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DECONVOLUTION OF ULTRASOUND IMAGES 
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Based on physical models, it is indicated that the received pressure field in ultrasound B-mode 

images can be described by a convolution between a tissue reflection signal and the emitted pres- 

sure field. This result is used in a description of current image formation and in formulating 

a new processing scheme. The suggested estimator can take into account the dispersive atten- 

uation, the temporal and spatial variation of the pulse, and the change in reflection strength 

and signal-tenoise ratio. Details of the algorithm and the estimation of parameters to be used 

are given. The performance is indicated by two examples. One is for a synthetic signal and the 

other is for data measured from a tissue mimicking phantom. The last example shows a finer 

speckle pattern, giving an increased resolution. 0 1992 Academic Press, Inc. 

Key words: Deconvolution; estimation; image improvement; signal processing. 

1 INTRODUCTION 

Real-time B-mode ultrasound scanners show images of interior soft-tissue structures by em- 

ploying the pulse-echo method. A short ultrasound pulse is emitted into the body and is reflected 

at boundaries between tissues with different characteristic impedance. A cross-sectional image 

is made by controlling the direction of the emitted ultrasound beam either mechanically (a 

rotating transducer element) or electronically (a phased array transducer). 

The images are shown in real-time in order to perceive the relation between the position of the 

transducer and the location of the tissue structures, and to follow, e.g., heart valve movements. 

Often, 20 images are displayed per second, imposing a heavy demand on the speed of the 

signal processing involved. Consequently, the processing must be fast, enforcing a simple analog 

processing of the high frequency signal from the transducer. The signal processing essentially 

consists of a detection of the amplitude of the signal by rectification and low-pass filtering. This 

simple processing does not fully utilize the information present in the measured signal; most 

notably, the phase is ignored. 

Diagnosis from ultrasound images is based on a number of features, including the displayed 

information about relative position and size of orga.ns, and demarcations between tissues types. 

The accuracy of the diagnosis depends on the quality of the equipment, in terms of the capability 

to resolve tissue structures and the reproducibility from measurement to measurement. 

Interpretation of the acquired images is often difficult and limits the application of ultrasound 

in the diagnostic work. A prime cause for this is the poor image quality. The images are blurred 

due to the finite signal bandwidth of the transducers, which limits the axial resolution. 

Signals measured from current transducers contain information that is not fully utilized by 

currently used signal processing. This could be remedied by the use of more advanced digital 
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signal processing. The aim of this research is to devise new digital methods to enhance the 
diagnostic value of ultrasound images. 

It is shown in the next section that the received signal is generated by a convolution between 
the emitted pressure field and the tissue reflection signal. This knowledge is used in section 
to analyze the current image formation and to suggest a new algorithm for the removal of the 
pulse from the image. Details of the algorithm are given in section , and two examples of its 
use are shown. 

2 PROPAGATION OF ULTRASOUND IN TISSUE 

A three dimensional pulsed pressure field is emitted into the tissue during medical ultrasonic 
investigations. The field interacts with the tissue and part of it is rellected and scattered and 
subsequently received by the transducer. 

The largest part of the received field emanates from scattering by small density and propaga- 
tion velocity perturbations. This is in contrast to seismic oil exploration in which the dominant 
source of energy for the received field is from reflections due to the different characteristic 
acoustic impedances of the layers. 

In medical ultrasound, it is rare to find pure reflections from surfaces perpendicular to the 
direction of propagation. Often, smooth boundaries do not exist, or are oblique to the propaga- 
tion direction, so the reflected field is not directed towards the transducer, and thus no response 
is received. Rather, small surface roughness or local changes in density and propagation velocity 
give rise to an emitted spherical wave that is received by the transdueer. Tissue structures are 
therefore indicated instead by the speckle pattern, so boundaries are seen as a collection of 
small speckle spots. Thus, it is appropriate to analyze the scattering mechanisms and relate the 
backscattered field to the emitted field and to the transducer reception response and geometry. 

