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Multi-material topology optimization of laminated comjgesbeams with eigenfrequency
constraints

José Pedro Blasques

Department of Wind Energy, Technical University of Denmark
Frederiksborgvej 399, Building 114, 4000 Roskilde, Derimar

Abstract

This paper describes a methodology for simultaneous tgyaad material optimization in optimal design of laminateghposite
beams with eigenfrequency constraints. The structurgorese is analyzed using beam finite elements. The beam rs&ctio
properties are evaluated using a finite element based aossrsanalysis tool which is able to account fdieets stemming from
material anisotropy and inhomogeneity in sections of eabjtgeometry. The optimization is performed within a mutiaterial
topology optimization framework where the continuous gesiariables represent the volume fractions dfedent candidate
materials at each point in the cross section. An approadbas the Kreisselmeier-Steinhauser function is propaseeéal with
the non-dfferentiability issues typically encountered when dealiity @igenfrequency constraints. The framework is appldatié
optimal design of a laminated composite cantilever bear eghstant cross section. Solutions are presented forgmsbflealing
with the maximization of the minimum eigenfrequency and imazation of the gap between consecutive eigenfrequendits
constraints on the weight and shear center position. Thatsesuggest that the devised methodology is suitable fouléaneous
optimization of the cross section topology and materiapprties in design of beams with eigenfrequency constraints

Keywords: Beams, Cross section analysis, Multi-material topologynoigation, Eigenfrequency constraints,
Kreisselmeier-Steinhauser function

1. Introduction and multi-material topology optimization techniques, i®p
sented here to include eigenfrequency constraints. Hrelim

A typical objective in the design of flexible structures sub-results are presented in which the cross section topolody an
jected to dynamic loads concerns the maximization of thdaminate properties of prismatic cantilevered laminateth<¢
minimum eigenfrequency or the maximization of the gap be{osite beams are optimized simultaneously. It is shown that
tween consecutive eigenfrequencies. From the mafiigrdnt  the framework is suitable for eigenfrequency tailoring giea-
methodologies proposed in the literature, topology otimi  eral class of beam-like structures. Potential applicatinolude
tion techniques have proved a promising alternative. Diaz a aeroelastic optimization of wind turbine blades for mitiga
Kikuchi [1] and Ma et al. [2] presented results for structura of aeroelastic instabilities, among other. To the authbest
topology optimization of two-dimensional structures. ®egn  knowledge no previous publication addresses the simudtae
[3] and Du and OIhff [4] addressed the problem concerning topology and material optimization of beam cross sectiaitis w
the control of the dynamic properties of plates. Luo and Ge&igenfrequency constraints as presented here.
[5] and Gea and Luo [6] presented a strategy for optimizieg th ) o .
location and orientation of sfeners for eigenfrequency place- _1he Proposed framework relies on a high-fidelity beam fi-
ment design of shell structures. Furthermore, Stegmann arft€ €lément model for the analysis of the structural respon
Lund [7] and Pedersen [8] have presented solutions for the ma | Nése type of modelling approach allows for a computation-
imization of the minimum eigenfrequency design of lamiate ally inexpensive representation of three dimensional bieen _
composite plates. The optimal design of beams with eigenfreStructures. The global response of the beam — e.g., compli-
quency constraints, however, has mostly concerned twordime Nce and eigenfrequencies — can be determined with great ac-
sional problems addressing only the optimization of thesgro Curacy usingamodelwhichis computationally much lessigost
section dimensions along the beam length (see, e.g. 8o than its three-dlme_n_smnal shell or solld_ flnltg elementtet
and Bendsge and OIFq10]). !oarts._ This cgpa_blllty has bgen exp_I0|ted in com_put_a_tignal

An extension of the computational framework suggested pintensive applications, e.g., wind turbine aeroelastiogation

Blasques and Stolpe [11] combining a high-fidelity beam rhode'°°'S (S€€, €.g., Larsen and Hansen [12]). The generation of
g pe [11] gang y the beam model is divided in two parts. The first and most

challenging part concerns the solution of a two-dimendiona
*Corresponding author. Phone45 60 60 86 06 problem dealing with the determination of the cross section
Email address;jpbledtu.dk (José Pedro Blasqugs stiffness and mass properties. In the second part, the previ-
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ously computed cross section properties are integratatjalo tion is also presented. The gradients or sensitivities doheof
the beam length to obtain the beam finite elemefingtss and the objective functions and constraints are presenteddtidse
mass matrices. The sectional properties are analyzed kere y. Section 5 describes the setup of the numerical experanent
ing the BEam Cross section Analysis Software (BECAS), ampresents the optimized cross section designs, and disctisse
open-source implementation by Blasques and Lazarov [13] afesults. Finally, the most important conclusions of the kvor
the original theory by Giavotto et al. [14]. BECAS is a finite presented in this paper are summarized in Section 6.
element based tool which is able to account for tieats of
meterial anisotropy and inhomogeneity in t_he analysie ef th 2 Structural modd
stiffness and mass properties of beam sections of arbitrary ge-
ometry. The reader is referred to Jung et al. [15], Volovailet The structural response of the beam is analyzed based on the
[16], and the comprehensive work by Hodges [17] for a reviewbeam finite element model presented by Blasques and Stolpe
on different beam modelling techniques. [11]. The model is extended here for the analysis of the beam

In this context, the optimal design problem concerns the diseigenfrequencies and eigenmodes.
tribution of a limited amount of dierent materials within ade- ~ When using beam models itis assumed that the original beam
sign domain represented here by the cross section finite elstructure is represented by a reference line along theHenfgt
ment mesh. A change in the material distribution in the crosshe beam going through the reference points of a given number
section results in a consequent change of itsngss and mass of representative cross sections. The two steps involvélen
properties and in turn, of the structural response of thenbea generation of the beam model are discussed next. The fipst ste
This optimal design problem is solved using the multi-miater concerns the evaluation of the cross sectiofirgiss and mass
topology optimization framework presented by Blasques angbroperties as discussed in Section 2.1. The second part con-
Stolpe [11], Hvejsel and Lund [18], and Hvejsel et al. [19%€T cerns the integration of these properties to generate thmbe
framework is based on the principles of topology optimi@ati finite elements. The latter is addressed in Section 2.2 where
(see, e.g., Bendsge and Sigmund [20]) and relies on extensiothe derivation of the beam finite elementistess and mass ma-
to include multiple anisotropic materials of the Solid temic  trices is presented along with the equations of motion fer th
Material with Penalization (SIMP) material interpolatiteth-  analysis of the dynamic response of the beam.
nigue (Bendsge and Kikuchi [21] and Rozvany et al. [22]), and
the density filtering scheme by Bruns and Tortorelli [23].isTh  2.1. Cross section analysis
approach is a variation of the so-called discrete matepét o For a linear elastic beam there exists a linear relation be-
mization technique originally presented by Lund and Stagma tween the cross section generalized for€esnd momentd/
[24] and Stegmann and Lund [7] and applied to the optimal de, g — [TTMT]T, and the resulting strainsand curvatures
sign of laminated composite shell structures. ) T ) ) S o

