

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Apr 27, 2024

Proceedings of the joint track "Tools", "Demos", and "Posters" of ECOOP, ECSA, and
ECMFA, 2013

Carré, Bernard; Sahroui, Houari; Störrle, Harald

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Carré, B., Sahroui, H., & Störrle, H. (Eds.) (2014). Proceedings of the joint track "Tools", "Demos", and "Posters"
of ECOOP, ECSA, and ECMFA, 2013. Technical University of Denmark. DTU Compute Technical Report-2014
No. 01

https://orbit.dtu.dk/en/publications/e243c47e-b0c4-41b0-88dc-3a33871d326e

EC
2013

OOP
SA
MFA

Joint Proceedings of
Tools, Demos & Posters
Bernard Carré, Houari Sahraoui, Harald Störrle (Eds.)

DTU Compute Technical Report-2014-01

Proceedings of the joint track “Tools, Demos, and Posters” of
ECOOP, ECSA, and ECMFA, 2013

Bernard Carré, Houari Sahroui, Harald Störrle (Eds.)

Tools, Demos, Posters

Proceedings of the Joint Track
“Tools, Demos, and Posters”

of ECOOP, ECSA, and ECMFA, 2013

Bernard Carré, Houari Sahroui,Harald Störrle (Eds.)

Editors

Harald Störrle
Technical University of Denmark (DTU)
Richard Petersens Plads, 322.024
DK-2800 Kongens Lyngby
hsto@imm.dtu.dk

Bernard Carré
Houari Sahroui

ISBN: 978-87-643-1188-4
Publisher: Technical University of Denmark (DTU)
Printed by DTU Compute
Technical University of Denmark (DTU)
Building 321, DK-2800 Kongens Lyngby
Copenhagen, Denmark
reception@dtu.dk
www.imm.dtu.dk
2013

The Technical University of Denmark (DTU) has published the manuscripts
in this book under a publishing agreement that was signed by the respective
authors. Under this agreement, each author retains the rights to all intellectual
property developed by the author and included in the manuscript. Further, the
authors also retain the copyright to their manuscripts, and the agreement for
granting publishing rights does not prevent the authors to publish their work
with any other publisher.

Preface

We are very pleased to give you the joint tools, demonstrations, and posters of
the 2013 European Conferences on Object-Oriented Programming (ECOOP),
Software Architecture (ECSA), and Modeling Foundations and Applications
(ECMFA), co-located in Montpellier, France.

An amazing array of topics and contributions have been submitted to this
track, resulting in 20 tools on demonstration (6 of which can be seen on-line
as videos), and 10 posters on display. Contributions have been submitted ei-
ther straight to this track, from the common Research Project Symposium, or
as spin-offs from from full accepted papers, in particular the validated artifacts
of ECOOP and the application and tools track of ECMFA. They cover a wide
range of topics including integrated development and modeling environments,
code analysis and comprehension, domain specific (modeling) languages, refac-
toring and re-engineering, requirement engineering, software architectures and
embedded systems.

We would like to take this opportunity to thank all participants for their con-
tribution to this amazing event.

July 2013

Bernard Carré
Houari Sahroui,
Harald Störrle

Table of Contents

Preface v

Posters and Demos

Averroes: Whole-Program Analysis without the Whole Program 1
Karim Ali, Ondrej Lhoták

FPLA: A Modeling Framework for Describing Flexible Software
Product Line Architecture

1

Jennifer Pérez Bened́ı, Jessica Dı́az, Juan Garbajosa, Agustin Yagüe

Characterization of Adaptable Interpreted-DSML 2
Eric Cariou, Olivier Le Goaer, Franck Barbier, Samson Pierre

The GEMOC Initiative: On the Globalization of Modeling Languages 2
Benoit Combemale, Robert B. France, Jeff Gray, Jean-Marc Jézéquel

QUIC Graphs: Relational Invariant Generation for Containers 3
Arlen Cox, Bor-Yuh Evan Chang, Sriram Sankaranarayanan

GenMyModel : An Online UML Case Tool 3
Michel Dirix, Alexis Muller, Vincent Aranega

Vasco: A Visual Churn Exploration Tool 3
Fleur Duseau, Bruno Dufour, Houari Sahraoui

Rational Software Architect Design Manager 4.x 4
Maged Elaasar

BETTY - Behavioural Types for Reliable Large-Scale Software Sys-
tems

4

Simon Gay, Antonio Ravara

Verification Condition Generation for Permission Logics with Ab-
stract Predicates and Abstraction Functions

5

Stefan Heule, Ioannis T. Kassios, Peter Müller, Alexander J. Summers

Assurance Workbench – Business Process based Testing 5
Deepali Kholkar, Pooja Yelure, Harshit Tiwari

A Comparative Study of Manual and Automated Refactorings 5
Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, Danny Dig

Feature-Oriented Programming With Object Algebras 6
Bruno C.d.S. Oliveira, Tijs van der Storm, William R. Cook, Alex Loh

A light-weight annotation-based solution to design Domain Specific
Graphical Modeling Languages

6

François Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut

An Eclipse plug-in to link modeling and code proof, AGrUM: ACSL
Generator from UML Model

7

Anthony Fernandes Pires, Thomas Polacsek, Stéphane Duprat

Requirements-level migration of Legacy Systems 7
Michal Smialek, Wiktor Nowakowski, Norbert Jarzebowski, Kamil Rybinski,
Slawomir Blatkiewicz

Verification Condition Generation for Permission Logics with Ab-
stract Predicates and Abstraction Functions

8

Stefan Heule, Ioannis T. Kassios, Peter Mller, Alexander J. Summers

Demonstration of a Tool for Consistent Three-way Merging of EMF
Models

8

Felix Schwägerl, Sabrina Uhrig, Bernhard Westfechtel

The Requirements Editor RED 8
Harald Störrle, Maciek Kucharek

MetaEdit+: Creating Tool Support for Domain-Specific Modeling
Languages

9

Juha-Pekka Tolvanen

Really Automatic Scalable Object-Oriented Reengineering 9
Marco Trudel, Carlo A. Furia, Martin Nordio, Bertrand Meyer

A Compositional Paradigm of Automating Refactorings 9
Mohsen Vakilian, Nicholas Chen, Roshanak Zilouchian Moghaddam, Stas Ne-
gara, Ralph E. Johnson

An MDE Tool-Chain for Pattern-Based S&D Embedded System En-
gineering

10

A. Ziani, J. Geisel, Brahim Hamid

Tool Descriptions

FPLA: A Modeling Framework for Describing Flexible Software
Product Line Architecture

11

Jennifer Pérez Bened́ı, Jessica Dı́az, Juan Garbajosa, Agustin Yagüe

GenMyModel : An Online UML Case Tool 14
Michel Dirix, Alexis Muller, Vincent Aranega

Vasco: A Visual Churn Exploration Tool 17
Fleur Duseau, Bruno Dufour, Houari Sahraoui

A light-weight annotation-based solution to design Domain Specific
Graphical Modeling Languages

20

François Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut

An Eclipse plug-in to link modeling and code proof, AGrUM: ACSL
Generator from UML Model

23

Anthony Fernandes Pires, Thomas Polacsek, Stéphane Duprat

Demonstration of a Tool for Consistent Three-way Merging of EMF
Models

26

Felix Schwägerl, Sabrina Uhrig, Bernhard Westfechtel

Requirements-level migration of legacy systems 29
Michal Smialek, Wiktor Nowakowski, Norbert Jarzebowski, Kamil Rybinski,
Slawomir Blatkiewicz

The Requirements Editor RED 32
Harald Störrle, Maciek Kucharek

MetaEdit+: Creating Tool Support for Domain-Specific Modeling
Languages

35

Juha-Pekka Tolvanen

An MDE Tool-Chain for Pattern-Based S&D Embedded System En-
gineering

38

A. Ziani, J. Geisel, Brahim Hamid

1 Averroes: Whole-Program Analysis without the Whole
Program

Karim Ali, Ondrej Lhoták
University of Waterloo, Canada

Averroes is a tool that enables any existing whole-program call graph con-
struction tool (e.g., Soot, Doop, WALA) to generate sound and precise application-
only call graphs efficiently without analyzing the library. Averroes generates a
placeholder library that over-approximates the possible behavior of the original
library, based on the separate compilation assumption (SCA). The placeholder
library is constructed quickly and is typically much smaller in size. Typical effi-
ciency improvements of using Averroes are a factor of 4x to 12x in analysis time
and 8x to 13x in memory usage. In addition, Averroes makes it easier to handle
reflection soundly.

In this demonstration, we would like to show you how to use Averroes to
generate the call graphs for some sample programs. We will explain how to
configure the various options in Averroes. We will also show how to use the
placeholder library to generate the call graph using Soot and Doop.

2 FPLA: A Modeling Framework for Describing Flexible
Software Product Line Architecture

Jennifer Pérez Bened́ı, Jessica Dı́az, Juan Garbajosa, Agustin Yagüe
Technical University of Madrid (UPM) - Universidad Politécnica de Madrid
Systems & Software Technology Group (SYST), E.U. Informática, Madrid, Spain

Nowadays, Software Product Line (SPL) engineering has been widely-adopted
in software development. SPL features are realized at the architectural level in
product-line architecture (PLA) models. This demonstration presents the FPLA
Modeling Framework. FPLA offers tool support for (i) modeling PLAs in a
graphical way by providing mechanisms to specify the external and internal
variability and the different artifacts of the PLA following a view model, (ii)
documenting the design decision driving the PLA solution, (iii) tracing PLAs
to features allowing change impact analysis, (iv) configuring a specific prod-
uct architecture, and (v) translating PL specifications into code (automatically)
by guarantying the traceability between PLA and code. FPLA has been used
for modeling the PLAs from representative software exemplars to industrial
projects, such as OPTIMETER, which has been involved in different devel-
opments of two ITEA projects (IMPONET and NEMO&CODED) focused on
Smart Grids.

1

3 Characterization of Adaptable Interpreted-DSML

Eric Cariou, Olivier Le Goaer, Franck Barbier, Samson Pierre
Université de Pau

PauWare engine software is a Java API surrounded by an extra tool (the
SCXML2PauWare code generator). PauWare engine allows the construction of
end-user business applications using UML 2 on one side, Java ME, SE, EE or
Android on the other side. PauWare engine enables the visual programming
of complex component/service behaviors by specyfying UML 2 State Machine
Diagrams. The execution semantics is that of UML 2, which slightly differs from
that of Harel’s original Statecharts. Developers may either construct behavioral
models from UML 2 modeling tools (OMG XMI format), or from the W3C
SCXML format, or they may choose to do so from scratch by directly using the
PauWare engine API. PauWare engine makes models persistent at runtime and
therefore makes them executable by preventing a break or a gap between the
models and their incarnation in Java.