To analyze the situation, the following wave equation was derived when absorption was ne- 
glected and linear propagation and weak scattering assumed [l-3]: 

1 d2PI 2Ac@p, 1 
v2Pl - 3~ = -7~ + $‘@P). VPI 

pl is the overpressure, V the gradient and V2 the Laplace operator. CO is the propagation 
velocity, po the mean density and AC, Ap the corresponding perturbations in the scattering 
region. 

Neglecting multiple scattering and introducing the Tupholme-Stepanishen model for the pres- 
sure field from the transducer, results in the following equation for the received pressure field 

PI, [31: 
P,(G,t) = q&) ‘I fm(r;) * 4dT;?T;74 (2) 

T  

where 2 denotes a temporal and : a spatial convolution. + is the pulse-echo wavelet 

that accounts for the transducer excitation and the electromechanical impulse response during 
emission and reception of the pulse. f,  accounts for inhomogeneities in the tissue due to 
density and propagation velocity perturbations, which gives rise to the scattered signal. h,, is 
the modified pulse-echo spatial impulse response that relates the transducer geometry to the 
spatial extent of the scattered field. Explicitly written out, these terms are: 
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?I denotes the position of the scatterer and $ the position of the transducer. v(t) is the 

transducer excitation and electromechanical impulse response and E,(t) the impulse response 

when receiving. h is the spatial impulse response for the transducer geometry as calculated 
by the Tupholme-Stepanishen method [4-61. Equation (2) was derived under the assumption 
of weak scattering due to density and propagation velocity perturbations in the tissue, and 
absorption and multiple scattering were neglected. 

Expression (2) consists of three distinct terms. The signal of interest, and the one that should 
be displayed in medical ultrasound, is fm(Fr). We, h owever, measure a time and spatially 
smoothed version of this, which obscures the finer details in the image. The smoothing consists 
of a convolution in time with a fixed wavelet upe(t), and a spatial convolution with a spatially 
varying h,, (Fr , ?a, t) . 

Equation (2) does not included the dispersive attenuation in the wave equation describing the 
pulse. This would have the effect of continuously changing the pulse as it propagates through 
the tissue. Neglecting dispersive attenuation is, however, not a serious drawback of the theory, 
as this change of the pulse can be lumped into the already spatially varying h,,. 

A second approach is to assume a homogeneous absorption, and propagation in the far field. 
Then the absorption, A(t, IFr - ?sl), can be lumped into vrc to yield an attenuated pulse: 

vpeok Ir; - 61) = vpe(t) ; 46 Ir; - 61) (6) 

that is a function of time and distance. 

3 ULTRASOUND B-SCAN IMAGING: AN ESTIMATION-BASED APPROACH 

In the preceding section, we saw that the received signal can be written in a convolution form. 
This result will here be used to analyze the image formation in traditional B-mode systems and 
to suggest a new improved estimation of the amplitude reflection signal. It will consist of 
adaptive axial deconvolution and adaptive two-dimensional deconvolution. 

3.1 Current B-scan systems 

The following expression was given for the received signal: 

Y(c,t) = vpea(t) ; fm(G) * hpe(T;,T;,4 + n(r;,t) (7) 
T  

A noise term n(?a, t) has been added to explain the inevitable noise in the measured signal. The 
term accounts for both electrical noise from amplifiers and for physical effects not explained by 
the convolution model. 

In a B-mode system, a number of lines is collected and combined to an image. The signal 
displayed on the screen is: 

Sd(G,Q = ly(r;,t)l * b&) 
t 

(8) 

y(& t) is rectified and low-pass filtered to avoid aliasing in the subsequent sampling process. 
hi, denotes the low-pass filter used. sd (T;, t) is displayed on the screen, where the intensity is 
proportional to the amplitude of sd. 

The displayed signal is a rectified, smoothed, and noisy version of f,(?r ). sd(Fa, t) approaches 
a true version of the rectified fm(?r), if the spatial extent of the object is large compared to 
the wavelength of the ultrasound, and the noise amplitude is small compared to the amplitude 
of fm(fl). The current resolution limit is 1 to 2 oscillations in the axial direction, primarily 
determined by vn,.(t). In the lateral direction, it is 5 to 10 oscillations, determined by the 

3 
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transducer center frequency and hpe( ?I, Fz, t). This corresponds to 0.4 - 1 mm axially, and 2 to 
4 mm laterally for a transducer center frequency of 4 MHz. 