A common issue when dealing with eigenfrequency con!n ¥ = [v"«"| (see Figure 1). This relation is given in its
straints concerns the fact that the order of the eigenfrecjge ~ Stiffness form aK g = 6, whereK is the 6x 6 cross section
may change throughout the optimization procedure. Thik W"stlffness matrlx..ln the most general case, conS|derlng material
in turn lead to non-dferentiability and consequently to a non- @nisotropy and inhomogeneity, all the 21ffstess parameters
robust convergence behaviour of methods for smooth opgimiz I K_S may be required to describe the deformatlon of the cross
tion, namely, gradient-based methods. A typical approach tsectlon. _In the current research, Fhe entnei(gfare deter-
mitigate these fects consists of applying the so-called boundMined using the BEam Cross section Analysis Software (BE-
formulation (see, e.g., Bendsge and Sigmund [20]). An alCAS), an implementation by Blasques and Lazarov [13] of the
ternative approach is proposed here using the Kreissetmeigtheory by Giavotto etal. [14]. The formulation relies on atén
Steinhauser (KS) function (Kreisselmeier and Steinha@&dy element dl_scre_t|zat|on of the cross section to app_roxnthﬂe
to approximate the maximum and minimum values of groups of 0SS Séction in-plane and out-of-plane deformation ompwar
eigenfrequencies. The KS function is a continuousfjeden-  IN9- .BECA.S is ablle to estimate thefitiess properties of beam
tiable envelope function which approximates the maximum of€ctions with arbitrary geometry and correctly accounttier
minimum of a set of functions. The functions should be con-€ffécts stemming from material anisotropy and inhomogeneity.
tinuous but need not be continuouslyfdrentiable. The aim A Priefoutline of the theory underlying the determinatidrka
is to try to improve the convergence behaviour by rewriting t 1S presented here._ The reader is referred to Blaeques alpe: Sto
eigenfrequency constraints to take advantage of the matiiem [11] for more details on the derivation and notation.
cal properties of the KS function. The mathematical prapert ~_ 1he determination ofKs entails the solution to a two-
of the KS function have been discussed by Raspanti et al. [26]j|mens.|onal problem assoolated with the dete.rmlnatlon of
Moreover, it has been used in similar optimal structuralgtes three-dimensional deformation of the cross section. The so
contexts as a constraint aggregation function by, e.g.fiMar Iu_uon is obtained f_rom the cross eectlon equ_lllbrlum eqret
et al. [27] and Maute et al. [28]. given by the following system of linear equations

The paper is organized as follows. The beam finite ele- KW = E 1)
ment structural model is briefly described in Section 2. The
multi-material topology optimization framework and pretsi  where he coficients in matrixK are associated with the 8t
formulations are described in Section 3, where the KS funchess of the cross section. Furthermore, the solution mWtrix
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contains the cross section rigid body motiahsnd the three previous section. The beam global finite element mass matrix
dimensional warping displacements Finally, the load array M is defined as

F is associated with a series of unit load vect@rsThe solu- o ALy

. . . . . —~ —~ —~T —

tion W from (1) is subsequently used in the determination of M = Z Mp = Zf N, M sNp, dz (6)

the cross section compliance matFixdefined as 0

Fs=W'GW (2) Wherelf/l\tJ is the beam finite element mass matrix for elentent

andM is the cross section mass matrix defined in (3).
where the coicient matrixG is defined in Blasques and Stolpe

[11]. For most practical applications, and in all cases wbns
ered in this paperts is symmetric positive definite. Hence,

the cross section $fhess matrix is consequently obtained from The optimal design problem is formulated based on the

Ks=Fgl.
The analy5|s of the cross section mass properties is rekativ multi-material topology optimization framework presathiey

simpler. The 6< 6 cross section mass mathks relates the lin-  Blasques and Stolpe [11]. The aim is to determine the optimal
ear and angular velocities ito the generalized inertial linear distribution of a predefined set of candidate materials ahea

an((jj angular mhomentu_m n thfrough¢ = Mgy. According to  point of the beam cross section. The design requiremerds ent
Hodges [17], the cdicients ofMs are the maximization or minimization of specific eigenfrequiesc

3. Optimization model

m 0 0 0 0 —Myn of the beam.
0 m 0 0 0 MXm A brief outline of the optimization framework is presented i
Ms = 8 8 m';n 'I“Xi“ __"?X);“ 8 (@)  Section 3.1. The optimal design problem formulation consid
0 0 —min by ly 0 ered in this paper is subsequently presented in Section 3.2.
—Myn  MXy 0 0 0 Ixx + lyy

wheremis the mass per unit length, andlyy are the moment 3.1. _Mulu-materlal topology opt|m|z.at|on .

of inertia with respect tox andy, respectively, andyy is the It is assumed that a set of candidate materials has been
product of inertia. The #-diagonal terms are due to théset  defined. The candidate materials may be anisotropic or even
between the posmon of the cross section reference center athe same anlsotroplc material oriented iffelient directions. A

the mass centen. = (xm, Ym). Here the reference center is de- candidate materiah is defined by its constitutive matriQ,,
fined as the point through which the reference line goes gifrou and densityo,,. An extension of the SIMP material interpola-
and is coincident with the beam finite element discretiratio tion model (Bendsge and Kikuchi [21], and Rozvany and Zhou
All of the terms inMs are determined through integration of [22]) to multiple anisotropic materials is used. Hence, e

the mass properties in the cross section finite element mesh. terial constitutive matrixQ. at elemene s defined as

ne
2.2. Beam finite element analysis Qlp) = Zﬁﬁm(p)ﬁm , Ye=1,.,ne (7)
The finite element form of the beam structural eigenvalue
problem is (cf. Bathe [29]) wheren is the number of elements in the cross section finite
element meshpen is the filtered volume fraction of material
(K-wiM)Vi =0, Vf=1,.,n (4)  mat elemente as described later in this section, apds a

penallzatlon parameter. The volume fractigns {peme R
whereng is the number of degrees of freedom assouated Wltf] ec(l..ng, me{l..ng} are the design variables of the

the finite element sfiness and mass matricé$, and M, opt|m|zat|on problem. It is assumed that the design vaetbl
spectively. The problem above yields the elAgenfrequemmes vary continuously between their bounds, i.e.<Opem < 1,
{wi, ..., wn,} associated with the eigenvectdrs= {Vy, ..., Vn,}.  ya = 1N ¥m = 1,...n.. FurthermoreQ, is constant
Itis assumed that the eigenfrequenciesiare giveninascend- yithin each cross section finite element. Finally, the dgnsi
ing order of magnitude, i.ew: < W2 < oo S Wng- 0 at elementis similarly defined as

The global beam dtiness matriX is defined as

—_ Lb
K:ZKb_Zf By K <Bp dz (5)
where the penalty parameter is not included.

whereny is the number of elements in the beam finite element The role ofp in (7) is to penalize intermediate material den-
assemblage, and, is the length of elemerit. The summation sities or volume fractions. As the magnitudepincreases the
refers to the typical finite element assembly. The beam finitelesign variables are pushed towards their bounds. The-penal
element stiness matriX, for elemenb is given in function of  ized problem, however, may have a large number of local min-
By = B(Np) where8 is the strain-displacement relation which ima. A continuation approach is therefore employed to iasee

is a function ofNy, the finite element shape function matrix. the possibility of obtaining a good design (see Sigmund and P
The cross section $ihess matrixK s has been defined in the tersson [30], Borrval and Petersson [31], and Hvejsel armdiLu

3
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[18]). The practical use of the penalty parametexithin the  set of functions (Raspanti et al. [26]). It is used here toragip
continuation approach is further discussed in Section 5.2. mate the maximum or minimum of a group of eigenfrequencies.
In the typical SIMP formulation for two phase problems an The derivation presented next is for the form of KS approxima

increase in the volume fraction of one material correspaads ing the minimum of a function — hereby denoted(gp Hence,
a decrease in the volume fraction of the second material. Thgssume thaw = {21’ e W, } is a subset of the eigenfrequen-
same @ect is achieved here through the inclusion of the follow-¢jes ¢y = {4, oer ) obtained from (4) whose minimum we

ing set ofne linear constraints in the optimal design problem ish to approximate. Furthermore, it is also assumed thet th

formulation ng eigenfrequencies iw are ordered such that, < ... < w, .
ne In this case, K&), is defined as
Zpemz 1, Ve=1..ne 8) N
m=1 KS(p) = _im [Z g Pswy0)
Hvejsel and Lund [18] and Hvejsel et al. [19] studied the Ps g=1

parghmet;:zatlon _prelsentedhat_)ove n ghr_eat detail and ca@dpar, here the parametg > 1 is such that the function Kg) will
it with other equivalent techniques. This parameterizaiioa o 15 the minimum of asgs increases. In order to reduce

generalization of the SIMP approach and typical topology OP umerical dificulties KSp) can be rewritten as
timization techniques and formulations are thereforeatlye —

extendible to the multi-material case (e.g., the densiterfil 1 N o )
ing technique presented next). The potentially large numbe KS(p) = Qng(p) - Eln Ze Beleg(p)-tong
of additional linear constraints introduced in (8) can berfo- ® Lot

lated as sparse constraints which are easily handled bynmode R ) ) )
and robust gradient based algorithms likerr by Gill et al.  1he functionkS(p) approximating the maximum of a group

[32]. Moreover, it is possible to use this linear constrsitat of eigenfrequencie® is easily obtained from the expressions
create relations between theffdrent phases and locally con- aPove. _
trol its distribution. Recent work by Sgrensen and Lund [33]_ 11€ position of the shear cent&(p) = (xs(p). ys(p)) is de-
exploits these possibilities to include manufacturingstraints ~ined in function of the entrief;; of the compliance matrix
in the design of laminated composite shell structures. Fs(p) as (cf. Hodges [17])
Common issues in density based topology optimization prob- Fse2(p) Fs61(p)
lems concern the appearance of checkerboard patternseand th Xs(p) = - Feoolp)’ s(p) = m (10)
dependency of the results on the resolution of the finite efgm 560 500
mesh (Sigmund [34]). The extension presented by Blasqueshere itis assumed that the component relating to the cogipli
and Stolpe [11] of the density filtering technique by Brund an between bending and torsion is nil. The shear center is dkfine
Tortorelli [23] is employed here to address these issuethign  such that a transverse load applied at the shear centeratill n
approach, the volume fractions at an element are a funcfion anduce a torsional moment.
the volume fractions of the surrounding elements withinvegi The reference optimal design problem formulation (prob-
distancef; (the filter radius) and the element itself. The filteredlem P1-1) concerns the maximization of the gap(&@))-
volume fractions are defined @sm = pem(cem), Where a lin-  KS(w(p)) between the minimum and maximum of the two
ear support function (cf. Bruns and Tortorelli [23] and Bdiar  groups of eigenfrequencies(p) andw(p), respectively. The
[35]) is used to weight the volume fractions. problem P1-1 including constraints on the shear centetiposi
Finally, the design variablep enter the structural model and total weight of the beam is formulated as
through the material constitutive matii, = Q.(p) and den- o —
sities oe = 0e(p). The material constitutive matriQc(p) is maximize KS(w(p)) - KSw(p))
required for the determination of the cross sectionfibcient

(9)

matrices in (1) and (2) such thit = K(p) andG = G(p) , subjectto s< s(p) <S (P1-1)

respectively. Consequently, the cross sectidfngtss matrix is w(p) =W

defined such thaf ; = K¢(p). The material densities(p) are Ne

required in the evaluation of the cross section mass matrix i Zpem= 1,ve=1..ne

(3) such thaM s = Mg(p). At the beam finite element level, m=1

K = K(p) andM = M(p). 0<pem<1 Ye=1,..ne,
ym=1..,n.

