Microstructure and plasticity from nanoscale to macroscale

Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

Published in:
Proceedings - PLASTICITY 2014

Publication date:
2014

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Microstructure and plasticity from nanoscale to macroscale

Niels Hansen, Xiaodan Zhang, Xiaoxu Huang

Danish-Chinese Center for Nanometals, Materials Science and Advanced Characterization Section, Department of Wind Energy, Ris1ø Campus, Technical University of Denmark, DK-4000 Roskilde, Denmark

Microstructure and plasticity are investigated in the surface/subsurface layer of a low alloy steel plastically deformed by particle bombardment (shot peening). The microstructure of the surface/subsurface layer is graded on a length scale from nanometer to micrometer and it extends to about 600 µm below the surface. Based on a quantification of microstructural parameters the flow stress has been analyzed based on three major strengthening mechanisms: (i) dislocation (forest) strengthening, (ii) boundary (Hall-Petch) strengthening and (iii) solid solution hardening. Based on additivity of strength contributions the flow stress gradient in the surface/subsurface layer is calculated and compared with hardness profiles determined by micro and nanoindentation techniques. Good agreement is found showing that the flow stress at the surface is about 1400 MPa and in a depth of 25 and 600 µm, 800 MPa and 300 MPa respectively. Based on this analysis a contribution to the flow stress from macro and micro residual stresses is discussed with reference to residual stress measurements by X-ray diffraction (XRD) techniques. Finally the combination of a microstructural analysis and hardness measurements on the micro and nanometer scale is discussed with a view on the local stress and strain distribution in non-homogeneous deformation structures, e.g., at surfaces, grain boundaries, coarse particles and cracks.

Reference: