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We demonstrate strong acoustic gain in electric-field biased piezoelectric semiconductors at frequencies near
the plasmon frequency in the terahertz range. When the electron drift velocity produced by an external electric
field is higher than the speed of sound, Cherenkov radiation of phonons generates amplification of sound. It is
demonstrated that this effect is particularly effective at ε-near-zero response, leading to giant levels of acoustic
gain. Operating at conditions with strong acoustic amplification, we predict unprecedented enhancement of the
scattered sound field radiated from an electrically controlled piezoelectric slab waveguide. This extreme sound
field enhancement in an active piezo material shows potential for acoustic sensing and loss compensation in
metamaterials and nonlinear devices.
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Active materials producing electromechanical coupling can
be achieved by piezoelectric (PZ) structures but can also
be realized by means of electrostriction and thermoelec-
tromechanical effects. If a PZ material undergoes mechanical
deformations, it produces electric charges, and vice versa,
when an electric field is applied, the structure is mechanically
strained. Commonly, PZ materials are found to be made of
both natural and synthesized crystals, among which we can
name ferroelectric oxides, quartz, Rochelle salt, and synthetic
ceramics such as lead titanate, zinc oxide, and bismuth ferrite.
Today there exist numerous versatile applications based on
PZ sensors, actuators, and switches used for the automotive
industry, medical instruments, and telecommunications. On a
more fundamental aspect, PZ semiconductors play a crucial
role, and it is believed that this discipline offers a plethora of
yet unseen electromechanical effects within a high-frequency
regime. Nanopiezotronics and nanopyroelectrics, for exam-
ple, comprise the study of thermal and electromechanical
properties associated with wurtzite-compound or ferroelectric
nanowires and nanobelts with high functionalities for the use in
diodes, transistors, and nanogenerator systems, among many
other applications [1–9]. Mechanical strain and displacements
are important tuning paradigms in many of these named
functions. For this reason, it is important to acquire basic
insights into electromechanical coupling since it governs the
electronic, mechanical, and optical properties of many nano-
and microsized PZ structures. One among many intriguing
coupling schemes is the one capable of producing acoustic
gain.

Amplification of mechanical waves (sound) was observed
by Hutson et al. in 1961 in a CdS semiconductor slab [10].
When an acoustic field, upon external irradiation, deforms the
PZ material, space charges are generated by the elastic field and
cause the electrons to redistribute accordingly. The electron
drift induced by an external field can become supersonic,
that is, vd > vs [where vs(vd ) is the sound (electron drift)
velocity], and amplification can take place due to the phonon
emission of carriers [11–13]. In other words, acoustic gain is
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produced when the electron drift velocity exceeds the velocity
of sound, which is in direct analogy to Cherenkov radiation.
From the constitutive PZ relations, it can be shown that
the electromechanical stress T is inversely proportional to
the dielectric constant ε in the absence of a net charge in
the semiconductor. The presence of acoustically generated
charge carriers will, however, modify this result slightly. It
then follows that elastic strains such as acoustic amplification
can be boosted significantly when tuned toward ε-near-zero
(ENZ) response.

In this Rapid Communication we present a seminumerical
study of the amplification process of sound in PZ semicon-
ductor materials. We distinguish between a low-frequency
regime where acoustic gain unambiguously is explained by
the emission of sound due to Cherenkov radiation and a high-
frequency one where ε approaches zero. In ENZ materials,
light propagates with almost no phase advance due to the
extended sizes of the wavelength [14,15]. This has been
achieved by metamaterials and has resulted in prominent
applications such as supercoupling and directive emission
of light and sensing, to name a few [16]. In the context of
PZ acoustic amplification at ENZ response, we show that
gain can be many orders of magnitude larger compared to
amplification caused by Cherenkov emission. In addition,
we design an optomechanical device giving rise to enhanced
acoustic radiation triggered by electrical switching with the
cycle of half a wave round-trip.

Consider the constitutive relations for a piezoelectric
material,

T = cS − eE,
(1)

D = εE + P + eS,

where T , S, D, E, P , c, e, and ε are the stress, strain,
electric displacement, electric field, spontaneous polarization,
stiffness, piezoelectric e constant, and permittivity, respec-
tively. In cubic (zinc blende) structures the spontaneous
polarization is zero, but in hexagonal (wurtzite) structures the
spontaneous polarization is nonzero and is usually higher than
the piezoelectric contribution to the electric displacement. In
reality, the above equations are tensor equations for the crystal;
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however, discarding field variations in space except along one
coordinate, z, the above scalar system suffices for the analysis.