4 The GEMOC Initiative: On the Globalization of
Modeling Languages

Benoit Combemale, Robert B. France, Jeff Gray, Jean-Marc Jézéquel
University Rennes 1 (France)
Colorado State University (USA)
University of Alabama (USA)

GEMOC is an open initiative that aims to develop breakthrough for software
language engineering (SLE) approaches that support global software engineering
through the coordinated use of multiple domain-specific languages. GEMOC
researchers aim to provide effective SLE solutions to problems associated with
the design and implementation of collaborative, interoperable and composable
modeling languages.

The GEMOC initiative aims to provide a framework that facilitates collab-
orative work on the challenges of using of multiple domain-specific languages
in software development projects. The framework consists of mechanisms for
coordinating the work of members, and for disseminating research results and
other related information on GEMOC activities. The framework also provides
the required infrastructure for sharing artifacts produced by members, including
publications, case studies, and tools.

2

5 QUIC Graphs: Relational Invariant Generation for
Containers

Arlen Cox, Bor-Yuh Evan Chang, Sriram Sankaranarayanan
University of Colorado Boulder, USA

Programs written in modern languages perform intricate manipulations of
containers such as arrays, lists, dictionaries, and sets. We present an abstract
interpretation-based tool for automatically inferring relations between the sets
of values stored in these containers. Relations include inclusion relations over
unions and intersections, as well as quantified relationships with scalar variables.
We use an abstract domain constructor that builds a container domain out of
a Quantified Union-Intersection Constraint (QUIC) graph parameterized by a
variety of integer base domains. We demonstrate the application of QUIC graphs
on a variety of programs extracted from the Python test suite.

6 GenMyModel : An Online UML Case Tool

Michel Dirix, Alexis Muller, Vincent Aranega
Axellience, Lille, France

Costs and markets lead engineering teams to collaborate from different loca-
tions all over the world. Modelling tools are present in development processes to
produce complex software and these tools have to be highly collaborative to per-
mit teams to be productive. Axellience tries to resolve issues about distributed
collaboration and modelling with GenMyModel.

7 Vasco: A Visual Churn Exploration Tool

Fleur Duseau, Bruno Dufour, Houari Sahraoui
DIRO, Université de Montreal, Canada

Bloat, and particularly object churn, is a common performance problem in
modern framework-intensive applications that consists of an excessive use of
temporary objects. Temporaries can impose a significant overhead during the
execution due to increased initialization costs. Identifying and understanding
sources of churn is a difficult and labor-intensive task, despite recent advances
in automated analysis techniques. To address this problem, we designed Vasco, a
tool that allows users to visually explore how programs use temporaries. Because
churn often crosses method and even framework boundaries, Vasco makes it
possible to track temporary objects from their creation to their use. Also, since
churn often results from multiple methods within a given region collaborating
to build complex temporary data structures, Vasco represents program regions
explicitly using the Sunburst visual metaphor. Various churn-related metrics
can be visualized using this metaphor, thereby allowing users to quickly identify
regions that exhibit suspicious behavior.

3

8 Rational Software Architect Design Manager 4.x

Maged Elaasar
IBM, Canada

Modeling and design management is a key capability of an application life-
cycle development of software and systems in an iterative and collaborative way
using formalisms that are best suited for these tasks. It also enables management
of designs in a shared repository, role based access to designs by stakeholders,
parallel development of designs, change and configuration management of de-
signs, linking designs to and previewing of other related lifecycle artifacts (e.g.,
requirements, tests, change requests), staying informed of design activities by
team members, and understanding the impact of changes to/on designs down
or up stream. Design management capability has been added to IBMÃs Collab-
orative Lifecycle Management (CLM) tool offering. The capability is available
from a web client, as well as from the Rational Software Architect (RSA DM)
modeling tool.

9 BETTY - Behavioural Types for Reliable Large-Scale
Software Systems

Simon Gay, Antonio Ravara
Dept. of Computing, University of Glasgow, UK)
CITI and Dept. of Informatics, FCT, Univ Nova de Lisboa)

Modern society is increasingly dependent on large-scale software systems
that are distributed, collaborative and communication-centred. Correctness and
reliability of such systems depend on compatibility between components and
services that are newly developed or may already exist. The consequences of
failure are severe, including security breaches and unavailability of essential ser-
vices. Current software development technology is not well suited to producing
these systems, due to the lack of high-level structuring abstractions for complex
communication behaviour.

The COST Action Behavioural Types for Reliable Large-Scale Software Sys-
tems uses behavioural type theory as the basis for new foundations, program-
ming languages, and software development methods for communication-intensive
distributed systems. Behavioural type theory encompasses concepts such as in-
terfaces, communication protocols, contracts, and choreography. As a unifying
structural principle it will transform the theory and practice of distributed soft-
ware development.

4

10 An MDE Tool-Chain for Pattern-Based S&D
Embedded System Engineering

Brahim Hamid, A. Ziani, J. Geisel and C. Jouvray
IRIT (University of Toulouse) and Trialog, France

In our work, we promote a new discipline for system engineering using a
pattern as its first class citizen: Pattern-Based System Engineering (PBSE).
Therefore, PBSE addresses two kind of processes: the one of pattern development
and the one of system development with patterns. To interconnect these two
processes we promote a structured model-based repository of patterns and their
related models.

This video tutorial3 presents the SEMCO MDE Tool Suite called TERESA
and provides guidelines on how to use it to build and to store reusable artefacts
(S&D patterns and property models) in the domain of assistance to the pattern-
based secure and dependable embedded system engineering. Once the repository
is available, it serves an underlying trust engineering process.

11 Assurance Workbench – Business Process based
Testing

Deepali Kholkar, Pooja Yelure, Harshit Tiwari
Tata Consultancy Services, India

Design of an effective test suite is the most time consuming task in the soft-
ware testing process. Business Process models document the operational pro-
cesses of an enterprise, therefore can be used to derive tests that represent real-
life usage scenarios for systems. Our toolset automates generation of end-to-end
test cases from Business Process models, using rules annotated on the model
to generate relevant test data. Business Rules can be captured separately and
are used by the tool to validate the process model for correctness. Test selec-
tion using a variety of criteria including structural and weighted coverage helps
compact the test suite. Standard coverage techniques such as boundary value
analysis and pairwise can be applied to achieve specific coverage.

12 A Comparative Study of Manual and Automated
Refactorings

Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, Danny Dig
University of Illinois at Urbana-Champaign, USA

Understanding how developers evolve their code is important for researchers,
tool builders, and ultimately, developers themselves, who would benefit from im-
proved development practices and tools. Unfortunately, the traditional source of

5

code evolution data are Version Control System (VCS) snapshots, which are
imprecise and incomplete. To overcome these limitations, we developed Coding-
Tracker, a tool that captures fine-grained and precise changes to the code. The
captured code changes are so precise that CodingTracker’s replayer enables us
to reproduce the state of the evolving code at any point in time. Besides code
changes, CodingTracker records many other developer actions, for example, invo-
cations of automated refactorings, tests and application runs, interactions with
VCS, etc. Our study shows that CodingTracker’s data allows researchers to an-
swer questions that could not be answered using VCS data alone. We augmented
CodingTracker with an algorithm that infers refactorings from continuous code
changes and showed that such inference is precise.

13 Feature-Oriented Programming With Object Algebras

Bruno C.d.S. Oliveira, Tijs van der Storm, William R. Cook, Alex Loh
National University of Singapore
Centrum Wiskunde & Informatica (CWI)
University of Texas, Austin

Object algebras are a new programming technique that enables a simple
solution to basic extensibility and modularity issues in programming languages.
In this tool demo we will demonstrate the extension of basic object algebras
with object algebra combinators to allow feature-oriented programming. The
combinators support type safe, extensible, decoration and combination of object
algebras. In the demo this is shown using a case study for context-free grammars.
Specifically, we will show how this approach enables:

– Combining multiple operations: for instance, parsing and printing of gram-
mars.

– Decoration of operations with aspects like tracing, memoization or fixpoint
computation.

– Combining dependent operations: for instance, computing first sets of a
grammar requires nullability analysis.

14 A light-weight annotation-based solution to design
Domain Specific Graphical Modeling Languages

Francois Pfister, Vincent Chapurlat, Marianne Huchard, Clémentine Nebut
LGI2P, Ecole des Mines d’Alès, Nimes
LIRMM, CNRS, Université Montpellier 2, France

DSML (Domain Specific Modeling Languages) are an alternative to general
purpose modeling languages (e.g. UML or SysML) for describing models with
concepts and relations specific to a domain. DSML design is often based on Ecore
meta-models, which follow the class-relation paradigm and also require defining

6

a concrete syntax which can be either graphical or textual. In this demo, we
focus on graphical concrete syntax, and we introduce an approach and a tool
(Diagraph) to assist the design of a graphical DSML. The main points are:
non-intrusive annotations of the meta-model to identify nodes, edges, nesting
structures and other graphical information; immediate validation of meta-models
by immediate generation of an EMF-GMF instance editor supporting multi-
diagramming. Diagraph plays the role of an extension to Ecore, and is based on
a pattern recognition principle in order to infer most of the concrete syntax.

15 An Eclipse plug-in to link modeling and code proof,
AGrUM: ACSL Generator from UML Model

Anthony Fernandes Pires, Thomas Polacsek, Stéphane Duprat
ONERA and Atos Intégration SAS, Toulouse, France

If Model Based Engineering (MBE) supports engineers from the specification
to code generation, we want here to bridge the gap between models and static
program analysis. Today, static analysis tools prove the source code correctness
against a set of properties by using mathematical methods, without executing
the program. If these techniques are quite efficient and are used in safety crit-
ical contexts (for instance: aeronautic, nuclear, etc.), they are quite difficult to
understand and to use. AGrUM is a prototype Eclipse plug-in which purpose is
to automatically generate proof properties for C programs from UML State Ma-
chine designs to which the programs must conform. These generated properties
can then be automatically proved using static analysis tools.

16 Requirements-level migration of legacy systems

Michal Smialek, Wiktor Nowakowski, Norbert Jarzebowski, Kamil Rybinski, Sla-
womir Blatkiewicz
Warsaw University of Technology, Warsaw, Poland

Novel software development technologies introduce significant changes in sys-
tem design, delivery and usage patterns. For many legacy applications it means
that their further development becomes infeasible due to obsolescence of tech-
nologies they use. There thus arises the need for tools supporting automated mi-
gration of legacy systems into new paradigms. In this demonstration we will show
such a tool suite. Its most important characteristic is that it operates at the level
of stories (scenarios) traditionally produced during requirements speciffcation.
The tools highly support extracting knowledge about the functioning of legacy
applications and storing them in the form of precise requirement-level models.
What is more, the tools enable automated transformation of these models into
object-oriented code, compliant with new system structure. In the demonstration
we present a recovery engine, a requirements-level editor and a transformation
engine in the context of a case study example.

