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Multi-material topology optimization of laminated composite beams with eigenfrequency
constraints

José Pedro Blasques∗

Department of Wind Energy, Technical University of Denmark,
Frederiksborgvej 399, Building 114, 4000 Roskilde, Denmark

Abstract

This paper describes a methodology for simultaneous topology and material optimization in optimal design of laminatedcomposite
beams with eigenfrequency constraints. The structural response is analyzed using beam finite elements. The beam sectional
properties are evaluated using a finite element based cross section analysis tool which is able to account for effects stemming from
material anisotropy and inhomogeneity in sections of arbitrary geometry. The optimization is performed within a multi-material
topology optimization framework where the continuous design variables represent the volume fractions of different candidate
materials at each point in the cross section. An approach based on the Kreisselmeier-Steinhauser function is proposed to deal with
the non-differentiability issues typically encountered when dealing with eigenfrequencyconstraints. The framework is applied to the
optimal design of a laminated composite cantilever beam with constant cross section. Solutions are presented for problems dealing
with the maximization of the minimum eigenfrequency and maximization of the gap between consecutive eigenfrequencieswith
constraints on the weight and shear center position. The results suggest that the devised methodology is suitable for simultaneous
optimization of the cross section topology and material properties in design of beams with eigenfrequency constraints.

Keywords: Beams, Cross section analysis, Multi-material topology optimization, Eigenfrequency constraints,
Kreisselmeier-Steinhauser function

1. Introduction

A typical objective in the design of flexible structures sub-
jected to dynamic loads concerns the maximization of the
minimum eigenfrequency or the maximization of the gap be-
tween consecutive eigenfrequencies. From the many different
methodologies proposed in the literature, topology optimiza-
tion techniques have proved a promising alternative. Diaz and
Kikuchi [1] and Ma et al. [2] presented results for structural
topology optimization of two-dimensional structures. Pedersen
[3] and Du and Olhoff [4] addressed the problem concerning
the control of the dynamic properties of plates. Luo and Gea
[5] and Gea and Luo [6] presented a strategy for optimizing the
location and orientation of stiffeners for eigenfrequency place-
ment design of shell structures. Furthermore, Stegmann and
Lund [7] and Pedersen [8] have presented solutions for the max-
imization of the minimum eigenfrequency design of laminated
composite plates. The optimal design of beams with eigenfre-
quency constraints, however, has mostly concerned two dimen-
sional problems addressing only the optimization of the cross
section dimensions along the beam length (see, e.g., Olhoff [9]
and Bendsøe and Olhoff [10]).

An extension of the computational framework suggested by
Blasques and Stolpe [11] combining a high-fidelity beam model
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and multi-material topology optimization techniques, is pre-
sented here to include eigenfrequency constraints. Preliminary
results are presented in which the cross section topology and
laminate properties of prismatic cantilevered laminated com-
posite beams are optimized simultaneously. It is shown that
the framework is suitable for eigenfrequency tailoring of agen-
eral class of beam-like structures. Potential applications include
aeroelastic optimization of wind turbine blades for mitigation
of aeroelastic instabilities, among other. To the author’sbest
knowledge no previous publication addresses the simultaneous
topology and material optimization of beam cross sections with
eigenfrequency constraints as presented here.

The proposed framework relies on a high-fidelity beam fi-
nite element model for the analysis of the structural response.
These type of modelling approach allows for a computation-
ally inexpensive representation of three dimensional beam-like
structures. The global response of the beam – e.g., compli-
ance and eigenfrequencies – can be determined with great ac-
curacy using a model which is computationally much less costly
than its three-dimensional shell or solid finite element counter-
parts. This capability has been exploited in computationally
intensive applications, e.g., wind turbine aeroelastic simulation
tools (see, e.g., Larsen and Hansen [12]). The generation of
the beam model is divided in two parts. The first and most
challenging part concerns the solution of a two-dimensional
problem dealing with the determination of the cross section
stiffness and mass properties. In the second part, the previ-
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ously computed cross section properties are integrated along
the beam length to obtain the beam finite element stiffness and
mass matrices. The sectional properties are analyzed here us-
ing the BEam Cross section Analysis Software (BECAS), an
open-source implementation by Blasques and Lazarov [13] of
the original theory by Giavotto et al. [14]. BECAS is a finite
element based tool which is able to account for the effects of
material anisotropy and inhomogeneity in the analysis of the
stiffness and mass properties of beam sections of arbitrary ge-
ometry. The reader is referred to Jung et al. [15], Volovoi etal.
[16], and the comprehensive work by Hodges [17] for a review
on different beam modelling techniques.

In this context, the optimal design problem concerns the dis-
tribution of a limited amount of different materials within a de-
sign domain represented here by the cross section finite ele-
ment mesh. A change in the material distribution in the cross
section results in a consequent change of its stiffness and mass
properties and in turn, of the structural response of the beam.
This optimal design problem is solved using the multi-material
topology optimization framework presented by Blasques and
Stolpe [11], Hvejsel and Lund [18], and Hvejsel et al. [19]. The
framework is based on the principles of topology optimization
(see, e.g., Bendsøe and Sigmund [20]) and relies on extensions
to include multiple anisotropic materials of the Solid Isotropic
Material with Penalization (SIMP) material interpolationtech-
nique (Bendsøe and Kikuchi [21] and Rozvany et al. [22]), and
the density filtering scheme by Bruns and Tortorelli [23]. This
approach is a variation of the so-called discrete material opti-
mization technique originally presented by Lund and Stegmann
[24] and Stegmann and Lund [7] and applied to the optimal de-
sign of laminated composite shell structures.

A common issue when dealing with eigenfrequency con-
straints concerns the fact that the order of the eigenfrequencies
may change throughout the optimization procedure. This will
in turn lead to non-differentiability and consequently to a non-
robust convergence behaviour of methods for smooth optimiza-
tion, namely, gradient-based methods. A typical approach to
mitigate these effects consists of applying the so-called bound
formulation (see, e.g., Bendsøe and Sigmund [20]). An al-
ternative approach is proposed here using the Kreisselmeier-
Steinhauser (KS) function (Kreisselmeier and Steinhauser[25])
to approximate the maximum and minimum values of groups of
eigenfrequencies. The KS function is a continuously differen-
tiable envelope function which approximates the maximum or
minimum of a set of functions. The functions should be con-
tinuous but need not be continuously differentiable. The aim
is to try to improve the convergence behaviour by rewriting the
eigenfrequency constraints to take advantage of the mathemati-
cal properties of the KS function. The mathematical properties
of the KS function have been discussed by Raspanti et al. [26].
Moreover, it has been used in similar optimal structural design
contexts as a constraint aggregation function by, e.g., Martins
et al. [27] and Maute et al. [28].

