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Abstract

In potential-field inversion problems, it can be difficult to obtain reliable information about
the source distribution with respect to depth. Moreover, spatial resolution of the reconstruc-
tions decreases with depth, and in fact the more ill-posed the problem — and the more noisy
the data — the less reliable the depth information. Based on earlier work using the singular
value decomposition, we introduce a tool APPROXDRP which uses approximations of the
singular vectors obtained by the iterative Lanczos bidiagonalization algorithm, making it
well suited for large-scale problems. This tool allows a computational/visual analysis of how
much the depth resolution in a computational potential-field inversion problem can be ob-
tained from the given data. Through synthetic and real data examples we demonstrate that
ApPPROXDRP, when used in combination with a plot of the approximate SVD quantities,
may successfully show the limitations of depth resolution resulting from noise in the data.
This allows a reliable analysis of the retrievable depth information and effectively guides the
user in choosing the optimal number of iterations, for a given problem.

Keywords: Depth resolution, SVD analysis, iterative methods, Lanczos bidiagonalization.



Chapter 1

Introduction

Inverse potential-field problems are ill-posed by nature and hence they lack stability, implying
that they are inherently difficult to solve because small perturbations of data lead to large
perturbations of the solution. When solved on a computer, these difficulties lead to an
inherent ill conditioning of the discretized problem A & = b; see, e.g., Hansen [14] and Menke
[20].

Regularization is needed to reduce the influence of the data errors, and regularization al-
ways amounts to suppressing certain components in the solution, namely, those most affected
by the noise. For inverse potential-field problems these components are associated with deep
sources, and therefore the regularization typically leads to a reduction of the depth-to-source
resolution. This paper deals with an efficient computational method to monitor the poten-
tial for depth resolution in a given problem with noisy data. (We do not introduce any new
regularization methods.)

If enough data are available to make the system A x = b square or overdetermined, then
the matrix has — in principle — full rank and the (least squares) solution is therefore, in
principle, unique. However, due to the ill conditioning, measurement errors and rounding
errors often prevent us from computing a useful solution. Underdetermined systems, arising
when less data are available, suffer from both ill conditioning and rank deficiency; their
minimum-norm solution, in spite of being unique, is rarely useful because it lacks depth
resolution [13]. A careful management of ill conditioning and rank deficiency, through the
choice of regularization procedure, is crucial for obtaining reliable information about the
source distribution with depth, cf. Fedi, Hansen & Paoletti [11], [12].

This work focuses on the analysis of depth resolution in classical regularization schemes
such as Tikhonov regularization, which are described in, e.g., [14], [20], and [33]. In the last
decade a variety of new methods have been proposed, and all of them seek to incorporate
prior information in order to compute a more reliable and stable solution; see, e.g., [16], [26],
[28], and [31]. It is a topic of future research how a depth resolution analysis can be applied
to these methods.

The singular value decomposition (SVD) is a very powerful tool for analysis of inverse
problems. For example, it is instrumental to monitor the singular values and the SVD
coefficients, ie., the expansion coeflicients of the right-hand side and the solution in the SVD
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basis.

Fedi et al. [11] performed an SVD analysis of Tikhonov regularization, and they noticed
that information about the deeper layers in the reconstruction are primarily associated with
the smaller singular values. Hence, good depth resolution can only be obtained if enough
singular vectors are available for inclusion in the regularized solution, i.e., if the noise level
allows enough SVD components to be included.

With the aim of monitoring these aspects and, in particular, the possible depth resolution,
Fedi et al. [11] introduced the depth-resolution plot (DRP). This is a simple graphical tool
that allows a computational /visual analysis of how the depth resolution in a potential-field
inversion problem is influenced by the noise and by the way the problem is discretized and
regularized. The DRP is defined by means of the SVD and it shows what depth information is
carried in each SVD component. The same basic idea was used by Pilkington [27] to monitor
the available depth information in gradiometer inverse problems.

The aim of this paper is to introduce a new version of the DRP — called APPROXDRP —
based on computationally attractive approzimations of the singular vectors. The APPROX-
DRP is computed via an iterative method, and hence is suitable for large-scale potential-field
inverse problems. When used in combination with a plot of approximate SVD quantities, the
APPROXDRP may successfully show the limitations of depth resolution resulting from noise
in the data. This allows a reliable analysis of the retrievable depth information that can
guide the user in choosing the optimal number of iterations, for a given large-scale problem.

We emphasize that our goal is not to propose (yet) another numerical method for com-
puting regularized solutions to large-scale inverse problems. We present an efficient computa-
tional analysis tool that provides important insight into the regularizing properties of known
methods.

This report is organized as follows. Chapter 2 summarizes the SVD analysis of the prob-
lem, defines the DRP, and introduces different types of regularization terms in the Tikhonov
formulation. In chapter 3 we introduce the iterative Lanczos bidiagonalization method used
to compute the APPROXDRP, and we show its connection to the conjugate gradient method.
Finally, in chapter 4 we give several examples of the use of APPROXDRP applied to problems
with both synthetic and real data.



Chapter 2

Analysis of the Discretized Problem

In this chapter we introduce the necessary mathematical foundation that leads to the defini-
tion of the depth resolution plot, and we discuss variations of Tikhonov regularization. The

outset is the linear system
Ax=b, A € R™*"™ | (2.1)

where the coefficient matrix A is obtained when the potential-field problem is discretized,
the solution vector @ represents the 3D reconstruction, and the right-hand side b is the mea-
sured data. In our analysis the particular discretization technique underlying (2.1) and the
representation of the solution & are not important; also the system can be underdetermined,
square, or overdetermined. More details about the SVD analysis can be found in several text
books on regularization, such as [2], [10], [14], and [20].

2.1 SVD Analysis

Our analysis uses the singular value decomposition (SVD):
q
A= Z wiovl g = min(m,n) (2.2)
i=1

where u; and v; are the left and right singular vectors (they are orthonormal), and o; are
the singular values (they are nonnegative and appear in non-increasing order). Then a large
class of regularization methods produce solutions of the form

q Tp

u;
Lrep = E —L
reg ¢Z o

=1

— Vi, (2.3)
1
where ¢; are so-called filter factors associated with the particular regularization methods.
The role of the filter factors is effectively to dampen those noisy SVD components that
correspond to small singular values. How many coefficient to include in x,¢; can be deter-
mined, e.g., by inspecting a plot of o;, |ul b|, and |ul b/0;| versus the index i, which we refer
to as the Picard Plot. One should include only those SVD coefficients for which the Picard
condition is satisfied, i.e., for which |ulb| decay faster than o;.
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Since the regularized version x,.; represents a 3D reconstruction, it must be converted
into an ng X ny X n. 3D array before it can be visualized, and this is done by a rearrangement
of the elements. If X, € R™*™>"= is the 3D array associated with @,ee € R", n = nynyn.,
then we can use the notation

Zreg = VeC(Xieg) ©  Xieg = Vec_l(a:reg) . (2.4)

For the 3D reconstruction we then have the expression

T

Tp
Yoy, (2.5)

0

q
Xreg = Vecil(wreg) = Z oY
=1

in which
Vi = vec H(v;) , i=1,2,...,q. (2.6)

Hence, the 3D reconstruction is expressed as a weighted sum of 3D “basis components” V,
each one derived from the corresponding right singular vector v;. Due to the filtering effect
of the filter factors ¢;, the reconstruction is effectively composed of those “basis components”
that correspond to the SVD components maintained.
For the important case of Tikhonov regularization, in which the regularized solution solves
the problem
min {[ Az — b3 + X2[z/3} (2.7)

it is well known that the filter factors are ¢; = Uf/(di2 + %) for i = 1,...,q; they dampen
SVD components for which o; < A. For the truncated SVD (TSVD) method the filter factors
are 1 and 0.

2.2 The Depth Resolution Plot

To better visualize and understand the depth information carried in each singular vector
v; — and the corresponding “basis component” V; — Fedi et al. [11] introduced the Depth
Resolution Plot (DRP) defined as follows. For each SVD component, define the corresponding
vector s; € R™= such that its £th element squared is the sum-of-squares of all the elements in
the fth layer of V:

ng Ny
(s =2 (Vi) L=1,...n., i=1..4q. (2.8)
j=1 k=1
Since ||s;]|2 = ||vil|2 = 1, it follows that each element of s; is between 0 and 1, and the size of

the ¢th element (s;)y shows how much the ith SVD component contributes to the ¢th layer
in Xee. In particular, if (s;), < 1 then the ith SVD component contributes very little to the
¢th layer, and if (s;), = 1 then potentially the ith SVD component gives a large contribution
to the fth layer.

We collect these vectors in an n, X ¢ matrix

S =[s1,82,...,5] - (2.9)
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A plot of this matrix, as an image, then gives a simple visualization of the contribution of
all the SVD components to all the layers in X,e,, and this is what we call the DRP. The
rightmost plots in Fig. 4.3 in Section 4 show the typical appearance of a DRP: as the index
1 increases, the largest elements in S move from the top layer towards the bottom. The
interpretation is that if only a few SVD components are included in X,¢; then we can only
recover shallow structures; as more SVD components are included we improve the depth
resolution.