7

17 Verification Condition Generation for Permission
Logics with Abstract Predicates and Abstraction
Functions

Stefan Heule, Ioannis T. Kassios, Peter Müller, Alexander J. Summers
ETH Zürich, Switzerland

Chalice is a verification tool for concurrent programs that proves that pro-
grams are free from data races and deadlocks, do not cause run-time errors, and
satisfy assertions provided by the programmer. To verify a program, Chalice gen-
erates a verification condition for each method of the program and passes it to an
SMT solver. Hence, verification is modular and automatic. Chalice’s verification
methodology centers around permissions; a memory location may be accessed
by a thread only if that thread has permission to do so. We demonstrate Chal-
ice with a focus on its support for data abstraction via abstract predicates and
abstraction functions, as explained in our ECOOP paper.

18 Demonstration of a Tool for Consistent Three-way
Merging of EMF Models

Felix Schwägerl, Sabrina Uhrig and Bernhard Westfechtel
University of Bayreuth, Germany

Optimistic version control strategies allow for independent modifications of
the same software model. As soon as these modifications happen concurrently,
three-way merging comes into play. We have developed a formal approach and
implemented a tool to meet the specific requirements of merging EMF model
versions. Our approach is state-based and advances the state of the art by guar-
anteeing a consistent merge result. The implementation follows an incremental
design: An intermediate structure, the merge model, is alternately modified by
the merge tool and by the user until it remains conflict-free. The user interface
shows a superimposition of the three versions and provides a wizard for the reso-
lution of context-free and context-sensitive merge conflicts. We demonstrate our
tool by means of a UML scenario where two sets concurrent modifications are
merged with the help of user interactions.

19 The Requirements Editor RED

Harald Störrle, Maciek Kucharek
Technical University of Denmark (DTU), Denmark

The Requirements Editor (RED) is a tool to support teaching Requirements
Engineering graduate courses. The need of tool support is quite obvious, but all
the tools on the market covered only a small segment of these techniques, used a

8

different (and often inconsistent) terminology, and were hard to customize. After
several failed attempts to use pre-existing tools, we decided to build our own.

RED is based on Eclipse RCP which makes it relatively stable and comfort-
able to use. It covers a great variety of RE techniques, from stakeholder analysis
and goal modeling via interaction design and classic textual requirements to
UML models. Apart from bread-and-butter features like reporting, a help sys-
tem, and an integrated glossary, RED also provides features specifically designed
to improve the learning experience, and research-oriented features not found in
conventional tools, such as model fragment folding or inspection support.

20 MetaEdit+: Creating Tool Support for
Domain-Specific Modeling Languages

Juha-Pekka Tolvanen
MetaCase, Finland

With MetaEdit+ you can build Domain-Specific Modeling tools and gener-
ators - without having to write a single line of code. This demonstration shows
how different domain-specific languages (DSLs) can be integrated with a common
metamodel and how languages can be created iteratively while auto- matically
updating existing models.

21 Really Automatic Scalable Object-Oriented
Reengineering

Marco Trudel, Carlo A. Furia, Martin Nordio, Bertrand Meyer
ETH Zurich, Switzerland

AutoOO is a fully automatic migration tool that translates C programs into
object-oriented Eiffel projects. The translation applies reengineering heuristics
that extract design elements implicit in the C source and render them through
Eiffel’s object-oriented features. For example, C functions become Eiffel meth-
ods and are allocated to classes to achieve proper encapsulation. In this demo,
we will demonstrate AutoOO in action on some open-source C programs. The
main example will be ”xeyes”, the widget for the X Windows System showing
two googly eyes following the cursor. After translating xeyes from C to object-
oriented Eiffel, we will demonstrate how to modify the automatically translated
code using Eiffel’s standard IDE.

22 A Compositional Paradigm of Automating
Refactorings

Mohsen Vakilian, Nicholas Chen, Roshanak Zilouchian Moghaddam, Stas Ne-
gara, Ralph E. Johnson

9

University of Illinois at Urbana-Champaign, USA

Making complex code changes is tedious and error-prone. Programming en-
vironments provide tool support for various code changes including refactorings.
However, studies suggest that programmers greatly underuse automated refac-
torings and rarely use the ones that automate complex changes. We will demon-
strate a refactoring tool that supports a new paradigm of automating refactorings
called the compositional paradigm. In this paradigm, the tool designer decom-
poses a change into smaller ones. The tool automates these smaller changes,
and programmers manually compose these changes to perform large changes.
In contrast to the the wizard-based paradigm, in the compositional paradigm,
programmers perform a complex change in multiple steps rather than a single
step. The compositional paradigm provides more control and predictability and
reduces the costs of configuring and learning the tool. Our analysis of existing
refactoring tool usage data and controlled studies suggest that the composi-
tional paradigm is natural to programmers and outperforms the wizard-based
paradigm.

10

FPLA: A Modeling Framework for Describing Flexible
Software Product Line Architecture*

Jennifer Pérez, Jessica Díaz, Juan Garbajosa, Agustín Yagüe

Technical University of Madrid (UPM) - Universidad Politécnica de Madrid
Systems & Software Technology Group (SYST), E.U. Informática, Madrid, Spain

jenifer.perez@eui.upm.es, yesica.diaz@upm.es, jgs@eui.upm.es, agustin.yague@upm.es

1 Introduction

Nowadays, Software Product Line (SPL) engineering [1] has been widely-adopted in
software development due to the significant improvements that has provided, such as
reducing cost and time-to-market and providing flexibility to respond to planned
changes [2]. SPL takes advantage of common features among the products of a family
through the systematic reuse of the core-assets and the effective management of
variabilities across the products. SPL features are realized at the architectural level in
product-line architecture (PLA) models. Therefore, suitable modeling and specifica-
tion techniques are required to model variability. In fact, architectural variability
modeling has become a challenge for SPLE due to the fact that PLA modeling re-
quires not only modeling variability at the level of the external architecture configura-
tion (see [3,4] literature reviews), but also at the level of internal specification of
components [5]. In addition, PLA modeling requires preserving the traceability be-
tween features and PLAs. Finally, it is important to take into account that PLA model-
ing should guide architects in modeling the PLA core assets and variability, and in
deriving the customized products. To deal with these needs, we present in this demon-
stration the FPLA Modeling Framework.

FPLA Modeling Framework offers tool support for (i) modeling PLAs in a graph-
ical way by providing mechanisms to specify the external and internal variability and
the different artifacts of the PLA following a view model, (ii) documenting the design
decision driving the PLA solution, (iii) tracing PLAs to features allowing change
impact analysis, (iv) configuring a specific product architecture (PA), and (v) translat-
ing PL specifications into code (automatically) by guarantying the traceability be-
tween PLA and code. FPLA has been used for modeling the PLAs from representa-
tive software exemplars [6] to industrial projects, such as OPTIMETER [7] which has
been involved in different developments of two ITEA projects (IMPONET and
NEMO&CODED) focused on Smart Grids. Specifically, to illustrate the use of
FPLA, this demonstration shows several snapshots of one of the developments of
OPTIMETER (see Fig. 1). OPTIMETER consisted of the development of a SPL for
metering management systems in electric power networks [7]. Metering management

* INNOSEP (TIN200913849), IMPONET (ITEA 2 09030, TSI-02400-2010-103), iSSF (IPT-430000-2010-038),

NEMO&CODED (ITEA2 08022, IDI-20110864) and ENERGOS (CEN-20091048).

11

systems capture and manage meter data from a large number of distributed energy
resources, load these data in a database, support data querying and processing, and
provide these data to other systems for billing, forecasting or purchasing.

2 FPLA Modeling Framework

FPLA supports Model-Driven Development (MDD) of SPLs by modeling feature
models (adopting feature-oriented analysis), PLAs, traceability from features to PLA
through architectural design decisions (ADD), and PA configurations; and also by
generating AspectJ code from models. FPLA modeling is supported by a 4+1 view
model that consists of the Core, Variability, Derivation, Product, and PLAK (Product-
Line Architectural Knowledge) views. Fig. 1 shows the models and views of
OPTIMETER. The feature model describes the features of OPTIMETER (see A). The
core view (see B) allows configuring the common PLA for all the products of the
SPL. This view is supported by components, such as the Database Manager, and
Plastic Partial Components (PPCs) [8], such as the Data Querying. PPCs allows
specifying the internal variation of components, in such a way that part of its behavior
corresponds to the core functionality of a SPL and part of its behavior is specific of a
product or set of products from that SPL. The variability view (see C) supports mod-
eling: the external variability by adding and removing attachments among compo-
nents, and the internal variability of PPCs. The PPCs DataQuerying and Data Load-
er implement the variability for the different data storing technologies. The variability
of a PPC is specified using variability points (see the AVP clustering) which hook
fragments of code to the PPC known as variants (see the variants
HadoopMAP/REDUCE and RAC). Finally, weavings specify where and when to
extend PPCs through the use of variants (see C). The PLAK view (see D) allows one
to trace features to PLA through design decisions and to analyze the impact of chang-
es. The derivation and product views (see E) allow architects to select the variants of
a specific product of the SPL and to generate its PA. In this case, two specific prod-
ucts were configured and their code skeletons were automatically generated by auto-
matically composing the required source-code from external sources. FPLA is a plug-
in of Eclipse that has been developed by using the infrastructure provided by the
Eclipse Modeling Framework for the modeling support, and the Epsilon Generation
Language of the Epsilon Generative Modeling Technologies research project for the
model-to-code transformation. A complete video demonstration is available at
https://syst.eui.upm.es/FPLA/examples.

REFERENCES
1. Pohl K., Böckle G., van der Linder F.: Software Product Line Engineering: Foundations,

Principles and Techniques. Springer-Verlag (2005)
2. Schmid, K., Verlage, M.: The economic impact of product line adoption and evolution.