The paper is organized as follows. The beam finite ele-
ment structural model is briefly described in Section 2. The
multi-material topology optimization framework and problem
formulations are described in Section 3, where the KS func-

tion is also presented. The gradients or sensitivities for each of
the objective functions and constraints are presented in Section
4. Section 5 describes the setup of the numerical experiments,
presents the optimized cross section designs, and discusses the
results. Finally, the most important conclusions of the work
presented in this paper are summarized in Section 6.

2. Structural model

The structural response of the beam is analyzed based on the
beam finite element model presented by Blasques and Stolpe
[11]. The model is extended here for the analysis of the beam
eigenfrequencies and eigenmodes.

When using beam models it is assumed that the original beam
structure is represented by a reference line along the length of
the beam going through the reference points of a given number
of representative cross sections. The two steps involved inthe
generation of the beam model are discussed next. The first step
concerns the evaluation of the cross section stiffness and mass
properties as discussed in Section 2.1. The second part con-
cerns the integration of these properties to generate the beam
finite elements. The latter is addressed in Section 2.2 where
the derivation of the beam finite element stiffness and mass ma-
trices is presented along with the equations of motion for the
analysis of the dynamic response of the beam.

2.1. Cross section analysis
For a linear elastic beam there exists a linear relation be-

tween the cross section generalized forcesT and momentsM

in θ =
[
TTMT

]T
, and the resulting strainsτ and curvaturesκ

in ψ =
[
τTκT

]T
(see Figure 1). This relation is given in its

stiffness form asKsψ = θ, whereKs is the 6× 6 cross section
stiffness matrix. In the most general case, considering material
anisotropy and inhomogeneity, all the 21 stiffness parameters
in Ks may be required to describe the deformation of the cross
section. In the current research, the entries ofKs are deter-
mined using the BEam Cross section Analysis Software (BE-
CAS), an implementation by Blasques and Lazarov [13] of the
theory by Giavotto et al. [14]. The formulation relies on a finite
element discretization of the cross section to approximatethe
cross section in-plane and out-of-plane deformation or warp-
ing. BECAS is able to estimate the stiffness properties of beam
sections with arbitrary geometry and correctly account forthe
effects stemming from material anisotropy and inhomogeneity.
A brief outline of the theory underlying the determination of Ks

is presented here. The reader is referred to Blasques and Stolpe
[11] for more details on the derivation and notation.

The determination ofKs entails the solution to a two-
dimensional problem associated with the determination of
three-dimensional deformation of the cross section. The so-
lution is obtained from the cross section equilibrium equations
given by the following system of linear equations

KW = F (1)

where he coefficients in matrixK are associated with the stiff-
ness of the cross section. Furthermore, the solution matrixW
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contains the cross section rigid body motionsψ and the three
dimensional warping displacementsu. Finally, the load array
F is associated with a series of unit load vectorsθ. The solu-
tion W from (1) is subsequently used in the determination of
the cross section compliance matrixFs defined as

Fs =WTGW (2)

where the coefficient matrixG is defined in Blasques and Stolpe
[11]. For most practical applications, and in all cases consid-
ered in this paper,Fs is symmetric positive definite. Hence,
the cross section stiffness matrix is consequently obtained from
Ks = F−1

s .
The analysis of the cross section mass properties is relatively

simpler. The 6× 6 cross section mass matrixMs relates the lin-
ear and angular velocities inφ to the generalized inertial linear
and angular momentum inγ throughφ = Msγ. According to
Hodges [17], the coefficients ofMs are

Ms =



m 0 0 0 0 −mym
0 m 0 0 0 mxm
0 0 m mym −mxm 0
0 0 mym Ixx −Ixy 0
0 0 −mxm −Ixy Iyy 0
−mym mxm 0 0 0 Ixx + Iyy



(3)

wherem is the mass per unit length,Ixx andIyy are the moment
of inertia with respect tox andy, respectively, andIxy is the
product of inertia. The off-diagonal terms are due to the offset
between the position of the cross section reference center and
the mass centermc = (xm, ym). Here the reference center is de-
fined as the point through which the reference line goes through
and is coincident with the beam finite element discretization.
All of the terms inMs are determined through integration of
the mass properties in the cross section finite element mesh.

2.2. Beam finite element analysis

The finite element form of the beam structural eigenvalue
problem is (cf. Bathe [29])

(
K̂ − ω2

f M̂
)

v̂ f = 0, ∀ f = 1, ..., nd (4)

wherend is the number of degrees of freedom associated with
the finite element stiffness and mass matrices,K̂ and M̂, re-
spectively. The problem above yields the eigenfrequenciesω ={
ω1, ..., ωnd

}
associated with the eigenvectorsV̂ =

{̂
v1, ..., v̂nd

}
.

It is assumed that the eigenfrequencies inω are given in ascend-
ing order of magnitude, i.e.,ω1 ≤ ω2 ≤ ... ≤ ωnd .

The global beam stiffness matrix̂K is defined as

K̂ =
nb∑

b=1

K̂b =

nb∑

b=1

∫ Lb

0
B̂

T
b KsB̂b dz (5)

wherenb is the number of elements in the beam finite element
assemblage, andLb is the length of elementb. The summation
refers to the typical finite element assembly. The beam finite
element stiffness matrix̂Kb for elementb is given in function of
B̂b = B(N̂b) whereB is the strain-displacement relation which
is a function ofN̂b, the finite element shape function matrix.
The cross section stiffness matrixKs has been defined in the

previous section. The beam global finite element mass matrix
M̂ is defined as

M̂ =
nb∑

b=1

M̂b =

nb∑

b=1

∫ Lb

0
N̂

T
b MsN̂b dz (6)

whereM̂b is the beam finite element mass matrix for elementb
andMs is the cross section mass matrix defined in (3).

3. Optimization model

The optimal design problem is formulated based on the
multi-material topology optimization framework presented by
Blasques and Stolpe [11]. The aim is to determine the optimal
distribution of a predefined set of candidate materials at each
point of the beam cross section. The design requirements entail
the maximization or minimization of specific eigenfrequencies
of the beam.

A brief outline of the optimization framework is presented in
Section 3.1. The optimal design problem formulation consid-
ered in this paper is subsequently presented in Section 3.2.