3.2. Problem formulation _ _ .
where the parametersand,sands are the constraint values for

The eigenfrequencies of the beas(p) are introduced in the the weight and shear center position, respectively. An lggua
optimal design problem through the Kreisselmeier-Staisba constraintis used for the weight in order to avoid designeneh
(KS) function (cf. Kreisselmeier and Steinhauser [25]).eTh only the material with lowest weight exists.

KS function is a diferentiable envelope function which gives a  Alternative problem formulations can be obtained by rear-
conservative representation of the maximum or minimum of aanging the objective functions and constraints in P1-1e Th
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following problem formulations have also been considered i The matrixW(p) is the solution to the linear system of equa-
this paper. Problem formulation P1-2 concerns the maximizations in (1) such thaW(p) = K(p)"F. The matrixV is ob-

tion of the gap between two groups of eigenfrequencies withained from the evaluation &f(p) = KT (p)G(p)W(p), where
constraints on the weight. Problem formulation P1-3 comger the codficient matrixG(p) has been defined in (2). BoW (p)

the maximization of the minimum eigenfrequency with a con-andV(p) are determined only once and then reused in the eval-
straint on the weight. Finally, problem formulation P1-seo uation of (12) for each of the design variabjes, Finally,
cerns the maximization of the minimum eigenfrequency stbje inserting the result of (12) into (11) yields the gradiernftshe

to constraints on weight and shear center position. Nuraleric cross section dfiness matrix .

results are presented in Section 5 for each of the problem for The gradients of the cross section mass matrix are obtained
mulation mentioned before. through diterentiation of (3).

The aim in this paper is to present proofs-of-concept farlat
research, namely, in the field of wind turbine blade desigi+. T
loring the magnitude of certain eigenfrequencies and obntr
ling the relative position of the shear and mass centeripasit The sensitivities of the shear center position with respect
it is possible, e.qg., to tailor the aeroelastic behaviodiheblade the design variablpen are obtained through fierentiation of
to mitigate the risk of dynamic instabilities (see, e.g.nen  (10) to yield
(36]).

4.3. Shear center

0Xs _ OFsg2 1 + Fse2 0F s66
a,Oem a,Oem Fs,66 F§66 6pem ’
0Ys _(9F361 1 B Fsﬁl an,GG
The analytical functions yielding the sensitivities of theam dpem  Opem Fses F2_. Opem
. . . . . . . 5,66
eigenfrequencies and KS function are derived in this sectio

The gradients of the cross sectionffsiess matrix and shear here the gradien®Fs;; /dpemrefer to the entries afF s/dpem
center position have been derived in Blasques and Stolfe [11derived in (12).

Hence, only a brief outline is presented here.

4. Sensitivities

4.1. Beam sffness and mass matrix 4.4. Eigenfrequencies

The sensitivities of the global beam finite elementfiséiss The solution to the structural eigenvalue problemin (4)dge
matrix K are obtained through fllerentiation of (5) to yield the eigenfrequencies and eigenvectors= {ws, ..., wn,} and
. . V = {V1,...,Vn,}, respectively. It is assumed that the eigenvec-
oK) be 57 K<) oKs(p) = B, dz tors are mass-normalized such that
Opem bo1 YO ° Opem

VM (p)Vg = Spq, ¥VP.G = 1,...,Ng

The gradient of the cross sectionBtess matriX s is described

in Section 4.2. The gradients of the global beam finite elamerwhereny is the number of degrees of freedom, aiyd is the
mass matrixM (p) are obtained through fierentiation of (6) Kronecker delta such thapq = 1 if p = ganddpq = 0 other-
and defined as wise. The gradient of a single eigenfrequeangywith respect

. . to the design variable.r is given by (cf. Seyranian et al. [37])
oM (p) _ b be A:)— oM s(p) Nb dz
0

Opem Opem awz(p) 7 6/K\ oM
Pem g e =VE(api‘:) W) ai‘:)] AENGE)

4.2. Cross section gfhess and mass matrix

In the case of a multiple eigenfrequency, i@y = w1 =

= wn,, Where the eigenfrequencies are numbered from 1 to

for convenience and, indicates the multiplicity otuy, a
d|fferent technique is applied. It can be shown that in this case,
an(p) unlike the single eigenfrequency, the multiple eigenfestry
Ks(p) (11)  is not Frechet dferentiable. Seyranian et al. [37] instead de-

rive an expression for the directional derivatives of npiéti

The gradients of the cross section compliance matrix are olgigenvalues defined along any given vecigr of increments

The sensitivities of the cross sectionfistess matrixK s(p)
with respect ten, are defined in function of the cross sectlon
compliance matri¥g(p) as

IKslp) _ IFp) _
6pem - 6pem s(P)

tained through dferentiation of (2) which yields of the design variablegs. A brief account of the procedure is
. described here. The first step consists of computing thésentr
oF oK of the generalized gradient vectardefined as
6pem 6 (12)
6G(p) oK (p)

WT(p) —Wip) - VT(p)

Ky N _AT[aKoo) 2 M)

Ve, I,S=1,...,N,,.
Opem 3Pem] s ¢



wherev; andvg, r,s= 1, ..., n,, are the eigenvectors associated detailed next along with a description of the procedureaikut
with the multiple eigenfrequenayy. The next step consists of in the generation of the candidate materials. A brief descri

determining the solution to the eigenvalue sub-problem tion of the optimization strategy and details regardingphe
. sentation of the results are subsequently presented.|\iathl
(A - /ll)\”/ =0 the results are presented and discussed for each offtieectiit

problem formulations.
which yields the eigenvalueb = {1, ..., 1} and correspond-

ing eigenvegtorg = {1, ...,V }. Itis assumed herein that the 5.1. Setup
eigenvaluesl are given in ascending order of magnitude such Wwe consider the optimal design of a cantilever beam of con-
thatd; < ... < 4n,. The eigenvalues represent the directional stant cross section. The beam finite element model is cordpose
derivativesiwy (o) of the multiple eigenfrequenayy suchthat  of 16 three-node quadratic beam finite elements correspgndi
to 198 degrees of freedom. The coordinate system, finite ele-
ment mesh and dimensions of the rectangular cross section or
design domain are presented in Figure 2. The cross section
2 ) is meshed using 2116 four-node isoparametric finite elesnent
dwy(p) = : (14) corresponding to 6627 degrees of freedom. The beam is 2.4 m
1, with eigenvector;, = ivv wide, 2 m in hei.ght, and 20 m long. _Twoffﬁren.t materjals
Mo Mo q%M..q have been considered — an orthotropic and an isotropic mate-
= rial — with the mechanical properties presented in Tabletle T

