscompbiol.org 3 September 2010 | Volume 6 | Issue 9 | e1000933



flanked var2csa, NTSA and ATSA were exclusively encoded by
UPSA flanked genes, whereas other NTS and ATS classes were
found in UPSB and C flanked genes. The general observation that
UPSA and UPSB genes are located head to head in the telomeres
was also confirmed (data not shown), although only limited
information on chromosomal location was available. Based on
domain annotation of the extracellular part of PfEMP1 (Figure 1
and Figure S4), these could be described as consisting of four
components: component 1 (present in ,95% of all PfEMP1)
containing the N-terminal NTS-DBLa-CIDR domains, compo-
nent 2 (present in ,43% of all PfEMP1) containing one to three
DBLb and DBLc domains, component 3 (present in ,80% of all
PfEMP1) containing DBLd-CIDRb/c domains, and component 4
containing C-terminal domain combinations of DBLf and DBLe
domains (present in ,28% of all PfEMP1) or single DBLb or
DBLc domains (present in ,8% of all PfEMP1). The complexity
of domain structure followed the UPS classification, in agreement
with established group A, B and C PfEMP1 nomenclature
[10–11]. There was an overrepresentation of component 2
encoding genes in group A compared to group B or C var
(p,0.0001; X2 test of component 2 prevalence in group A–C), and
component 4 was found in both group A and B but rarely C.
PfEMP1 inter-domain (ID) sequences were also aligned and

classified. Most ID sequences were found to flank component 3,
and characteristic for these sequences were long Pro-rich stretches,
charged polyAsp/Glu stretches, and an amino acid composition
biased towards Ala, Asp, Glu, Pro, Lys, and Val. The sequences
downstream of component 3 could be classified, and were either of
a M3A type if flanked by component 4, or M3AB if flanked by
TM-ATS (Figure S3Z and Figure S4). Due to less functional
constraints, ID sequences may have more relaxed requirements to
the position of recombination break points, compared to within
domains. The ID sequence variation supports the division of
PfEMP1 into the four components, which suggest that the low-
complexity ID sequence may act as recombination break points.

Inter-domain elasticity. The function of the ID sequences is
unknown, although one possibility is that these regions confer
elasticity to the PfEMP1 proteins, as suggested for similar sequence
in the PEVK region of the human striated muscle protein titin
(also known as connectin). The PEVK region of titin contains
several PPAK domains, a 26–28 residue repeat consisting of low-
complexity sequence biased towards Pro, Ala, Val, Lys, and Glu,
and these domains are interspersed by polyGlu regions. The
PEVK region length is correlated with elongation ability of
sarcomeres in striated muscle [54], and the secondary structure
has been found to be disordered [55].
The PfEMP1 ID regions are found in lengths up to,200 residues,

and the amino acid composition is very similar to the one found in
titin PEVK. Hits to the Pfam PPAK domain definition [56] in four
PfEMP1 supports the sequence similarity (E,0.1 in DD2var52,
IT4var64, HB3var34 and PFCLINvar47). The acidic and basic
residues can potentially form random structures based on polar
interactions, mixed with Pro which introduces kinks in the protein
backbone, together forming a structure with spring-like properties.
Elasticity could enhance the ability of infected erythrocytes to adhere
to endothelial cells by providing a smooth deceleration, as well as
extend the time given to establish strong molecular interactions with
targets. It is likely that the variant disordered structure of the inter-
domain regions impede antibody targeting.

PfEMP1 groups contain specific subclasses of DBL and
CIDR domains
The redefinition of domain borders, and the large increase in

sequence data, called for a detailed subclassification of PfEMP1

domains. This was done by a distance tree analysis described in
detail in Text S1, summarized for DBL and CIDR domains in
Figure 2. The sequence diversity of the major DBL and CIDR
domain classes differed both with respect to homogeneity (i.e.
shared AA %-identity), and the degree to which subclasses could
be distinguished. The previously observed division of DBLa into
DBLa1 and DBLa0 [10–11] was confirmed, however a third
distinct class of sequences, DBLa2, was also identified. Sequences
of DBLa1 grouped relatively evenly into eight subclasses,
including the particularly distinct DBLa1.3 of VAR3 (note
description of nomenclature usage in Text S1), whereas the
DBLa0 sequences spread more unevenly into 24 subclasses (Figure
S2A,B and Figure S3I–K). The homology block analysis of VAR3
(described in the homology block section below) revealed that the
N-terminal part of DBLa1.3 is similar to other DBLa domains,
but interestingly, the C-terminal half of the domain is essentially a
DBLf3 domain. All DBLe and DBLf domains grouped evenly
into distinct subclasses, while DBLb and DBLc domains were
divided into less distinct subclasses of varying sizes, and most
(,90%) of DBLd sequences could not be subclassified. The
homogeneity of the six major classes differed with DBLb domains
being the most (45%) and DBLe the least (31%) homogenous
classes. In particular subclasses DBLe1/2/11/13 were distinctively
different from the majority of DBLe domains (Figure S2E and
Figure S3N–Q). Similar to DBL domains, the level of subclassi-
fication of major CIDR domain types varied. Most members of
CIDRa3.1 and CIDRb subclasses could not be separated, whereas
other CIDR domains grouped in evenly sized subclasses. The
homogeneity of CIDR classes varied with CIDRa1 and CIDRd
domains exhibiting higher sequence similarities than the other
CIDR classes. Sequence conservation logos for all large CIDR
classes can be found in Figure S3A–H.
Annotation of the PfEMP1 using detailed DBL and CIDR

subclassification (Figure S4) showed that most classes could be
linked to a specific UPS class (Figure 2). When domain classes
were found frequently in genes of more than one group, they were
most often shared between group A and B or group B and C, but
rarely A and C. These observations support the validity of the
subclassification, and the notion that group A–C var genes
predominantly recombine separately.
In conclusion, the phylogenetic domain analysis allowed

classification of all PfEMP1 domains, and defined several novel
domain classes. In addition, PfEMP1 domain variation was
described in an unprecedented level of detail, by the allocation
of the DBL and CIDR domains into subclasses. This classification
is based on domain similarities averaged over the whole domains,
opposed to local similarities which may vary across the length of
the domains, as described in the homology block analysis below.
The validity of the classification must be experimentally tested, but
the association between domain and UPS class suggests, that at
least some of the domain subclasses confer specialized cytoadhe-
sion properties.

Identification of conserved PfEMP1 domain cassettes
Conserved domain compositional features in PfEMP1 mole-

cules were studied in alignments of annotated PfEMP1 sequences.
Alignments guided by conserved C-terminal and N-terminal
domain architectures are given in Figure S4A and B, respectively.
In particular the alignments were investigated to identify domain
cassettes, which were defined as two or more consecutive domains
belonging to particular subclasses and present in three or more of
the 7 genomes (summarized in Figure 3).
The three conserved var genes var1, var2csa and var3 (Figure 3,

cassettes 1–3), all encoding unique DBL domains, were present in
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all seven P. falciparum genomes, except var3 which was not present
in HB3 and IGH. As previously reported, fragments of var1 and
var2csa, but not var3, were found in P. reichenowi [57]. Some
variation in domain composition was observed within the three
conserved gene families. Thus, in RAJ116, var2csa encoded an
extra C-terminal DBLe domain, and in DD2, the var1 gene
encoded C-terminal domains different from the other var1 genes.
Var1 of 3D7 and IT4 appeared to lack an exon2 sequence,

whereas five var1 genes had a premature stop codon at similar
positions in their exon2. Domain pairs characteristic for var1
(DBLc1/15-DBLe1 and DBLf1/2-DBLe) were found in other
group A var genes (IT4var9, IGHvar32, DD2var23 and
HB3var06). Taken together, this indicates that var1 often is found
as truncated gene, and that the particular functional properties of
VAR1 may have moved to other PfEMP1 variants. Similarly, a
VAR3 sequence corresponding to 80% of the exon1 as well as

Figure 2. DBL and CIDR domain class characteristics. Number of observations (#obs) of CIDR and DBL domain classes in 399 PfEMP1 (Figure
S5), number of genomes represented in the classes (#genomes) (of the seven genomes 3D7, HB3, DD2, IT4, PFCLIN, RAJ116 and IGH), and the
average shared sequence identity of major and minor subclasses (%ID). A color was added under domain classes where at least 25% of the observed
domains were found in UPSA (green), UPSB (red), UPSC (yellow) or UPSE (pink).
doi:10.1371/journal.pcbi.1000933.g002
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exon2 was found in the 39 end of RAJ116var03, consistent with
how DBLf and DBLe domains are positioned in other PfEMP1.
The domain composition variation within the three most
conserved var genes highlight the importance of ectopic recombi-
nation of large single or multi domain elements for the generation
of PfEMP1 diversity.
Among the novel domain composition phenomena, domain

cassette 5 (Figure 3) was the most prominent. This four domain C-
terminal cassette was found exclusively in ten group A PfEMP1,
and in six of the seven P. falciparum genomes as well as in P.
reichenowi.
Interestingly, nearly all DBLf and DBLe domains were found in

C-terminal domain cassettes (domain cassettes 1,3,6,7 and 9–12) and
often occurred in genes encoding CIDRc1/2/9 domains (approx.
three of four CIDRc1/2/9 domains flank DBLf and DBLe
domains). The unambiguous partition of DBLe subclasses and the
positional and compositional similarities between different DBLe,
could suggest that specialized functions reside in these structures.
In the PfEMP1 N-terminal, DBLa subclasses correlated well

with the subclasses of their neighboring CIDR domain (Figure
S4B). As expected, all group A PfEMP1 except VAR3 exclusively
contained the domains DBLa1-CIDRa1/b2/d/c3, but further-
more, group A PfEMP1 appeared to be divided into those
harboring either DBLa1.5/6/8-CIDRb2/c3/d (includes cassettes
11 and 16 in Figure 3; Figure S4, frame 15) or DBLa1-CIDRa1.
Within group B and C PfEMP1 two major groups were observed,
those encoding DBLa0 domains associated with CIDRa2, and
those encoding DBLa0 domains associated with CIDRa3. In
addition, eight distinct CIDRa containing cassettes were found,
including domain cassette 8 which is particularly noteworthy, as it

is associated with UPSB2 (7 of 12 domain cassette 8 encoding
genes are flanked by 7 of 11 UPSB2) and contains DBLa2, which
formed a separate cluster from DBLa0 and a1 in the DBLa tree.
Domain cassette 8 may be expanded further in a less well defined
form with two domains (DBLb12-DBLc4 or DBLc6) (Figure S4A,
frame 10).
Several more elusive domain architectural constraints were

observed, which may crystallize into domain cassettes if higher
sequence depth is acquired. These included the group A specific
domain combinations DBLa1.4-CIDRa1.6/7-DBLb3, which
both could represent the core of what have been proposed as
VAR4 (represented by PFD1235w; Figure S4A, frame 9) as well as
DBLb7-DBLc-DBLc (Figure S4A, frame 9).
The present description of PfEMP1 diversity was based on analysis

of seven near complete genome sequences: four Asian, two African
[58], and one Central American isolate. None of the described
domain architectural constraints were found exclusively in the
African or Asian isolates, which strongly imply that there is no basic
difference between the PfEMP1 repertoires of P. falciparum around the
world. However, more P. falciparum genome sequences are desirable
to gain a better resolution of conserved domain cassettes.
In general there were no correlation between occurrences of N-

terminal and C-terminal domain cassettes, and whereas group A
PfEMP1 shared no N-terminal domain cassettes with group B or C
PfEMP1, C-terminal domain cassettes were more often shared
among PfEMP1 groups. The three conserved var genes have
already attracted warranted attention, but while the binding
specificity of VAR2CSA and its relevance in pregnancy malaria is
well established, no function or clinical importance has been
assigned to VAR1 and VAR3. Several studies have aimed to

Figure 3. Overview of distinct PfEMP1 domain cassettes. A PfEMP1 domain cassette was defined as a var gene sequence encoding two or
more DBL or CIDR domains with subclasses that could be predicted from each other. In a few cases domain cassettes (filled frames) could be
expanded with additional domains but in limited number of genes or genomes (punctured frames). A cassette was given an association score
calculated as the average of all domain pair associations of a domain cassette. Each domain pair association (A–B) was calculated by dividing the
number of times the domain combination was observed in the dataset by the least number of times either A or B was found in the dataset. The
association score does not include the UPS association. Associated UPS classes are colored according to the UPS class most often observed flanking
the cassette. Less frequent flanking UPS classes are in brackets. The number of times a given domain cassette was observed (count) and the number
of genomes in which it is present (genomes) within the seven genomes, 3D7, HB3, DD2, IT4, IGH, RAJ116 and PFCLIN are given. The frame number in
Figure S4, detailing the genetic context of the domain cassette is also given.
doi:10.1371/journal.pcbi.1000933.g003
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define the PfEMP1 molecular background for severe malaria in
children. Most ex vivo studies [27,29–31] have relied on relating
phenotypic or clinical data to the phylogeny of partial DBLa tags
amplified from parasite cDNA, or direct quantitative PCR
measurements of group A, B and C var genes. Although these
approaches target some of the best conserved PfEMP1 phenom-
ena, both methods disregard the structures unlinked to the
PfEMP1 N-terminal, and fail to reflect some of the most evident of
the conserved N-terminal domain cassettes. Nevertheless, the
consensus drawn from these studies and in vitro studies of model
parasite lines [28] emphasize the importance of group A PfEMP1
in severe malaria, and interestingly, often the particularly distinct
group A domain cassette 5 [9,28,34].
Although several of the domain classes and PfEMP1 structural

constraints presented here are vaguely defined and by themselves
difficult to rank according to clinical relevance, the PfEMP1
diversity described by groups, components, domain classes and
cassettes offers an operational model for design and interpretations
of future experimental studies.