As is apparent, this method for estimating f,,,(Fr) precludes obtaining any information about 
the sign of f,,, . The reason for using this estimator is of course its simplicity, which makes it easy 
to implement. Real-time processing of signals can be accomplished as it can be implemented 
by analog electronics. 

3.2 A new estimation-based approach 

The problem of calculating fm(T;) is often called the inverse scattering problem in the liter- 
ature [8,9]. Some solutions to this problem rely on purely deterministic approaches, which can 
result in gross errors due to modeling errors or noise in the data used for the reconstruction. 
In this paper, the problem is approached from a statistical point of view. So, it is stated as 
estimating the tissue inhomogeneities f, from the measured data y. 

It is necessary to employ digital signal processing to make a better estimation of fm. Thus, 
Eq. (7) is reformulated in a discrete form: 

k is the discrete time variable, and ?d is a discrete vector 

We now seek a procedure to obtain an estimate of fm(T;l, ). This can formally be stated as 

[71: 

The estimate fm(Fd,) is a function of the measured signal y(Fd,, Lz) and some knowledge, 
measured or estimated, about upear hpe, and n. 

The function 3 can be a linear or nonlinear mapping from y, upear hpe, and n to f,. It can be 
evaluated directly or through iterative techniques. One of the advantages of ultrasound B-mode 
systems is the real-time image formation. This precludes the iterative search scheme, as in a 
real-time system only a fixed amount of calculations can be carried out per sample. Rather, the 
estimate jmm(Fdl) is based on some estimate of the internal state of the system so that 

(11) 

where H linearly relates Y(~dd,,k),vp,,(~),h,~(~d~,~d~,~), and 
jl(F&,k), and 4 linearly relates .!?(r;i,,k) to Jm(Fd,). S 

n(Fdzd,, k) to 

is a vector of fixed dimension that 
represents the state of the system. Ii and G can be evaluated with a fixed and a priora’ known 
number of calculations. This allows for a time-varying model, where each sample can be treated 
in a fixed, predetermined amount of time [7]. 

From the calculation of the received signal, it is known that the smoothing of f,  is due to 
convolution with vpeo and h,,. vpe. is a one-dimensional entity, that is common to all A-lines 
in the image; thus, the estimation can advantageously be split into a two-part procedure. The 
first part is: 
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In this estimation step, the effect of smoothing due to urea is removed. So, in the first part 
of the estimation procedure npeo is estimated for one A-line, and it is used for the whole image. 
This is a one-dimensional operation, which is common to all A-lines. 

The next part of the algorithm removes the (mainly lateral) smoothing by h,,. This can be 
written: 

In this part, both the modified pulse-echo spatial impulse response and the signal-to-noise 
ratio must be continuously estimated. 

Both Eq. (12) and (13) can be viewed as deconvolution operations [ll], where Eq. (12) is a 
one-dimensional deconvolution and Eq. (13) a twodimensional deconvolution. The next section 
will describe how these deconvolution operations are performed. 

4 ESTIMATING THE AMPLITUDE REFLECTION SIGNAL 

Our task is to derive a two-dimensional deconvolution algorithm for the general twodimensional 
convolution between an excitation, R(j, i) and a data channel V(j, i): 

z(k,h)=~~R(j.i)V(l;-j,h-i)+n(~,h) (14) 
j=l i=l 

R represents the scattering signal (f, in the previous sections), and V is the two-dimensional 
spatial and time-varying wavelet. It can include both vpea and h,, in Eq. (9) and the effect of 
the dispersive attenuation of the intervening tissue. n is a noise term which accounts for the 
effects that are not included in the convolution model. In the remaining part of the paper, we 
will only write z(k), which indicates a vector of samples from the different A-lines at time k. 