IEEE Softw. 19(4) pp. 50–57 (2002)
3. Schaefer I., et al.: Software diversity: state of the art and perspectives. International Jour-

nal on Software Tools for Technology Transfer 14(5), Springer-Verlag pp. 477-495 (2012)

12

4. Chen, L., Ali Babar, M., Ali, N.: Variability management in software product lines: a sys-
tematic review. In Proc. of the Int. Software Product Line Conference, pp. 81-90 (2009)

5. Bachmann F., Bass L.: Managing variability in software architectures. In Proc. of the sym-
posium on Software reusability. New York, NY, USA: ACM, pp. 126–132. (2001)

6. Díaz, J., Pérez, J., Garbajosa, J., & Wolf, A: Change impact analysis in product-line archi-
tectures. In Software Architecture, volume 6903 of LNCS, Springer pp. 114-129 (2011).

7. Díaz, J, Pérez J, Garbajosa J, Yagüe A.: Change-Impact driven Agile Architecting. In
Proc. of the 46th Hawaii Int. Conference on System Sciences (HICSS '13), IEEE (2013)

8. Pérez, J., Díaz, J., Soria, C. C., Garbajosa, J.: Plastic partial components: A solution to
support variability in architectural components. In Proc. WICSA/ECSA 2009, IEEE (2009)

Fig. 1. FPLA Modeling Framework – OPTIMETER project

13

GenMyModel : An Online UML Case Tool

Michel Dirix, Alexis Muller, and Vincent Aranega

Axellience 59000 Lille - France
{michel.dirix,alexis.muller,vincent.aranega}@axellience.com

Abstract. Costs and markets lead engineering teams to collaborate
from different locations all over the world. Modelling tools are present in
development processes to produce complex software and these tools have
to be highly collaborative to permit teams to be productive. Axellience
tries to resolve issues about distributed collaboration and modelling with
GenMyModel.

Keywords: UML, Collaboration

1 Introduction

Building complex software is a collaborative activity where modelling holds an
important place. Since a decade, outsourcing and offshoring projects or part
of them have become regular practices in software industry. These ones can
have different reasons like the need to cut down costs or to explore new markets.
Collaboration between project team members suffers from resulting geographical
distribution.

Software practitioners usually draw diagrams when they design new applica-
tions, maintain existing ones or discuss with their clients using modelling tools
[1]. Besides, models are important to manage knowledge and provide an efficient
support to coordinate activities when the projects aim at producing complex
software. It is important that modelling tools intent to support collaboration
in the context of distributed teams, that is to say, to provide similar working
conditions as co-located settings. Whitehead shows that the trend concerning
collaboration support is the arrival of web-based tools in every phase of soft-
ware development [2]. Their main advantage is that they do not require any
installation or configuration: teams are quickly ready to work.

Axellience was launched from this observation and had the support of INRIA
in April 2012. Now, Axellience offers GenMyModel which is an online UML and
generator tool. Axellience has began to communicate about a beta-version of
GenMyModel since January 2013 and there are already nearly a thousand of
users spread over in more than 70 countries. Some models already reach more
than 50 classes elements and includes several hundreds of model elements.

2 GenMyModel

The promises of SaaS (Software as a Service) is to allow users to access to
services without installation or configuration. Users find the same environment

14

no matter where they connect from. In addition, SaaS applications can be used
by users from anywhere, anytime, from any device and operating system, and
users do not have to update their application. So, GenMyModel is online, in SaaS
mode and its Graphical User Interface is shown in the figure 1. The intention
of GenMyModel is to accelerate the modelling phase. Users are ready to work
quickly and they access GenMyModel and the models from anywhere at anytime.
For example, an architect can begin to model at his/her office, continue at home
and present the result to the client the day after.

Fig. 1. GenMyModel Graphical User Interface

Today, GenMyModel supports Class Diagrams and Use Case. Others are in
development. From Class Diagrams, GenMyModel offers its users the possibility
to generate the code to multiple targets like Java, Java-JPA, SQL. Others will
be added. In addition, the code is preserved throughout different generations.
So, users can edit their code, model again, re-generate without code loss. Nev-
ertheless, in most cases, a generator is not completely adapted to users needs.
GenMyModel will add a generator upload service where users would add their
own generators.

Another benefit of the SaaS applications is the simplification of real-time
collaboration [3]. Real-time collaboration is an ongoing work into GenMyModel
and a first version will be available soon. We are working on the model synchro-
nization between users and the rights management. In the longer term, we have
to study what kind of information is necessary to display to users in order to
facilitate collaboration.

15

Future work will be on model repositories too. We plan to propose model
repositories with versioning facilities. Thereby, users will can return to next
version of their model.

One of the aims of GenMyModel is to offer a platform for specific needs
or experimentations. For that, usage of GenMyModel will be free for public
projects, allowing users to easily experiment and share their work. Additionally,
the access to the model repositories will be granted to other tools though an
API. This API will contain the generator upload service. By opening this API,
Axellience wants to continue the collaboration with research laboratories where
Axellience is already engaged.

3 Demonstration content

1. How to access to GenMyModel;
We will create a GenMyModel user in less than 30 seconds and will access
to GenMyModel

2. Simple model creation;
We will present the GenMyModel Graphical User Interface and will create a
class diagram.

3. Code generation;
From a simple model, we will generate associated code using the Java-JPA
generator. This generation will be uploaded into a Github repository and we
will show the generated code and annotations.

4. Model modification and code regeneration;
We will edit the generated code from a code editor tool in the Cloud. Then,
we will edit our model to add new properties and we will generate the code
again to show that new generations do not modify the code edited before.

5. Current state of collaboration.
To conclude, we will show our ongoing work on collaboration in editing the
same model with two users.

References

1. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does uml make the grade? insights
from the software development community. Inf. Softw. Technol. 47(6) (April 2005)
383–397

2. Whitehead, J.: Collaboration in software engineering: A roadmap. In: Future of
Software Engineering, 2007. FOSE’07, IEEE (2007) 214–225

3. Brunelière, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and
Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud -
MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th European
Conference on Modelling Foundations and Applications - ECMFA 2010), Paris,
France (June 2010)

16

Vasco: A Visual Churn Exploration Tool

Fleur Duseau, Bruno Dufour, and Houari Sahraoui

DIRO, Université de Montréal, Canada
{duseaufl,dufour,sahraouh}@iro.umontreal.ca

Abstract. We describe a tool to visualize the usage of temporary ob-
jects during the execution of a program. This tool is designed to help pro-
grammers locate and remove sources of object churn in their application,
a common performance problem due to the excessive use of temporaries.

Keywords: visualisation, framework-intensive applications, object churn,
dynamic analysis, execution traces

1 Introduction

Bloat, and particularly object churn, is a common performance problem in mod-
ern framework-intensive applications. Object churn consists of an excessive use
of temporary objects. Temporaries can impose a significant overhead during the
execution due to increased initialization costs. Identifying and understanding
sources of churn is a difficult and labor-intensive task, despite recent advances
in automated analysis techniques.

To address this problem, we designed Vasco [4], a tool that allows users
to visually explore how programs use temporaries. Because churn often crosses
method and even framework boundaries, Vasco makes it possible to track tem-
porary objects from their creation to their use. Also, since churn often results
from multiple methods within a given region collaborating to build complex
temporary data structures, Vasco represents program regions explicitly using
the Sunburst visual metaphor [5]. We then present various churn-related metrics
using this metaphor. This allows users to quickly identify regions that exhibit
suspicious behavior.

2 Design Principles

The design of Vasco was guided by three main principles:

– scalability : the large amount of data to visualize requires a judicious use of
the screen real estate as well as abstractions.

– low cognitive effort : intuitive metaphors help to reduce the cognitive effort
required to perform a task. We use natural abstractions that are easily per-
ceived (e.g., the size and color of a visual entity) to draw the attention of
the user to important parts of the system under consideration.

– smooth transitions and interactions: leaving visual clues when performing
transitions and proper placement of the required information make the tool
more intuitive and efficient.

17

2

Fig. 1. Areas of the visualization tool

3 Input Data

Vasco visualizes execution data extracted from dynamic traces collected using
the Jinsight tool [2]. For scalability, we use Calling Context Trees (CCTs) [1] to
represent calls. CCTs represent invocations as a tree where method invocations
resulting from the same sequence of calls (i.e., the same call stack at the time
of invocation) are merged into a single node. Temporary objects are identified
using a blended escape analysis [3]. This analysis identifies objects are captured
or escaping from a subtree of the CCT. Captured objects and data structures
correspond to likely temporaries.

The color and the angle spanned by a node in the Sunburst metaphor can be
used to display information. Vasco supports four churn-related metrics that can
be mapped to each attribute: number of allocated types, number of allocated
objects, number of captured objects, number of allocated objects that are likely
temporaries.

4 Graphical Interface

The typical usage scenario in our approach is an iterative process in which the
user first attempts to locate the most significant source of churn, removes it from
the view and repeats the process until no sources of churn remain.

Figure 1 shows a screenshot the tool. The main view (area 1) displays the
CCT as a Sunburst, with the root in the center. The use can navigate an filter
the main view by selecting a subtree to display. A desaturated representation of

18

3

the view prior to the selection is then added to the context sidebar (area 2).
The information panel (area 3) displays the most useful data about the entity
currently under the mouse pointer. Vasco computes several metrics that provide
different views of the data. The mapping of the metrics can be changed directly
from the menu bar (area 4). Metrics used for the color attribute and the arc size
can be selected independently. For the color mapping, the value corresponding
to the maximal color can also be selected by the user by interacting with the
color gradient directly (area 6). Users can enter a search string that will cause
all matching nodes to be selected (Figure 1 area 5). Nodes are matched based
on class and method names.

5 Conclusions and Future Work

Vasco is an interactive visualization approach that helps developers to locate and
understand significant sources of churn in their applications. It leverages dynamic
data generated by an existing blended escape analysis tool. Vasco relies on known
preattentive perception principles in order to reduce the cognitive effort required
to perform the visual analysis task.

As future work, we want to support a richer set of interactions, such as
the ability to search for invocations allocating or capturing the same types of
instances. We would also like to integrate Vasco in Eclipse. We also plan to
extend our approach to other key components of bloat and, more generally, other
problems and program understanding tasks that require a precise exploration of
the behavior. For example, Vasco could be used to track the flow of data within
a complex application.