wherevi, 4 is the entry {,, q) of the eigenvecto¥. Seyranian mechanical propertigs of the orthotropic_ material are thase
et al. [37] show based on numerical experiments that the-dire that of an E-glass reinforced Epoxy laminate (cf. Peter$){38
tional derivativesiw? (o) match the gradients of the multiple The mechanical properties of the isotropic material cpoes
eigenfrequency computed using finitéfdrences. to that of DIAB H100 PVC Core (DIAB [39]).

The two techniques presented above are used for the eval- Nine candidate materials have been considered for all numer
uation of the beam eigenfrequencies throughout the Omi.rniz ical eXperiments. The candidate materials are generaﬁﬁﬂba
tion procedure. For a single eigenfrequency the sengitivit ON the material properties of the orthotropic layer and et
are given by the gradientw2(p)/pem in (13). An eigenfre- ~Core material in Table 1. One of the candidates is the isitrop
quencywy is mu|t|p|e when the relative fierence between material itself. The remaining elght candidate materiabs a
two or more consecutive eigenfrequenciesiis below a pre-  generated by rotation of the orthotropic layer. The origote
defined threshold. In this case the sensitivities of theipialt ~ Of the orthotropic layer in the cross section plane is spetifi
eigenvalue are given by the directional derivatides, (o) in based on the orientatian, of the fiber plane and the orienta-
(14). tion a¢ of the fibers in the plane, cf. Figure 3. The eight can-

Finally, the eigenfrequencies are included in the optineal d didate materials considered correspond to fotiledent layer
sign problem formulation through the KS function (& (see  ©r fiber orientations —Q 45°, -45°, and 90 — stacked in ei-
Section 3.2). The sensitivity of Kp) defined in (9) with re-  ther an horizontal () or ve_rtical (90) fiber plane . _Henceforth
spect to the design variablpsy for a setw of ny eigenfrequen- the nomenclature s @ap will be used when referring to an or-

Ny
A1 with eigenvectow; = qu\?l,q
=1

cies is given as thotropic candidate material. For example, a layer origate
45° stacked on a vertical plane (90s referred to as 45090
KS(p)  w (p) (cf. Figure 4).
= +
Opem Opem 5.2. Optimizati trat

n .2. Optimization strategy

(2 - ) g e 0D The first step in the optimization is to solve the unpenalized
£ Ipem Opem e first step eop ation is to solve the unpenalize

problem corresponding to the case whpre 1 in (7). At each

D B, () () of the sut_)sequent steps, the penglty pararmalierincreased

Z e o by Ap until p = pmax For all numerical experiments presented

g=1 here it is assumed thap = 0.5 andpmax = 5. Furthermore, for

all cases, at the starting point all materials have the sahe v

‘ume fractions. The optimal design problems are solved using

the sequential quadratic programming algorittvoer by Gill

et al. [32]. Each problem is solved until the major optimalit

5. Numerical experiments tolerance is satisfied or the maximum number of major itera-

tions is reached. The major optimality tolerance, like tregan

The optimal design framework described in the previous secteasibility tolerance, is set tox 107° in sxopr. The maximum

tions is employed in the optimal design of laminated conteosi number of major iterations is set to 500 in the first iteration

beams. The geometrical properties of the beam are present&ml100 in the remaining. The remaining parameters are seéto t

first. The mechanical properties of the considered maseat@  default values. All numerical experiments are solved fdy44

6

The gradients oKS(p) are easily obtained based on the expres
sion above.



design variables associated with the nine candidate migeti  satisfied and the shear center position constraint is aatitree
each of the 2116 elements of the cross section. The filteusadi optimal design point. Furthermore, all values presentgat te

is set tof, = 0.15 for all numerical experiments. Furthermore, the penalized case, i.e, = pmax The eigenmodes are iden-
the value ofw indicates the fraction of the total weight which tified based on its predominant motion. Bending eigenmodes
is orthotropic material. An equality constraint is usedtioe ~ with predominant displacements in tlxeandy direction are
weight in order to avoid designs where only the isotropic madidentified asux anduy, respectively. The torsional eigenmode
terial exists. Moreover, it is assumed that the eigenfraque associated with rotation of the cross section around thes is
groups used in conjunction with the KS function are subskts oidentified a®,. The tension eigenmode involving displacement
w determined in (4). The eigenfrequency groups are denotedf the cross sections along tkzeaxis is identified asl;,. The

wij = iwi’ ..., wj| Where the subscriptsandj indicate the order notationu, .y andu_y is used for bending eigenmodes whose
of the lowest and higher eigenfrequencies in the groupgesp predominant displacemenksandy are of similar magnitude.
tively. The order number refers to the order placemenbin Eigenmodes indicated hy,x, andu_x, have a predominant dis-
Only groups of consecutive eigenfrequencies have been coplacement going through the first and third, and second and
sidered such thab; ; includes the eigenfrequencigsj, and  fourth quadrants of they plane, respectively (see Figure 8).

all eigenfrequencies in between. The value of the parargeter ~ The optimized beam cross section designs obtained for the
introduced in the definition of the KS function in (9) is set to maximization of the minimum eigenfrequency and maximiza-
unity for all cases. This ensures maximum numerical stabiltion of the gap between eigenfrequencies — cases S1 and S2,
ity although the lower and upper bound of the eigenfrequencyespectively — are discussed first. The same formulations ex
groups estimated by the KS function may be overly conservatended to include a constraint on the shear center position —
tive. The sensitivity analysis technique for multiple eiffe-  cases S3 and S4 — are discussed next.

quencies presented in Section 4.4 is employed whenever the

relative diference between two or more eigenfrequencies is bed-4.1. Results without constraint on the shear center joosit

low 1x 1075, The S1 case dealing with the maximization of the lowest
eigenfrequency and the cases S2-1, S2-2 and S2-3 addressing
5.3. Presentation of the results the maximization of the gap betweerffdrent groups of eigen-