It might seem physically counterintuitive that R is the excitation and V the system, but this 
is convenient from an estimation point of view. It might ease the understanding if V is viewed 
as a time-varying data channel conveying information about the tissue, and the purpose of the 
estimation is to remove the effect of this nonideal data channel. The estimation procedure is 
then a deconvolution operation, which uses an optimal inverse filter to remove the effect of V 
and n. 

The purpose is to obtain a.n estimate of the amplitude reflection signal based upon all the 
obtained information. Thus, &lc]N) is estimated when k = l..N. The estimate is based on 
all the measurements 2(N) = {z(l),z(2)...t(N)}, w h ere z(N) denotes the measurement of all 
A-lines in the image at time n. R(k]N) is related to 2(N) by some function pk: 

m4~) = Pk(2(W) (15) 

where pk is time-varying. vk is found by minimizing some criteria. We here choose to use the 
minimum-variance criterion: 

JI(R(k)IB(N)) = E [(R(k) - ri(klN)y-(R(k) - QkIN))] (16) 

E denotes expectation, and (.)T is the transposed. 

This criterion gives a linear estimator [ll], which is a very important property. It means that 
we do not have to use an iterative search scheme, and consequently a fixed, predeterminable 

c 
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amount of calculations is performed for each sample. This makes it, at least in theory, possible 

to obtain a real-time image formation. 

Several authors have devised algorithms to estimate the amplitude reflection signal for ultra- 

sound signals. These algorithms have mainly been based on the Wiener filter [12-151. Slightly 

different, but conceptually similar methods have been suggested by Hundt Sr. Trautenberg [16], 

Herment et al. [17], Vollmann [18], Demoment et al. [19]. These estimators use, however, a 

fixed pk and cannot take into account the spatially-varying source wavelet and the dispersive 

attenuation. Kuc [20] used Mendel’s l-step ahead deconvolution algorithm. This uses I future 

values of the A-line, and can handle time-varying parameters. We will carry this one step further 

indicating how to use all available samples in the A-line, and showing how to obtain parameters 

for the pulse and the signal-to-noise ratio directly from the data measured. 

The algorithm used is Mendel’s fixed-interval deconvolution estimator [lO,ll]. It consists of 

two parts: first a Kalman filtering performed on the data time recursively and then a subsequent 

estimation step performed backwards time-recursively. The result is a minimum variance, fixed- 

interval estimate of the reflection signal. 

The estimator is based on a state-space model: 

I(k + 1) = @(lc + l,li)l(lc) + T(B + 1, /C)w(li + 1) 

z(k) = HT(k)z(k) + n(k) (17) 

The dimension of the vectors and ma.trices are: 

x - nxl 

cp - 11 x II 

r - II x p 

w - pxl 

I‘ - mxl 

HT - m x n 

n - m x 1 

p is the number of input channels (A-lines), n is the order of the system, and m the number of 

output channels. 

t(k) is the measured signal, and n(k) is the measurement noise, which is assumed white, zero 

mean and has the covariance R,(n). X( /c) is the state vector and w(k) is a stochastic disturbance 

acting on the states. w(k) is equivalent to R(k) and is assumed to be white, zero mean, and 

Gaussian with the covariance Q(k). Q, is the state transition matrix, r the input distribution 

matrix and H the observation matrix. Note that the system is time varying and describes a 

two-dimensional system. The state-space model corresponds to a convolution model for fixed 

matrices @, P and H [ll]. 

The Kalman filter is, stated in the predictor-corrector form [ill: 

Predictor equations 

ir(k + 1 ] k) = @(k + I,E;).i(x: ] /C) 

P(k+ 1 1 k) = aqk+ l,k)P(k 1 kpJ(k+ l,b) + 

r(k + l,k)Q(k + l)rT(k + 1.k) 

(18) 

(191 

6 
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Corrector equations 

Zi(k + 1) = P(lc + 1 ] I;)H(X: + 1). 

[IT(k+ 1)P(k+ 1 I Ic)ff(k+ 1) + &(k+ 111-l (20) 

E(C+l]Ic) = z(lc+l)-H=(~+l)~(k+lIIc) (21) 

iqk+1lk+1) = ~(l+lIk)+K(I;+l)f(k+lIk) (22) 

P(lc+l]t+l) = [I-IC(k+l)HT(~+l)]P(~+l)E) (23) 

P(k + 1 ] L) is the a priori state covariance, and P(!z + 1 ] k + 1) the a yosteriori covariance. 
Z<(L) is the Kalman gain. 