The particular depth, at which we can reliably obtain depth information, is determined by
the number of SVD components that we can include in X;¢g — as determined from the Picard
Plot — and this depth is then easily monitored in the DRP. Together, the Picard Plot and
the DRP provide an easy-to-use tool for visualizing the obtainable depth resolution is a given
problem with noisy data. Specifically, the Picard Plot reveals how many SVD components
can be included in the regularized solution — that is, it highlights the reliable components for
which |u] b| decay faster than o; — and the DRP then shows how much depth resolution can
be achieved with these SVD components.

2.3 Smoothness and Depth Weighting

We can incorporate prior information about the source in Tikhonov regularization, in order
to compute improved solutions. For example, it is well known that we can impose smoothness
on the solution if in (2.7) we replace the regularization term ||z||3 with a term of the form
| L x|, where the matrix L is a discrete approximation to a derivative operator; see, e.g.,
[11] and [14].

Following Li & Oldenburg [17], [18], we can also incorporate so-called depth weighting
in the Tikhonov formulation. To do this we introduce a diagonal matrix W whose diagonal
elements give a weight to each element in « that is related to its depth, and then the regu-
larization terms takes the form ||[Wz||3 or || WL x||3. The particular choice of the weighting
is discussed in [7] and [24], where it is shown that a careful choice of weighting can indeed
improve the depth-to-source resolution. A key idea is to define the exponent s of the depth
weighting function

w(z) = (h+ |2])™%, h = height of data points (2.10)

such that 8 = 2s fits the fall-off rate of the field, determined by a direct estimate of the
structural index; this approach is a variation of that by Li & Oldenburg [17], [18] who used
a pre-determined fixed value of s.

Tikhonov problems of the general form

min {| Az — b]l3 + \*| Mz|3} (2.11)

where M is a general matrix (such as the identity, L, or WL), can be analyzed by means of
the generalized SVD (GSVD), cf. [14]. The key result is that a canonical expression similar
to (2.3) still holds, now with u; and v; being the left and right generalized singular vectors
of the matrix pair (A, M); we note that the latter are not orthonormal, see [11] for details.
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Hence, the DRP based on the matrix S is a general tool for studying depth resolution also
when smoothness and depth weighting is used.

Analogous to this, Pilkington [27] used the eigenvectors of ATA + N2MTM to study
depth resolution in gradiometer inverse problems. While the eigenvectors are not identical
to generalized right singular vectors of (A, M), his analysis is conceptually similar to ours.
In particular, Fig. 7 is his paper demonstrates how shallow and deep sources are represented
by eigenvectors corresponding to large and small eigenvalues, respectively.



Chapter 3

Large-Scale Problems and
ApproxDRP

While the SVD is a very important tool for analysis of discretezed inverse problems, it is only
useful for problems where it is feasible to compute the SVD. In this chapter we describe a
favorable alternative based on a classical iterative algorithm.

3.1 CGLS and Krylov Subspaces

For large-scale problems one must turn to iterative methods that avoid factorization of the
matrix A, such as CGLS which is a stable implementation of the conjugate gradient (CG)
algorithm applied to linear least squares problems. This iterative approach to solving large-
scale problems sets the stage for the derivation of the approximate DRP.

There are two different ways to use the CGLS algorithm to compute regularized solutions
to inverse problems:

1. We can apply CGLS to the Tikhonov problem (2.7) or (2.11), both of which are linear
least squares problems.

2. We can apply CGLS to the un-regularized least squares problem min, | A x — b||2 and
use the fact that the number of iterations plays the role of a regularization parameter.

To understand the latter approach, which is sometimes referred to as “regularizing itera-
tions” [14] we must consider the associated Krylov subspace, defined as

Kj =span{ATb, ATA ATb,... (ATA)1ATDY | (3.1)

which is a linear subspace of dimension < k. Then it can be shown [4] that the CGLS iteration
vector x¥) after k iterations is mathematically equivalent to the solution to the constrained
problem

min ||Ax — b||3 subject to x € Ky, . (3.2)

(This is, of course, not how CGLS is implemented.) It is well understood that the projection
onto the Krylov subspace has a regularizing effect. This is related to the fact that this
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subspace can be considered a rough approximation to the subspace span{vy, ..., vy} spanned
by the first & right singular vectors; see, e.g., [10] and [14]. We provide more details about
this aspect below.