The constitutive relations above are for isentropic condi-
tions such that Onsager relations apply. This approximation
will only be used in the constitutive relations, and losses are
accounted for by using a finite and frequency-dependent com-
plex carrier mobility. The elastic equation in one dimension
is

ρ
∂2u

∂t2
= ∂T

∂z
= c

∂2u

∂z2
− e

∂E

∂z
, (2)

where ρ and ω are the mass density and angular frequency,
respectively, and S = ∂u

∂z
, with u being the material displace-

ment. We consider only electrons as the acoustic response
of the much heavier holes can be discarded. The continuity
equation reads

∂J

∂z
= −∂ρe

∂t
, J = qμnnE + qFDn

∂ns

∂z
, (3)

where J and ρe are the free-current density and the space-
charge density, respectively, F denotes the fraction of acous-
tically generated electrons that are free to move, q is the
elementary charge, μn is the electron mobility, Dn is the
electron diffusivity, and n = n0 + ns , ns , and n0 are the total
electron density, the generated acoustic electron density, and
the electron density at equilibrium, respectively. Combining
the above expressions implies an electromechanical dispersion
relation:

ρω2 = ck2 − k2e2

iqn0μn

ω+FμnE0k−iFDnk2 − ε
. (4)

This equation is a fourth-order complex polynomial in k =
ω
vs

− iα, where α is the damping term. Now, since |α| � ω
vs

,
we may safely, for small fields E0, replace k by ω

vs
in the

denominator of the second term on the right-hand side. The
resulting dispersion equation is a second-order polynomial in
k whose roots we denote k1 and k2 henceforth. The dispersion
relation is supplemented by a Drude permittivity frequency
response for semiconductors,

ε = ε∞

(
1 − ω2

p

ω2 + τ−2

)
, (5)

where ωp is the plasmon frequency and the complex mobility
μn is

μn = μDC

τ−1

τ−1 + iω
, (6)

where μDC is the dc mobility and τ is the carrier collision time.
We note that either the plasmon frequency or the collision
time (or both) are in the terahertz (THz) range for many
semiconductors so that the permittivity approaches zero and
changes sign only in the range of THz frequencies. A strong
mechanical response within this spectral range is predicted
since vanishing permittivities lead to a tremendously high
stress, T ∼ 1/ε, as derived from Eq. (1), and is responsible
for obtaining enhanced gain or absorption, which we will
see in the following. The above dispersion relation is solved
for the case of zinc-blende InSb using the following param-
eters: e = −0.07 C/m2, c = 4.7 × 1010 Pa, meff = 0.014 (in
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FIG. 1. (Color online) Weak response at low frequencies for
InSb, far below the plasmon frequency f = 2.71 THz. The wave
numbers k1 and k2 are calculated as a function of electric field and
normalized frequency ω/ωp . (a) |Im(k1)| and (b) illustrating the sign
of the ratio of the real and imaginary parts of k1. (c) and (d) The same
as (a) and (b), but for k2. Color bar units are in m−1.

units of the free-electron mass), ρ = 5770 kg/m3, n0 = 2 ×
1022 m−3, μDC = 7.7 m2 s−1 V−1, ε∞ = 15.7, τ =
meffμDC/q, and F = 1, corresponding to a plasmon frequency
f = 2.71 THz. It is evident from the k1 wave-number plots in
Figs. 1(a) and 1(b) for a frequency range far below the plasmon
frequency ωp that an abrupt transition from absorption to gain
occurs near the position where the Cherenkov condition is
fulfilled, i.e., where the drift speed vd = μE0 surpasses the
speed of sound vs . The small deviation in the transition
frequency away from the Cherenkov condition stems from
the appearance of the small diffusion term in Eq. (4). Gain
(absorption) requires the real and imaginary terms of the wave
vector to have the same (opposite) sign [refer to Fig. 1(b)].
In the case of InSb and the parameters above, the transition
between absorption and gain takes place when the dc electric
field equals approximately −430 V/m. It is also evident from
Fig. 1(a) that the strength of the gain or absorption is weak
since the damping term of k1 is at most 0.005 m−1, with
increasing gain toward increasing electric field strength and
low frequencies. In Figs. 1(c) and 1(d), we also plot the
wave-number component k2. Since the real and imaginary
components are always of opposite sign irrespective of the dc
electric field value, only absorption is possible for this mode,
and k2 excitations are always damped during propagation.
Further, it can be seen that the absorption strength is rather
weak for k2 modes, a result that is similar to earlier absorption
results [11].