The backwards time-recursive estimation step can be expressed as [ll]: 

ti(k + 1 1 N) = Q(k + l)!?(k + 1, k)r(k + 1 I Iv) (24) 

r(k 1 N) = H(k) [HT(k)P(k 1 % - l)H(k) + R,(k)]-1 i(b I k - 1) 

+ (@(k+ l,k) [I - zi(k)zfT(k)])Tr(P+ 1 I N) (25) 

ti(lF+ 1 1 N) denotes the fixed-interval estimate of w(l; + 1). r(k + 1 ) N) is the residual state 
vector [Ill. The covariance for G(lc + l(N) is 

\Ir,(k + l(N) = Q(b + 1) - Q(k + l)rT(k + 1, n)S(k + l(N)I’(lc + 1, k)Q(k + 1) (26) 

This algorithm can estimate the amplitude reflection signal from the noisy backscattered 
signal. It calculates a minimum-variance fixed-interval estimate of the reflection signal; thus, it 
uses all the available information in the acquired A-lines, and can be used for a two-dimensional, 
time-varying pulse. 

5 PULSE AND COVARIANCE ESTIMATION 

The basic in uivo pulse-echo wavelet must be known in order to perform a deconvolution as 
described previously. A prediction error algorithm was used in [21] to estimate a set of ARMA 
parameters for the pulse. Using it on data from a. tissue mimicking phantom, and on a calf’s 
liver, it was shown that the basic attenuated pulse can be estimated. The algorithm also yields 
an estimate of the reflection covariance Q. So, for a one dimensional deconvolution, the pulse 
estimator gives all the necessary parameters for performing the deconvolution. This makes 
the approach essentially self-calibrating as all parameters for the procedure estimated from the 
actual patient under investigation. A derivation of the algorithm and a number of examples of 
its use can be found in [l], [21]. 

The result from the wavelet estimation is a set of parameters for an ARMA model, which are 
used in a state-space model. Different mappings from the ARMA parameters to the state-space 
matrices exist, and we choose to use the controllable canonical form [ll]. Here, the entries in 
the state-space matrices are equal to the ARMA parameters, and the mapping can always be 
used regardless of whether the model has real or complex poles and zeros. 

For a single input single output ARMA model, we have: 

(1+ a1q-' + azq-* . . . + a,q-n)y(k) = (1+ clq-l +. . . +Glq -("-'))e(k) (27) 
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Then the state-space matrices and vectors are: 

1 0 0 .‘. 0 
0 1 0 ..’ 0 

. . 

a,-l ... -a2 -a, 

HT = (cn,L1,~~~C2rC1rl) 

(28) 

(29) 

(30) 

5.1 Initialization of the Kalman filter 

Before the Kalman filter ca.n be used, initial values for the state vector, covariance matrix and 
Kalman gain, z(O), P(OIO),Zi(O) must be supplied. A simple solution is to set z(O) equal to the 
mean value of 2 (normally zero), P to a unit matrix multiplied by some large value reflecting 
our unreliable knowledge of 2, and Ii to zero. 

If  the state-space model is stable, which is the case when the absolute value of the eigenvalues 
of Cp are less than one, or correspondingly that the poles of the ARMA model are inside the 
unit circle, then P and K will become equal to their steady-state va.lues 1221. This is of course 
under the assumption of a steady-state system, in which a, I, H,Q and R, are fixed. In this 
case, the error covariance matrix, P(lc + Ilk) ~ will reach the steady state value, p , determined 

by WI 
P=(Pl+H(HTPH+R,)-'HT~]cDT+FQI'T 

p is the solution to this matrix Riccati equation. 