3.2 Lanczos Bidiagonalization and SVD Approximations

There is an alternative, iterative algorithm that can be used to compute CGLS solutions, and
which explicitly constructs an orthonormal basis for the Krylov subspace ICx. This algorithm
is known as LSQR [21] and it is based on the so-called Lanczos bidiagonalization algorithm
defined by:

51 u'l‘ =b
oy vt = ATl
fork=1,2,..., K
Brrrug, g = Avg — ajuy
1V = ATup ) — Bravg
end

where K is the number of Lanczos iterations. If we construct the two matrices with orthonor-
mal columns
L L L L L L
U = [U1»~~-auk+1] ;o Vi =lv,.. v,

and the (k + 1) x k bidiagonal matrix

aq
B2 g
Bllz = ﬂ3 )
oy
Br+1
then the CGLS solution is given by
) = VkLyk , Yk = argminyHBl';y — Brexs1l?, (3.3)

where ex,1 = (1,0,...,0)T € RK*+1. This approach is known to be very robust to rounding

errors, and the work involved in solving the least squares problem in (3.3) is negligible. The
Lanczos bidiagonalization algorithm is closely related to the Partial Least Squares algorithm
used in statistics [19], [32].

Our main interest in the Lanczos algorithm comes from the fact that it also provides
partial approximations to the SVD of A. For any k£ < K, let the SVD of the bidiagonal
matrix be given by

Bi = P 1% Qy |

and define the two matrices with orthonormal columns

Uii1=UfPry1, Vie= ViQx .
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Then it can be shown [4] that the singular values &; of {2y are approximations to the k largest
singular values o; of A, and the columns u; and v; of Uyy; and V}, are approximations to the
corresponding left and right singular vectors of A. Moreover, as k increases the largest sin-
gular values &;, and the corresponding u; and v;, become increasingly better approximations
to the corresponding singular values and vectors.

Due to the above convergence properties, it is clear that the CGLS solutions x®) are
regularized solutions because they are dominated by those SVD components that correspond
to the large singular values — similar to Tikhonov solutions to (2.7) as well as truncated SVD
solutions. This fact makes the CGLS and LSQR methods attractive for large-scale regular-
ization problems [14] and they are used, e.g., in image deblurring [8] and tomography [15].

3.3 Approximate Picard Plot and ApproxDRP

The above properties allow us to efficiently compute approximations to those SVD compo-
nents that take part in computing the regularized solution, namely, those associated with the
larger singular values. Specifically, after K Lanczos iterations we can compute an approxi-
mate Picard Plot associated with the singular values with index ¢ = 1,..., K. Moreover, by
substituting v; for v; in the definition of the DRP from §2.2, we can compute a corresponding
approximate DRP B

Sk =[81,82,...,8K] (3.4)

where the elements of the ith column s; are given by

ng Ny

G)i=>> (Vihe, (=1,...n., i=1...K (3.5)

j=1 k=1

in which V; = vec™(9;). We refer to the plot of Si as APPROXDRP because it contains a
partial approximation to the DRP. B

Some of the columns of the APPROXDRP matrix Sk are very good approximations to the
corresponding columns of the true DRP, namely, those corresponding to the larger singular
values. These are the columns in the left part of Sk. On the other hand, the columns in
the right part of Sg are less good approximations to those of S. Hence we cannot expect
the APPROXDRP to closely resemble the SVD-based DRP (if we could compute it) — in fact
they may appear somewhat different but with the same overall structure. At any rate, we
emphasize that the information in APPROXDRP correspond to the actual basis vectors for
the CGLS solution *), and hence they are still relevant for the study of the depth resolution
in

A few words about the numerical implementation of the above procedure. We found that
in order to minimize the effect of rounding errors, we need to orthonormalize the columns
of the matrix Vk". There are adaptive ways to do this only when needed; in our model
implementation we do it in every iteration. We do not need to orthonormalize the columns
of Uk" 1 since this matrix is not needed explicitly in the algorithm; the quantities '&in in the
Picard plot can be computed efficiently “on the fly” during the iterations.
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To summarize, the Lanczos bidiagonalization algorithm with K iterations allows us to
compute an approximate Picard Plot for the leading K SVD components, a corresponding
approximate DRP for the same K components, as well as all CGLS solutions ) for k =
1,..., K, for the price of a single Lanczos bidiagonalization process with K iterations. The
amount of work is about 4mnK + 4nJ? arithmetic operations, and the storage requirements
— in additional to storage for the matrix A — are dominated by nK matrix elements for the
matrix V K-

A further advantage of the above computational approach is that we can use the analysis
of the APPROXDRP and the associated approximation Picard Plot as a means for choosing
the optimal dimension k of the Krylov subspace underlying the CGLS solution 2(*). This, in
turn, acts as a means for choosing the optimal number of CGLS iterations; the requirement
for this to work is that K is chosen large enough that we can determine an optimal k£ < K.
The process of computing a regularized solution within the Krylov subspace Kx is sometimes
referred to as a “hybrid method” [8], [14].