References

1. Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI). pp. 85–96
(1997)

2. DePauw, W., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.: Visual-
izing the execution of Java programs. In: Software Visualization: State of the Art
Survey, LNCS 2269 (2002)

3. Dufour, B., Ryder, B.G., Sevitsky, G.: A scalable technique for characterizing the
usage of temporaries in framework-intensive Java applications. In: Proceedings of
the International Symposium on the Foundations of Software Engineering (FSE)
(2008)

4. Duseau, F., Dufour, B., Sahraoui, H.: Vasco: A visual approach to explore object
churn in framework-intensive applications. In: Proceedings of the International Con-
ference on Software Maintenance (ICSM). pp. 15–24 (2012)

5. Stasko, J., Zhang, E.: Focus+context display and navigation techniques for en-
hancing radial, space-filling hierarchy visualizations. In: Proceedings of the IEEE
Symposium on Information Visualization (InfoVis). pp. 57–65 (2000)

19

An open and distributed framework for designing
Domain Specific Graphical Modeling Languages

1François Pfister, 1Vincent Chapurlat, 2Marianne Huchard, 2Clémentine Nebut

1LGI2P, Ecole des Mines d'Alès, site de Nîmes, Parc Scientifique G. Besse, 30000 Nîmes,

France {forename.lastname}@mines-ales.fr
2LIRMM, CNRS – Université Montpellier 2, 161 rue Ada, 34095 Montpellier Cedex 5, France

{lastname}@lirmm.fr

Abstract. DSML (Domain Specific Modeling Languages) are an alternative to
general purpose modeling languages (e.g. UML or SysML) for describing
models with concepts and relations specific to a domain. The design of DSML
requires defining a graphical notation over an abstract meta-model. In this
demo, we introduce an approach and a tool (Diagraph) to assist the design of a
graphical DSML. The main points are: non-intrusive annotations of the meta-
model to identify nodes, edges, nesting structures and other graphical
information; immediate validation of meta-models by immediate generation of
an EMF-GMF instance editor supporting multi-diagramming. Diagraph is based
on a pattern recognition principle in order to infer most of the concrete syntax.

Keywords: dsml, mde, meta-model, language workbench, graphical concrete
syntax

1 Introduction

Practitioners who want to model technical or socio-technical systems start with a
class-relation formalism, either by extending UML, or using MOF, an initial class
formalism, to define the concepts which were previously unavailable, so as to obtain a
new language tailored to their field. Such a work has two major phases: first, defining
the abstract syntax with the use of a class diagram, and second, defining the concrete
syntax, which specifies the form of (textual or graphical) statements that conform to
the abstract syntax.

In this demo we are interested in graphical concrete syntaxes. There is no
consensus (as this exists with MOF for abstract syntaxes or EBNF for textual concrete
syntaxes) about a description language for graphical concrete syntaxes. Indeed,
designing and implementing a graphical notation is a strenuous activity requiring
significant expertise, both in its semiotic and cognitive concerns, and in its technical
and operational aspects. We demonstrate a process and a tool for agile development
of graphical modeling languages on the top of Ecore.

 So to be able, in an agile way, to design domain specific tailored languages, our
framework, named Diagraph, allows to design simultaneously their abstract syntax

20

(meta-model) and their concrete syntax (notation and diagramming). Numerous
solutions exist, but none of them satisfies the needs we will detail in the demo.

We aim to integrate Diagraph into the Eclipse ecosystem, and to comply with the
current standards of Model Based Engineering (MBE). Our intention is to reuse
already available components. Thus, we designed Diagraph as a technical overlay
over GMF [2], which is powerful but overly complex for the end user. In addition, we
propose a methodology, which lacks in most of the existing propositions. In our
approach, defining a new graphical modeling language is made by annotating the
concrete syntax on the classes that make up the abstract syntax, by the mean of our
Diagraph description language. These annotations, that have been automatically
generated by an integrated wizard, and amended by the human expert, associate the
concrete syntax to the abstract constructs. The resulting target modeling language is
defined in one sole artifact, by this principle, which is that of a grammar.

2 Related work

Many frameworks are able to generate graphic editors from which we can create
models, instances of a given meta-model. The generation of these editors takes at the
input the given meta-model on one hand, and manual parameters given by the
modeling expert on the other hand. The degree of automation of the generation
process remains a challenge.

GMF [2] is a framework based on a mapping between MOF and a graph drawing
engine, as a part of Eclipse Emf-Ecore stack [1]. This framework is powerful, but
poorly documented, and therefore requires a huge technical expertise, this results in a
steep learning curve. MetaEdit+ [7] is not based on the Emf-Ecore stack, but on a
specific meta-meta-model named GOPRR (Graph, Object, Property, Role and
Relationship). GME (Vanderbilt University) is based on MS Component Object
Model technology. Microsoft Dsl Tools has a proprietary meta-meta-model, while
XMF Mosaic’s is based on an infrastructure named XCore. Obeo Designer [3] is a
modeling environment based on the notion of points of view. It is a component of the
Eclipse platform, and is based on EMF and GMF-Runtime. Obeo Designer and
MetaEdit+ are commercial tools that are split in two different parts: a workbench, a
tool for designing modeling languages and a modeler, a tool for using modeling
languages.

Eugenia[4], a free and open tool based on Emf, proposes to annotate the meta-
model with concrete syntax statements, to generate the GMF artifacts, avoiding the
user to deal with the poorly designed GMF workflow. This latter tool lacks of an
integrated support of multiple points of view, required for large meta-models in the
true life.

3 The Diagraph proposal

As it results from the above survey, several limitations of the existing offer lead us
to design Diagraph, a new language and framework. As Eugenia[4], we adopt the

21

principle of annotations, but in an improved way, enhanced by a semi-automated
mechanism that will infer a huge part of the graphical notation. Furthermore, the tool
is a part of an integrated framework which acts as core engine within an open and
world-wide distributed environment [5, 6] dedicated to the design of visual modeling
languages. Diagraph offers at the same time:

• An easy to use solution
• A graphical notation inference mechanism, based on pattern recognition,
• A native support of the multi-view paradigm,
• A native and easy support of nested and affixed nodes,
• Integration in the Eclipse-OSGI ecosystem, which is a de facto standard in

the Model Based Engineering field,
• An open technology [5], with a published meta-model (MOF compliant), that

defines a pivot concept of diagramming, independent of any platform, in one hand,
and targets several platforms on the other hand (GMF runtime and Graphiz Dot at
the moment),

• A really usable and regularly updated tool.
• A shared and collaborative repository [6] of visual modeling languages,

coming as use cases, bundled with their graphical editors, and several examples for
each language.

4 References

1. Budinsky, F. et al.: Eclipse Modeling Framework. Pearson Education (2003).
2. Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language

(DSL) Toolkit. Addison-Wesley Professional (2009).
3. Juliot, E., Benois, J.: Viewpoints creation using Obeo Designer or how to

build Eclipse DSM without being an expert developer?,
http://www.obeo.fr/resources/WhitePaper_ObeoDesigner.pdf.

4. Kolovos, D. et al.: Taming EMF and GMF Using Model Transformation. In:
Petriu, D. et al. (eds.) Model Driven Engineering Languages and Systems. p.
211--225 Springer, Berlin / Heidelberg (2010).

5. Pfister, F.: Diagraph, a Framework over EMF and GMF to automate the
design of graphical Domain Specific Modeling Languages,
http://code.google.com/p/diagraph/.

6. Pfister, F.: OpenDSML: An Open Framework for Domain Specific Graphical
Modeling Languages, http://www.opendsml.org.

7. Tolvanen, J.-P., Kelly, S.: Integrating Models with Domain-Specific
Modeling Languages. Systems Programming Languages and Applications:
Software for Humanity (formerly known as: OOPSLA). (2010).

22

An Eclipse plug-in to link modelling
and code proof

AGrUM: ACSL Generator from UML Model

Anthony Fernandes Pires1,2, Thomas Polacsek1, and Stéphane Duprat2

1 ONERA, 2 avenue Edouard Belin,
F31055 Toulouse, France

2 Atos Intégration SAS, 6 impasse Alice Guy, B.P. 43045,
31024 Toulouse cedex 03, France

Abstract. If Model Based Engineering (MBE) supports engineers from
the specification to code generation, we want here to bridge the gap be-
tween models and static program analysis. Today, static analysis tools
prove the source code correctness against a set of properties by using
mathematical methods, without executing the program. If these tech-
niques are quite efficient and are used in safety critical contexts (for in-
stance: aeronautic, nuclear, etc.), they are quite difficult to understand
and to use. AGrUM is a prototype Eclipse plug-in which purpose is to
automatically generate proof properties for C programs from UML State
Machine designs to which the programs must conform. These generated
properties can then be automatically proved using static analysis tools.

Keywords: Model Based Engineering, formal methods, code verifica-
tion, UML, State Machine, Eclipse, plug-in

1 Introduction

In software development, verification activities have a significant cost. In the six-
ties, Hoare [2] was already reporting that over half of software development time
was dedicated to program testing. Today, in embedded software development,
we notice at Atos that the cost of verification activities can sometimes reach
60% of the project workload.

Formal methods are mathematically-based techniques, for instance, formal
logic, model checking or discrete mathematics. They allow performing rigorous
verification tasks during software development, to enable a more effective iden-
tification of software defects and to reduce verification costs. They are already
applied in industrial context [4] [3]. But one of their major inconvenient is that
they are quite difficult to understand for non experts. These methods have math-
ematical background which can represent a significant learning cost for beginners
or just repulse them. So, how to easily bring the power of formal methods to
people who do not understand them?

Model Based Engineering (MBE) allows users to model software in an easy
way dealing with systems complexity and the extended enterprise approach of

23

nowadays projects. It also allows taking advantage of the modelling to generate
code, documentation or tests and so to support developers all along the develop-
ment process. Following this spirit, we propose to provide a way to use the design
of software to verify its implementation concealing the use of formal methods
from users.

2 Motivations

The Unified Modeling Language (UML) is widespread and it is currently used
in industry development teams. We propose to use a particular subset of UML
based on the subset defined in [1] for the specification of embedded software.
The subset we are interested in deals with the behavioural representation of
software, realized through UML state machine diagram. We define a first subset
to conduct our work, limited to very simple concepts (for instance, no state
hierarchy, no effects on transition, etc). In addition, we consider these state
machines are meant to be driven by a clock and to do a certain number of
actions at each clock tick. In this way, we limited the possible events handled by
the state machine to the completion event (no event) and to the clock tick.

Our goal is to verify source code behaviour according to its UML state ma-
chine design. For the verification task, we are interested in static analysis. It
allows the detection of bugs and the verification of properties on a program
without executing it. We propose to automatically generate annotations from
the model into the code. These annotations represent the behavioural properties
of the model. They will be automatically verified by a static analysis tool and
so allows users to automatically verify their implementation behaviour.

We can compare our method with a code generation method. At a technical
level, automation of properties generation for verification purpose is similar to
automation of code generation. But, placed in a certification context like DO-
178C for the aeronautical domain, the qualification constraints of a verification
tool are much lighter than those of a code generator tool. If the verification tool
fails, it does not introduce errors in the target software while a code generator
might. A code generator must be qualified at least at the same level of criticality
than the target software; it is not the case for a verification tool.

3 The tool

AGrUM 3 is an Eclipse plug-in prototype to automatically generate proof prop-
erties from an UML State Machine-based design to C code. Our plug-in takes
advantage of Eclipse-based tool as Papyrus MDT 4 for the design modelling of
the software.

As a first prototype, the UML state machine is implemented following our
own created pattern. The proof properties are generated as annotations in AN-
SI/ISO C Specification Language (ACSL). ACSL is a specification language to

3 AGrUM for ACSL Generator from UML Model
4 www.eclipse.org/papyrus/

24

express behavioural properties on C code. It is based on first order logic and
allows specifying function contracts, invariants, variants, etc. They are repre-
sented as comments in C code, using specific tags and they are without side
effects on the program. These annotations can then be proved by the Frama-C 5

framework, which is an open-source tool for the static analysis of C program.
The use of the plug-in is very simple. The user designs its software behaviour

as state machines using the Papyrus model editor. He just has to select its state
machine in the model explorer, right click on it and select the Generate com-
mand. Then, he chooses the C file to annotate and if its code pattern conforms to
the state machine and the model respects the subset, the plug-in automatically
annotates the C file.

The AGrUM project is store in Eclipse Labs and it is available at:
http://code.google.com/a/eclipselabs.org/p/agrum/

Users can find the source code, an update site to automatically install the
plug-in in an Eclipse SDK 3.7, information, example and videos on its use. Note
that this plug-in is fully compatible with TOPCASED 6 5.2 or later.

References

1. Fernandes Pires, A., Duprat, S., Faure, T., Besseyre, C., Beringuier, J., Rolland,
J.F.: Use of modelling methods and tools in an industrial embedded system project
: works and feedback. In: ERTS. France (2012)

2. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

3. Pariente, D., Ledinot, E.: Formal verification of industrial c code using frama-c: a
case study. Formal Verification of Object-Oriented Software (2010)

4. Souyris, J., Wiels, V., Delmas, D., Delseny, H.: Formal verification of avionics soft-
ware products. In: Cavalcanti, A., Dams, D. (eds.) FM 2009: Formal Methods, Lec-
ture Notes in Computer Science, vol. 5850, pp. 532–546. Springer Berlin Heidelberg
(2009), http://dx.doi.org/10.1007/978-3-642-05089-3_34

5 frama-c.com
6 Toolkit in OPen-source for Critical Application and SystEms Development,www.
topcased.org

25

Demonstration of a Tool for
Consistent Three-way Merging of EMF Models

Felix Schwägerl, Sabrina Uhrig and Bernhard Westfechtel

University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
{felix.schwaegerl,sabrina.uhrig,bernhard.westfechtel}@

uni-bayreuth.de

Abstract. Version control systems have become indispensable in contemporary
software development. Optimistic strategies allow for independent modifications
of the same software artifact, e.g. model. As soon as these modifications happen
concurrently, three-way merging comes into play. Merging tools specific to the
requirements of model-driven development are urgently needed. We demonstrate
a three-way merge tool for EMF models which supports the user committing his
decisions in order to resolve merge conflicts. The user interface consists of an
editor that shows the superimposition of the three input versions and a wizard
that guides the user through the resolution of pending merge conflicts. In our
example scenario we merge concurrent modifications on a medium-sized UML
model.

1 Background

Inadequate version control has been identified as a major obstacle to the application
of model-driven software engineering. In particular, sophisticated support for merg-
ing model versions is urgently needed. Line-oriented or structure-oriented (e.g. XML-
based) merging tools do not address crucial requirements concerning the consistency of
merge results and the detection and resolution of merge conflicts to a sufficient extent.

In [4], we have developed a formal approach to state-based three-way merging of
model versions in the Eclipse Modeling Framework (EMF [3]). It allows to detect and
resolve context-free conflicts occurring on the same structural feature of some EMF
object, as well as context-sensitive conflicts considering changes of different structural
features of potentially different objects. Our approach advances the state of the art by
guaranteeing a merge result that is consistent with the structural constraints imposed by
EMF and by allowing for merging objects from different classes. We only require that
the three models are instances of the same Ecore model. The implementation follows
an incremental design allowing to pause or revert merge decisions at any time.

After a brief tool overview in Section 2, we present our demonstration plan in Sec-
tion 3. We conclude with installation instructions and a web link to the screencasts.

2 Tool Overview

Our merge tool itself is based on EMF; the BTMerge metamodel defines the structure of
merge models which represent the superimposition of the three EMF model versions in-
volved in a merge. As shown in Figure 1, merging with our tool is a three-phase process:

26

Conflict
Resolution

Merging
Left

Input

Ancestor
Input

Right
Input

BTMerge
Model

Export
Merged
Output

Construction

Fig. 1. Conceptual overview on our merge tool.

First, the merge model is created (construction). Corresponding EMF objects are identi-
fied either by unique identifiers (UUIDs) or by means of a matching algorithm, e.g. the
EMF Compare match engine [1]. The second phase, merging, follows an incremental
design: The preliminary merge model is modified alternately by the merge algorithm
and the user; the merge algorithm applies merge rules which can either be applied au-
tomatically or require user interaction in case of conflicts. Only after all conflicts are
resolved, the merge model is ready to be exported back into an EMF instance.

The user interface, the resolution tool (cf. screenshot Fig. 2), is based on a generated
EMF tree editor and allows the user to communicate resulution decisions for specific
conflicts during the second phase. The main editing view (right top) shows the con-
tainment tree of the model versions in multiple columns. Below, a modified properties
view reflects values of structural features of the superimposed object selected in the
main view. Conflicting objects and values are marked by icon overlays. The conflicts
view located at the left bottom outlines pending merge decisions. The user can resolve
a conflict by double-clicking on it, which opens a wizard that will describe the conflict
and propose several resolution methods. After resolution by the user, the next merge
increment is performed automatically until the merging phase terminates.

Fig. 2. A screenshot of the resolution tool with the “Home Automation System” example.

27

3 Demonstration Plan

We apply our merge tool to a medium-sized scenario (“Home Automation System”)
where three revisions of the same UML [2] model, a common ancestor and two alter-
native versions (left and right), which result from concurrent modifications, are merged.
The plan is accompanied by our screencasts (web link, see Section 4).

1. Applying Concurrent Modifications. By means of the UML tree editor, the fol-
lowing conflicting modifications are applied to two copies of the same model:
(a) Renaming of a class VendorVPNConnectionProvider to MyVPNCon-

nectionProvider (left) vs. YourVPNConnectionProvider (right).
(b) Insertion of a generalization to class IEEE802 11aConnector (left) vs.

deletion of the corresponding class (right).
(c) Visibility change of package ios (left) vs. deletion of that package (right).

2. Merging. An initial merge model is created from the three versions using the pro-
vided context menu entry. In subsequent increments, the following conflicts are
reported to the user and resolved by means of the resolution wizard:
(a) Change-Change Conflict on the feature name of VendorVPNConnection-

Provider. The user selects value MyVPNConnectionProvider (left).
(c) Reference-Delete Conflict on class IEEE802 11aConnector. The user se-

lects “reference” (left) and discards the deletion (right).
(b) Modification-Delete Conflict on package ios. The user applies the deletion

(right), discarding the modification (visibility change, left). The resolution of
this conflict leads to the automatic resolution of related conflicts caused by it.

3. Result. The merge output is a valid EMF instance and contains all modifications
that have been selected by the user. Furthermore, non-conflicting changes have been
applied (e.g. inside the MicrowaveOvenControl state chart).

4 Installation Instructions and Screencasts

Our software is available on an update site1 and can be installed as plug-ins into a clean
Eclipse Modeling Tools distribution (Juno or higher). Screencasts demonstrating both
the installation and the usage of our tool are provided on our web pages2.

References

1. Brun, C., Pierantonio, A.: Model differences in the Eclipse Modelling Framework. UP-
GRADE IX(2), 29–34 (Apr 2008)

2. OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.3. OMG,
Needham, MA, formal/2010-05-05 edn. (May 2010)

3. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling Framework.
The Eclipse Series, Addison-Wesley, Upper Saddle River, NJ, 2nd edn. (2009)

4. Westfechtel, B.: Merging of EMF models: Formal foundations. Software and Systems Mod-
eling p. 32 p. (Oct 2012), http://dx.doi.org/10.1007/s10270-012-0279-3,
Online First

1 http://btn1x4.inf.uni-bayreuth.de/btmerge/update/
2 http://btn1x4.inf.uni-bayreuth.de/btmerge/screencasts/

28

Requirements-level migration of legacy systems

Micha l Śmia lek, Wiktor Nowakowski, Norbert Jarzȩbowski, Kamil Rybiński,
S lawomir Blatkiewicz

Warsaw University of Technology,
Warsaw, Poland

smialek@iem.pw.edu.pl

Abstract. Novel software development technologies introduce signifi-
cant changes in system design, delivery and usage patterns. For many
legacy applications it means that their further development becomes in-
feasible due to obsolescence of technologies they use. There thus arises
the need for tools supporting automated migration of legacy systems into
new paradigms. In this demonstration we will show such a tool suite.
Its most important characteristic is that it operates at the level of sto-
ries (scenarios) traditionally produced during requirements specification.
The tools highly support extracting knowledge about the functioning of
legacy applications and storing them in the form of precise requirement-
level models. What is more, the tools enable automated transformation of
these models into object-oriented code, compliant with new system struc-
ture. In the demonstration we present a recovery engine, a requirements-
level editor and a transformation engine in the context of a case study
example.

1 Introduction and concept

For many organizations, the transition of their legacy business applications to
the new architectural patterns becomes problematic. Software systems intro-
duced many years ago are often characterized by complex monolithic structure,
technologies with non-common gateways, poor interoperability and lack of sup-
port. This makes refactoring to the new structure (eg. component- or service-
based architecture) or integration with other enterprise applications virtually
impossible.

This demonstration presents an approach where legacy knowledge can be ex-
tracted from any existing system and migrated to a new system by determining
the observable behaviour and stored in the form of requirements-level models.
Figure 1 shows an overview of the process and tools. The recovery phase starts
by “ripping” the legacy system’s UI by using a GUI-ripping tool [1]. Based on
this (collected XML scripts) we generate the initial requirements model (cf. RSL
- see the next section) in a special TALE engine. This can then be modified
(ReDSeeDS Editor) by hand to refine it or to cater for new or changed func-
tionality. Finally we use a model transformation engine (MOLA) to generate
the target system structure models (both platform independent and platform
specific) and code.