3.1. Multi-material topology optimization

It is assumed that a set ofnc candidate materials has been
defined. The candidate materials may be anisotropic or even
the same anisotropic material oriented in different directions. A
candidate materialm is defined by its constitutive matrixQm

and density̺ m. An extension of the SIMP material interpola-
tion model (Bendsøe and Kikuchi [21], and Rozvany and Zhou
[22]) to multiple anisotropic materials is used. Hence, thema-
terial constitutive matrixQe at elemente is defined as

Qe(ρ) =
nc∑

m=1

ρ̃
p
em(ρ)Qm , ∀e= 1, ..., ne (7)

wherene is the number of elements in the cross section finite
element mesh,̃ρem is the filtered volume fraction of material
m at elemente as described later in this section, andp is a
penalization parameter. The volume fractionsρ = {ρem ∈ R

| e ∈ {1, ..., ne} , m ∈ {1, ..., nc}} are the design variables of the
optimization problem. It is assumed that the design variables
vary continuously between their bounds, i.e., 0≤ ρem ≤ 1,
∀e = 1, ..., ne, ∀m = 1, ..., nc. Furthermore,Qe is constant
within each cross section finite element. Finally, the density
̺e at elemente is similarly defined as

̺e(ρ) =
nc∑

m=1

ρ̃em(ρ)̺m ,∀e= 1, ..., ne

where the penalty parameter is not included.
The role ofp in (7) is to penalize intermediate material den-

sities or volume fractions. As the magnitude ofp increases the
design variables are pushed towards their bounds. The penal-
ized problem, however, may have a large number of local min-
ima. A continuation approach is therefore employed to increase
the possibility of obtaining a good design (see Sigmund and Pe-
tersson [30], Borrval and Petersson [31], and Hvejsel and Lund
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[18]). The practical use of the penalty parameterp within the
continuation approach is further discussed in Section 5.2.

In the typical SIMP formulation for two phase problems an
increase in the volume fraction of one material correspondsto
a decrease in the volume fraction of the second material. The
same effect is achieved here through the inclusion of the follow-
ing set ofne linear constraints in the optimal design problem
formulation

nc∑

m=1

ρem= 1 , ∀e= 1, ..., ne (8)

Hvejsel and Lund [18] and Hvejsel et al. [19] studied the
parametrization presented above in great detail and compared
it with other equivalent techniques. This parameterization is a
generalization of the SIMP approach and typical topology op-
timization techniques and formulations are therefore directly
extendible to the multi-material case (e.g., the density filter-
ing technique presented next). The potentially large number
of additional linear constraints introduced in (8) can be formu-
lated as sparse constraints which are easily handled by modern
and robust gradient based algorithms likesnopt by Gill et al.
[32]. Moreover, it is possible to use this linear constraints to
create relations between the different phases and locally con-
trol its distribution. Recent work by Sørensen and Lund [33]
exploits these possibilities to include manufacturing constraints
in the design of laminated composite shell structures.

Common issues in density based topology optimization prob-
lems concern the appearance of checkerboard patterns and the
dependency of the results on the resolution of the finite element
mesh (Sigmund [34]). The extension presented by Blasques
and Stolpe [11] of the density filtering technique by Bruns and
Tortorelli [23] is employed here to address these issues. Inthis
approach, the volume fractions at an element are a function of
the volume fractions of the surrounding elements within a given
distancefr (the filter radius) and the element itself. The filtered
volume fractions are defined as̃ρem = ρ̃em(ρem), where a lin-
ear support function (cf. Bruns and Tortorelli [23] and Bourdin
[35]) is used to weight the volume fractions.

Finally, the design variablesρ enter the structural model
through the material constitutive matrixQe = Qe(ρ) and den-
sities ̺e = ̺e(ρ). The material constitutive matrixQe(ρ) is
required for the determination of the cross section coefficient
matrices in (1) and (2) such thatK = K(ρ) andG = G(ρ) ,
respectively. Consequently, the cross section stiffness matrix is
defined such thatKs = Ks(ρ). The material densities̺e(ρ) are
required in the evaluation of the cross section mass matrix in
(3) such thatMs = Ms(ρ). At the beam finite element level,
K̂ = K̂(ρ) andM̂ = M̂(ρ).

3.2. Problem formulation

The eigenfrequencies of the beamω(ρ) are introduced in the
optimal design problem through the Kreisselmeier-Steinhauser
(KS) function (cf. Kreisselmeier and Steinhauser [25]). The
KS function is a differentiable envelope function which gives a
conservative representation of the maximum or minimum of a

set of functions (Raspanti et al. [26]). It is used here to approxi-
mate the maximum or minimum of a group of eigenfrequencies.
The derivation presented next is for the form of KS approximat-
ing the minimum of a function – hereby denoted KS(ρ). Hence,
assume thatω =

{
ω1, ..., ωng

}
is a subset of the eigenfrequen-

ciesω =
{
ω1, ..., ωnd

}
obtained from (4) whose minimum we

wish to approximate. Furthermore, it is also assumed that the
ng eigenfrequencies inω are ordered such thatω1 ≤ ... ≤ ωng

.
In this case, KS(ρ), is defined as

KS(ρ) = −
1
βs

ln


ng∑

g=1

e−βsωg(ρ)



where the parameterβs ≥ 1 is such that the function KS(ρ) will
tend to the minimum ofω asβs increases. In order to reduce
numerical difficulties KS(ρ) can be rewritten as

KS(ρ) = ωng
(ρ) −

1
βs

ln


ng∑

g=1

e−βs(ωg(ρ)−ωng
(ρ))

 (9)

The functionKS(ρ) approximating the maximum of a group
of eigenfrequenciesω is easily obtained from the expressions
above.

The position of the shear centersc(ρ) = (xs(ρ), ys(ρ)) is de-
fined in function of the entriesFs,i j of the compliance matrix
Fs(ρ) as (cf. Hodges [17])

xs(ρ) = −
Fs,62(ρ)
Fs,66(ρ)

, ys(ρ) =
Fs,61(ρ)
Fs,66(ρ)

(10)

where it is assumed that the component relating to the coupling
between bending and torsion is nil. The shear center is defined
such that a transverse load applied at the shear center will not
induce a torsional moment.

The reference optimal design problem formulation (prob-
lem P1-1) concerns the maximization of the gap KS(ω(ρ))−
KS(ω(ρ)) between the minimum and maximum of the two
groups of eigenfrequenciesω(ρ) andω(ρ), respectively. The
problem P1-1 including constraints on the shear center position,
and total weight of the beam is formulated as

maximize
ρ∈Rne×nc

KS(ω(ρ)) − KS(ω(ρ))

subject to s ≤ sc(ρ) ≤ s (P1-1)

w(ρ) = w
nc∑

m=1

ρem= 1 , ∀e= 1, ..., ne

0 ≤ ρem≤ 1, ∀e= 1, ..., ne ,

∀m= 1, ..., nc

where the parametersw and,s ands are the constraint values for
the weight and shear center position, respectively. An equality
constraint is used for the weight in order to avoid designs where
only the material with lowest weight exists.