3.4 Bidiagonalization with Preconditioning for GSVD Approx-
imations

We shall now demonstrate how to easily modify the Lanczos bidiagonalization algorithm to
compute CGLS solutions 2*) that resemble solutions to the Tikhonov problem (2.11) with a
general regularization term || Mx||3, where M = L, W, or WL, cf. §2.3. At the same time
we can compute the necessary approximate GSVD quantities that allow us to produce the
associated approximate Picard Plot and APPROXDRP for these solutions.
If we introduce the new variable £ = M then the general-form Tikhonov problem (2.11)
takes the form
min {[[(AM )&~ bJ + N3} (3.6)

Applying the Lanczos bidiagonalization algorithm to the above problem yields iteration vec-
tors E(k as well as the matrices Uyy1, Vi and € from §3.2. From the analysis in [14] it
then follows that:

1. The desired iteration vectors are * = M —1¢k*)
2. The approximate generalized singular values are the diagonal elements of 2.
3. The approximate GSVD vectors are the columns of l~]k+1 and M _1‘7k.

The matrix M ™! acts as a preconditioner for the iterative algorithm. Due to the sparsity
of L and W there is little computational overhead in the operations with M ! and hence
we have an efficient iterative algorithm to handle a general regularization term ||[Mz||3. In
particular, we can easily compute the approximate Picard Plot and APPROXDRP from the
approximate GSVD quantities.



Chapter 4

Computed Examples

We now give several examples of the use of the APPROXDRP for analysis of depth resolution
in potential field inverse problems. We first show two small problems where we compare the
results from the SVD and the approximated SVD; we illustrate that the use of the iterative
algorithm can produce good approximations to the Picard plot and the DRP as well as reliable
reconstructions. Then we present results for a larger problem whose dimensions make the
use of SVD impractical, and we finish with a problem using real data.

Throughout this chapter we use white Gaussian noise scaled such that ||e|2/||bll2 = 7,
where e is the vector of perturbations; we refer to n as the relative noise level. When
depth weighting is used is has the form (2.10) with different choices of the exponent. When
smoothing is used the matrix L always represents a linear combination of the 2-norm of the
solution and the 2-norm of its second partial derivative in the z-direction (see Eq. (14) in [11]
where the same smoothing was used).

4.1 Validation of ApproxDRP on a Very Small Problem

Our first example is a small 3D gravity test problem whose source volume has dimensions
1km x 1km x 0.4km; it is discretized with N, = N, = 10 and N, = 4, i.e., the solution
consists of n = 400 cells. The data points are arranged in a 25 x 25 grid (i.e., m = 625),
covering an area of 1 km X 1km, and they are located on the ground level. This leads to an
overdetermined problem.

Figure 4.1 shows a comparison of the SVD-based DRP with the approximate DRP ob-
tained via the Lanczos bidiagonalization algorithm. The two plots are very similar, showing
that the iterative algorithm provides very good SVD approximations for this small problem.
Both DRPs show that, for this test problem without noise, the inclusion of 400 SVD compo-
nents, and using k = 400 iterations, allows reliable reconstructions to a depth of 0.4 km.

The source in this example is a box with density of 1g/cm? and dimensions 0.3km x
0.3km x 0.1km whose center is located at 0.3km depth, see Fig. 4.2. Consider first the
case of no noise; the optimal regularization parameters (the SVD truncation parameter and
the number of CGLS iterations) were chosen on the basis of the SVD-based Picard Plot
and the approximate Picard Plot (Fig. 4.2 middle left), and the reconstructions from to the

11
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DRP from SVD Approximate DRP from Lanczos, K = 400
0 0 I
39 39 [l 1l
é 0.2 § 0.2
N 03 M 03 ‘ H“N
B (IH
100 200 200 400 100 200 300 400

Figure 4.1: Example 4.1. Comparison of the SVD-based DRP (left) with the approximate
DRP (right) obtained using the Lanczos bidiagonalization algorithm with a maximum of
K =400 iterations. The results are almost indistinguishable for this small problem.

two methods are shown in the bottom left of Fig.4.2. We notice that the CGLS solution
(obtained via the Lanczos algorithm) is almost indistinguishable from that obtained by the
SVD method, and both solutions reconstruct very well the position and extent of the source.

Now consider the case of noisy data, with relative noise level 7 = 10™*. The right middle
part of Fig. 4.2 shows the SVD-based Picard Plot and the approximate Picard Plot for the
noisy data; the right-hand-side coeflicients u;fpb now level off at a plateau around the noise
level for ¢ > 300 SVD components and for k& > 230 iterations. Thus, the considered level
of noise allows the inclusion of at most 300 SVD components and 230 CGLS iterations.
This leads to reliable reconstructions down to a depth slightly greater than 0.3 km (compare
with Fig 4.1); any structure in the computed solution below this depth cannot be fully
trusted. Nevertheless we note that, even with the limitation connected to the presence of
noise, both regularized reconstructions show rather clearly the position and depth of the
source. We conclude that the use of the bidiagonalization algorithm leads to reconstructions
fairly comparable with those achieved by SVD.

4.2 Another Comparison of DRP and ApproxDRP

Our second example is a larger 3D gravity problem, and we compare again use of the SVD
and the approximate SVD. For this larger problem we do not expect the APPROXDRP to
closely resemble the SVD-based DRP. In addition to the SVD and Lanczos methods, we also
consider the use of combined smoothing and depth weighting with W representing the depth
weighting function (2.10) with s = 1; this is treated by means of GSVD and preconditioning
as discussed in §3.4.

The source volume has dimensions 10km x 10km x 3km, discretized with N, = N, =
20 and N, = 10, i.e., the solution domain consists of n = 4,000 cells. The data points are
arranged in a 60 x 60 grid (m = 3,600), covering an area of 10km x 10km, and they are
measured at the ground level. This leads to a slightly under-determined problem.

The source is made of a box with density of 1g/cm® and dimensions 0.5km x 0.5km x
0.3km with the center at 5km along x and y and at the depth 1.2km. The relative noise
level is n = 10~°. The top of Fig. 4.4 shows the source and its gravity field.



CHAPTER 4. COMPUTED EXAMPLES 13

The source :
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Figure 4.2: Example 4.1. Comparison of SVD and approximate SVD for the same small
test problem as in Fig. 4.1. Top: source model and corresponding gravity field. Middle, left
to right: SVD-based Picard Plot, approximate Picard Plot from Lanczos, SVD-based Picard
Plot with white noise added to the data with relative noise level = 10~%), and approximate
Picard Plot with noisy data. Bottom, left to right: truncated SVD reconstruction with 400
SVD components and no noise, CGLS reconstruction obtained by the Lanczos algorithm with
k = 400 iterations and no noise, truncated SVD reconstruction with 300 SVD components
and noisy data, and CGLS reconstruction for noisy data obtained by the Lanczos algorithm
with & = 230 iterations.



CHAPTER 4. COMPUTED EXAMPLES 14

SVD-based Picard plot SVD-based DRP
ledr | | * ! —
1 _oo¥- ] ol r| |’F [,
1e-4
1e-8¢ ‘ G N
0 1000 2000 3000 500 1000 1500 2000 2500 3000
Approximate Picard plot Approximate DRP
led | | | —
1] £ r' |’F ".-'l-||
; = I
Te-4 ~ ”‘ ’ﬂ“ll"l'-
o8 . \ lym
0 1000 2000 3000 500 1000 1500 2000 2500 3000
GSVD-based Picard plot GSVD-based DRP
1ed =
Th £
1e-4 N
1e-8 .
0 1000 2000 3000 500 1000 1500 2000 2500 3000
Approximate Picard plot for GSVD Approximate DRP for GSVD
1ed ' R
13 £
1e-4 N
1e-8 L PR,
0 1000 2000 3000 500 1000 1500 2000 2500 3000

Figure 4.3: Example 4.2. Left: the Picard Plots based on SVD and GSVD as well as on the
(preconditioned) Lanczos bidiagonalization method. Right: the corresponding DRPs.
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Consider first the case with no depth weighting. The optimal regularization parameters
for this problem (the SVD truncation parameter and the number of CGLS iterations) were
chosen on the basis of the SVD-based Picard Plot and the approximate Picard Plot, cf. the
two top left plots in Fig. 4.3. These plots show that the Picard condition is satisfied for up
to 1700 SVD components and for up to 1650 iterations, at which point the right-hand-side
coefficients uZ-Tb level off at a plateau around the noise level. Thus, the considered level of
noise allows the inclusion of at most 1700 SVD components and 1500 CGLS iterations.

The right plots of Fig. 4.3 show the SVD-based DRP and the APPROXDRP; the theory
predicts that we can expect them to be somewhat different, but the overall structure is
precisely the same. Thee plots show that the inclusion of the above-mentioned number SVD
components and iterations allows reliable reconstructions down to a depth of about 1.8 km
for both cases. The middle part of Fig. 4.4 shows the reconstructions obtained with these
optimal regularization parameters.

Next we consider the case where smoothing and depth weighting was used, cf. the bottom
half of Fig. 4.3. Again the GSVD-based DRP and the APPROXDRP with computed with
preconditioning are somewhat different (as predicted by the theory), and again they exhibit
the same overall structure. By including 2000 GSVD coefficients and 1650 preconditioned
iterations, we expect a reliable reconstruction down to a depth of about 1km; these solutions
are shown in the bottom of Fig. 4.4.