29

Fig. 1. Overview of the migration process

2 Tool details

The individual steps of the recovery and migration process are illustrated in
Figures 2-4. The first two steps involve running the legacy system and recording
the user-system interaction threads. This is done using a standard commercial
test development tool and a specially developed Tool for Application Logic Ex-
traction (TALE). The test tool records individual interactions (see labels 1-4 in
Fig. 2) and form contents. This data is then translated with TALE into typical
use case scenarios (see textual steps 1-4 in Fig. 2) written in formally defined
Requirements Specification Language [2] (RSL).

The scenarios are accompanied by the definitions of notions used in individual
sentences. These notions are also recovered by analysing the legacy UI (the forms
with their fields). The recovered requirements model (use case scenarios and
domain notions) can be updated to accommodate for possible changes to the
system’s application logic and domain. This can be done using the ReDSeeDS
Engine [3] and its sophisticated RSL editor, as illustrated in Figure 3.

The final step is to generate the architectural models in UML with associ-
ated method bodies for the application logic and presentation layers. This is
illustrated in Figure 4 which shows one of the transformation rules for a trans-
formation into the Model-View-Controller/Presenter code structure. One of the
rules specifies to transform every use case into a controller class with specific
operations referring to scenario sentences. Another set of rules defines ways to
translate from subject-verb-object and conditional sentences into sequences of
method calls and “if” statements in Java. It can be also noted that the centrally
defined notions (e.g. “book” of “error message”) play crucial role in keeping the
final code coherent. All the calls in code that are generated based on the same
notion refer to the same class and associated objects in Java (see e.g. “book” and

30

Fig. 2. Requirements-based recovery

“mBook”). Depending on the type of notion (domain or UI), the method calls
refer to a model layer (“M”) class objects or a view layer (“V”) class objects.

The above tool suite will be demonstrated in the context of a real-life case
study. It will be shown how the migration of a legacy banking system used
in several Polish banks (see Fig. 2) into a new web-based architecture can be
significantly facilitated.

Acknowledgement. The presented tooling framework is being developed
within the REMICS project [4] (www.remics.eu).

References

1. Memon, A.M., Banerjee, I., Nagarajan, A.: GUI ripping: Reverse engineering of
graphical user interfaces for testing. In: Proceedings of the 10th Working Conference
on Reverse Engineering. (2003) 260–269

2. Kaindl, H., Śmia lek, M., , Wagner, P., Svetinovic, D., Ambroziewicz, A., Bojarski,
J., Nowakowski, W., Straszak, T., Schwarz, H., Bildhauer, D., Brogan, J.P., Mukasa,
K.S., Wolter, K., Krebs, T.: Requirements specification language definition. Project
Deliverable D2.4.2, ReDSeeDS Project (2009) www.redseeds.eu.

3. Śmia lek, M., Kalnins, A., Ambroziewicz, A., Straszak, T., Wolter, K.: Comprehen-
sive system for systematic case-driven software reuse. Lecture Notes in Computer
Science 5901 (2010) 697–708 SOFSEM’10: Theory and Practice of Computer Sci-
ence.

4. Mohagheghi, P., Barbier, F., Berre, A., Morin, B., Sadovykh, A., Saether, T., Henry,
A., Abhervé, A., Ritter, T., Hein, C., Śmia lek, M.: Migrating Legacy Applications

31

Fig. 3. Requirements level editor

Fig. 4. Requirements-based migration to code

to the Service Cloud Paradigm: The REMICS Project. In: European Research
Activities in Cloud Computing. Cambridge Scholars Publishing (2012)

32

The Requirements Editor RED

Harald Störrle, Maciej Kucharek

Department for Applied Mathematics and Computer Science
Technical University of Denmark

hsto@dtu.dk, kucharek.maciej@gmail.com

1 Motivation

The Requirements Editor (RED) has been conceived as a tool to support teach-
ing a major Requirements Engineering class at the Technical University of Den-
mark (DTU). The course covers a wide variety of techniques in a hands-on
fashion, from stakeholder analysis and goal modeling via interaction design and
classic textual requirements to UML models. The need of tool support is quite
obvious, but all the tools on the market covered only a small segment of these
techniques, used a different (and often inconsistent) terminology, and were hard
to customize. After several failed attempts to use pre-existing tools, we decided
to build our own. Since this was for a RE course, we did a thorough requirements
analysis up front, using the techniques taught in the course.

2 Goals, Constraints, Requirements

The primary goal of this project clearly is to support the course, in particular,
to help the students understand the course material. This would, indirectly, help
the teacher deliver a better course, and thus help both main stakeholders equally.
As a consequence, we demand that R1 all major topics of the course are covered,
R2that terminology is consistent with the course material, and R3 that students
should be be freed from mechanical tasks, leaving more time for the actual course
contents. Furthermore, since this is a tool that is supposed to be used by up to
70 students each year, it was necessary that R4 the tool would run on all major
platforms, with high degrees of R5 robustness and R6 usability. Finally, it was
clear on the outset that not all desirable features would be implementable in a
single increment, but instead, that many different students would be working on
it over a prolonged period of time, so that R7 maintainability was an important
quality.

3 Project History

Faced with these requirements, we decided to create RED using the Eclipse
Rich Client Platform (ERCP). At the time, Eclipse 3 (Indigo) was the most
recent version, so that was used. A team of two students set out in late 2011 to
create the tool as their joint MSc-thesis project. We created a meta-model of the

33

ElementRelationship

CommentList

Speci�cationElement

Goal

Vision

Stakeholder

Persona

Requirement

AcceptanceTest

Element

Glossary

GlossaryEntry

Group

Fig. 1. Excerpt of the meta-model of RED.

concepts in RED (see Fig. 1 for an incomplete overview), and deployed a first
version in September 2012.

Reactions to the first version of RED were mixed. While most students ac-
knowledged the need for tool-support, and many saw great potential in RED,
substantial shortcomings were also identified. First, RED had been tested mainly
on Windows machines, and some major bugs and instabilities on MACs and
some Linuxes showed only after a while. Second, RED had no facilities to sup-
port group work: the whole project is stored in one big file which conflicted
with the distributed and asynchronous working style of any teams in our course.
Third, the project was not structured in a way that students could easily con-
tribute to the tool development, fixing bugs or shortcomings on-the-fly. So we
have launched a re-engineering effort to address issues one and three, and new
thesis projects are launched to address issue two, and completing the feature list
to improve the usefulness of RED in the given context.

4 Architecture and Implementation

RED has been created using the latest Eclipse platform available at the time
(Eclipse 3.7 “Indigo”). The main rationale behind for using Eclipse is its proven
ability to create rich, cross-platform applications. Due to its plugin-architecture,
significant leverage through reuse was expected. We also expected beneficial ef-
fects towards maintainability and long-term development by adopting a popular
framework.

RED has been organized in a set of modules, each providing specific bundles
of features: the Core module provides foundational contributions such as the
main layout of the application and the meta-model. It supports a number of
feature-modules, such as Glossary, SpecificationElements and Help. We have also

34

reused a number of third-party plug-ins, including EPF RichText and AgileGrid,
that increased the code reuse ratio.

5 Features: done, doing, to do

RED offers currently the editors and features shown in the Fig. 2 below. Most
requirements have been addressed completely or largely; some shortcomings have
been identified with regards to internal software quality (which reduces main-
tainability), one major missing features (group-work support), and a number of
minor issues regarding functionality and usability.

Current work focuses on providing functions for comparing, differencing, and
merging RED-files to support group work. We expect this project to complete in
the summer of 2013. Besides this, there is ongoing work to improve the on-line
help function, provide a manual, and turn the project into a proper open source
project to attract more contributions.

Future work will focus on visual editors for (1) goal models, and (2) mod-
els of the structure, boundaries, and collaborations of organizations and systems
(”context editor”); template-driven editors to allow, e.g., to express requirements
compliant with the Common Criteria and some variants of ”agile” requirements
(i.e., user stories), and an editor for traditional table-structured use cases, in-
cluding support for project effort estimation with use case points.

Features
- Administrative & tracing information

for all elements
- Flexible locking (write/comment/read)
- HTML-Report Generation
- Weaving of Model Fragments
- On-line help and serch functions
- Full RTF-editor for all input texts
- Enactment of scenarios

Simple Editors
- Vision
- Stakeholders
- Goals
- Glossary
- Review Remarks
- Model Structure
- Weaving Rel.s
- Scenarios

Complex Editors
- Personas & Scenarios
 * Cartoon-style
 * Prose-style
 * Structured text
- Requirements
 * Prose
 * Test cases
 * Model Fragments

Fig. 2. Overview over the features offered in the current version of RED.

35

MetaEdit+: Creating Tool Support for

Domain-Specific Modeling Languages

Juha-Pekka Tolvanen

MetaCase, Ylistönmäentie 31, FI-40500 Jyväskylä, Finland

jpt@metacase.com

Abstract. With MetaEdit+ you can build Domain-Specific Modeling tools and

generators — without having to write a single line of code. This demonstration

shows how different domain-specific languages (DSLs) can be integrated with a

common metamodel and how languages can be created iteratively while auto-

matically updating existing models.

Keywords: Domain-specific modeling, domain-specific language, language de-

sign, code generation, language workbench

1 Introduction

Domain-Specific Modeling (DSM) raises the level of abstraction and hides today's

programming languages, in the same way that today's programming languages hide

assembler [1]. Symbols and language constructs in a domain-specific model map to

things in the problem domain. Rather than having concepts and symbols that map

one-to-one with the constructs of a programming language, each symbol can be worth

of several lines of code. This offers a whole level of abstraction higher than with

modeling languages based on programming concepts. The developer can therefore

solve the problem only once by visually modeling the solution using only familiar

domain concepts. The final products can in many cases be automatically generated

from these high-level specifications with domain-specific code generators [1, 2, 3].

As the name suggests, Domain-Specific Modeling is only possible because of nar-

rowing down the design space, often to a single range of products or systems for a

single company [3]. One expert defines a domain-specific language containing the

domain concepts and rules, and specifies the mapping from that to code in a domain-

specific code generator. Other developers then make models with the modeling lan-

guage and code is automatically generated. As an expert has specified the code gener-

ators, they produce products faster and with better quality than could be done by nor-

mal developers by hand. The generated result will be free of most kinds of careless

mistakes, syntax and logic errors.

Generally speaking, defining a language and generator is considered a difficult

task: this is certainly true once building a language for everyone. The task eases con-

siderably if you make it only for one problem domain in one company. This task be-

comes even easier if you can use tools that that support both DSM definition and use.