Alternative problem formulations can be obtained by rear-
ranging the objective functions and constraints in P1-1. The
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following problem formulations have also been considered in
this paper. Problem formulation P1-2 concerns the maximiza-
tion of the gap between two groups of eigenfrequencies with
constraints on the weight. Problem formulation P1-3 concerns
the maximization of the minimum eigenfrequency with a con-
straint on the weight. Finally, problem formulation P1-4 con-
cerns the maximization of the minimum eigenfrequency subject
to constraints on weight and shear center position. Numerical
results are presented in Section 5 for each of the problem for-
mulation mentioned before.

The aim in this paper is to present proofs-of-concept for later
research, namely, in the field of wind turbine blade design. Tai-
loring the magnitude of certain eigenfrequencies and control-
ling the relative position of the shear and mass center positions
it is possible, e.g., to tailor the aeroelastic behaviour ofthe blade
to mitigate the risk of dynamic instabilities (see, e.g., Hansen
[36]).

4. Sensitivities

The analytical functions yielding the sensitivities of thebeam
eigenfrequencies and KS function are derived in this section.
The gradients of the cross section stiffness matrix and shear
center position have been derived in Blasques and Stolpe [11].
Hence, only a brief outline is presented here.

4.1. Beam stiffness and mass matrix

The sensitivities of the global beam finite element stiffness
matrix K̂ are obtained through differentiation of (5) to yield

∂K̂(ρ)
∂ρem

=

nb∑

b=1

∫ Lb

0
B̂

T
b
∂Ks(ρ)
∂ρem

B̂b dz

The gradient of the cross section stiffness matrixKs is described
in Section 4.2. The gradients of the global beam finite element
mass matrixM̂(ρ) are obtained through differentiation of (6)
and defined as

∂M̂(ρ)
∂ρem

=

nb∑

b=1

∫ Lb

0
N̂

T
b
∂Ms(ρ)
∂ρem

N̂b dz

4.2. Cross section stiffness and mass matrix

The sensitivities of the cross section stiffness matrixKs(ρ)
with respect toρem are defined in function of the cross section
compliance matrixFs(ρ) as

∂Ks(ρ)
∂ρem

=
∂F−1

s (ρ)

∂ρem
= −Ks(ρ)

∂Fs(ρ)
∂ρem

Ks(ρ) (11)

The gradients of the cross section compliance matrix are ob-
tained through differentiation of (2) which yields

∂Fs(ρ)
∂ρem

= −WT(ρ)
∂KT(ρ)
∂ρem

V(ρ)+

WT(ρ)
∂G(ρ)
∂ρem

W(ρ) − VT(ρ)
∂K(ρ)
∂ρem

W(ρ)

(12)

The matrixW(ρ) is the solution to the linear system of equa-
tions in (1) such thatW(ρ) = K(ρ)−1F. The matrixV is ob-
tained from the evaluation ofV(ρ) = K−T(ρ)G(ρ)W(ρ), where
the coefficient matrixG(ρ) has been defined in (2). BothW(ρ)
andV(ρ) are determined only once and then reused in the eval-
uation of (12) for each of the design variablesρem. Finally,
inserting the result of (12) into (11) yields the gradients of the
cross section stiffness matrixKs.

The gradients of the cross section mass matrix are obtained
through differentiation of (3).

4.3. Shear center

The sensitivities of the shear center position with respectto
the design variableρem are obtained through differentiation of
(10) to yield

∂xs

∂ρem
= −
∂Fs,62

∂ρem

1
Fs,66

+
Fs,62

F2
s,66

∂Fs,66

∂ρem
,

∂ys

∂ρem
=
∂Fs,61

∂ρem

1
Fs,66

−
Fs,61

F2
s,66

∂Fs,66

∂ρem

where the gradients∂Fs,i j/∂ρem refer to the entries of∂Fs/∂ρem

derived in (12).

4.4. Eigenfrequencies

The solution to the structural eigenvalue problem in (4) yields
the eigenfrequencies and eigenvectorsω =

{
ω1, ..., ωnd

}
and

V̂ =
{̂
v1, ..., v̂nd

}
, respectively. It is assumed that the eigenvec-

tors are mass-normalized such that

v̂T
pM̂(ρ)̂vq = δpq, ∀p, q = 1, ..., nd.

wherend is the number of degrees of freedom, andδpq is the
Kronecker delta such thatδpq = 1 if p = q andδpq = 0 other-
wise. The gradient of a single eigenfrequencyωp with respect
to the design variableρem is given by (cf. Seyranian et al. [37])

∂ω2
p(ρ)

ρem
= v̂T

p


∂K̂(ρ)
∂ρem

− ω2
p(ρ)
∂M̂(ρ)
∂ρem

 v̂p (13)

In the case of a multiple eigenfrequency, i.e.,ωM = ω1 =

... = ωnω , where the eigenfrequencies are numbered from 1 to
nω for convenience andnω indicates the multiplicity ofωM , a
different technique is applied. It can be shown that in this case,
unlike the single eigenfrequency, the multiple eigenfrequency
is not Fréchet differentiable. Seyranian et al. [37] instead de-
rive an expression for the directional derivatives of multiple
eigenvalues defined along any given vector∆ρ of increments
of the design variablesρ. A brief account of the procedure is
described here. The first step consists of computing the entries
of the generalized gradient vectorΛ defined as

Λrs = v̂T
r


∂K̂(ρ)
∂ρem

− ω2
M
∂M̂(ρ)
∂ρem

 v̂s, r, s= 1, ..., nω.
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wherêvr andv̂s, r, s= 1, ..., nω, are the eigenvectors associated
with the multiple eigenfrequencyωM. The next step consists of
determining the solution to the eigenvalue sub-problem

(
Λ − λ̃I

)
ṽ = 0

which yields the eigenvalues̃λ =
{
λ̃1, ..., λ̃nω

}
and correspond-

ing eigenvectors̃V =
{
ṽ1, ..., ṽnω

}
. It is assumed herein that the

eigenvalues̃λ are given in ascending order of magnitude such
that λ̃1 < ... < λ̃nω . The eigenvalues̃λ represent the directional
derivatives∂ω2

M(ρ) of the multiple eigenfrequencyωM such that

∂ω2
M(ρ) =



λ̃1 with eigenvectorv1 =

nω∑

q=1

v̂qṽ1,q

...