We conclude that the standard and preconditioned CGLS reconstructions are comparable
with those obtained by the truncated SVD/GSVD methods and that all reconstructions show
very well the position and extent of the source. This confirms the conclusions drawn for the
previous small example, namely, the use of the iterative Lanczos bidiagonalization algorithm
allows reconstructions comparable with those achieved by SVD/GSVD.

4.3 A Larger Problem: Lanczos Bidiagonalization Only

In this example we use APPROXDRP for studying how much depth resolution can be achieved
in a larger test problem whose dimensions make the use of the SVD impractical. We consider
a 3D source volume with dimensions 1km x 1km x 0.5km discretized with N, = N, = 50
and N, = 30, i.e., the solution domain consists of n = 75,000 cells. The data points, covering
an area of 1km x 1km, and measured 1 m above the ground, are arranged in an 80 x 80 grid
(m = 6,400), i.e., the problem is now severely under-determined.

The source is a box with magnetization 1 A/m and dimensions 0.14km x 0.14km x
0.1km and its top is located at 0.12km depth. Again, we added white Gaussian noise to the
data with a relative noise level 1075,

Figure 4.5 shows the approximate Picard Plot, the approximate DRP, the synthetic source
and its field, and the reconstruction obtained by the Lanczos bidiagonalization algorithm.
For this example we used both smoothing and depth weighting with the exponent s = 1.4,
corresponding to a structural index of 2.8 (the analysis leading to this choice is not included
in this paper).

The approximate Picard plot shows that the low noise in the data allows the use of all
K = 6300 iterations. At the same time, the approximate DRP shows that a large part of



CHAPTER 4. COMPUTED EXAMPLES

= The source
g0
=1
3 3
0 10 glcm"3

Distance along yaxis (km)

Truncated SVD, k =1700

I O

0 10 g/cm"3
Distance along waxis (km)

Depth (km)
LN = O

Truncated GSVD, k = 2000

0
= 1
3,

10 glcm"3
D|stance along yaxis (km)

Depth (km)

Depth (km)

Depth (km)

16

Data

0 5 10 mGal
X (km)
CGLS, kK =1650
0
1
3
0 10 g/cm"3

Distance along waxis (km)

Precond. CGLS, k = 1650

.

10 g/cm"3
D|stance along yaxis (km)

(.;JI\J—\-C)

Figure 4.4: Example 4.2. Top: the source and its gravity field; all source plots shows the
middle slice along the y-z-direction. Middle: the reconstructions computed by means of trun-
cated SVD and CGLS, using the optimal regularization parameters from Fig. 4.3. Bottom:
reconstructions by means of truncated GSVD and preconditioned CGLS for the case with

both smoothing and depth weighting.
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Figure 4.5: Example 4.3. Left: analysis by means of the Lanczos bidiagonalization algorithm.
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the depth information is actually carried on the first 1000 approximate singular vectors, and
their inclusion in the reconstruction makes it possible to retrieve reliable information about
the magnetization distribution down to a depth of about 0.2 km.

Despite that the reconstruction looks blurred and relatively weak in strength, which is
due to the highly underdetermined nature of the problem, we notice that the reconstruction
depicts rather well the depth position of the source. An improved solution with more focused
reconstructions may be obtained by introducing further a priori information, such as posi-
tivity constraints and the source edge positions, as shown in [24]. The formulation of depth
resolution analysis tools for constrained problems is a topic of future research.

4.4 Real Data Example: The Campanian Plain Gravity Field

As a real case application of the Lanczos bidiagonalization mehtod and APPROXDRP we
considered the inverse problem of computing the density contrasts from measurements of
the gravity field in the Campanian Plain (southern Italy). The Campanian Plain is a Plio-
Quaternary NW-SE trending graben of size 2000 km?, bordered by Mesozoic limestone moun-
tains, cf., e.g., [30]. The maximum depth of limestone is more than 4km b.s.l. and the plain
is filled with alluvial and volcanic materials down to at least 3km depth [1].

Several geophysical surveys, mainly gravimetric, magnetic, and seismic, were carried out
in the Campanian Volcanic Area [23], [25]. A compilation of gravity data of the Campanian
Plain [6] shows a wide low area, divided in three small minima (Volturno, Acerra, and Pompei)
by the maxima of Parete and Mt. Somma-Vesuvius. The Acerra gravity low was interpreted
by potential field studies [29], [22] as due to both shallow and intermediate-depth sources. The
field attributed to intermediate-depth sources (with a wavelength in the range 40-100 km)
is characterized by a broad low in correspondence with the town of Naples and the authors
interpreted it as connected to low density molten trachybasalts between 8 km and 12 km with
a density contrast with respect to the surrounding crystalline rocks of about —0.2 g/cm?.