PfEMP1 homology blocks
DBL domains consist of hyper-variable and conserved regions, as

previously described [2,36,59], and in a comparison of DBL
similarity, Smith et al. (2000) were able to define a set of ten
homology blocks with an average length of 21 amino acids, conserved
in all DBL domain classes [36]. To describe in detail these frequent
shifts in conservation level across PfEMP1, an iterative method was
developed that automatically defines a set of homology blocks in a set
of unaligned protein sequences. The method is especially appropriate
for the frequently recombining var genes, as the short homology
blocks are less inclined to group unrelated sequences which may be
forced together in longer domain alignments.

The term homology block (HB) refers to a sequence profile defined
from a multiple sequence alignment, here described by a hidden
Markov model (HMM) [60]. Sequences with similarity above a
threshold to the sequence profile are termed members, hits or
occurrences of the homology block, and the members of a homology
block can be defined in a sequence by searching with the HMM.
Starting from a full sequence database, homology blocks were

one after one first defined and then excluded from the database.
Each homology block was defined to be the sequence profile with
the highest number of occurrences in the database, i.e. the most
conserved sequence, with boundaries optimized to match this
criterion. Sequence similarity was assessed with HMM log-odds
scores, and a significance threshold of S$9.97 bits was used for all
homology blocks, to ensure that each member of a homology block
was at least 1000 times more likely to be related to the sequence
profile, than to a random sequence with amino acid frequencies as
in the database. Thus, a set of homology blocks was defined, where
each homology block comprises all related sequence stretches in the
database. The method is described in detail in Text S2.
The analysis was performed on a database with 311 PfEMP1

sequences containing information on the entire molecule or a full
exon1. Twenty DBL containing paralogs were also included to
enable estimates of evolutionary relationships. The minimal length
of the homology blocks was set to seven amino acids, as this is
approximately the length required to reach the sequence similarity
significance threshold. Sequences with less than five homologs in
the database were not included in the homology block set, since
PfEMP1 from more than seven P. falciparum genomes were in the
dataset, and the main interest was to determine sequence features
conserved in most of these genomes.
Characteristics for the resulting 628 homology blocks are shown

in Figure 4. On average 83.5% of a PfEMP1 sequence was

Figure 4. Characteristics for 628 PfEMP1 homology blocks. (A) Length corresponds to the alignment length of the multiple sequence
alignment defining the HB. Sequence identity in the table is given as mean and SD for the distribution of all homology block avg. pairwise identities.
HB coverage and overlap were calculated per PfEMP1 and mean and SD are given for these distributions. (B) Length distribution for HBs. The most
frequent length was 10 residues. (C) Scatter plot showing avg. pairwise sequence identity for HBs of differing length. (D) Histogram showing number
of HBs with same prevalences in the database. The bin size of the histogram is 10 hits. One HB was found with a prevalence of 1605 hits in the
PfEMP1 database, representing a HB present in nearly all DBL and CIDR domains. Similarly, a number of homology blocks were found specifically in
each of the domains DBL, CIDR, NTS and ATS. Most homology blocks had between 5 and 15 hits.
doi:10.1371/journal.pcbi.1000933.g004
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described by homology blocks, and the remaining fragments were
either shorter than seven residues, or had fewer than five
homologous sequences. Overlap between homology blocks were
mainly concentrated in areas with low complexity sequence, such
as the inter-domain regions, and amounted to an average of 4.2%
of HB occurrences in a PfEMP1 sequence (Figure 4A). The most
frequent HB length was 10 residues, while the average was 19
residues (Figure 4B). HB average sequence identity was between
19–100%, and as might be expected for the shortest sequences,
only similarities with high identity could be detected within the
significance threshold (Figure 4C). The analyzed PfEMP1
sequences contained 311 NTS, 199 ATS, 1043 DBL and 552
CIDR domains, while the paralogs contained 30 DBL domains.
One homology block occurred 1605 times in the database and was
found in all DBL and CIDR domains, except 20 (not present in
DBLpam2, DBLe7 and DBLe12), while four other blocks were
found in all DBL domains and six blocks were strongly correlated
with CIDR (Figure 4D). The homology blocks were numbered
according to their frequency in the database, with the most
frequent being HB number one.
88 PfEMP1 were not in the HB definition sequence set, and

when the 628 defined homology blocks were predicted in these
proteins, 82.5% (SD 64.9%) of each PfEMP1 were on average
covered by HBs, similar to the coverage in the definition sequences
(Figure 4A), showing that the homology blocks describe universal
PfEMP1 sequence features.
The VarDom server was developed to provide an interactive

graphical interface to analyze information on domain classes,
homology blocks and their distribution in PfEMP1 sequences.
Alignments and other related files can be downloaded, and it is
possible to submit new sequences to annotate them with domains
and homology blocks, to classify them and relate them to other
sequence groups in the seven genomes: http://www.cbs.dtu.dk/
services/VarDom/ In the following, the HB distribution in
PfEMP1 is presented, and several references are made to specific
homology blocks. These blocks as well as the sequences they occur
in can be inspected using the VarDom server.

Homology blocks describe the conserved core of DBL
and CIDR domains
The five most prevalent homology blocks in PfEMP1 (HB1–5)

were present in nearly all DBL domains. The relative positions of
these five HBs in DBL domains were conserved (Figure 5A), and
within the HBs several amino acid positions were strongly
conserved in all DBL domains. Figure 5B shows occurrences of
HB1–5 in DBL1 (a.k.a. F1) of the paralog PfEBA-175 and
DBLpam3 (previously DBL3X) of VAR2CSA. The DBL structure
consists of subdomain 1 (S1) with mixed helix-sheet structure, and
two helix bundles (S2 and S3) [37,49]. Disulfide bonds between
conserved Cys residues mainly serve to hold together each
individual subdomain, demanding other types of interactions to
hold a stable domain structure [37,50,61–62]. HB1, which was
also found in CIDR domains, described a complete a-helix with
one side conserved, giving a pattern of conserved residues spaced
by 3 residues for each helix-turn (Figure 5A). The conserved side
of HB1 faced HB2, which was found to be the most conserved
sequence in DBL domains, with a mean amino acid sequence
identity of 56%. HB2 was part of a longer helical structure and
interfacing with HB1, HB3 from the other helix bundle, and HB4
which formed the non-surface exposed part of S1 (Figure 5B and
C). All these interactions probably constitute the main selection
pressure, keeping HB2 relatively conserved. HB3 in S2 corre-
sponded to HB2 in S3, with interactions to HB2, HB5 and HB4,
and with mean sequence identity of 47% it was found to be the

second most conserved part of DBL domains. HB5 was mainly
conserved on one side of the helix like HB1, suggesting for both
that they may be frequently exposed on the surface of PfEMP1.
Side chains in conserved amino acid positions were mainly

directed towards other conserved parts, although some were
pointing outwards probably to interact with other less conserved
domain parts (Figure 5B and C). Functions for some of the
conserved amino acids in HB1–5 were identical in both structures
(Figure 5A and D), where they formed polar and hydrophobic
interactions between the three subdomains. Besides from the
conserved polar interactions shown, the conserved Pro on position
4 in HB4, which introduced a kink in the b-sheet structure of S1,
was in a position allowing it to interact hydrophobically with the
also conserved Trp on position 8 in HB2. It may thus contribute to
hold the b-sheet in place. In general the conserved positions of
HB1–5 described a set of residues, which in the known DBL
domain structures interact to hold together the three DBL
subdomains, so they can be said to constitute the conserved core
structures and interactions of DBL domains.
HB1–5 were found among the 10 homology blocks defined by

Smith et al. (2000) [36], where HB4=HBb, HB3=HBd,
HB5=HBf, HB2=HBh and HB1=HBj. The remaining homol-
ogy blocks, defined in that paper, were not found to be conserved
in all DBL classes, based on the chosen similarity significance
threshold.
Homology blocks specific for all CIDR domains were also

found, and they were present in the most conserved part of CIDR,
the designated minimal CD36 binding region or M2 [36,45], for
which the structure is known [48] (Figure 5E and F). HB8, HB1
and HB10 were found to correspond to helix 1, 2 and 3
respectively in the three-helix bundle, and the similarity of this
bundle to subdomain 3 of DBL was confirmed by the presence of
HB1 in all CIDR and DBL domains. The conservation of these
three helices suggests that this structure is common to all CIDR
domains. Interestingly, four HBs (HB12, 7, 9 and 6) situated in
subdomain S3 of DBLa and DBLd domains, were exclusively
found flanking all CIDR domains, strongly supporting the link
between CIDR and DBL domains.
Side chains of conserved residues in HB1, 8 and 10 were mainly

directed towards the center of the CIDR three-helix bundle
(Figure 5F), where they interacted to keep the structure together.
Some parts of the structure have not been solved, including the C-
terminal end of HB8 with several conserved basic residues and a
Cys likely to form a disulfide bridge to position 1 in HB1. A few
conserved residues in HB8 were directed away from the helix
bundle core. Among these were the basic position 24 and possibly
also 28 as the distance fits with a helix turn. These residues may
thus be involved in interactions with surrounding parts of the
PfEMP1 such as the helix-loop of CIDR, or even substrate
binding, and they may be target for the cross-reactive antibodies
inhibiting CD36 binding described by Mo et al. (2008) [63].

Alignment of DBL homology blocks
Just as PfEMP1 can be represented as strings of amino acid

symbols or strings of domain names, they can be represented at an
intermediate level as a string of homology blocks. To study
similarities between DBL domains, the homology block sequences
of 1043 DBL domains, consisting of 378 different HBs, were
studied (Figure 6). Occurrences of the same homology block were
vertically aligned (Figure 6, center), and rows in the alignment
were sorted according to a NJ-tree (Figure 6, left) built based on
differences in HB composition of the DBL sequences. The five
core homology blocks divides DBL domains into six regions, and
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sequence conservation logos are shown for representative
homology blocks in each region (Figure 6, top and bottom).
Many of the domain classes derived from trees based on amino

acid alignments (Figure 2 and Figure S2), were also found by the

tree based purely on the absence or presence of homology blocks
(Figure 6), and these groups can thus be described by a specific
homology block combination. Most major classes formed
monophyletic groups, with the exception of DBLc and DBLe,