λ̃nω with eigenvectorvnω =

nω∑

q=1

v̂qṽnω,q

(14)

whereṽnω,q is the entry (nω, q) of the eigenvector̃v. Seyranian
et al. [37] show based on numerical experiments that the direc-
tional derivatives∂ω2

M(ρ) match the gradients of the multiple
eigenfrequency computed using finite differences.

The two techniques presented above are used for the eval-
uation of the beam eigenfrequencies throughout the optimiza-
tion procedure. For a single eigenfrequency the sensitivities
are given by the gradients∂ω2

p(ρ)/ρem in (13). An eigenfre-
quencyωM is multiple when the relative difference between
two or more consecutive eigenfrequencies inω is below a pre-
defined threshold. In this case the sensitivities of the multiple
eigenvalue are given by the directional derivatives∂ω2

M(ρ) in
(14).

Finally, the eigenfrequencies are included in the optimal de-
sign problem formulation through the KS function KS(ρ) (see
Section 3.2). The sensitivity of KS(ρ) defined in (9) with re-
spect to the design variablesρem for a setω of ng eigenfrequen-
cies is given as

∂KS(ρ)

∂ρem
=
∂ωng

(ρ)

∂ρem
+

ng∑

g=1


∂ωg(ρ)

∂ρem
−
∂ωng

(ρ)

∂ρem

e
−βs(ωg(ρ)−ωng

(ρ))

ng∑

g=1

e−βs(ωg(ρ)−ωng
(ρ))

The gradients ofKS(ρ) are easily obtained based on the expres-
sion above.

5. Numerical experiments

The optimal design framework described in the previous sec-
tions is employed in the optimal design of laminated composite
beams. The geometrical properties of the beam are presented
first. The mechanical properties of the considered materials are

detailed next along with a description of the procedures entailed
in the generation of the candidate materials. A brief descrip-
tion of the optimization strategy and details regarding thepre-
sentation of the results are subsequently presented. Finally, all
the results are presented and discussed for each of the different
problem formulations.

5.1. Setup

We consider the optimal design of a cantilever beam of con-
stant cross section. The beam finite element model is composed
of 16 three-node quadratic beam finite elements corresponding
to 198 degrees of freedom. The coordinate system, finite ele-
ment mesh and dimensions of the rectangular cross section or
design domain are presented in Figure 2. The cross section
is meshed using 2116 four-node isoparametric finite elements
corresponding to 6627 degrees of freedom. The beam is 2.4 m
wide, 2 m in height, and 20 m long. Two different materials
have been considered – an orthotropic and an isotropic mate-
rial – with the mechanical properties presented in Table 1. The
mechanical properties of the orthotropic material are based on
that of an E-glass reinforced Epoxy laminate (cf. Peters [38]).
The mechanical properties of the isotropic material correspond
to that of DIAB H100 PVC Core (DIAB [39]).

Nine candidate materials have been considered for all numer-
ical experiments. The candidate materials are generated based
on the material properties of the orthotropic layer and isotropic
core material in Table 1. One of the candidates is the isotropic
material itself. The remaining eight candidate materials are
generated by rotation of the orthotropic layer. The orientation
of the orthotropic layer in the cross section plane is specified
based on the orientationαp of the fiber plane and the orienta-
tion α f of the fibers in the plane, cf. Figure 3. The eight can-
didate materials considered correspond to four different layer
or fiber orientations – 0◦, 45◦, −45◦, and 90◦ – stacked in ei-
ther an horizontal (0◦) or vertical (90◦) fiber plane . Henceforth
the nomenclatureα f @αp will be used when referring to an or-
thotropic candidate material. For example, a layer oriented at
45◦ stacked on a vertical plane (90◦) is referred to as 45◦@90◦

(cf. Figure 4).

5.2. Optimization strategy

The first step in the optimization is to solve the unpenalized
problem corresponding to the case wherep = 1 in (7). At each
of the subsequent steps, the penalty parameterp is increased
by ∆p until p = pmax. For all numerical experiments presented
here it is assumed that∆p = 0.5 andpmax= 5. Furthermore, for
all cases, at the starting point all materials have the same vol-
ume fractions. The optimal design problems are solved using
the sequential quadratic programming algorithmsnopt by Gill
et al. [32]. Each problem is solved until the major optimality
tolerance is satisfied or the maximum number of major itera-
tions is reached. The major optimality tolerance, like the major
feasibility tolerance, is set to 1× 10−5 in snopt. The maximum
number of major iterations is set to 500 in the first iterationand
to 100 in the remaining. The remaining parameters are set to the
default values. All numerical experiments are solved for 19044
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design variables associated with the nine candidate materials at
each of the 2116 elements of the cross section. The filter radius
is set tofr = 0.15 for all numerical experiments. Furthermore,
the value ofw indicates the fraction of the total weight which
is orthotropic material. An equality constraint is used forthe
weight in order to avoid designs where only the isotropic ma-
terial exists. Moreover, it is assumed that the eigenfrequency
groups used in conjunction with the KS function are subsets of
ω determined in (4). The eigenfrequency groups are denoted
ωi, j =

{
ωi , ..., ω j

}
where the subscriptsi and j indicate the order

of the lowest and higher eigenfrequencies in the group, respec-
tively. The order number refers to the order placement inω.
Only groups of consecutive eigenfrequencies have been con-
sidered such thatωi, j includes the eigenfrequenciesi, j, and
all eigenfrequencies in between. The value of the parameterβs

introduced in the definition of the KS function in (9) is set to
unity for all cases. This ensures maximum numerical stabil-
ity although the lower and upper bound of the eigenfrequency
groups estimated by the KS function may be overly conserva-
tive. The sensitivity analysis technique for multiple eigenfre-
quencies presented in Section 4.4 is employed whenever the
relative difference between two or more eigenfrequencies is be-
low 1× 10−5.

5.3. Presentation of the results

All numerical examples considered concern the optimal de-
sign of prismatic beams, i.e., beam with constant cross section
along its length. Hence for each case the figures with the results
present only the cross section as this is sufficient to character-
ize the optimal structural topology and material distribution of
the entire beam. Two figures of the optimized cross section
are presented for each case indicating the fiber and fiber plane
orientation, respectively. The topology of the cross section is
visible in both. The fiber and fiber plane orientations are rep-
resented by lines at each element. The thickness and darkness
of the line is weighted by the value of the filtered design vari-
able. It is possible in this way to visualize the effect of the filter.
Based on the orientation of the lines and resorting to Figure4,
it is possible to visualize the three-dimensional orientation of
the fibers. The element is white if the material is isotropic.The
plots refer to the unpenalized filtered design variables. Finally,
the position of the cross section reference point, shear center,
and mass center is indicated in these group of figures with a
square, diamond, and triangle marker, respectively (cf. Figure
4).