. . . frequencies (cf. Table 2 and 3) are discussed in this section
All numerical examples considered concern the optimal des q ( )

sign of prismatic beams, i.e., beam with constant crossosect The resulting cross section topology apd material distioou
along its length. Hence f,or. e-e’lch case the figures with thdtsesu f(_)r cases Sland 32 are presenteq n F|gures 5(a-h). Thetlowes

' . ) six eigenfrequencies and predominant displacement ofdghe ¢
!oresent on_Iy the cross section as this |fﬁsman_t o <_:ha_racter- responding eigenvectors for each of the optimized beams are
ize the optimal structural topology and material distribatof

the entire beam. Two figures of the optimized cross secti0|I:1)resented in Table 4.
' gures of the optimi . For case S1, the results in Table 4 show that the magnitude
are presented for each case indicating the fiber and fibee plan

orientation. respectively. The topoloay of the cross eects of the two lowest eigenfrequencies are relatively similad a
rientation, resp ely. opology : . are associated with bending eigenmodes with predominant di
visible in both. The fiber and fiber plane orientations are rep

. : lacements in thex andy directions. The resulting box-like
resente_d by Ilne_s at each element. The th|_ckness ant_j darkn%pologyin Figures 5(a-g) maximizes the moment gfinerrhida
of the I|_ne 'S w_elghted .by the valge Of. the filtered deS|gn-var| therefore the bending finess of the beam in each of these di-
able. Itis pos&b!e n th|s way to ylsual|ze thibazt .Of the f|IFer. rections. The fibers are aligned mostly along the beam length
Based on the orientation of the lines and resorting to Figure at @0 and 0@90 to maximize the bending Siess. In
it is possible to visualize the three-dimensional oridotabf . . o ) L '
the fibers. The element is white if the material is isotropice the vertical or side faces;45°@90 fibers are visible at the

. ; ) . ) height of the horizontal neutral axis. These fibers resist th
plots refer to the unpenalized filtered design variablesalfy, . .
o . . shear stresses induced by the transverse forces and coatrib
the position of the cross section reference point, sheaecen

and mass center is indicated in these group of figures with o an increase in shear &tiess in they direction and conse-
. . group ot fig : auently of the lowest eigenfrequenay. This topology and
square, diamond, and triangle marker, respectively (dufé

2) material distribution is similar to that obtained by Blasqu
' and Stolpe [11] for the minimum compliance optimization of
a square beam subjected to a vertical transverse load.

5.4. Results For cases S2-1, S2-2 and S2-3 the eigenfrequencies and
All numerical experiments considered in this paper are deeigenmodes indicated in Table 4 show that all optimized de-
fined in Table 2. The corresponding objective function anttco signs maximize the gap between a bending and torsion eigen-

straint values for each of the numerical experiments areeefi frequency. The eigenmodes for the bending eigenfrequency

in Table 3. The optimized cross section topologies and rizhter and torsional eigenfrequeneys for case S2-3 are presented
distribution are presented in Figures 5 and 7. The beam eigein Figure 6. Moreover, the progressive decrease in the mag-
modes for a few relevant cases are presented in Figure 6 andiitude of the lowest eigenfrequencies associated with bend
The eigenfrequencies, eigenmodes, constraint valuesiiand  ing eigenmodes suggests that the optimized beams are progre
ber of objective function evaluations for each optimizedige  sively more compliant in bending for case S2-1, S2-2 and S2-3
are presented in Table 4. For all cases the weight constsaint respectively. In fact, Figures 5(a - h) show the transitiamf
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a tall and wide thin-walled beam Stin bending — case S1 — 8 show the direction of motion associated with the two eigenf
to a low radius, shaft-like, thick-walled cylinder with apg-  quencies being separated. The diagonal orientation isthath
imately the same torsional ftiess but relatively more com- the height of the cross section and consequently the bending
pliant in bending — case S2-3. The predominai®@® and stiffness in that direction is maximized for the given design do-
0°@90 laminates which in case S1 resist the normal stressemain. The fibers align att@0 and 0@90C in the "flanges”,
and maximize the bending Stiess are gradually replaced in or top left and bottom right regions of the design domain to
the optimized designs of case S2-1 and S2-28% @0 and maximize bending dfiness. In the central part, the shear
+45°@90 laminates. In the limit case S2-3 only interleaving stresses dominate and the laminates consistiag6f@0 and
layers of +t45°@C and +45° @90 fibers exist. This is such +45°@90 fibers emerge to increase sheaffsdss. The result-
that the direction of maximum s$fhess of the fibers is aligned at ing optimized topology and material distribution is in faah-
+45° to resist the shear stresses and thus maximize the torsionidr to the results obtained by Blasques and Stolpe [11]Her t
stiffness. The decrease in torsionaffsss resulting from the minimum compliance optimization of a square beam subject to
reduction in cross section width and heightis compensated b a diagonal transverse load.
redistribution of the material and an increase in wall thiegs.
As a result the torsional eigenfrequency of optimized desig 5.5. Discussion
S2-2 and S2-3 is close to that of S1. The framework initially presented by Blasques and Stolpe
[11] is herein extended to include eigenfrequency condsai
The preliminary results presented in the previous sections
) ) - dicate that the proposed framework is suitable for the g&nul
Controlling the relative position of the shear, mass ane refj,qys optimization of structural topology and materiairitis-
erence centers it is possible, to a certain extent, to t#iler i iy the design of beam cross sections with eigenfrequenc
static and dynamic coupling between the bending and toaion -ynstraints.
motions. The preliminary results presented in this sedlion  Regarding the optimization procedure, it can be seen that
lustrate the ability to do so within the proposed optimaligies e number of objective function evaluations presentedain T
fram.ework. .Potent|al appllcgt!ong include aero_elz_asnior@g ble 4 is relatively large when compared to typical topology
of wind turbine blades for mitigation of dynamic instabé,  ntimization problems. This is mostly due to the relatively
among other. large number of steps used in the continuation approach and
The S3 case addresses the maximization of the lowest eige[a—rge number of allowed maximum major iterations at each of
frequency with a constraint on the shear center positioned® the steps. Numerical experience suggests that multi-iahter
cases S4-1, S4-2 and S4-3 concern the maximization of the 98Bpology optimization problems are specially sensitivette
between dierent groups of eigenfrequencies with a constrainhymper of steps in the continuation approach. A larger num-
in the shear center position (cf. Table 3). The lowest sie®ig per of smaller steps tends to generate designs with signifjca
frequencies and predominant displacement of the corresponimproved performance and was therefore preferred. Nonethe
ing eigenmodes, the weight, and the shear center position fgess note that the large number of objective function eval-
each of the optimized designs are presented in Table 4. Thgations is possible only due to the high computatiorfat e
resulting cross section topology and material distributior ciency achieved by the the high-fidelity beam model usedién th
cases S3 and S4 are presented in Figures 7(a-h). framework. The results further indicate that the Kreissstm
The optimized cross section topology and material distribu Steinhauser function used here to generate continuousifand d
tion for case S3 presented in Figures 7(a-b) are very sif@lar ferentiable envelopes to approximate the maximum and mini-
that of case S1 in Figures 5(a-b). Furthermore, the magaitudmum of groups of eigenfrequencies, is a possible alteradiv
of the lowest six eigenfrequencies and respective eigeesod the typical bound formulation (see, e.g., Du and Gilli] and
are also closely coinciding (cf. Table 4). A slight increise Bendsge and Sigmund [20])). In the future, the twiiedient
the thickness of the right face of the beam section is observeformulations should be compared in terms of its convergence
in case S3 in order to satisfy the constraintin the positidh®  behaviour and the performance of the resulting optimized de
shear center, signs. At last, note that the interfacestmpr does not provide
The resulting optimized designs for cases S4-1, S4-2 and S4he necessary information to plot the typical convergehatsp
3 are presented in Figures 7(c - h). The optimized desigris S4+urthermore, plotting the objective function versus thenau
and S4-2, are similar to their counterparts S2-1 and S2-Bjin F ber of iterations neither reveals anything about the cayerre
ures 5(c - f) and, likewise, the designs are progressivelsemo rate nor provides a measure of closeness to a point satisfyin
compliant in bending. the first order optimality conditions. The convergencephoe
Unlike the remaining cases which dealt with the separatiortherefore omitted.
of a bending and torsional eigenfrequencies, in case S4-3 th Future work will focus on truly exploiting the computatidna
optimization targets the maximization of the gap betweem tw efficiency of the beam finite element model used in the pro-
eigenfrequencies associated with bending eigenmodesiethe posed optimal design framework. The proposed framework
sulting optimized design is a type of "I-beam” oriented diag opens the possibility for novel problem formulations irdiu
nally with respect to the cross section coordinate systea (s ing computationally intensive multiphysics and time degbemt
Figures 7(g - h)). The resulting eigenmodes presented ir&ig constraints associated with the global response of the beam
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Moreover, a greater level of detail can be achieved by opReferences