Figure 5. Conserved domain cores. (A–D) Five most conserved PfEMP1 homology blocks form DBL-core structure. (A) Schematic showing relative
positions in DBL domains of HB one to five (S1–3 indicate subdomains) and sequence conservation logos for each homology block alignment. The
height of each position in the logos indicate the amino acid conservation level, and the height of the individual amino acids reflect their relative
frequencies on the position and thus their contribution to the conservation. A small sample bias correction has been subtracted in the logos, on
alignment positions containing few (,40) amino acids, and error bar height is 26 the correction. Polar amino acids are green, neutrally charged are
purple, basic are blue, acidic are red, and hydrophobic amino acids are black. HB numbering is based on level of conservation in PfEMP1 and related
sequences. (B) HBs shown on PfEBA-175 DBL1 structure, and (C) on VAR2CSA DBLpam3 structure. Side chains are shown for conserved positions with
conservation level higher than 50% of maximum, corresponding to 2.16 bits. DBL areas which are not part of HB1–5 are shown as lightgray in rightmost
column, while left side shows only HB1–5, color coding as in panel A. Coloring intensity in the structure is proportional to conservation level in the HBs.
(D) Polar interactions between conserved positions in EBA-175 and DBLpam3. The conserved pink residues are underlined in Figure 5A. (E–F) Conserved
sequence blocks in CIDR domains. Relative homology block positions, and sequence logos (E). HB12, 7, 9 and 6 are all strongly correlated with CIDR
domains. (F) HBs shown on the structure of the M2 part of MC179 CIDRa domain. Disulfide bridges are shown in orange.
doi:10.1371/journal.pcbi.1000933.g005
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which formed one big cluster with several well-defined subgroups.
Minor subgroups were mainly found in DBLf, c and e (Figure 6,
tree group a–u), and many correlated well with domain classes
based on amino acid alignments. Most subgroups of DBLa, b, and
d were too subtle to be distinguished. The DBLa0-DBLa1 division
was not clearly found, although HB36 may approximately
describe the difference, by being present in 205 of 230 DBLa0
domains, and in none of the 61 DBLa1. HB36 was absent in all
cys2 sequences but present in all cys4 sequences, thus describing
the division between group 1–3 and 4–6 in the DBLa sequence tag
classification [64].
Domain subclasses (Figure 2) could often be described by

subclass specific homology blocks. For instance DBLf4 was
described by HB283 and HB284. Other subclasses were
characterized by HBs shared exclusively with other major domain
classes, examples being DBLf1, which shared HB19 with DBLa
(Figure 6e S1, blue), and DBLc2/9 domains, which were
characterized by having a DBLb S3 subdomain (Figure 6 S3,
green pointers). Similarly, the S3 subdomain of VAR1 DBLe1 was
very similar to the one present in a number of DBLc sequences
(Figure 6 S3, tree group u). Cassettes could also be identified,
exemplified by HB331, which occurred exclusively in the N-
terminal of DBLb domains in domain cassette 5 (Figure 3).
DBLa1.3 of VAR3 contained HB17 and HB19 which were

characteristic for DBLa domains (Figure 6 S1), but S2c and S3 in
DBLa1.3 were very characteristic for DBLf, sharing several DBLf
specific homology blocks: HB92, HB99, HB592, HB93, and
HB18. Thus, homology block analysis of VAR3 suggests that
DBLa1.3 is a DBLa-f hybrid, and it will be interesting to see if the
function of this domain is similar to any of the two combined
classes alone. The finding of DBLf elements in VAR3 associates
this PfEMP1 with the domain combination DBLf-DBLe, often
found in component 4 cassettes (Figure 3, Component 4), which
could imply functional analogies between VAR3 and these
cassettes.
DBLpam1 and 2 shared homology blocks with DBLa/b/f,

while DBLpam4 and to a high degree DBLpam5 and 6 shared
blocks with DBLc/d/e (Figure 6). Interestingly, DBLpam1
contained HB65 (Figure 6 S1, pink), a sequence that was mainly
found in DBLb. However, in the C-terminal end DBLpam1
shared HB60 with DBLa (Figure 6 S2c, yellow) and HB115 with
DBLf1/5/6 (Figure 6 S3b, green, tree group b, c and e). Thus,
DBLpam1 appeared to contain elements from all of DBLa, b and
f. The shared homology blocks, as well as the fact that the hybrid
domains DBLa1.3 and DBLpam1 appears to be functional,
suggests a more recent common ancestry and possibly related
functions of DBLa, b, f, pam1 and pam2 domains.
Similarities between major DBL classes also varied considerably

across the length of the domains (Figure 6), and a major homology
break point, where similarities differed on each side, was observed
for many sequences around HB2, the most conserved DBL
homology block.
In the N-terminal, a clear division was found between DBLa/

b/f and DBLc/d/e, best defined by HB11 and HB13, respectively

(Figure 6, S2a). At this end of DBL domains, only the core
homology blocks HB1–5 occurred in both groups, indicating low
levels of recombination between these groups, and possibly
different functions. Within these groups, DBLf had high similarity
to DBLb, most significantly in the S1 subdomain, and DBLd was
very reminiscent of the DBLc in the N-terminal, some sequences
were even identical on the homology block level (Figure 6g, h, j,
and k).
The C-terminal of DBL domains could also be divided into two

major groups, consisting of the S3 subdomains of DBLa/d and
DBLf/b/c/e, respectively (Figure 6, S3). DBLa and d shared four
homology blocks connecting to the downstream CIDR domains. S3
homology blocks in DBLf and b were uniform and specific to each
class, whereas DBLc and e S3 were more diverse (Figure 6, S3).
N- and C-terminal ends of several major DBL domain classes

thus appear to have different sequence similarities, most likely
reflecting that the sequences have been joined through recombi-
nation, often with a break point around HB2, and they therefore
have different evolutionary histories. Phylogenetic classification
based on whole domain sequence alignments will tend to be an
average of such different histories.

Evolutionary relationships among DBL subdomain se-
quences suggest intra-DBL recombination break point.
Identification of adjacent genetic regions with different
evolutionary histories is a widely used method for detecting
recombination break points in distantly related sequences [65–
66]. To get a complete picture of evolutionary relations among
subdomain sequences, with the aim to determine if recombination
has occurred with break point between S2 and S3, phylogenetic
trees based on amino acid alignments were built for the three DBL
subdomains (Figure 7). Trees in Figure 7 are included as Figure S6
with labels and bootstrap values.
Relations among sequences of the S3 DBL subdomain clearly

differed from those of S1 and S2 (Figure 7). DBLa and DBLd S3
subdomains were found to be closely related, separated from the
remaining sequences in all 1000 bootstraps, whereas in S2, DBLa
was most closely related to DBLb and f, supported by 99% of the
bootstraps. Similarly, DBLc and DBLe S3 subdomains were
closely related, while S2 sequences of DBLc were closely related to
DBLd, separated from DBLe by several highly supported
branches. This strongly indicates that the evolutionary histories
for S2 and S3 subdomains are different, as also suggested by the
homology block analysis (Figure 6), and that recombination most
likely has occurred with break point between these subdomains.
In agreement with the homology block analysis, the division

between DBLa/b/f and DBLc/d/e was well supported by
bootstrap values in both S1 and S2, as was the separation of
each of the domain classes DBLa, b, and f (Figure 7, S1 and S2).
For S1 and S2, DBLd and DBLc sequences were clustered
together with low bootstrap support for separation within this
group, although a specific set of DBLd sequences had particularly
close relations to DBLc (Figure 7, S1 and S2). The relationship
was most pronounced in the S2 subdomain, where 46 DBLd
sequences represented in all seven genomes, and including all non-

Figure 6. DBL homology block alignment. HBs in 1043 DBL sequences aligned, and sorted by NJ-clustering based on differences in HB
composition. Tree distances show the number of different HBs in the DBL domains. The sequences are divided into 6 segments by the conserved core
HB1–5 (Figure 5), and the corresponding subdomain parts are noted below the alignment. Only the 80 most frequent of 378 HBs are colored.
Sequence conservation logos as described in Figure 5 are shown for selected HBs, where number tabs indicate the HB number. Logos are when
possible placed in order of appearance in the alignment. Letters next to the tree identifies groups marked by dots in the tree, matching domain
subclassification based on amino acid alignments: (a) f3, (b) f5, (c) f6, (d) f4, (e) f1, (f) f2, (g) d5, (h) d4/8/9, (i) c7, (j) c11/15, (k) c1, (l) c2/9, (m) c8,
(n) c5/6/12/16/17, (o) e2, (p) e7, (q) e4, (r) pam6/e3, (s) pam5/e5/e12, (t) e6/9, (u) e1/11/13. The green pointers mark products of recombination
between DBLc and DBLb domains, with break point around HB2. Additional information for all HBs can be found by querying the VarDom server with
the HB numbers, as given in the legend or on the logos. Labeled homology block alignments can be found in Figure S7.
doi:10.1371/journal.pcbi.1000933.g006
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DBLd1 subclasses, were found closer to the DBLc clade. The 3D7
genes containing these DBLd sequences were MAL6P1.4,
PF11_0521, PF13_0003 and PF11_0008. The latter var gene has
been found to be the target for protective antibodies [9,34], and
together with PF13_0003 contains cassette 5 (Figure 3).
DBLa1 S3 sequences flanked by CIDRa1 domains were well

supported as a subgroup (Figure 7 S3-1). Interestingly, all those
DBLa domains that were not followed by CIDRa (DBLa1.5/6/8
domains), had an S3 subdomain which clustered with DBLd S3
sequences (Figure 7 S3-2), indicating recombination between
DBLa and DBLd. Similarly, DBLd clusters were found for DBLd
domains followed by CIDRc (Figure 7 S3-3), and CIDRb (Figure 7
S3-4). These associations between S3 and CIDR indicate that the
recombination break point occurs within the DBL domain when
CIDR domains are exchanged, and further supports a functional
dependency between CIDR and their upstream DBL domains.
DBLc and DBLe S3 subdomains were found mixed in one

cluster with low bootstrap support (Figure 7 S3-5, 6, 7, 8), although
the subgroups were to some degree specific for either DBLc or
DBLe. One DBLc clade was composed of S3 subdomains of
DBLc5/6/12/16/17 (Figure 7 S3-7), captured by HB136
(Figure 6n) and found in a set of 36 PfEMP1 nearly void of
DBLe and f domains. Two small DBLc subgroups, DBLc1/15 of
VAR1, and a group comprising DBLc2/9 domains, were found
separately, and the latter group was closely related to DBLb S3
sequences (Figure 7-S3-9), as expected from the homology block
alignment (Figure 6k and l). These DBLc-b hybrid domains
appeared in 16 PfEMP1, found in 6 of 7 genomes (not HB3), the
3D7 gene being PF07_0050.
DBLe S3 sequences were dichotomized with a bootstrap

support of 80%. One clade contained all DBLpam5, two

DBLpam6, as well as DBLe5/7/12 (Figure 7 S3-8). The S3-8
cluster was characterized well by HB97 (Figure 6p and s), which
was also present in several paralogs, such as PFA0665w DBL2 and
PFD1155w DBL2, indicating that HB97 describes an ancient
conserved domain element, a notion supported by its presence in
the conserved genes var1 and var2csa. The presence of HB97 in
paralogs and many DBLe domains, suggests that of all PfEMP1
domain classes, DBLe may bear the highest resemblance to a
common ancestral DBL domain.
The subdomain sequence comparison thus corroborates

observations on homology block and domain level. The relations
found between S3 subdomain sequences differ markedly from
relations between S1 and S2 sequences, which supports the theory
of a recombination hotspot between subdomain S2 and S3. The
homology block analysis further suggests that the break point often
occurs around HB2.
The subdomains S1 and S2 of DBLc and DBLd domains

appear to be closely related, whereas the S3 subdomain sequences
are distantly related, indicating recombination with break point
around HB2. Furthermore, HB2 recombination products have
been identified with 59 DBLc and 39 DBLb/e sequences, as well as
with 59 DBLa and 39 DBLd sequences.
The area around HB2 is a hotspot in the sense that

recombination has occurred at this position more frequently than
at other sites during the history of the var genes. It is however
difficult to say if this area has an especially elevated recombination
frequency, or if the high number of observed recombination events
is purely due to functional selection, i.e. there has been
recombination all over the gene, but mainly recombinants with
break points near HB2 have been retained due to better
functionality. Recombination between DBLb and DBLc appears

Figure 7. Evolutionary relatedness of DBL subdomain sequences. A cladogram is shown for each of the three DBL subdomains S1–3, where
boundaries for the subdomains were chosen at the edges of HB4 and HB2, as shown in Figure 6. Colors indicate major DBL domain classes estimated
from alignment of the whole domains: Green: DBLa; Orange: DBLb; Blue: DBLc; Red: DBLd; Magenta: DBLe; Cyan: DBLf. VAR2CSA sequences are black.
Blue dots indicate major bipartitions supported by at least 50% of 1000 bootstraps. The green dot in S1 marks a bipartition with bootsrap value 0.39.
Subdomain clade correlation with whole domain classes is indicated around the trees in black; Clades were split if supported by 50% of the bootstraps.
doi:10.1371/journal.pcbi.1000933.g007
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to be rare, judging from the fact that DBLc-b hybrid domains are
represented in 6 of 7 genomes (Figure 7-S3-9, Figure S6), and that
these sequences form a cluster in the HB61 tree. This is suggestive
of a common ancestral sequence dating back before geographic
separation of the genomes. Recombination between DBLa and
DBLd with break point in the HB2 area, resulting in S3 and CIDR
domain exchange, may be a more frequent event, judging from
the fact that all four combinations of DBLa/d-CIDRb/c occur,
which are likely to be the product of at least two recombination
events. Corroborating this, S3 subdomains followed by CIDR1b
and CIDR2b clustered together, separate from a cluster of S3
sequences followed by CIDR1c and CIDR2c (Figure 7 S3-2).
These sequence relations were also found in the phylogeny for
HB7, indicating that the break point of these recombination events
occurred upstream of HB7, and thus near HB2.
Frequent recombination around HB2 could suggest indepen-

dent functions for S1+S2 and S3, as proposed for VAR2CSA
domains where S3 generally was found to be less surface-exposed
[50]. This may be particularly true for DBLc/d S1+S2 sequences,
as they apparently can be combined successfully with very diverse
downstream sequences, including DBLb S3 subdomains and
CIDR domains.
Recombination is also likely to occur between more closely

related domains, e.g. within a domain class. This will probably
occur more frequently due to higher sequence similarity, but will
result in more subtle changes. DNA must be analyzed to detect
such subtle changes optimally, and this could be done by studying
the phylogenetic trees built for each homology block. This
comprehensive task is however not within the scope of the current
study. A recombination analysis has previously been performed on
sequences encoding DBLpam3 domains [59], and interestingly the
most significant recombination hotspot in this DBL class was also
found near HB2.