5.4. Results

All numerical experiments considered in this paper are de-
fined in Table 2. The corresponding objective function and con-
straint values for each of the numerical experiments are defined
in Table 3. The optimized cross section topologies and material
distribution are presented in Figures 5 and 7. The beam eigen-
modes for a few relevant cases are presented in Figure 6 and 8.
The eigenfrequencies, eigenmodes, constraint values, andnum-
ber of objective function evaluations for each optimized design
are presented in Table 4. For all cases the weight constraintis

satisfied and the shear center position constraint is activeat the
optimal design point. Furthermore, all values presented refer to
the penalized case, i.e.,p = pmax. The eigenmodes are iden-
tified based on its predominant motion. Bending eigenmodes
with predominant displacements in thex and y direction are
identified asux anduy, respectively. The torsional eigenmode
associated with rotation of the cross section around thezaxis is
identified asθz. The tension eigenmode involving displacement
of the cross sections along thez axis is identified asuz. The
notationu+xy andu−xy is used for bending eigenmodes whose
predominant displacementsx andy are of similar magnitude.
Eigenmodes indicated byu+xy andu−xy have a predominant dis-
placement going through the first and third, and second and
fourth quadrants of thexy plane, respectively (see Figure 8).

The optimized beam cross section designs obtained for the
maximization of the minimum eigenfrequency and maximiza-
tion of the gap between eigenfrequencies – cases S1 and S2,
respectively – are discussed first. The same formulations ex-
tended to include a constraint on the shear center position –
cases S3 and S4 – are discussed next.

5.4.1. Results without constraint on the shear center position
The S1 case dealing with the maximization of the lowest

eigenfrequency and the cases S2-1, S2-2 and S2-3 addressing
the maximization of the gap between different groups of eigen-
frequencies (cf. Table 2 and 3) are discussed in this section.
The resulting cross section topology and material distribution
for cases S1 and S2 are presented in Figures 5(a-h). The lowest
six eigenfrequencies and predominant displacement of the cor-
responding eigenvectors for each of the optimized beams are
presented in Table 4.

For case S1, the results in Table 4 show that the magnitude
of the two lowest eigenfrequencies are relatively similar and
are associated with bending eigenmodes with predominant dis-
placements in thex and y directions. The resulting box-like
topology in Figures 5(a-b) maximizes the moment of inertia and
therefore the bending stiffness of the beam in each of these di-
rections. The fibers are aligned mostly along the beam length
at 0◦@0◦ and 0◦@90◦ to maximize the bending stiffness. In
the vertical or side faces,±45◦@90◦ fibers are visible at the
height of the horizontal neutral axis. These fibers resist the
shear stresses induced by the transverse forces and contribute
to an increase in shear stiffness in they direction and conse-
quently of the lowest eigenfrequencyω1. This topology and
material distribution is similar to that obtained by Blasques
and Stolpe [11] for the minimum compliance optimization of
a square beam subjected to a vertical transverse load.

For cases S2-1, S2-2 and S2-3 the eigenfrequencies and
eigenmodes indicated in Table 4 show that all optimized de-
signs maximize the gap between a bending and torsion eigen-
frequency. The eigenmodes for the bending eigenfrequencyω4

and torsional eigenfrequencyω5 for case S2-3 are presented
in Figure 6. Moreover, the progressive decrease in the mag-
nitude of the lowest eigenfrequencies associated with bend-
ing eigenmodes suggests that the optimized beams are progres-
sively more compliant in bending for case S2-1, S2-2 and S2-3,
respectively. In fact, Figures 5(a - h) show the transition from
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a tall and wide thin-walled beam stiff in bending – case S1 –
to a low radius, shaft-like, thick-walled cylinder with approx-
imately the same torsional stiffness but relatively more com-
pliant in bending – case S2-3. The predominant 0◦@0◦ and
0◦@90◦ laminates which in case S1 resist the normal stresses
and maximize the bending stiffness are gradually replaced in
the optimized designs of case S2-1 and S2-2 by±45◦@0◦ and
±45◦@90◦ laminates. In the limit case S2-3 only interleaving
layers of±45◦@0◦ and±45◦@90◦ fibers exist. This is such
that the direction of maximum stiffness of the fibers is aligned at
±45◦ to resist the shear stresses and thus maximize the torsional
stiffness. The decrease in torsional stiffness resulting from the
reduction in cross section width and height is compensated by a
redistribution of the material and an increase in wall thickness.
As a result the torsional eigenfrequency of optimized designs
S2-2 and S2-3 is close to that of S1.

5.4.2. Results with constraint on shear center position

Controlling the relative position of the shear, mass and ref-
erence centers it is possible, to a certain extent, to tailorthe
static and dynamic coupling between the bending and torsional
motions. The preliminary results presented in this sectionil-
lustrate the ability to do so within the proposed optimal design
framework. Potential applications include aeroelastic tailoring
of wind turbine blades for mitigation of dynamic instabilities,
among other.

The S3 case addresses the maximization of the lowest eigen-
frequency with a constraint on the shear center position whereas
cases S4-1, S4-2 and S4-3 concern the maximization of the gap
between different groups of eigenfrequencies with a constraint
in the shear center position (cf. Table 3). The lowest six eigen-
frequencies and predominant displacement of the correspond-
ing eigenmodes, the weight, and the shear center position for
each of the optimized designs are presented in Table 4. The
resulting cross section topology and material distribution for
cases S3 and S4 are presented in Figures 7(a-h).

The optimized cross section topology and material distribu-
tion for case S3 presented in Figures 7(a-b) are very similarto
that of case S1 in Figures 5(a-b). Furthermore, the magnitude
of the lowest six eigenfrequencies and respective eigenmodes
are also closely coinciding (cf. Table 4). A slight increasein
the thickness of the right face of the beam section is observed
in case S3 in order to satisfy the constraint in the position of the
shear center,

The resulting optimized designs for cases S4-1, S4-2 and S4-
3 are presented in Figures 7(c - h). The optimized designs S4-1
and S4-2, are similar to their counterparts S2-1 and S2-2 in Fig-
ures 5(c - f) and, likewise, the designs are progressively more
compliant in bending.