timizing a larger number of cross sections along the length

of the beam to obtain a detailed three-dimensional design of 1

the beam structure. Potential applications include theethr
dimensional structural topology and material optimizatadf
wind turbine blades with aeroelastic stability and fatigoa-
straints. Nonetheless, despite the focus on the desigmof la

inated composite beams, the framework iffisiently general 3.

and applicable to a broader class of problems dealing wih th
distribution of multiple materials to optimize the perfance

of beam-like structures. For example, the framework is well
suited to topology optimization problems of beams with ex-

trusion constraints. Typical approaches resort to contiouta 5
ally expensive three-dimensional solid finite element ni®de

and additional constraints on the design variables to erthat 6.
the extrusion constraint is satisfied (see, e.g., Ishii aochéra .,

[40]). In this sense the approach proposed here has the-poten
tial to allow for a significant improvement in terms of compu-

tational dficiency. 8.

6. Conclusions

A framework has been presented for the optimal design of11-

beams with eigenfrequency constraints. The structurpbiese

of the beam is analyzed using beam finite elements. The crossy.

section stifness and mass properties are determined using a fi-
nite element based cross section analysis tool. The negulti
beam model is able to account fafexts stemming from ma-
terial anisotropy and inhomogeneity in the analysis of beam
with arbitrary section geometry.

The optimal design problem is formulated in a multi-materia
topology optimization context. An alternative approachris-
posed to handle the eigenfrequencies constraints basdteon t
Kreisselmeier-Steinhauser function. 1

Optimized cross section designs are presented for optigral d
sign problems dealing with the maximization of the minimum

eigenfrequency and the maximization of the gap between con’:

secutive eigenfrequencies. Furthermore, results arepabso
sented where the same problems are solved but the position of
the shear center is constrained.

The numerical examples suggest that the devised optimal det®

sign framework is suitable for the simultaneous optimuazati
of the cross section topology and material properties irdte
sign of laminated composite beams withffstess and eigen-
frequency constraints. The next step consists of applyieg t
presented methodology to the aeroelastic tailoring of mateid
composite wind turbine blades.
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Table 1: Material properties for orthotropic material (sdavalues for E-glass

reinforced Epoxy laminate according to Peters [38]), amdragpic material
(scaled values for DIAB H100 PVC Core, cf. DIAB DIAB Group [3%Table

from Blasques and Stolpe [11]).

Material Orthotropic Isotropic

E1x 480 GPa 0.130 GPa

Ex,=Es; 120 GPa 0.130 GPa

Gy = Gl3 60 GPa 0.035 GPa

Gas 50 GPa 0.035 GPa
V12 = V13 0.19 - 0.35 -
Va3 0.26 - 0.35 -

0 1.78 16 kg/m?® 0.1 16 kg/m®

Table 2: Catalogue of numerical experiments combining tfferént problem

formulations.