Potential integrin binding of DBLa0 domains. Integrins
are a family of cell surface membrane receptors, mediating binding
to the extracellular matrix, as well as interacting with plasma
proteins and counter receptors on other cells, thereby involving
them in basic processes such as cell adhesion, cell migration and
cell-cell communication. Integrins are heterodimers composed of
two membrane anchored subunits, a and b of which the human
genome encodes 18 and 8 variants respectively, combining into 24
known, human receptors [67]. Integrin subunit homologs are
found in both complex and simple metazoan organisms including
sponges and corals [68], and the wide distribution, both in species
and across tissue types, makes the receptors an attractive target for
pathogens, such as various bacteria, viruses, fungi, and parasites,
which use these receptors for adhesion or internalization in the
host [69–72]. Disintegrin domains in snake venom toxins, as well
as ornatin from leech toxins, bind integrins to inhibit their function
in platelet aggregation [73]. It has previously been shown that IE
adhesion to human dermal microvascular endothelial cells
(HDMEC) can be inhibited by anti-av antibodies (i.e. antibodies
targeting the v variant of integrin a subunits), suggesting that IE
can bind to avb3 integrins [74].
The amino acid trimer motif Arg-Gly-Asp (RGD) is commonly

found in integrin binding proteins, including disintegrins, ornatin,
and many extracellular matrix proteins. The RGD motif
mediates binding to several integrin receptor variants, a binding
which often can be out-competed by synthetic RGD peptides,
confirming the surprising simplicity of this adhesive interaction
[75]. RGD as well as other integrin binding motifs are often
found in loops bounded by Cys residues, and the motif together
with the flanking residues may determine the integrin type
specificity [76–77].

The 3D7 proteome was searched for occurrences of the RGD
motif, and a high number of motifs was found to be present in
PfEMP1 (23 out of 244 motifs, P=5.8*1026, cumulative binomial
distribution with x=23motifs, p(RGD)= (244motifs / 4099411 AA),
n=138055 AA). PfEMP1 domains from seven genomes were then
searched, and significantly higher numbers of RGDmotifs than what
should be expected for random reasons (taking the skewed PfEMP1
amino acid distribution into account) were found in DBLa0 (56
motifs in 229 domains, P=5.2*10214, cum. binom. distrib. with
x=56 motifs, p(RGD)=1.77*1024, n=98157 AA) and to a lesser
degree in NTS (12 motifs in 311 domains, P=1.1*1024, cum. binom.
distrib. with x=12 motifs, p(RGD)=1.77*1024, n=20511 AA).
Only one motif was found per DBLa0 domain, and all seven
genomes had RGD-containing DBLa0 domains. Interestingly all
RGD motifs were evenly distributed in three fixed positions in
DBLa0: (1) HB19 position 6–8, (2) HB12 position 14–16 and (3) HB7
position 15–17.
The three RGD sites in DBLa0 were predicted to be situated in

loop regions by domain structure homology modeling (data not
shown), and especially RGD position 2 and 3 were exposed on a
loop in subdomain S3, between the helices covered by HB1 and
HB2, held in place by several Cys residues.
PfEMP1 similarity to disintegrin and ornatin was found by

searching 311 PfEMP1 against the Pfam domain database [56],
resulting in six hits to the disintegrin domain, and five hits to
ornatin (E,1 for all hits). 10 of these 11 hits were situated in
DBLa0, overlapping the second RGD position mentioned above,
and not all of the hit sequences contained an RGD motif.
The finding of two independent significant sequence features

pointing towards integrin binding, and on top of this, the co-
localization of these features in DBLa0, suggests that some
DBLa0 domains are likely to mediate integrin binding, which
may also be the phenomenon observed by Siano et al. (1998)
[74].
In relation to this, pentamidine is an RGD analogue used for

treatment of many pathogen-caused diseases including malaria
[78], and it is possible that this drug may work partly as integrin
antagonist, thus to some extent inhibiting IE binding to
endothelial cells.

CIDR homology block alignment
158 homology blocks found in 552 CIDR domains were

aligned and clustered by HB composition (Figure 8). CIDR
domains could be divided into two major groups, CIDRb/c/d
containing HB22, and CIDRa with HB23 (Figure 8 M1). No
significant homology block similarities were observed between
CIDRa and CIDRb/c/d, except the core homology blocks.
The CIDRb, c and d domain classes could each be
distinguished by class-specific homology blocks, as could each
of the CIDRa1 and CIDRa3 subclasses (Figure 8). HB148
described a distinct subgroup of CIDRc sequences with high
similarity to CIDRb (Figure 8 M1, purple). HB148 was present
in 32 PfEMP1 including amongst other PF11_0008 and
MAL6P1.4 associated with severe disease [34] and IT4var60
expressed on rosetting IE [16]. Two other interesting CIDR
homology blocks, HB450 and HB451, were strongly associated
with the previously mentioned conserved domain cassette 8
(Figure 3).
In M2, which for some CIDRa has been proven to mediate

CD36 binding [45–46], four types of sequences were found to fill
the helix loop between the conserved core HBs (Figure 8 M2).
CIDRa1 domains, which have been shown not to bind CD36
[47], shared HB121 in the M2 helix loop, which was markedly
different from HB32 shared by the remaining CIDRa in this
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region. CIDRb/d/c domains were characterized by HB24 in M2,
except CIDRc6/8 domains with a differing helix loop defined by
HB212 (Figure 8 M2).

Using the VarDom server, two HBs were found in the helix-
loop of the MC179 CIDRa structure: HB32 covering helix a and
b (see logo in Figure 8 M2), and HB372 covering the small helix c,

Figure 8. CIDR and M3 homology block alignment. Homology blocks in CIDR domains and M3 regions were aligned, and clustered based on
differences in HB composition. The cladogram is colored according to amino acid level domain classification. Only the 54 most frequent HBs are
colored, out of a total 158 HBs. Sequence conservation logos are shown for selected HBs in the regions M1–3. Core homology blocks HB1, 8 and 10
are described in Figure 5, while HB6 is the C-terminal of the upstream DBLa/d domain (Figure 6). Alignments and logos for all HBs can be found by
querying the VarDom server with the HB numbers.
doi:10.1371/journal.pcbi.1000933.g008
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a sequence which is mainly present in CIDRa2 domains (Figure 9).
Though the structure appeared twisted in the crystal so helix a and
b were slightly separated, it was found likely that semi-conserved
HB32 hydrophobic positions 17, 18 and 21 in helix a, under
monomeric circumstances interact with conserved HB32 hydro-
phobic positions 45, 48, 51 and 52 in helix b to keep the helices
together (logo in Figure 8 M2; Figure 9, green residues). Similarly,
the highly conserved HB32 positions 8 and 12 in helix a binds
helix c through conserved hydrophobic interactions (Figure 9,
green residues). The Asp-Ile-Glu (DIE) motif at HB32 position 44–
46 supports CD36 binding, as binding ability has been found to be
disrupted when the motif is substituted with the motif Gly-His-Arg
[46]. This substitution of a conserved hydrophobic Ile with a
charged His residue in helix b, is likely to result in a different
conformation of these helices, emphasizing the importance of this
helix pairing in CD36 binding. HB32 position 33–41 shows that in
a subset of CIDRa (28% of the HB32 sequences), an insertion
containing several acidic residues appears at the apex between
helix a and b. In the majority of CIDRa, this apex contains a semi-
conserved Tyr-Gly-Asn (YGN) motif on position 25 to 28 in
HB32, which may also be surface-exposed in the monomeric
structure. Phosphorylation sites are predicted in all HB32
sequences, and when present, the Tyr in YGN is also predicted
as target for this modification. Phosphorylation is involved in
CD36 binding, though only phosphorylation of the CD36 receptor
has been shown [79–80].
A summary of homology block combinations specific for major

DBL and CIDR classes can be found in Table S1. Most major
classes can be distinguished by a few homology blocks, the
exception being the mixed groups DBLc and DBLe. Table S1
only shows combinations involving presence of homology blocks,
and CIDRc is hard to describe in this way, though it can easily be
described by the presence of HB22, combined with the absence of
HB50 and HB202 (Figure 8). These domain class specific
homology blocks should be useful when analyzing functional

differences, as well as for oligonucleotide array and recombinant
protein design.
PfEMP1 DBL domain relations to CIDR and paralog domains

were also studied by means of the homology blocks, and the results
are described in Text S3, including: PFA0665w containing
distantly related DBL and ATS elements, PfDBLMSP with
DBLe-like domains, paralog specific homology blocks, and support
for the association between the CIDRpam and other CIDR
domains.

NTS homology blocks
NTS homology blocks were aligned and sorted according to HB

composition (Figure 10 NTS). Two homology blocks, HB20 and
HB17, were found in the NTS of all PfEMP1 except VAR2CSA.
HB20 described the pentameric motif [KR]xLx[EQD] known as
the Plasmodium export element (PEXEL), which is required for
protein transport to the host erythrocyte [81]. The motif
constituted part of a longer motif with conserved positions every
3–4 amino acids, suggesting a conserved side of a structure
predicted to be helical [36]. Even more highly conserved were the
initial positions of HB17, the LkGxLxxA motif (Figure 10 NTS),
which may be an extension of the PEXEL structure or of the
downstream DBLa domain. NTSpam lacks the typical PEXEL
motif despite of being present on the IE surface, which could be
explained by a unique PEXEL motif in HB309 or HB65, both
having three conserved hydrophobic positions with a basic and
acidic residue conserved on each side of the middle position
(HB309 position 7–15, HB65 position 5–9), like PEXEL in HB20
position 4–11.

Possible N-terminal N-myristoylation of group A PfEMP1
may anchor N-terminal in membrane and cause alternate
transportation to IE membrane. HB155 and HB264 were
found in the N-terminal of group A PfEMP1, containing the
characteristic motif MGxxx[S/T] required for the lipid modifica-
tion N-myristoylation (Figure 10 NTS). N-terminal N-myristoyla-
tion is the covalent attachment of a 14-carbon myristate group to N-
terminal Gly through an amide bond, after removal of the start Met
residue [82]. This reaction generally takes place in the cytoplasm
during protein synthesis and entails transfer of the lipid chain from
myristoyl-CoA, catalyzed by N-myristoyltransferase [83] (reviewed
by Resh 2006 [84]). Myristate is able to insert hydrophobically into
a lipid-bilayer, and thus create an unstable binding to a membrane
[85]. Attachment of an N-myristoylated protein to the membrane
can be stabilized by the presence of basic residues interacting with
negatively charged membrane phospholipids [86], or by further
acylation of the protein [87]. Two important roles for N-myristoyla-
tion are in membrane anchoring and protein trafficking [88].
N-myristoylation is conserved across eukaryotic species [89],

and several experimentally confirmed N-terminally myristoylated
proteins in P. falciparum share the common eukaryotic motif
MGxxx[S/T] [90–94]. The myristoylation predictor NMT, which
is trained on several eukaryotic species including protozoans
[95–96], correctly predicts that the terminals of these five
experimentally analyzed P. falciparum proteins are N-myristoylated.
The two homology blocks, HB155 and HB264 were present in 41
PfEMP1 N-terminals (Figure 10 NTS) that were all predicted to be
N-myristoylated by the NMT predictor. Prediction results for 311
PfEMP1 sequences are summarized in Figure 11A, which shows
that the N-myristoylation motif was found predominantly in group
A PfEMP1. Remarkably, all seven P. falciparum genomes had a set
of PfEMP1 with conserved N-myristoylation motifs (Figure 11A).
N-myristoylation may act as a localization signal and affect

trafficking of PfEMP1, like PfGRASP which is dependent on a
functional myristoylation motif for localization to the golgi

Figure 9. Helix-loop of MC179 CIDRa. HB32 (red) covering helix a
and b, and HB372 (blue) covering helix c. Side chains conserved by
more than 2.16 bits are shown. Green side chains are conserved
hydrophobic residues. The arrow indicates Asn in the possibly surface
exposed semi-conserved motif YGN at the apex of helix a and b. The
conservation of residues in HB372 with 9 sequences has a high margin
of error.
doi:10.1371/journal.pcbi.1000933.g009
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apparatus through a brefeldin A independent pathway [94,97].
PfGRASP has a terminal sequence (MGAGQTK) which is
very similar to IT4var08 (MGAGQST) and RAJ116var05
(MGASQSK), the latter getting the highest score of all PfEMP1
by the NMT predictor.
It is still unknown if the PEXEL motif is cleaved and acetylated

in PfEMP1, like in some other exported proteins [98–99]. If NTS
is not removed by PEXEL cleavage, then the N-myristoylated N-
terminal can be translocated across the membrane [100–101], and
exposed on the IE surface. The unstable membrane binding
caused by N-terminal N-myristoylation could by itself play a major
role in mediating adherence of IE to host cell membranes. The
unspecific binding of several acylated PfEMP1 to any part of a host
cell (e.g. endothelial cell) membrane, possibly combined with
receptor binding mediated by other parts of PfEMP1, could
together form a strong interaction. A mechanism known as
myristoyl switching has been found in some acylated proteins,
where ligand binding induces a conformational change, regulating
if the fatty acid is hidden in a hydrophobic pocket within the
protein or if it is exposed for membrane interactions [102].