The location and the dimensions of this reservoir led Rapolla et al. to hypothesize that it
may be feeding the eruptive centers of the whole Campanian volcanic region. Those results
were later confirmed by seismic studies carried out in the Neapolitan volcanic area, cf., e.g.,
[3], [34], [35], which recognized a low-velocity layer with an almost flat surface and a depth-
to-the-top of 8-10km, whose area is at least 400 km?. These studies found that the S- and
P-wave velocities below the interface are consistent with velocities expected for a partially
molten body hosted in a densely fractured volume of rock and their results also support
the gravity-based hypothesis of a single continuous magma reservoir feeding the Neapolitan
volcanic area.

The purpose of our investigation is to apply our iterative method and the associated
analysis technique to this interesting case. Figure 4.6 shows the vertical derivative of the
same gravity field low used by Rapolla et al. [29] for studying the intermediate sources.
This field is characterized by an extended low with an amplitude of about 30 mGal/km that
appears to be stretched southwest to northeast, with its center located near the city of Naples.
According to Poisson’s equation [5, §5.4] the vertical derivative of the gravity field from a
uniform density source is equivalent to the field from a source with uniform magnetization,
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Figure 4.6: Example 4.4. Vertical derivative of the gravity field in the Campanian Plain,
(southern Italy).

provided that both the inducing field and the direction of magnetization of the source are
vertical. Thus, we treated this problem as a magnetization problem and we applied the
analysis from the previous chapters to interpret the vertical derivative of this gravity data
set.

For the analysis of this data set we again use both smoothing and depth weighting.
As the analyzed anomaly field is characterized by the contribution of sources of different
depth/dimension, the correct structural index (and so the depth weighting exponent) is ex-
pected to be spatially varying. Thus, we preferred to choose the depth weighting exponent
based on geological /geophysical constraints, such as the depth-to-the-top of the low density
structure (cf., e.g., [29], [34]) and the depth of the Moho [9]. This led to a structural index
of 1.4 and thus an exponent s = 0.7 in the depth weighting function.

The source volume covers a horizontal area of 65km x 65km with depths ranging from
0km to 26 km below the surface. This volume was divided into a 40 x 40 x 30 grid of cells.
The total area covered by the data set is 56 km x 56 km with a data spacing of 1km along
both directions.

The approximate Picard plot, the APPROXDRP, and the reconstruction for this problem
are shown in Fig. 4.7. For this analysis we used a maximum of K = 2500 iterations, but
for clarity we only include the first 200 components in the APPROXDRP. The approximate
Picard plot shows that the noise in the data allows the use of all iterations (k = K). The
ApPPROXDRP shows that a large part of the depth information is actually carried in the first
40-50 approximate singular vectors, and with just k = 200 iterations it is possible to retrieve
reliable information about the density distribution down to a depth of about 26 km, that is,
to the bottom of the discretized domain.

The reconstruction in the right part of Fig. 4.7, using only 200 iterations, shows the
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Figure 4.7: Example 4.4. Left: depth resolution analysis of the real data in Fig. 4.6; we used
a maximum of K = 2500 iterations, and we show both the full APPROXDRP and a zoom
on the first 200 components. Right: the CGLS reconstruction using only k£ = 200 iterations.
Note the different color map used here to emphasize the depth range of the portion of the
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presence of a low-density zone located between about 8 km and 20 km b.s.l. and characterized
by a density contrast of about —0.15g/cm3. This structure extends southwestward and is
mostly confined inside the Campanian Plain.

The value of the density contrast found in this analysis is compatible with the presence
of trachybasaltic magma in crystalline host rocks, and it is similar to that found by Rapolla
et al. [29]. The location and dimensions of the reconstructed structure are consistent with
the results of the above cited seismic studies and with the hypothesis that it could be the

magmatic reservoir feeding the eruptive centers of the whole Campanian volcanic region.



Conclusion

As a computationally favorable alternative to the SVD-based Depth Resolution Plot, DRP,
[11] we introduced the approximate DRP, APPROXDRP, which is based on approximations
of the singular vectors obtained by the iterative Lanczos bidiagonalization algorithm. Similar
to the DRP, APPROXDRP allows an analysis of how the depth resolution in potential-field
inversion is influenced by the regularization and the noise — and since it is based on an iterative
method it is well suited for large-scale problems. We also showed that the use of the Lanczos
bidiagonalization algorithm leads to CGLS reconstructions that are regularized solutions
comparable, e.g., with those computed by means of the SVD. When used for large-scale
problems whose dimensions make the use SVD impractical or not feasible, the APPROXDRP
allows a reliable analysis of the retrievable depth information, and it effectively guides the user
in choosing the optimal number of iterations, for a given problem. The power of the proposed
analysis method was shown by its application to real data measured in the Campanian Plain,
Neapolitan volcanic area.
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