Ref. Problem formulation
s1 Max. min. eigenfrequency
with a weight constraint (P1-3)
S2-1 Max. gap between two eigenfrequencies with
constraints on weight (P1-2)
S22 Max. gap between two eigenfrequencies with
constraints on weight (P1-2)
S2-3 Max. gap between two eigenfrequencies with
constraints on weight (P1-2)
s3 Max. min. eigenfrequencies with constraints
on weight and shear center position (P1-4)
sa-1 Max. gap between eigenfreqgs. with constraints
on weight and shear center position (P1-1)
S4-2 Max. gap between eigenfreqgs. with constraints
on weight and shear center position (P1-1)
s4-3 Max. gap between eigenfreqgs. with constraints

on weight and shear center position (P1-1)

Table 3: Details for all numerical experiments (cf. Table Z)he first col-

umn indicates the objective function. The eigenfrequenoups are denoted
wjj = jwi,...,wj; where the subscriptisand j indicate the order of the lowest
and highest eigenfrequencies in the group, respectivehe Second column

indicates the value of the equality constraint on the weigherew refers to

the ratio of orthotropic material. The last column indisatBe constraints on
the shear center positicg = (Xs, Ys)-

Ref. Obj. func. w S

S1 KYwi5) 3/5 -
S2-1 KSws4)-KS(w12) 3/5 -
S2-2 ﬁw%)—K_S(wl’g) 3/5 -
S2-3 ﬁwsj)—K_S(ng) 3/5 -

S3 KSw15) 35 xs=-02,ys=0
S4-1 KSwi12)-KS(wss) 3/5 xs=-02,ys=0
S4-2 KSw13)-KS(wse) 35 xs=-02,ys=0
S4-3 KSw24)-KS(ws7) 35 xs=-02,ys=0

12

Table 4: Summary of numerical results for optimized desifprscases S1
through S4 and all sub-cases therein (cf. Table 3). The fixstosvs indi-
cated the lowest six eigenfrequencies for the optimizedgdsgthe lines are
placed between the eigenfrequencies that have been safardhe letters in
brackets indicate the predominant motion of the corresipgneigenmodesu,
uy, andu,, indicate displacements in the directiany, andz, respectively;d,
indicates torsiony, xy andu_yy indicates a predominant displacement motion
between the first and third, and second and fourth quadréttie gy plane, re-
spectively). The resulting weightvj, shear center positiors{ = (Xs, ¥s)), and
number of objective function evaluations are presentetiénfollowing rows,
respectively. The eigenfrequency values and the sheagercpasition values
are obtained with the penalized filtered densities, pes, pmax = 5.

S1 S2-1 S2-2 S2-3
w1 5.9 () 4.2 (uy) 0.7 () 0.5 (W)
w3 7.3 Uy) 4.4 () 2.9 Uy 0.5 (Uuy)
w3 69.5 @,) 99.0 6,) 23.5 () 18.1 Q)
Wy 99.7 ) 111.0 () 71.7 62) 19.3 (y)
ws 170.0 () 114.0(@,) 857Qy)  76.06,)
we 4399 (y) 579.9(,) 154.5() 128.9 ()
w 3/5 35 35 35
Fun. Eval. 546 1736 2336 2269
S3 S4-1 S4-2 S4-3
w1 5.9 ) 3.7 Uy 1.2 U_yy) 0.7 Usxy)
w2 7.5 (Uy) 3.9 ) 3.6 (Usxy) 7.9 (U_xy)
w3 66.3 0,) 82.8 0,) 38.4 (U_y) 20.8 ¢,)
Wy 96.2 L)  98.5 Wy 100.6 6,) 25.5 (Uixy)
ws 176.1 () 100.0 (y) 105.1 (1xy) 159.9 (1yy)
we 413.7 () 4958 (1) 244.2(_) 161.0 ()
w 35 35 35 35
Xs -0.2 -0.2 -0.2 -0.2
Ys 0.0 0.0 0.0 0.0
Fun. Eval. 760 1682 2213 2869




8. Figures

13



(a) Forces and momentb) Strains and curva-
tures

Figure 1: Cross section coordinate system, foces and meni@ntand corre-
sponding strains and curvatures (b).

1
0.5
> 0 £31
-0.5
-1
-1 -0.5 0 0.5 1
X

Figure 2: Cross section coordinate system and finite elemesh. The cross
section is meshed using 2116 four-node isoparametric fel@ments corre-
sponding to 6627 degrees of freedom. The square markeatedithe position
of the cross section reference point or beam node.

A

- ’ Fibers

2D finite ~ — k-

element

Fiber plane orientation Fiber orientation

Figure 3: Three-dimensional rotation of fiber plane and firéntation in the
cross section mesh. The fiber plane orientation is definetidogiiglen, while
the orientation of the fibers in the fiber plane are defined byatigler . (Fig-
ure from Blasques and Stolpe [11])
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CANDIDATE MATERIALS
Fiber Fiber plane Spatial
orientation orientation orientation
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Figure 4: Legend for the figures depicting the solutions.u¥lgation of the
spatial orientation of the fibers at each element based omethgting fiber
and fiber plane orientations, for each of the candidate trdhir materials.
Description of the markers used to define the cross sectfereree point or
beam node (square), shear center (diamond), and mass(eateyle). (Figure
from Blasques and Stolpe [11])
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Figure 5: Optimal cross section topology and material ithigtion for cases
S1, S2-1, S2-2, and S2-3 (cf. Tables 2 and 3). Case S1 is théosoto

the maximization of the minimum eigenfrequecy problem vettveight con-
straint (P1-3). The remaining cases S2-1, S2-2, and S2{Basmlutions to the
maximization of the gap between two eigenfrequencies wélght constraints
(P1-2). The legend to the figures is described in Figure 4.
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(@) S2-3wa(ux) = 193 (b) S2-3,ws(6,) = 76.0

Figure 6: Beam eigenmodes for the fourth and fifth eigenfeagy (cf. Table
4) of optimized cantilever beam for case S2-3 (cf. Table 3)e €orrespond-
ing optimized cross section topology and material distidoufor this case is
presented in Figure 5 (g-h).
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Figure 7: Optimal cross section topology and material ithistion for cases S3,
S4-1, S4-2, and S4-3 (cf. Tables 2 and 3). Case S3 is the@ohatithe max-
imization of the minimum eigenfrequecy problem with coastts on weight
and shear center position (P1-4). The remaining cases S4-2, and S4-3
are the solutions to the maximization of the gap between tgenérequencies
with constraints on weight and shear center position (PTFg legend to the
figures is described in Figure 4.
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Figure 8: Schematic view of the eigenmodes for the fourthfétideigenfre-
guency (cf. Table 4) of optimized beam for case S4-3 (cf. @8} perspective
(left) and front (right) view. The corresponding optimizess section topol-
ogy and material distribution for this case is presentedguife 7 (g-h).