Stable membrane anchoring is also possible, as the N-
terminals of some PfEMP1 possess several basic residues that
can act in synergy with the lipid chain to bind the membrane.
Generally UPSA have a higher pI (i.e. are more basic) than
other PfEMP1 N-terminals (Figure 11B). Other types of less
site-specific acylation, such as S-acylation at some of the many
Cys residues, may also help tether the protein to the membrane
[87].
The potentially affected group A PfEMP1 have been associated

with severe malaria [9,28]. Considering the implications for
vaccine design, it should therefore be thoroughly investigated if
any of the PfEMP1 variants are indeed myristoylated in vivo.

Inter-domain homology blocks
52 homology blocks had more than 50% of their occurrences in

inter-domain regions, i.e. outside defined domains. Three of the
most frequent inter-domain homology blocks are shown in
Figure 10-ID. The 52 inter-domain homology blocks were mainly
low complexity sequences, occurring in repeats and overlapping
each other. To determine the distribution of these homology

Figure 10. NTS, ID and ATS homology blocks. (NTS) Above the HB alignment, sequence conservation logos are shown for the two most
conserved NTS homology blocks. The lower pair were found in NTS of VAR2CSA, and HB65 was also found in several DBLb domains (Figure 6). The
proposed PEXEL motif is noted above the HB20 logo, which together with several downstream positions was conserved in all PfEMP1 except
VAR2CSA. On the right side of the alignment, logos covering the N-terminal methionine are shown. A conserved N-terminal N-myristoylation motif
was found in NTSA HB155 and HB264. (ATS) Sequence logos for conserved ATS homology blocks marked by black dots in the alignment. The
cladogram is colored according to ATS annotation based on amino acid alignment. Three conserved homology blocks were absent in VAR1 and
VAR2CSA ATS. (ID) Inter-domain HBs were defined as HBs which occur with a frequency .50% outside other defined regions. Logos for three of the
most conserved ID homology blocks are shown, with number of occurrences in the database with 311 PfEMP1 sequences. The phylogram is based on
PfEMP1 differences in ID HB composition, where four interesting groups were distinguished: (1) VAR1, (2) VAR2CSA and PfEMP1 with C-terminal
similarities to VAR2CSA defined by HB206, (3) group with UPSA flanked var including PFD1235w defined by HB295 and HB341 (4) UPSB flanked var
defined by HB280. The tree is colored according to UPS type, where UPSA is green, UPSB is red, UPSC is blue and UPSE is black. Homology block
sequence logos specific for group 3 and 4 in the phylogram are shown.
doi:10.1371/journal.pcbi.1000933.g010
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blocks in PfEMP1 sequences, a NJ-tree was constructed based on
ID homology block composition of the PfEMP1 (Figure 10 ID). In
general the homology blocks were uniformly scattered amongst
PfEMP1 sequences, although four groups were distinguished with
representatives in at least 6 of the 7 genomes. VAR1 and
VAR2CSA had unique conserved inter-domain sequences with
low amounts of the low-complexity sequence found in many other
PfEMP1, and therefore, they formed separate groups (Figure 10
ID, tree group 1 and 2). Interestingly, one cluster was defined by
two unique inter-domain homology blocks, HB341 and HB295
(Figure 10 ID, group 3). This cluster of 11 group A PfEMP1 with
similar DBLb/c containing domain composition (part of frame 9
in Figure S4A) captured all occurrences of double DBLb domains,
was represented in 6 of 7 genomes (not RAJ116), and the 3D7
genes were PFD1235w and PF11_0521, which have been linked to
severe malaria and ICAM-1 binding respectively [28,38]. The
fourth distinct group was defined by HB280 (Figure 10 ID, group
4), conserved in 5 of 7 genomes (not 3D7 and HB3) and comprised
11 proteins, including among others the ICAM-1 binding
associated IT4var14 (A4var) [40]. All members in the fourth
group lacked other ID HBs, most were flanked by UPSB1, and 10
of 11 had the same C-terminal domain combination ending with
DBLc-DBLf4 (Figure 3, cassette 9; Figure S4A, frame 7). The
conservation of an ID region together with the semi-conserved
domain architecture and UPS sequences, suggests a more recent
common ancestor for genes in these groups. It will be interesting to
see if the members of these groups share receptor-binding
properties.

The Cys-containing M3 regions (M3A and M3AB) were found
to be positionally linked to the upstream CIDR domain, while the
amino acid composition correlated more highly with the
downstream domain architecture. Two homology blocks were
able to capture most occurrences of the two Cys-residues found
after CIDRb and c, despite of the surrounding low-complexity
sequence, seeing that a few other positions besides the Cys were
conserved (Figure 8 M3).

ATS homology blocks
Homology blocks of the conserved ATS were aligned and sorted

according to domain composition, to describe variation in the
intracellular part of PfEMP1 (Figure 10 ATS). ATS starts N-
terminally with the transmembrane region, which was captured by
HB21. The intron splice site between exon 1 and exon 2 lies
immediately downstream of the transmembrane part, so the short
basic stretch which follows transmembrane regions, and interacts
with the negatively charged membrane phospholipids, was found
in the following HB41. ATSA, which is associated with UPSA, was
distinguished as sequences where HB69 and HB112 occurred
simultaneously.
ATSvar1, ATSB17, and the ATS of VAR2CSA, were charac-

terized by lacking the final three homology blocks conserved in all
other ATS (Figure 10 ATS, HB46/47/51, Figure S7D).
ATSB17 was found in six group C PfEMP1, distributed in six

genomes (not IT4), and containing several DBLb/c domains. The
two var2csa genes in the HB3 genome had an ATSB14 more
similar to the ATS of non-VAR2CSA PfEMP1, however these
were truncated before the final three homology blocks. Other
VAR2CSA ATS had normal length but contained unique
sequences instead of the three conserved homology blocks. The
five var1 genes possessing an exon 2, were all flanked by a 39UTR
encoding the three missing homology blocks. Compared to a
common ATS, ATSvar1 was missing ,150 AA, ATSB17 was
lacking ,100 AA, whereas the ATS of VAR2CSA was missing or
differed from the final 100–130 AA.
The finding that VAR1 and VAR2CSA both have a shortened

ATS, could suggest that ATSvar1 is functional despite of
truncation, and question the hypothesis that VAR1 exclusively
exists as a pseudogene.
The final three ATS homology blocks could be a non-essential

functional element in PfEMP1, for example acting as signal
peptide during transport to the erythrocyte membrane, which
would result in differences for VAR1, VAR2CSA, and ATSB17
PfEMP1, compared to other PfEMP1.

Conserved homology block residues may comprise
phosphorylation sites
Phosphorylation occurs mainly at three types of residues: Ser,

Thr and Tyr, and all three residues were markedly conserved in
several homology blocks. Phosphorylation is a common modifica-
tion of proteins expressed during the erythrocyte stages, and has
been associated with differences in IE adhesion properties [103].
Ser/Thr phosphorylation of the PfEMP1 ATS was recently shown
to alter its association with parasite-encoded knob-associated His-
rich protein (KAHRP), and to regulate cytoadherence of IE [104].
Judging from phosphorylation site predictions and conservation

levels in the homology blocks, some examples of conserved
potential phosphorylation sites were, in DBL domains (Figure 6):
HB19 position 28 (DBLa S1), HB82 position 11 (DBLa S2b),
HB36 position 8 (DBLa0 S2c), and Tyr in HB29 (DBLd and c
S2c). In CIDR one of many examples is the mentioned YGN motif
in CIDRa HB32 (Figure 8). Several sites of all three types are
conserved in the ATS HB41, HB43, and HB69 (Figure 10 ATS).

Figure 11. N-terminal N-myristoylation predictions. (A) 48
positive NMT predictions in 311 PfEMP1 N-terminals. All except three
were group A PfEMP1. According to the predictions, the post-
translational modification was well conserved in all seven genomes.
(B) Average pI of NTS in 311 PfEMP1. Three groups (basic, neutral and
acidic) can be clearly distinguished.
doi:10.1371/journal.pcbi.1000933.g011
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Phosphorylation sites have been predicted for all PfEMP1
sequences, and the conservation of these can be inspected for
each homology block on the VarDom server.
It will be interesting to see if some of these sites are surface-

exposed and thus accessible to kinases, as the introduction of large,
negatively charged phosphate groups could result in conforma-
tional changes, or contribute to charged binding surfaces, and thus
result in functional and antigenic variation.

Overall PfEMP1 homology block architecture
Homology block sequences of full-length PfEMP1 were aligned,

to determine HB associations with specific positions in the whole
proteins, as well as to find groups of PfEMP1 with similar HB
compositions. Sequences were sorted according to NJ-clustering
based on Manhattan distances between feature vectors consisting
of exon 1 HB counts. The homology block alignment shown in
Figure 12 gives a detailed overview of the diversity and structure in
the PfEMP1 family. A labeled version of the alignment and the
tree can be found in Figure S7E and Figure S8, respectively.
The differences between UPSA, B, and C flanked var genes were

not clear enough to form separate clades in the tree, though

homology blocks specific for UPSA-flanked var were observed in
both ends of the alignment (Figure 12a comp.1 and Figure 12b
ATS). The three conserved genes were all clearly distinguished
(Figure 12,clade A, B, and E), as well as many small PfEMP1
groups, generally with low bootstrap support, as expected from
uncorrelated domains in N- and C-terminal (Figure S4).
A list of homology blocks specific for each of the four

components are summarized in Table S2. These specific
homology blocks may be helpful for functional analysis of the
PfEMP1, as well as for genotyping purposes.

Conclusion
The reclassification of PfEMP1 domains by alignment and

distance tree analysis introduced a few larger and several smaller
new subclasses. Although the classification is a result of a
phylogenetic approximation of the different evolutionary histories
of the domain sequence blocks, identification of conserved
PfEMP1 domain architectures was possible. These structures
represent a novel perspective on the PfEMP1 architecture. DBL
and CIDR domains appear to be inherited in conserved domain
structures that to a large extent fall within four major components.

Figure 12. PfEMP1 homology block alignment. (a) and (b) are the same alignment, with HB1–55 colored in (a), and HB56–165 colored in (b).
The sequences are sorted according to HB composition, and the tree is colored according to UPS class. The division of PfEMP1 into four components
is indicated at the top of the figure. Between (a) and (b) is noted the most prevalent major domain class for that area in the alignment. The five core
homology blocks should be distinguishable in (a), as well as less frequent homology blocks especially in (b). The alignment with all details can be
found in Figure S7E, and the labeled tree in Figure S8. Alignment features (red arrows): (1) DBLc-b hybrid domains; (2) The light orange column is
HB78, present in both DBLc and DBLe (Figure 6n, r, and t) and associated with C-terminal of comp. 2 and 4; (3) HB74 in DBLc-like DBLd domains, as in
Figure 6g, h and Figure 7-S1, S2; (4) HB82 in DBLc8 of VAR1, also found in DBLd domains; and (5) M3 homology blocks. Notable clades in the tree: (A)
VAR2CSA; (B) VAR3; (C) bootstrap 28%, 4 genomes, UPSA3, includes IT4var60 (rosetting); (D) bootstrap 25%, 3 genomes, incl. PFL0020w and
PF08_0141; (E) VAR1; (F) 6 genomes, incl. MAL6P1.4; (G) 5 genomes, incl. PFD1235w and PF11_0521 (ICAM-1); (H) 5 genomes, incl. PF11_0008 and
PF13_0003; (I) 4 genomes, incl. PF07_0050 and IT4var31 (CD36, ICAM-1); (J) 4 genomes, incl. IT4var14 (CD36, ICAM-1); (K) bootstrap 27%, 5 genomes,
UPSB2, incl. PF08_0140 and IT4var06; (L) bootstrap 26%, 3 genomes, incl. IT4var16 (CD36, ICAM-1) and IT4var27 (rosetting); (M) bootstrap 18%, all
genomes incl. MAL6P1.252 and PFL1950w; (N) bootstrap 68%, 5 genomes, UPSB; (O) bootstrap 49%, 5 genomes, UPSC1, incl. IT4var01 (rosetting) and
TM284S2var1 (rosetting, IgG); and (P) Comp.1-Comp.3-ATS architecture (a.k.a. Type 1 var), UPSB and UPSC.
doi:10.1371/journal.pcbi.1000933.g012
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These conserved domain structures although large and complex
may well represent functional units of the whole PfEMP1
molecule.
Apart from the known conserved var genes, var1, var2csa, and