(31) 

Experiments performed in this work have revealed that this steady state value for P(k + II/~) 
is reached to a good approximation after 20 to 30 time steps of the Kalman filter. Therefore, we 
here set z(O) equal to zero, Z<-(O) to zero and P(O(0) to the unit matrix. Then, 30 time steps of 
the Kalman filter are performed and the resulting P(klb) and Z((lc) are then used as the initial 
values in the examples shown in this paper. 

6 DECONVOLUTION OF SYNTHETIC SIGNALS 

To show the performance of the combined algorithm, an example for a synthetic signal is 
given. 

A synthetic reflection sequence of 500 samples was generated. It consists of both positive 
and negative spikes of varying amplitude. To compare the different results, a segment of 100 
samples, between samples 201 and 300, is used. Thus, zero on the z-axis corresponds to sample 
201 on the following figures. 

The input signal to the deconvolution algorithm was generated by convolving the p&e with 
the reflection signal, and then adding white, zero mean Gaussian noise. An example for a 
signal-to-noise ratio of 100 for the segment is shown in figure 1. 

The wavelet used in this example was estimated from a calf’s liver, where the data were 
measured by a Briiel & Kjrer 8529 3 MHz transducer. The parameters are: 

A(q) = 1.0000 - 4.4115q-’ + 8.84OOq-’ - 10.1710q-3 

+7.1062q-4 - 2.8717q-’ f  0.5358q-’ 

8 
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Sampla number 

Fig. 1 Input signal to the deconvolution algorithm. 

00 90 

SNR=100. 

(32) 
C(q) = 1.000 - 2.7925q-1 + 3.2911q-* - 2.6017q-3 

+1.6405q-* - 0.5286q-5 

The signal-to-noise ratio is defined as: 

(33) 

where y  is the filtered signal and n the noise. I?[.‘] is the covariance. 

Using the parameter estimator and then the deconvolution algorithm on a synthetic signal 
with SNR=lOO, we get the estimated wavelets shown in figure 2 and the estimated reflection 
signals shown in figure 3. The dashed and solid lines are the true and estimated responses, 
respectively. The sampling frequency was 25 MHz, so one sample equals a distance in tissue of 
0.03 mm, assuming a propagation velocity of 1500 m/s. 

The estimate of the wavelet is quite precise a,nd all major reflections in the segments are iden- 
tified with a good estimate of their strength and with the correct sign. Smaller reflections below 
0.005 disappear in noise, as the estimator increases the noise in order to enhance resolution. 
Overall, we see that the resolution is approximately 1 to 2 samples, a considerable improvement 
to the resolution of 10 to 20 samples. 

6.1 Deconvolution of data from a tissue phantom 

We will now show a result obtained by deconvolving signals measured from a tissue phantom. 
As we currently have no model for the pulse-echo spatial impulse response, only a 1D decon- 
volution will be performed with a fixed, estimated wavelet. As the data segment only spans a 
relatively small depth, a fixed value of Q and R, will be used. 
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Fig. 2 Estimated wavelet when SNR=lOO. 
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Fig. 3 Estimated and true reflection signal. SNR=lOO. 
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The phantom scanned contains a substrate that generates a typical backscattered speckle 
signal. The data were acquired from a region of the phantom by performing a scan with a 
rotating transducer. Data were acquired by our special sampling system [23,24]. This has a 
resolution of 12 bits and a sampling frequency of 20 MHz. The angle between each pulse-echo 
line is 0.7 degrees, and 31 lines were acquired from a dista.nce of 50 to 70 mm from the transducer 
surface. 

A Briiel & Kjasr 1846 ultrasound scanner generated and received the pulses to and from the 
Briiel & Kjaer type 8529 transducer. Its focal point is at 10 cm, the nominal frequency is 3 MHz 
and the diameter of the aperture is 16.2 mm. 

The covariance of the reflections was found by the pulse estimation algorithm. The covariance 
of the noise was found from a measurement of the noise of the total measuring system, when 
the transducer was submerged in a water tank. The variation in noise covariance with the time 
gain setting in the scanner was then tabulated and the covariance in the phantom image was 
calculated from this. By this method, the Q/R,, ra.tio was estimated to be 4.9, and the RMS 
signal-to-noise ratio was estimated to be 20.9. 