36

2 MetaEdit+ for Domain-Specific Modeling

MetaEdit+ [4] is a mature language workbench for graphical, matrix and table-based

modeling languages. Originally created at the University of Jyväskylä, its core team

formed a company, MetaCase, in 1991 to make it available commercially. Since 1995

MetaEdit+ has been used extensively in both industry and academia. An independent

study by Eclipse modeling researchers found MetaEdit+ to be 10–50 times faster for

building languages than the rest of the five tools compared [5].

With MetaEdit+ an experienced developer defines a domain-specific language in a

metamodel containing the domain concepts and rules, and specifies the mapping from

that to code in a domain-specific code generator. For the modeling language imple-

mentation, MetaEdit+ provides a metamodeling tool suite for defining the language

concepts, rules, symbols, checking reports and generators.

Fig. 1. Simultaneously defining the language (left) and using the language (right)

Once the metamodel is defined, or even a partial prototype, the rest of the team can

start to use it in MetaEdit+. The developers make models with the modeling language

and the required code is automatically generated from those models. Based on the

metamodel, MetaEdit+ automatically provides modeling tool functionality such as

diagramming editors, browsers, documentation generators, and multi-platform sup-

port. MetaEdit+ supports simultaneous multi-user editing via novel locking algo-

rithms [4], as we will demonstrate.

We will show how MetaEdit+ overcomes the problems of other language work-

benches by being fast — both for defining and using languages, scalable, and hiding

tool implementation details. This demo will show advanced features of creating do-

main-specific modeling languages. We show how multiple languages can be integrat-

ed so the changes in models based on one language are visible in other models offer-

37

ing different views on the system specified. We also show how the tool supports lan-

guage evolution, automatically updating existing models to the new version of the

language. We will demonstrate how MetaEdit+ offers full debugging tools for both

modeling and generators: generated code is linked back to models, so debugging can

take place directly in the models.

3 Main topics and demonstration video

This demonstration addressed all the topics of EC conferences: software models (with

metamodels and modeling languages), languages (with generators producing program

code) and architectures (focusing on specific domains and technical platforms).

A video is available at: http://www.metacase.com/webcasts/DSM_Definition.html

4 Summary paragraph

MetaEdit+ is a mature language workbench that supports graphical diagram, matrix

and table representations. Based on the language definition, MetaEdit+ automatically

provides modeling tool functionality such as diagramming editors, browsers, docu-

mentation generators, and multi-platform support. We will show how MetaEdit+

overcomes the problems of other language workbenches by being fast — both for

defining and using languages, scalable, and hiding tool implementation details. The

demo focuses on advanced features of creating domain-specific modeling languages:

how multiple languages can be integrated so the changes in models based on one

language are visible in other models offering different views on the system specified

and how the tool supports language evolution, automatically updating existing models

to the new version of the language. We will also demonstrate how MetaEdit+ offers

full debugging tools for both modeling and generators: generated code is linked back

to models, so debugging can take place directly in the models.

5 References

1. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., What Kinds of Nails Need a Do-

main-Specific Hammer?, IEEE Software, July/Aug (2009)

2. Kieburtz, R. et al., A Software Engineering Experiment in Software Component Genera-

tion, 18th International Conference on Software Engineering, Berlin, IEEE Computer So-

ciety Press, March, (1996)

3. Kelly, S., Tolvanen, J-P., Domain-Specific Modeling: Enabling full code generation,

Wiley-IEEE Society Press (2008)

4. MetaCase, MetaEdit+ Workbench 5.0, http://www.metacase.com/support/50/manuals/

(2012)

5. El Kouhen, A., Dumoulin, C., Gerard, S., Boulet, P., Evaluation of Modeling Tools Adap-

tation, http://hal.archives-ouvertes.fr/hal-00706701/ (2012)

38

http://www.metacase.com/webcasts/DSM_Definition.html

An MDE Tool-Chain for Pattern-Based S&D
Embedded System Engineering -Demonstration-

A. Ziani, J. Geisel, B. Hamid

IRIT, University of Toulouse,
118 Route de Narbonne, 31062 Toulouse Cedex 9, France

{hamid,ziani,geisel}@irit.fr

Abstract. In our work, we promote a new discipline for system engi-
neering using a pattern as its first class citizen: Pattern-Based System
Engineering (PBSE). This video tutorialpresents the SEMCO MDE Tool
Suite called TERESA to support PBSE in the domain of assistance to
the secure and dependable embedded system engineering. We provide
guidelines on how to use it to build and to store reusable artefacts (S&D
patterns and property models). Once the repository is available, it serves
an underlying trust engineering process [3].

1 Introduction and Motivation
The software of embedded systems is not conventional software that can be built
using usual paradigms. In particular, the development of Resource Constrained
Embedded Systems (RCES) addresses constraints regarding memory, computa-
tional processing power and/or limited energy. Non-functional requirements such
as Security and Dependability (S&D) become more important as well as more
difficult to achieve. The integration of S&D features requires the availability of
both application domain specific knowledge and S&D expertise at the same time.

To tackle these challenges, we promote a new discipline for system engineer-
ing using a pattern as its first class citizen: Pattern-Based System Engineering
(PBSE). In fact, capturing and providing S&D expertise by the way of patterns
can support and improve embedded systems development. In this paper, we
present the SEMCO MDE Tool Suite development status conducted in the con-
text of the FP7 TERESA project aiming to support the automation of building,
storing and processing reusable artefacts (S&D patterns and property models).

Using the proposed metamodels in the context of the TERESA project
(http://www.teresa-project.org/) and Eclipse Modeling Framework (EMF), on-
going experimental work is done on SEMCOMDT (SEMCO Model Development
Tools (http://www.semcomdt.org/), IRIT’s editor and platform plugins), test-
ing the features(see Fig. 1): (i) Tool set A for populating the repository, (ii) Tool
set B for retrieval from the repository and (iii) Tool set C for manageming the
repository.

The following details this software system from the installation, over mod-
eling artefacts development and reuse, evolution and maintenance for acquiring
organizations, end-users and front-end support provider.

39

Fig. 1. Tool Architecture

2 Set-up and Links
The set up requires the installation of the SEMCO Environment which is declined
into two parts. The first part is the installation and initialization of the Gaya
CDO-based (Connected Data Objects: http://www.eclipse.org/cdo/) repository
server. The second part of the SEMCO Environment is the client Tool suite, a
set of modeling artefact editors and helpers to deposit to and retrieve artefacts
from the repository. These tools are provided as Eclipse plugins.

– A video tutorial presenting the SEMCO MDE Tool Suite called TERESA
is provided under: http://www.semcomdt.org/semco/demo/video_semco/
toolsuite/ToolSuiteIRIT.mp4

– Tools are provided for TERESA partners as eclipse plugins: http://www.teresa-
project.org/

• As a prerequisite, the Tool suite requires Eclipse 3.7 Indigo in the Mod-
eling Development Tools edition, augmented with Acceleo 3.2.

• Tools (nightly builds) : http://www.semcomdt.org/semco/tools/updates

3 Populating

A pre-requisite task, is the creation of a new Project for the artefacts using the
SEMCO Project Wizard. The first step is the specification of property model
libraries for the S&D domain requirements using the Tiqueo EMF tree-based
tool as the design editor for the modeling language defined in [2]. The next step
is the creation of a unit library, setting a set of unit measures, followed by a
type library and finally a category library for S&D properties. A category may
need to set the type and the unit to for the measures of its instance values. In
this case, these libraries need to be loaded as resources in EMF. Now, the design

40

validity of the result may be checked triggering the Tiqueo validation tool. If the
validation succeed, the library is ready to be stored in the repository using the
Deposit tool.

The Arabion EMF tree-based editor supports the design process of a pattern
conforming to the modeling language defined in [3]. The first step contains some
initialization actions to define the pattern’s attributes (e.g, name, author, . . .). A
set of keywords may also be provided to ease the search of the pattern. To model
the internal structure, representing the solution of the pattern, UML structured
models are used. The pattern exposes its functions through its interfaces. The
next activity is the specification of the pattern’s properties. A property is typed
with a category property model. The pattern designer creates a reference to
the libraries previously created. Once the pattern development is completed, its
design validity is checked running the Arabion validation tool. Now, the pattern
is ready for repository publication, running the Arabion Deposit tool.

4 Accessing
To access the repository, three kinds of tools targeting multiple development
environments on different platforms are developed: (1) Access tools are imple-
mented as Eclipse plugin, (2) as a standalone and (3) as a web-based applica-
tion. The end user or system designer uses the TERESA standalone access tool
to search and to import the appropriate patterns in his development environ-
ment. The tool provides additional facilities such as pattern preview with text
and diagrams and repository browsing by system development lifecycle stages.
From the result list, instantiation of the appropriate ones in the development
environment is done. For instance, the export allows to transform the pattern
from its repository format to the Rhapsody UML format.

5 Managing
For the repository management, a set of facilities for the repository organiza-
tion are provided, allowing the enhancement of its usage. Features include user,
domain and artefact management. Moreover, the management of the relation-
ships among artefact specifications and between artefact specifications and their
complementary models are supported. For instance, a pattern is linked with
other patterns and associated with S&D and resource property models using a
predefined set of reference kinds.

References
1. Hamid, B. et al.: Model-Driven Engineering for Trusted Embedded Systems based

on Security and Dependability Patterns. In: SDL Forum, LNCS pp.73–91. 2013 (To
appear).

2. Ziani, A. et al.: Towards a Unified Meta-model for Resources- Constrained Embed-
ded Systems. In: SEAA EUROMICRO Conference, IEEE pp.485–492. 2011.

3. Hamid, B. et al.: Enforcing S&D Pattern Design in RCES with Modeling and Formal
Approaches. In: MODELS Conference, LNCS 6981 pp.319–333. 2011

41

ISBN 978-87-643-1188-4

This volume contains the proceedings of the joint track on tools, demonstrations, and
posters of the 2013 European Conferences on Object-Oriented Programming (ECOOP),
Software Architecture (ECSA), and Modeling Foundations and Applications (ECMFA),
co-located in Montpellier, France.

The impressive breadth of tools and novel approaches on display in this track gives credit
to the unique and amazing research landscape found in Europe today. It is a monument
to the creativity and dynamic founded on cultural diversity that makes this piece of the
world so unique.

	FRONT_A4
	PROCEEDINGS_TR
	FRONT_A4
	ec13tdp
	TDP-Procs
	01_5_Benedi
	03_25_Dirix
	04_29_Duseau
	05_4_Pfister
	06_18_Fernandes
	07_14_Schwägerl
	08_2_Smialek
	09_26_Störrle
	10_1_Tolvanen
	11_3_Zisani

	BACK_A4