var3, 18 domain cassettes and several less well-defined structural
phenomena were observed for the seven sequenced genomes. The
established division of group A, B and C was confirmed although
importantly, N- and C-terminal conserved domain structures
occurred independently of each other, with distinct C-terminal
DBLe-containing structures transcending the three conserved
genes, as well as group A, B, and C.
Homology blocks covering on average 83.5% of a PfEMP1

sequence were defined, describing the PfEMP1 family on a more
detailed level than domains, yet more simplified than the amino
acid level. Local similarities between domain classes were thus
described, and homology blocks specific for PfEMP1 domain
classes, components, and cassettes, were found. The HB analysis
also revealed a recombination hotspot between subdomain S2 and
S3 in DBL domains, which has helped shape the antigen
repertoire. Thus, several DBL domains are hybrids of different
major classes - an observation important for functional studies as
well as antibody cross-reactivity and vaccine design.
Several conserved elements were described by the homology

blocks, including: (1) DBL domain core interactions conserved in
all DBL domains, holding the subdomains together, (2) an
acylation motif found to be conserved in group A var genes,
suggesting N-terminal N-myristoylation of a subset of PfEMP1, (3)
conserved residues predicted to be phosphorylation sites, and (4)
PfEMP1 inter-domain regions, which are proposed to be elastic
disordered structures.
The novel iterative homology block detection method is

potentially applicable to any protein dataset, and would be
especially suitable for compositional analysis of other frequently
recombining gene families.
The VarDom server was introduced, where all presented

information on domain classes and homology blocks can be
retrieved, and new sequences can be classified and related to other
PfEMP1 proteins in the seven genomes. Ideally, the server will
allow better interpretation and facilitate the development of new
approaches in PfEMP1 research. For example analysis of var
expression data from microarrays and short high through-put
sequence reads or the design of recombinant proteins for
immunizations or functional studies could all benefit from this
detailed account of PfEMP1 diversity and ultimately aid the
development of PfEMP1 based malaria interventions.

Methods

Datasets
Annotated var genes and var gene containing contigs were

retrieved using BLAST, from NCBI nucleotide database and from
genome assemblies of P. falciparum clones 3D7, HB3, DD2, IT4/
FCR3, PFCLIN, RAJ116, IGH and P. Reichenowi clone PREICH
at PlasmoDB, Broad and Sanger Institute servers, querying 3D7
var sequences. For all var genes with intact N-terminal segments,
2000 bp 59 UTRs were also retrieved where possible. In total 399
annotated genes and open reading frames spanning over the
length of at least two DBL/CIDR domains were kept for the
sequence alignment and distance tree analysis, whereas the
homology block dataset consisted of the 311 full length or exon1
sequences, as well as 20 DBL-containing paralogs from Plasmodium
falciparum, vivax, yoelii and knowlesi. For meaningful interpretations,
the first approach required sequence lengths spanning at least two
PfEMP1 features, whereas the latter, was based on whole or exon1

sequences to avoid generating false homology block break-points.
Nucleotide sequences of all var genes analyzed in this study are
available in Dataset S1.

Domain alignment and phylogeny
Large phylogenies comprising all DBL or CIDR sequences were

inferred by multiple sequence alignment using MUSCLE (version
3.7) followed by application of the neighbor-joining algorithm
implemented in MEGA (version 4.0.2) [105]. Major domain
classes were deduced and named according to previously defined
classes [10].
Major domain-class sequences were further subclassified

through a recursive process involving: (1) re-alignment of
sequences, (2) construction of a maximum likelihood tree, and
(3) split of sequences into two clusters at a tree bipartition validated
by at least 50% of the bootstraps. If a suitable bipartition was
found, the process would be repeated for each of the two formed
clusters. If the sequences on the other hand were not divided, they
were all assigned to the same subclass and given a number. In
addition to bootstrap support, two other properties were used to
evaluate bipartitions and determine if and where the trees should
be split: the number of genomes represented in each cluster, and
the within-cluster average distance (WCAD), which was used as a
measure for the relatedness of clustered sequences. See Text S1 for
details on domain border and distance tree cluster definitions.
Multiple sequence alignments of PfEMP1 domains were per-

formed with AQUA [106], which optimizes alignments generated by
MUSCLE (version 3.7) [107] and MAFFT (version 6.611b) [108],
using refinement and evaluation implemented in RASCAL (version
1.34) [109] and NORMD (version 1.3) [110], respectively.
Maximum likelihood trees were built using the multithreaded
version (pthreads) of RAxML (version 7.2.5) [111–112]. The gamma
model for substitution rate heterogeneity was used together with the
WAG [113] amino acid substitution model with empirically
determined amino acid frequencies. WAG and JTT [114] were
found to be the most likely substitution models by fitting of models
implemented in RAxML to fixed trees built from the different
domain alignments and subsequent ML comparison. Within-cluster
average distances were based on distances calculated using the JTT
model implemented in Protdist from the PHYLIP package (version
3.69) [115].

Upstream sequences
Sequences were aligned with MAFFT (version 6.240) using the

L-INS-i algorithm for multiple sequence alignment [108]. A
neighbor-joining tree was generated and bootstrapped using
Clustalw (version 2.0.9 for tree construction and version 1.83 for
bootstrapping because version 2.0.9 crashed during bootstrap)
[116].
Sequences were clustered using the Markov clustering algorithm

(version 08-312) [51–53]. The Markov clustering algorithm is a
graph-theoretical clustering method, which uses an all-against-all
pairwise sequence alignment as input, generated with the blastn
algorithm implemented in blastall (version 2.2.18) [117]. The
inflation parameter of the Markov Cluster Algorithm was varied in
steps of 0.2 from 1.2 to 5.0, and resource scheme 7 (most accurate)
was used. A distinct clustering was generated for each value of the
inflation parameter, and all the clusters were summarized in a
consensus clustering. Briefly, each clustering was converted to a
multifurcating tree with a branch representing each cluster. A
consensus tree representing the consensus clustering was then
constructed, using the majority rule consensus method (include all
bipartitions with a frequency larger than 0.5) [118], with the
extension that less frequent bipartitions were also included as long
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as they continued to resolve the tree and did not contradict more
frequent groups. Based on the results of the two clustering
methods, a consensus annotation of the 59 upstream sequences of
the var genes was reached (Figure S5).
Trees were rendered and edited using Dendroscope (version

2.3) [119].

Homology block alignment and trees
The iterative homology search procedure used for defining the

set of 628 homology blocks is described in Text S2.
Alignment of homology blocks was performed with a python

implementation of the Smith-Waterman algorithm with linear
(non-affine) gap penalty and a substitution matrix of the identity
type [120].
To estimate trees based on homology block composition,

homology block feature vectors were constructed for each
sequence, either binary (DBL, CIDR, ATS, ID and NTS trees)
or with counts (PfEMP1 tree), and accordingly distances were
calculated as either Hamming or Manhattan distances. Trees were
constructed as extended 50% majority rule consensus trees, based
on 1000 neighbor joining bootstrap trees, built from distance
matrix using ordinary neighbor joining implemented in Clearcut
(version 1.0.8) [121].
Sequence logos were generated using WebLogo (version 2.8)

[122], where small sample (,40 amino acids) bias is compensated
for by subtraction of an error estimate on each position, the error
bars are 2 times the estimated error.

Prediction of phosphorylation sites and N-terminal N-
myristoylation
Phosphorylation sites were predicted using NetPhos 2.0 [123].

N-terminal N-myristoylation was predicted with the NMT
myristoylation predictor which is trained for several eukaryotic
species including protozoans [95–96].

Supporting Information

Dataset S1 Var gene sequences. Var gene cDNA encoding
the PfEMP1 analyzed in this study. Sequence names in this fasta-
file are the same as used everywhere else in this study, as well as on
the VarDom server.
Found at: doi:10.1371/journal.pcbi.1000933.s001 (2.84 MB
TXT)

Figure S1 Major DBL and CIDR domain classes. (A) NJ
tree based on amino acid alignment of 1242 DBL sequences. Blue
dots mark branches dividing DBL domains into six major groups
and four N-terminal VAR2CSA DBL classes. (B) NJ tree based on
amino acid alignment of 655 CIDR sequences. Blue dots mark
branches dividing CIDR domains into four major groups as well
as the CIDRa1 and CIDRpam subclasses. Leaf names are omitted
from the figure to improve graphical presentation.
Found at: doi:10.1371/journal.pcbi.1000933.s002 (2.49 MB PNG)

Figure S2 Trees showing subclassification of all major
PfEMP1 domain classes. ML trees based on amino acid
alignments of each of the following domain classes are shown in
panels A–M: DBLa0, a1, b, d, e, c, f; CIDRa, b, c, d; NTS; ATS.
Sequence names as well as start and stop position of the domains
are given in the trees, followed by classification of the domain.
Panel N and O: Assignment of sequences to UPS groups by
Markov clustering (N) and neighbor joining (O). The UPS groups
were named as indicated by the text color. The background colors
show the group membership assigned by Kraemer et al. 2007 [16].
Sequences found upstream of domain cassette 8 (Figure 3) are

marked with black squares. (N) The branch labels show the
fraction of Markov clusters with this group present. (O) The
branch labels show the bootstrap values as fractions of 1000
bootstraps. Monophyletic subgroups with a bootstrap support
above 0.7 and containing sequences from at least four different
strains of P. falciparum are highlighted with thick red branches.
Some subgroups were further expanded (without bootstrap
support) to form larger monophyletic groups: UPSA2 and UPSB3
are expanded to include additional sequences annotated to
UPSA2 and UPSB3 respectively by Kraemer et al. 2007 [16],
UPSB2 is expanded to include two genes with same domain
architecture, and UPSC1 is expanded to include three sequences
that fall between UPSC1 and UPSC2 but within the larger
monophyletic group comprising all UPSC sequences. The
sequences are shown with thick black branches. The additional
sequences included by this expansion are denoted with an asterisk
in the annotation in Figure S4 and S5. UPSA3 and UPSB1 are
groups that contain all the sequences not assigned to any other
subgroup in UPSA and UPSB respectively. ND: Not Determined.
Found at: doi:10.1371/journal.pcbi.1000933.s003 (1.11 MB ZIP)

Figure S3 PfEMP1 domain class logos. Sequence conser-
vation logos for major PfEMP1 domain classes (panel A–Z):
CIDRa, a1, a2, a3, b, d, c, pam; DBLa0, a1 (without a1.3), a1.3,
b, d, e (without e1, e2, e11, e13, epam), e1, e2, e11, e13, epam4,
epam5, c, pam1, pam2, pam3, f; NTSA, NTSB, and M3AB.
Found at: doi:10.1371/journal.pcbi.1000933.s004 (2.42 MB ZIP)

Figure S4 Annotated PfEMP1 sequences aligned accord-
ing to C-terminal (A) and N-terminal (B) domain
compositions. Gene names, parasite genome, 59 UPS classes,
PfEMP1 domain annotation (D=domain, ID= Inter Domain)
and origin of sequence data (if sequence is not previously reported
as var gene) are given. Sequences which partially contain
unexpected identical sequence stretches to other sequences
suggesting an incorrect contig assembly are noted ‘‘HBD’’
followed by the name of the potentially redundant sequence.
Red arrows indicate component 1–4. Frames indicate clusters of
correlated domain classes. 1:VAR1; 2: VAR2CSA; 3: VAR3; 4:
DBLf and DBLe domain combinations of component 4; 5:
Cassette 10; 6: Cassette 6; 7: Cassette 9; 8: Cassette 5; 9: Other
Group A PfEMP1 all containing component 2; 10: Cassette 8; 11:
Group B and C genes containing component 2; 12: Group B and
C PfEMP1 with no component 2 or 4; 13: Cassette 14; 14:
Cassette 17,21 and 22; 15: DBLa1-CIDR subclass correlations
including cassette 11,13,15 and 16; 16: DBLa0 subclasses
associated with CIDRa3 subclasses; 17: DBLa0 subclasses
associated with CIDRa2 subclasses. N-terminal segment (NTS),
Duffy binding-like (DBL), Cys-rich inter-domain region (CIDR)
and acidic terminal segment (ATS) are named according to the
distance tree classification. Inter domains are annotated as either
short if ,32 AA (green) or long if .31 (yellow) and ‘‘A’’ or ‘‘B’’ if
encoding M3A or M3AB.
Found at: doi:10.1371/journal.pcbi.1000933.s005 (0.15 MB PDF)