This method for determining Q and R, is acceptable as only a small part of the image is used, 
where the speckle pattern is homogeneous. Further, is it has been shown that small deviations 
in Q/R,, from the true ratio does not alter the deconvolved image significantly [l]. 

The wavelet was again estimated by using an A-line containing only a speckle signal. An 
ARMA(6,5) model was used and the resulting wa.velet is shown in figure 4. 

The influence on the appearance of the image, when deconvolution has been performed, can 
be seen in figure 5. The images show the loga.rithmic envelope of the signals. The envelope 
was found by Hilbert transformation. The image at the top is the normally processed image as 
displayed on a modern scanner. 

Figure 5 shows that the average axial speckle size has decreased considera.bly; visually esti- 
mated to be a factor of 2 to 3 increase in resolution. This more fine grained speckle pattern 

4 

3- 

2- 

-3 - / 

-40 0.5 1 1.S 2 25 3 3.5 4 

Time [a] “101 

Fig. 4 Estimated wavelet for the 8529 Briiel & Kjax transducer. 
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Fig. 5 Normal (top) and deconvolved (bottom) response for image 

measured by the Briiel & Kjrer 8529 transducer. The images 

cover 2 x 2 cm. 

makes it easier to differentiate small veins a.nd structures in the body from the random in- 

terference pattern of speckle. Also, bounda.ries and organ demarcations are more accurately 

positioned as the speckle invasion of darker a.rea.s in the images are reduced. 

12 
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One point worth noting is the slight change in resolution throughout the image. Careful 
examination reveals a slightly larger axial speckle size at the top and bottom of the image. This 
is due to the use of one set of pulse parameters for the whole image, where the pulse is essentially 
the mean pulse over the whole A-line. As urea is slowly changing, a better result could be 
obtained by segmenting the A-line and estimating parameters for each segment. Such spatially 
changing parameters can be handled optimally by the suggested deconvolution algorithm. 

The changes in resolution also points to the importance of the pulse estimation, indicating 
that the pulse must and can be estimated from the actual data. 

7 SUMMARY 

Ultrasound emitted into the body is scattered by small density and propagation velocity 
perturbations in the tissue. Assuming linear propagation, weak reflection and scattering, and 
further neglecting absorption and multiple scattering, resulted in a convolution model. The 
received signal can be described a temporal convolution between the amplitude reflection signal 
originating from impedance perturbations and a spatial convolution with the pulse echo spatial 
impulse response of the transducer. So, the solution of the wave equation explicitly shows the 
influence of the transducer geometry, the pulse-echo wavelet and the tissue. 

An optimal algorithm, in the least-squares sense, based on Mendel’s deconvolution algorithm 
to estimate the amplitude reflection signal, was given. This can cope with both time-varying 
and two-dimensional pulses and can take into account the dispersive attenuation and noise. 
Further, at least in theory, it can be used for real-time image processing as it uses a fixed, 
predeterminable number of calculations. 

Simulations involving synthetic data and an estimated wavelet revealed that the amplitude 
reflection signal is estimated with good precision, when the signal-to-noise ratio is sufficiently 
high. At a signal-to-noise ratio above 100, both the wavelet and the reflections and their sign 
could be estimated well from synthetic data. 

The deconvolution algorithm with wavelet estimation was used on data from a tissuemim- 
icking phantom that generates a typical speckle pattern. A considerable increase in resolution 
was obtained in the axial direction, making the speckle pattern more fine grained. This makes 
it easier to distinguish small anatomical structures from the ra.ndom speckle pattern and makes 
boundaries sharper. 

Further research is needed to reveal the clinical usefulness of the concept. We are currently in 
the process of applying the algorithm to clinical, in viuo data and modifying it for the purpose. 
The results will be published in the fut,ure. 

Still lacking is the development of a pa.ra.meterization of the pulse-echo spatial impulse re- 
sponse. The accuracy of the physical model reported in [3] indicates that the model can be based 
on the analytic expression. Then no new estimation procedures need be introduced. Work is in 
progress along these lines to make a full two-dimensional deconvolution. 
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