Unlike the remaining cases which dealt with the separation
of a bending and torsional eigenfrequencies, in case S4-3 the
optimization targets the maximization of the gap between two
eigenfrequencies associated with bending eigenmodes. There-
sulting optimized design is a type of ”I-beam” oriented diago-
nally with respect to the cross section coordinate system (see
Figures 7(g - h)). The resulting eigenmodes presented in Figure

8 show the direction of motion associated with the two eigenfre-
quencies being separated. The diagonal orientation is suchthat
the height of the cross section and consequently the bending
stiffness in that direction is maximized for the given design do-
main. The fibers align at 0◦@0◦ and 0◦@90◦ in the ”flanges”,
or top left and bottom right regions of the design domain to
maximize bending stiffness. In the central part, the shear
stresses dominate and the laminates consisting of±45◦@0◦ and
±45◦@90◦ fibers emerge to increase shear stiffness. The result-
ing optimized topology and material distribution is in factsim-
ilar to the results obtained by Blasques and Stolpe [11] for the
minimum compliance optimization of a square beam subject to
a diagonal transverse load.

5.5. Discussion
The framework initially presented by Blasques and Stolpe

[11] is herein extended to include eigenfrequency constraints.
The preliminary results presented in the previous sectionsin-
dicate that the proposed framework is suitable for the simulta-
neous optimization of structural topology and material distribu-
tion in the design of beam cross sections with eigenfrequency
constraints.

Regarding the optimization procedure, it can be seen that
the number of objective function evaluations presented in Ta-
ble 4 is relatively large when compared to typical topology
optimization problems. This is mostly due to the relatively
large number of steps used in the continuation approach and
large number of allowed maximum major iterations at each of
the steps. Numerical experience suggests that multi-material
topology optimization problems are specially sensitive tothe
number of steps in the continuation approach. A larger num-
ber of smaller steps tends to generate designs with significantly
improved performance and was therefore preferred. Nonethe-
less, note that the large number of objective function eval-
uations is possible only due to the high computational effi-
ciency achieved by the the high-fidelity beam model used in this
framework. The results further indicate that the Kreisselmeier-
Steinhauser function used here to generate continuous and dif-
ferentiable envelopes to approximate the maximum and mini-
mum of groups of eigenfrequencies, is a possible alternative to
the typical bound formulation (see, e.g., Du and Olhoff [4] and
Bendsøe and Sigmund [20])). In the future, the two different
formulations should be compared in terms of its convergence
behaviour and the performance of the resulting optimized de-
signs. At last, note that the interface tosnopt does not provide
the necessary information to plot the typical convergence plots.
Furthermore, plotting the objective function versus the num-
ber of iterations neither reveals anything about the convergence
rate nor provides a measure of closeness to a point satisfying
the first order optimality conditions. The convergence plots are
therefore omitted.

Future work will focus on truly exploiting the computational
efficiency of the beam finite element model used in the pro-
posed optimal design framework. The proposed framework
opens the possibility for novel problem formulations includ-
ing computationally intensive multiphysics and time dependent
constraints associated with the global response of the beam.
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Moreover, a greater level of detail can be achieved by op-
timizing a larger number of cross sections along the length
of the beam to obtain a detailed three-dimensional design of
the beam structure. Potential applications include the three-
dimensional structural topology and material optimization of
wind turbine blades with aeroelastic stability and fatiguecon-
straints. Nonetheless, despite the focus on the design of lam-
inated composite beams, the framework is sufficiently general
and applicable to a broader class of problems dealing with the
distribution of multiple materials to optimize the performance
of beam-like structures. For example, the framework is well
suited to topology optimization problems of beams with ex-
trusion constraints. Typical approaches resort to computation-
ally expensive three-dimensional solid finite element models
and additional constraints on the design variables to ensure that
the extrusion constraint is satisfied (see, e.g., Ishii and Aomura
[40]). In this sense the approach proposed here has the poten-
tial to allow for a significant improvement in terms of compu-
tational efficiency.

6. Conclusions

A framework has been presented for the optimal design of
beams with eigenfrequency constraints. The structural response
of the beam is analyzed using beam finite elements. The cross
section stiffness and mass properties are determined using a fi-
nite element based cross section analysis tool. The resulting
beam model is able to account for effects stemming from ma-
terial anisotropy and inhomogeneity in the analysis of beams
with arbitrary section geometry.

The optimal design problem is formulated in a multi-material
topology optimization context. An alternative approach ispro-
posed to handle the eigenfrequencies constraints based on the
Kreisselmeier-Steinhauser function.

Optimized cross section designs are presented for optimal de-
sign problems dealing with the maximization of the minimum
eigenfrequency and the maximization of the gap between con-
secutive eigenfrequencies. Furthermore, results are alsopre-
sented where the same problems are solved but the position of
the shear center is constrained.

The numerical examples suggest that the devised optimal de-
sign framework is suitable for the simultaneous optimization
of the cross section topology and material properties in thede-
sign of laminated composite beams with stiffness and eigen-
frequency constraints. The next step consists of applying the
presented methodology to the aeroelastic tailoring of laminated
composite wind turbine blades.
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Table 1: Material properties for orthotropic material (scaled values for E-glass
reinforced Epoxy laminate according to Peters [38]), and isotropic material
(scaled values for DIAB H100 PVC Core, cf. DIAB DIAB Group [39]) (Table
from Blasques and Stolpe [11]).

Material Orthotropic Isotropic

E11 480 GPa 0.130 GPa
E22 = E33 120 GPa 0.130 GPa
G12 = G13 60 GPa 0.035 GPa

G23 50 GPa 0.035 GPa
ν12 = ν13 0.19 - 0.35 -
ν23 0.26 - 0.35 -
̺ 1.78 103 kg/m3 0.1 103 kg/m3

Table 2: Catalogue of numerical experiments combining the different problem
formulations.

Ref. Problem formulation

S1
Max. min. eigenfrequency

with a weight constraint (P1-3)

S2-1
Max. gap between two eigenfrequencies with

constraints on weight (P1-2)

S2-2
Max. gap between two eigenfrequencies with

constraints on weight (P1-2)

S2-3
Max. gap between two eigenfrequencies with

constraints on weight (P1-2)

S3
Max. min. eigenfrequencies with constraints
on weight and shear center position (P1-4)

S4-1
Max. gap between eigenfreqs. with constraints

on weight and shear center position (P1-1)

S4-2
Max. gap between eigenfreqs. with constraints

on weight and shear center position (P1-1)

S4-3
Max. gap between eigenfreqs. with constraints

on weight and shear center position (P1-1)

Table 3: Details for all numerical experiments (cf. Table 2). The first col-
umn indicates the objective function. The eigenfrequency groups are denoted
ωi, j =

{
ωi , ..., ω j

}
where the subscriptsi and j indicate the order of the lowest

and highest eigenfrequencies in the group, respectively. The second column
indicates the value of the equality constraint on the weightwherew refers to
the ratio of orthotropic material. The last column indicates the constraints on
the shear center positionsc = (xs, ys).