Figure S5 Schematic representation of annotated var
genes sorted by genome origin. Gene names, 59UTR class,
domain architecture and origin of sequence data (if sequence is not
previously reported as var gene) is given. Sequences are noted ‘‘F’’
(Fragment) in comments if predicted not to span a full length
exon1, and ‘‘HBD’’ if incorrect contig assembly is suspected
followed by the name of the sequence which partially contains
unexpected identical sequence stretches. N-terminal segment
(NTS), Duffy binding-like (DBL), Cys-rich inter-domain region
(CIDR) and acidic terminal segment (ATS) are named according
to the distance tree classification.
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Found at: doi:10.1371/journal.pcbi.1000933.s006 (0.05 MB PDF)

Figure S6 Phylogenetic trees for DBL subdomains S1,
S2 and S3, as in Figure 7 but with labels. Edge values are
fractions of 1000 bootstraps, and each subdomain is given as:
protein name, start position, end position, and the domain class
the subdomain is a part of.
Found at: doi:10.1371/journal.pcbi.1000933.s007 (0.22 MB PDF)

Figure S7 Homology block alignments. Homology block
alignments for (panel A–E): DBL, CIDR, NTS, ATS, and whole
PfEMP1, with details of Figure 6, Figure 8, Figure 10 and
Figure 12.
Found at: doi:10.1371/journal.pcbi.1000933.s008 (0.82 MB ZIP)

Figure S8 Tree in Figure 12 with labels. Bootstrap values
are given as fractions of 1000 bootstraps.
Found at: doi:10.1371/journal.pcbi.1000933.s009 (0.33 MB PDF)

Table S1 Examples of HB combinations specific for
DBL and CIDR domain classes. Domain counts and number
of matches of the HB combination are given for the sequence set
with 311 PfEMP1 sequences. The domain combination (17, 19)
signifies a sequence where both HB17 and HB19 are present.
These homology blocks are suggested for use in oligonucleotide
array design, as well as for functional analysis of the domain types.
The list is not exhaustive, and can be supplemented using Figure 6
and Figure 8, as well as the VarDom server.
Found at: doi:10.1371/journal.pcbi.1000933.s010 (0.11 MB PDF)

Table S2 Homology blocks specific for component 1–4
(Figure 12). Homology block numbers are given in parenthesis,
and number of occurrences in the component with 311 sequences,

is given next to the number of occurrences elsewhere. These
homology blocks are suggested for use in oligonucleotide array
design, as well as for functional analysis of the components. The
table is not exhaustive.
Found at: doi:10.1371/journal.pcbi.1000933.011 (0.09 MB PDF)

Text S1 PfEMP1 domain classification by alignment
and distance tree analysis.
Found at: doi:10.1371/journal.pcbi.1000933.s012 (0.15 MB PDF)

Text S2 Defining PfEMP1 homology blocks.
Found at: doi:10.1371/journal.pcbi.1000933.s013 (0.81 MB PDF)

Text S3 PfEMP1 DBL domain relations to CIDR and
paralog DBL domains.
Found at: doi:10.1371/journal.pcbi.1000933.s014 (0.31 MB PDF)
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Appendix B

Supplementary material from

paper I

This section contains supplementary figure S2N and S2O from paper I (appendix A).
References to other figures and publications in the figure legends below refer to
paper I. All the supplementary material for paper I is freely available online at the
publishers webpage (doi: 10.1371/journal.pcbi.1000933) [108].

Supplementary figure S2N. Assignment of sequences to UPS groups by Markov
clustering. The UPS groups were named as indicated by the text color. The back-
ground colors show the group membership assigned by Kraemer et al. 2007 [16].
Sequences found upstream of domain cassette 8 (Figure 3) are marked with black
squares. The branch labels show the fraction of Markov clusters with this group
present.

Supplementary figure S2O. Assignment of sequences to UPS groups by neigh-
bor joining. The UPS groups were named as indicated by the text color. The
background colors show the group membership assigned by Kraemer et al. 2007
[16]. Sequences found upstream of domain cassette 8 (Figure 3) are marked with
black squares. The branch labels show the bootstrap values as fractions of 1000
bootstraps. Monophyletic subgroups with a bootstrap support above 0.7 and con-
taining sequences from at least four different strains of P. falciparum are high-
lighted with thick red branches. Some subgroups were further expanded (without
bootstrap support) to form larger monophyletic groups: UPSA2 and UPSB3 are
expanded to include additional sequences annotated to UPSA2 and UPSB3 respec-
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tively by Kraemer et al. 2007 [16], UPSB2 is expanded to include two genes with
same domain architecture, and UPSC1 is expanded to include three sequences that
fall between UPSC1 and UPSC2 but within the larger monophyletic group com-
prising all UPSC sequences. The sequences are shown with thick black branches.
The additional sequences included by this expansion are denoted with an aster-
isk in the annotation in Figure S4 and S5. UPSA3 and UPSB1 are groups that
contain all the sequences not assigned to any other subgroup in UPSA and UPSB
respectively. ND: Not Determined.
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Classification and diversity of var
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112 APPENDIX C. CLASSIFICATION AND DIVERSITY OF VAR GENES

var gene Ups group
DD2var09b UpsA1
DD2var32 UpsA1
DD2var42 UpsA1
HB3var01 UpsA1
HB3var02 UpsA1
HB3var03 UpsA1
HB3var04 UpsA1
HB3var05 UpsA1
IGHvar09 UpsA1
IGHvar23 UpsA1
IGHvar26 UpsA1
IGHvar27 UpsA1
IT4var08 UpsA1
MAL7P1.1 UpsA1
PF11 0008 UpsA1
PF11 0521 UpsA1
PF13 0003 UpsA1
PFD0020c UpsA1
PFD1235w UpsA1
DD2var25 UpsA2
IGHvar11 UpsA2
PFE1640w UpsA2
RAJ116var02 UpsA2
DD2var40 UpsA2*
HB3var1csa UpsA2*
IT4var35 UpsA2*
PFCLINvar76 UpsA2*
AAQ73927 UpsA3
AAQ73928 UpsA3
AAQ73929 UpsA3
AJ420411 UpsA3
DD2var03 UpsA3
DD2var09a UpsA3
DD2var22 UpsA3
DD2var43 UpsA3
DD2var52 UpsA3

var gene Ups group
DQ408104 UpsA3
HB3var06 UpsA3
IGHvar10 UpsA3
IGHvar12 UpsA3
IGHvar14 UpsA3
IGHvar22 UpsA3
IGHvar24 UpsA3
IGHvar30 UpsA3
IGHvar32 UpsA3
IGHvar39 UpsA3
IT4var02 UpsA3
IT4var03 UpsA3
IT4var07 UpsA3
IT4var18 UpsA3
IT4var22 UpsA3
IT4var64 UpsA3
MAL6P1.314 UpsA3
PF08 0141 UpsA3
PFA0015c UpsA3
PFCLINvar32 UpsA3
PFCLINvar33 UpsA3
PFCLINvar34 UpsA3
PFCLINvar48 UpsA3
PFCLINvar49 UpsA3
PFCLINvar62 UpsA3
PFCLINvar68 UpsA3
PFCLINvar69 UpsA3
PFCLINvar73 UpsA3
PFCLINvar75 UpsA3
PFI1820w UpsA3
PREICHvar29 UpsA3
PREICHvar43 UpsA3
PREICHvar71 UpsA3
RAJ116var03 UpsA3
RAJ116var05 UpsA3
RAJ116var07 UpsA3

Table C.1. The assignment of sequences upstream of var genes to Ups groups.
ND: Not determined.
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var gene Ups group
RAJ116var16 UpsA3
RAJ116var17 UpsA3
RAJ116var19 UpsA3
RAJ116var38 UpsA3
AAC05220 UpsB1
AAC47438 UpsB1
DD2var04 UpsB1
DD2var18 UpsB1
DD2var19 UpsB1
DD2var20 UpsB1
DD2var21 UpsB1
DD2var23 UpsB1
DD2var24 UpsB1
DD2var28 UpsB1
DD2var29 UpsB1
DD2var30 UpsB1
DD2var31 UpsB1
DD2var37 UpsB1
DD2var39 UpsB1
DD2var48 UpsB1
DD2var49 UpsB1
DD2var50 UpsB1
HB3var08 UpsB1
HB3var09 UpsB1
HB3var10 UpsB1
HB3var11 UpsB1
HB3var12 UpsB1
HB3var13 UpsB1
HB3var14 UpsB1
HB3var16 UpsB1
HB3var18 UpsB1
HB3var19 UpsB1
HB3var20 UpsB1
HB3var40 UpsB1
HB3var47 UpsB1
HB3var48 UpsB1

var gene Ups group
IGHvar05 UpsB1
IGHvar08 UpsB1
IGHvar13 UpsB1
IGHvar17 UpsB1
IGHvar18 UpsB1
IGHvar20 UpsB1
IGHvar25 UpsB1
IGHvar31 UpsB1
IGHvar33 UpsB1
IGHvar35 UpsB1
IGHvar37 UpsB1
IGHvar38 UpsB1
IGHvar40 UpsB1
IT4var06 UpsB1
IT4var11 UpsB1
IT4var13 UpsB1
IT4var16 UpsB1
IT4var17 UpsB1
IT4var19 UpsB1
IT4var24 UpsB1
IT4var25 UpsB1
IT4var26 UpsB1
IT4var29 UpsB1
IT4var31 UpsB1
IT4var32b UpsB1
IT4var33 UpsB1
IT4var40 UpsB1
IT4var41 UpsB1
IT4var44 UpsB1
IT4var45 UpsB1
IT4var46 UpsB1
IT4var54 UpsB1
IT4var61 UpsB1
IT4var63 UpsB1
IT4var67 UpsB1
MAL6P1.1 UpsB1

Table C.2. The assignment of sequences upstream of var genes to Ups groups.
ND: Not determined.
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var gene Ups group
MAL7P1.212 UpsB1
MAL7P1.50 UpsB1
MAL8P1.220 UpsB1
PF07 0139 UpsB1
PF08 0142 UpsB1
PF10 0001 UpsB1
PF10 0406 UpsB1
PF11 0007 UpsB1
PF13 0001 UpsB1
PF13 0364 UpsB1
PFA0005w UpsB1
PFA0765c UpsB1
PFB0010w UpsB1
PFB1055c UpsB1
PFC0005w UpsB1
PFC1120c UpsB1
PFCLINvar08 UpsB1
PFCLINvar11 UpsB1
PFCLINvar23 UpsB1
PFCLINvar24 UpsB1
PFCLINvar25 UpsB1
PFCLINvar27 UpsB1
PFCLINvar28 UpsB1
PFCLINvar36 UpsB1
PFCLINvar37 UpsB1
PFCLINvar39 UpsB1
PFCLINvar40 UpsB1
PFCLINvar52 UpsB1
PFCLINvar53 UpsB1
PFCLINvar57 UpsB1
PFCLINvar58 UpsB1
PFCLINvar71 UpsB1
PFCLINvar74 UpsB1
PFD0005w UpsB1
PFD1245c UpsB1
PFE0005w UpsB1

var gene Ups group
PFI0005w UpsB1
PFI1830c UpsB1
PFL0005w UpsB1
PFL0935c UpsB1
PFL2665c UpsB1
RAJ116var01 UpsB1
RAJ116var04 UpsB1
RAJ116var06 UpsB1
RAJ116var08 UpsB1
RAJ116var09 UpsB1
RAJ116var15 UpsB1
RAJ116var18 UpsB1
RAJ116var22 UpsB1
RAJ116var23 UpsB1
RAJ116var24 UpsB1
RAJ116var29 UpsB1
RAJ116var30 UpsB1
RAJ116var34 UpsB1
DD2var47 UpsB2
IGHvar19 UpsB2
IT4var20 UpsB2
MAL6P1.316 UpsB2
PF08 0140 UpsB2
AAB60251 UpsB2*
PFCLINvar04 UpsB2*
PFCLINvar22 UpsB2*
PFCLINvar29 UpsB2*
PFCLINvar31 UpsB2*
RAJ116var11 UpsB2*
DD2var01a UpsB3
DD2var01b UpsB3
DD2var33 UpsB3
DD2var35 UpsB3
HB3var24 UpsB3
HB3var50 UpsB3
IGHvar02 UpsB3

Table C.3. The assignment of sequences upstream of var genes to Ups groups.
ND: Not determined.
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var gene Ups group
IGHvar03 UpsB3
IGHvar15 UpsB3
IT4var27 UpsB3
PF07 0050 UpsB3
PFD0635c UpsB3
RAJ116var32 UpsB3
RAJ116var33 UpsB3
HB3var27 UpsB3*
IT4var58 UpsB3*
IT4var59 UpsB3*
PFCLINvar65 UpsB3*
PREICHvar35 UpsB3*
PREICHvar52 UpsB3*
PREICHvar54 UpsB3*
PREICHvar67 UpsB3*
RAJ116var36 UpsB3*
RAJ116var37 UpsB3*
DD2var11 UpsB4
HB3var23 UpsB4
IGHvar04 UpsB4
PFCLINvar54 UpsB4
PFL1950w UpsB4
PREICHvar31 UpsB4
PREICHvar53 UpsB4
PREICHvar83 UpsB4
PREICHvar85 UpsB4
PREICHvar92 UpsB4
RAJ116var13 UpsB4
RAJ116var26 UpsB4
DD2var44 UpsB5
MAL6P1.4 UpsB5
PFCLINvar30 UpsB5
PFCLINvar44 UpsB5
PFD1005c UpsB5
PFL0020w UpsB5
RAJ116var10 UpsB5

var gene Ups group
RAJ116var14 UpsB5
HB3var30 UpsB6
IGHvar07 UpsB6
PF08 0103 UpsB6
RAJ116var31 UpsB6
RAJ116var39 UpsB6
DD2var13 UpsB7
DD2var46 UpsB7
HB3var07 UpsB7
HB3var17 UpsB7
HB3var21 UpsB7
HB3var22 UpsB7
IGHvar01 UpsB7
IGHvar21 UpsB7
IT4var15 UpsB7
MAL7P1.55 UpsB7
PF08 0106 UpsB7
PFL1955w UpsB7
DD2var07 UpsC1
DD2var10 UpsC1
DD2var12 UpsC1
DD2var26 UpsC1
DD2var34 UpsC1
DD2var36 UpsC1
DD2var38 UpsC1
DD2var41 UpsC1
DD2var45 UpsC1
DD2var51 UpsC1
HB3var25 UpsC1
HB3var26 UpsC1
HB3var28 UpsC1
HB3var29 UpsC1
HB3var31 UpsC1
HB3var32 UpsC1
HB3var33 UpsC1
HB3var34 UpsC1

Table C.4. The assignment of sequences upstream of var genes to Ups groups.
ND: Not determined.
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var gene Ups group
IGHvar06 UpsC1
IGHvar16 UpsC1
IGHvar28 UpsC1
IGHvar29 UpsC1
IGHvar34 UpsC1
IGHvar36 UpsC1
IT4var01 UpsC1
IT4var05 UpsC1
IT4var23 UpsC1
IT4var34 UpsC1
IT4var47 UpsC1
IT4var51 UpsC1
IT4var62 UpsC1
IT4var66 UpsC1
IT4var68 UpsC1
MAL6P1.252 UpsC1
PF07 0048 UpsC1
PF07 0049 UpsC1
PF07 0051 UpsC1
PF08 0107 UpsC1
PFCLINvar07 UpsC1
PFCLINvar26 UpsC1
PFCLINvar41 UpsC1
PFCLINvar46 UpsC1
PFCLINvar47 UpsC1
PFCLINvar55 UpsC1
PFCLINvar56 UpsC1
PFCLINvar60 UpsC1
PFCLINvar64 UpsC1
PFCLINvar66 UpsC1
PFCLINvar67 UpsC1
PFD0615c UpsC1
PFD0625c UpsC1
PFD0630c UpsC1
PFD0995c UpsC1
PFD1000c UpsC1

var gene Ups group
PFD1015c UpsC1
PFL1960w UpsC1
RAJ116var21 UpsC1
RAJ116var27 UpsC1
RAJ116var28 UpsC1
PREICHvar95 UpsC1*
DD2var15 UpsC2
HB3var36 UpsC2
IT4var28 UpsC2
MAL7P1.56 UpsC2
PFCLINvar61 UpsC2
PFCLINvar63 UpsC2
PREICHvar62 UpsC2
RAJ116var35 UpsC2
AAQ73930 UpsE
DD2var06 UpsE
HB3var2csaA UpsE
HB3var2csaB UpsE
IGHvar41 UpsE
IT4var04 UpsE
PFCLINvar35 UpsE
PFCLINvar72 UpsE
PFL0030c UpsE
PREICHvar64 UpsE
RAJ116var25 UpsE
DD2var16 ND
IT4var09 ND
IT4var39 ND
IT4var60 ND
PFCLINvar43 ND
PFCLINvar45 ND
PREICHvar28 ND
PREICHvar55 ND
PREICHvar61 ND
PREICHvar90 ND
PREICHvar93 ND

Table C.5. The assignment of sequences upstream of var genes to Ups groups.
ND: Not determined.



Appendix D

Classification of MHC-binding

peptides

c n k L(θ̂|data) AIC AICc w wc

1 4 050 171 −10 846.9 22 035.7 22 050.7 0.000000 0.000000
2 4 050 342 −10 441.7 21 567.5 21 630.5 0.000000 0.999999
3 4 050 513 −10 241.5 21 509.1 21 658.1 0.000000 0.000001
4 4 050 684 −10 046.3 21 460.7 21 738.7 0.999957 0.000000
5 4 050 855 −9 885.4 21 480.8 21 938.8 0.000043 0.000000
6 4 050 1 026 −9 753.4 21 558.7 22 255.7 0.000000 0.000000
7 4 050 1 197 −9 632.4 21 658.9 22 663.9 0.000000 0.000000
8 4 050 1 368 −9 575.5 21 887.0 23 284.0 0.000000 0.000000
9 4 050 1 539 −9 492.6 22 063.1 23 951.1 0.000000 0.000000
10 4 050 1 710 −9 385.9 22 191.9 24 692.9 0.000000 0.000000

Table D.1. Comparison of models and model probabilities for models with dif-
ferent number of clusters. The table shows the result of clustering the three alleles
HLA-A*0101, HLA-A*0301 and HLA-B*4402 when the amino acid frequencies
used to calculate the likelihood had been adjusted with both pseudocounts and
sequence weighting. c: number of clusters in the model, n: sample size, k: es-
timable parameters, L(θ̂|data): likelihood, AIC: Akaike’s information criterion,
AICc: AIC corrected for small sample size, w: Akaike weight or model probability
based on AIC, wc Akaike weight or model probability based on AICc.
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118 APPENDIX D. CLASSIFICATION OF MHC-BINDING PEPTIDES

Data set Alleles AIC1
c CAIC AIC2

c AIC3
c AIC4

c AIC5 AIC5
c

unbal 3 1 4 4 4 4 4 2
bal 1 1 1 1 1 1 1 1
bal 2 1 2 2 2 2 2 2
bal 3 1 3 3 3 3 3 2
bal 4 1 4 4 4 4 4 3
bal 5 1 4 4 4 4 5 4

nn 1 2 2 9 9 9 9 6 5
nn 2 3 3 9 9 9 9 7 5

Table D.2. The table shows the number of clusters suggested when using al-
ternative ways to calculate Akaike’s information criterion. unbal: the unbalanced
data set with data from three alleles, bal: the balanced data sets using from one to
five alleles, nn: the two data sets based on the neural networks with two or three
alleles, AIC1

c : small sample AIC using the number of sequences as the sample
size rather than the number of amino acids (equation 5.4) [98], CAIC: Fujikoshi
and Satoh’s small sample AIC for multiple linear regression (equation 5.14) [104],
AIC2

c : Burnham and Anderson’s hypothesized generalized multidimensional small
sample AIC (equation 5.15) [98] using v = 1, AIC3

c : same as AIC2
c but using

v = (p(p + 1)/2 − 1)/2, AIC4
c : same as AIC2

c but using v = p(p + 1)/2, AIC5:
Akaike’s information criterion when the amino acid frequencies used to calculate
the likelihood has been adjusted with both pseudocounts and sequence weighting
(equation 5.3) [98], AIC5

c : small sample AIC when the amino acid frequencies
used to calculate the likelihood has been adjusted with both pseudocounts and
sequence weighting (equation 5.4) [98].
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Data set Alleles AIC1
c CAIC AIC2

c AIC3
c AIC4

c AIC5 AIC5
c

sim 1 1 1 1 1 1 1 1 1
sim 2 1 1 1 1 1 1 1 1
sim 3 2 1 2 2 2 2 2 1
sim 4 2 1 2 2 2 2 2 1
sim 5 2 1 2 2 2 2 2 1
sim 6 2 1 2 2 2 2 2 1
sim 7 3 1 3 3 3 3 3 2
sim 8 3 1 2 2 2 2 3 2
sim 9 3 1 3 3 3 3 3 2
sim 10 3 1 3 3 3 3 3 2
sim 11 3 1 3 3 3 3 3 2
sim 12 3 1 3 3 3 3 3 2
sim 13 3 1 3 3 3 3 3 2
sim 14 3 1 3 3 3 3 3 2
sim 15 1 1 1 1 1 1 1 1
sim 16 1 1 1 1 1 1 1 1
sim 17 1 1 1 1 1 1 1 1
sim 18 1 1 1 1 1 1 1 1
sim 19 2 1 2 2 2 2 2 1
sim 20 2 1 2 2 2 2 2 1
sim 21 2 1 1 1 1 1 2 1
sim 22 2 1 1 1 1 1 2 1
sim 23 2 1 2 2 2 2 2 1
sim 24 2 1 2 2 2 2 2 1
sim 25 2 1 2 2 2 2 2 1
sim 26 2 1 2 2 2 2 2 1
sim 27 3 1 3 3 3 3 3 2
sim 28 3 1 3 3 3 3 3 2
sim 29 3 1 3 3 3 3 3 2
sim 30 3 1 2 2 2 2 3 2
sim 31 1 1 3 3 3 3 3 2
sim 32 1 1 3 3 3 3 3 2
sim 33 3 2 8 8 8 8 8 5
sim 34 3 2 10 10 10 10 9 6
sim 35 3 2 8 8 8 8 8 6
sim 36 3 2 10 10 10 10 8 6
sim 37 2 1 3 3 3 3 3 3
sim 38 2 1 3 3 3 3 4 3
sim 39 2 1 3 3 3 3 4 2
sim 40 2 1 3 3 3 3 3 3

Table D.3. The table shows the number of clusters suggested when using alter-
native ways to calculate Akaike’s information criterion for the simulated data sets
1–40. Refer to table D.2 for an explanation of the different AIC’s.
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Data set Alleles AIC1
c CAIC AIC2

c AIC3
c AIC4

c AIC5 AIC5
c

sim 101 2 1 2 2 2 2 2 2
sim 102 2 1 2 2 2 2 2 2
sim 103 2 1 2 2 2 2 2 2
sim 104 2 1 2 2 2 2 2 2
sim 105 2 1 2 2 2 2 2 2
sim 106 2 1 2 2 2 2 2 2
sim 107 2 2 4 4 4 4 4 2
sim 108 2 2 4 4 4 4 4 2
sim 109 2 2 5 5 5 5 5 2
sim 110 2 2 4 4 4 4 4 3
sim 111 2 2 5 5 5 5 4 2
sim 112 2 2 5 5 5 5 4 2
sim 113 2 1 3 3 3 3 3 2
sim 114 2 1 3 3 3 3 3 2
sim 115 2 1 3 3 3 3 3 2
sim 116 2 1 2 2 2 2 2 2
sim 117 2 1 3 4 4 3 3 2
sim 118 2 1 3 3 3 3 3 2

Table D.4. The table shows the number of clusters suggested when using alter-
native ways to calculate Akaike’s information criterion for the simulated data sets
101–118. Refer to table D.2 for an explanation of the different AIC’s.
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Figure D.1. Sequence logo for simulated matrix 1. The logo was created from
10 000 peptides generated randomly from this matrix.

position

0

1

2

3

4

b
it

s

N

1 2 3 4 5 6 7 8 9

C

Figure D.2. Sequence logo for simulated matrix 2. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.3. Sequence logo for simulated matrix 3. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.4. Sequence logo for simulated matrix 4. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.5. Sequence logo for simulated matrix 5. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.6. Sequence logo for simulated matrix 6. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.7. Sequence logo for simulated matrix 7. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.8. Sequence logo for simulated matrix 8. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.9. Sequence logo for simulated matrix 9. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.10. Sequence logo for simulated matrix 10. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.11. Sequence logo for simulated matrix 11. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.12. Sequence logo for simulated matrix 12. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.13. Sequence logo for simulated matrix 13. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.14. Sequence logo for simulated matrix 14. The logo was created from
10 000 peptides generated randomly from this matrix.
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Figure D.15. Sequence logo for simulated matrix 101. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.16. Sequence logo for simulated matrix 102. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.17. Sequence logo for simulated matrix 103. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.18. Sequence logo for simulated matrix 104. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.19. Sequence logo for simulated matrix 105. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.20. Sequence logo for simulated matrix 106. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.21. Sequence logo for simulated matrix 107. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.22. Sequence logo for simulated matrix 108. The logo was created
from 10 000 peptides generated randomly from this matrix.
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Figure D.23. Sequence logo for simulated matrix 109. The logo was created
from 10 000 peptides generated randomly from this matrix.
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