Ref. Obj. func. w sc

S1 KS(ω1,5) 3/5 –
S2-1 KS(ω3,4)−KS(ω1,2) 3/5 –
S2-2 KS(ω4,6)−KS(ω1,3) 3/5 –
S2-3 KS(ω5,7)−KS(ω2,4) 3/5 –
S3 KS(ω1,5) 3/5 xs = −0.2, ys = 0

S4-1 KS(ω1,2)−KS(ω3,4) 3/5 xs = −0.2, ys = 0
S4-2 KS(ω1,3)−KS(ω4,6) 3/5 xs = −0.2, ys = 0
S4-3 KS(ω2,4)−KS(ω5,7) 3/5 xs = −0.2, ys = 0

Table 4: Summary of numerical results for optimized designsfor cases S1
through S4 and all sub-cases therein (cf. Table 3). The first six rows indi-
cated the lowest six eigenfrequencies for the optimized designs (the lines are
placed between the eigenfrequencies that have been separated). The letters in
brackets indicate the predominant motion of the corresponding eigenmodes (ux,
uy, anduz, indicate displacements in the directionx, y, andz, respectively;θz
indicates torsion;u+xy andu−xy indicates a predominant displacement motion
between the first and third, and second and fourth quadrants of the xyplane, re-
spectively). The resulting weight (w), shear center position (sc = (xs, ys)), and
number of objective function evaluations are presented in the following rows,
respectively. The eigenfrequency values and the shear center position values
are obtained with the penalized filtered densities, i.e.,p = pmax= 5.

S1 S2-1 S2-2 S2-3

ω1 5.9 (uy) 4.2 (ux) 0.7 (uy) 0.5 (uy)
ω2 7.3 (ux) 4.4 (uy) 2.9 (ux) 0.5 (ux)
ω3 69.5 (θz) 99.0 (θz) 23.5 (uy) 18.1 (uy)
ω4 99.7 (uy) 111.0 (ux) 71.7 (θz) 19.3 (ux)
ω5 170.0 (ux) 114.0 (uy) 85.7 (ux) 76.0 (θz)
ω6 439.9 (uy) 579.9 (uz) 154.5 (uy) 128.9 (uy)
w 3/5 3/5 3/5 3/5

Fun. Eval. 546 1736 2336 2269

S3 S4-1 S4-2 S4-3

ω1 5.9 (uy) 3.7 (ux) 1.2 (u−xy) 0.7 (u+xy)
ω2 7.5 (ux) 3.9 (uy) 3.6 (u+xy) 7.9 (u−xy)
ω3 66.3 (θz) 82.8 (θz) 38.4 (u−xy) 20.8 (θz)
ω4 96.2 (uy) 98.5 (ux) 100.6 (θz) 25.5 (u+xy)
ω5 176.1 (ux) 100.0 (uy) 105.1 (u+xy) 159.9 (u−xy)
ω6 413.7 (uy) 495.8 (uz) 244.2 (u−xy) 161.0 (u+xy)
w 3/5 3/5 3/5 3/5
xs -0.2 -0.2 -0.2 -0.2
ys 0.0 0.0 0.0 0.0

Fun. Eval. 760 1682 2213 2869
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8. Figures
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(a) Forces and moments(b) Strains and curva-
tures

Figure 1: Cross section coordinate system, foces and moments (a), and corre-
sponding strains and curvatures (b).
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Figure 2: Cross section coordinate system and finite elementmesh. The cross
section is meshed using 2116 four-node isoparametric finiteelements corre-
sponding to 6627 degrees of freedom. The square marker indicates the position
of the cross section reference point or beam node.

Figure 3: Three-dimensional rotation of fiber plane and fiberorientation in the
cross section mesh. The fiber plane orientation is defined by the angleαp while
the orientation of the fibers in the fiber plane are defined by the angleα f . (Fig-
ure from Blasques and Stolpe [11])
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Figure 4: Legend for the figures depicting the solutions. Visualization of the
spatial orientation of the fibers at each element based on theresulting fiber
and fiber plane orientations, for each of the candidate orthotropic materials.
Description of the markers used to define the cross section reference point or
beam node (square), shear center (diamond), and mass center(triangle). (Figure
from Blasques and Stolpe [11])
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(a) S1 Fiber angles (b) S1 Fiber plane angles

(c) S2-1 Fiber angles (d) S2-1 Fiber plane angles

(e) S2-2 Fiber angles (f) S2-2 Fiber plane angles

(g) S2-3 Fiber angles (h) S2-3 Fiber plane angles

Figure 5: Optimal cross section topology and material distribution for cases
S1, S2-1, S2-2, and S2-3 (cf. Tables 2 and 3). Case S1 is the solution to
the maximization of the minimum eigenfrequecy problem witha weight con-
straint (P1-3). The remaining cases S2-1, S2-2, and S2-3 arethe solutions to the
maximization of the gap between two eigenfrequencies with weight constraints
(P1-2). The legend to the figures is described in Figure 4.

(a) S2-3,ω4(ux) = 19.3 (b) S2-3,ω5(θz) = 76.0

Figure 6: Beam eigenmodes for the fourth and fifth eigenfrequency (cf. Table
4) of optimized cantilever beam for case S2-3 (cf. Table 3). The correspond-
ing optimized cross section topology and material distribution for this case is
presented in Figure 5 (g-h).
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(a) S3 Fiber angles (b) S3 Fiber plane angles

(c) S4-1 Fiber angles (d) S4-1 Fiber plane angles

(e) S4-2 Fiber angles (f) S4-2 Fiber plane angles

(g) S4-3 Fiber angles (h) S4-3 Fiber plane angles

Figure 7: Optimal cross section topology and material distribution for cases S3,
S4-1, S4-2, and S4-3 (cf. Tables 2 and 3). Case S3 is the solution to the max-
imization of the minimum eigenfrequecy problem with constraints on weight
and shear center position (P1-4). The remaining cases S4-1,S4-2, and S4-3
are the solutions to the maximization of the gap between two eigenfrequencies
with constraints on weight and shear center position (P1-1). The legend to the
figures is described in Figure 4.

(a) S4-3,ω4(u+xy) = 25.5

(b) S4-3,ω5(u−xy) = 159.9

Figure 8: Schematic view of the eigenmodes for the fourth andfifth eigenfre-
quency (cf. Table 4) of optimized beam for case S4-3 (cf. Table 3) – perspective
(left) and front (right) view. The corresponding optimizedcross section topol-
ogy and material distribution for this case is presented in Figure 7 (g-h).

16