Similar plots of k1 and k2 are shown in Fig. 2 for frequencies
around the plasmon frequency. It follows from Eq. (4) that
when ε = 0 (for a Drude permittivity response this occurs
when ω2 = ω2

p − τ 2, assuming ωp > τ , as is the case for, e.g.,
intrinsic InSb), the imaginary part of k can take on arbitrarily
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FIG. 2. (Color online) Strong gain at ENZ conditions with fre-
quencies around the plasmon frequency f = 2.71 THz for InSb.
(a)–(d) The two wave numbers, k1 and k2, are captured as in Fig. 1 to
demonstrate gain and absorption. Color bar units are in m−1.

large positive (or negative) values as the electric field is
increased. Thus, we can tailor the intrinsic acoustic absorption
or gain by controlling the frequency and the dc electric field.
Significant changes appear in the magnitude of the imaginary
components of k1 and k2. We find a maximum damping
|Im(k1)| around 500 m−1, i.e., five orders of magnitude higher
than that at low frequencies shown previously. Also, compared
to the former case, the change from absorption to gain is more
complex and not in agreement with the standard Cherenkov
condition due to electron diffusion effects. Only the k1 wave
number displays evidence of sound amplification since the
condition Im(k1)/Re(k1) > 0 sustains for a broad spectral
range, as rendered in Figs. 2(a) and 2(b).

To shed light on this remarkable finding, we compute a
complex dispersion relation for InSb with the aforementioned
parameters and E0 = −1000 V/m and draw an immediate
connection to the spectral dependence of the permittivity
around the plasmon frequency, as seen in Fig. 3. The real
parts of the wave numbers are shown to be equal in magnitude
but of opposite signs, as seen in Fig. 3(a). Due to the frequency
dependence of the permittivity and the mobility as well as a
finite Drude carrier collision time, k1 and k2 reveal strong
changes at ENZ but are slightly shifted away from the exact
plasmon frequency. This relationship where ε = 0 [Fig. 3(c)]
and pronounced dispersion is predicted is accompanied by
strong variations in the sign of acoustic damping [Fig. 3(b)]
and is illustratively connected by the horizontal dash-dotted
line in Fig. 3. It is the strong acoustic gain, whose spectral
location remains unaffected by the applied field, as shown
in Figs. 2(a) and 2(b), that is directly linked to ENZ
response.

We now discuss a principle of an electroacoustic gain device
based on a thin slab of semiconductor material controlled by
an external dc electric field. It is evident that acoustic gain of
a sound field is possible if a substantial part of the sound field
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FIG. 3. (Color online) Dispersion relation and spectral depen-
dence of the permittivity for InSb with E0 = −1000 V/m. (a) The
real parts of the wave numbers k1 and k2 are shown to be symmetric
on a dispersion diagram. (b) Gain is present for k1, as illustrated
by Re(k1)/Im(k1). (c) ε/ε0 plotted near the plasmon frequency
f = 2.71 THz. The dash-dotted line marks the spectral region where
ε = 0.

enters a thin slab of InSb (or another semiconductor) and if
the dc electric field in the slab ensures acoustic gain as the
sound traverses the slab in, say, the positive z direction. The
basic requirement is to have a high enough applied electric
field E0 and to operate at ENZ conditions so that |Im(k1)|
is high and damping is positive, Im(k1)/Re(k1) > 0 (refer to
Figs. 2 and 3). It is important that the material surrounding
the slab of length L is acoustically well matched to guarantee
that a high portion of the incoming sound field enters the
slab. In Fig. 4(a) we compute the transmission amplitude of
an incoming plane wave impinging on a slab when a constant
electric field is applied. The surrounding media are assumed
to have an acoustic impedance Z = 3 × 107 kg/(m2s), and
the plasma frequency is f = 2.69 THz. Clearly, due to the
exponential increase in the sound field along the positive z

direction in a case with gain, the longer the slab is, the higher
the transmission coefficient becomes. Calculations at different
frequency values again show that amplification is strongest
slightly below ωp. Since the real part of the wave number
is considerably larger in magnitude than its imaginary part
whenever gain is present, many oscillations in the acoustic field
will take place over a slab length where gain is pronounced.
This is a drawback, and instead, we propose a method for
obtaining even larger gain for smaller slab structures by
periodically switching the sign of the applied field E0 in time
with a period equal to LRe(k)/ω, as depicted in Fig. 4(b).
In doing so, the sound field experiences gain in propagating
the slab in forward and backward directions since the sign
of the damping term Im(k) as seen in Fig. 4(c) opposes the
sign of E0 and is switched exactly when a wave round-trip
is initiated. The effect of the controlled switching can be
seen in Fig. 4(d), where the transmission T and reflection R

coefficients are shown for cases with (s) and without switching
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FIG. 4. (Color online) Electrically controlled optomechanical
device for acoustic amplification. (a) Transmission coefficient of an
incoming sound field plotted as a function of the length of an InSb
slab operating near the plasmon frequency. The inset shows a sketch
of the optomechanical device. (b) Several cycles of the electric field
E0 where switching is enforced at a period of LRe(k)/ω. (c) The
controlled switching ensures enhanced acoustic gain by periodically
changing the sign of Im(k) during the round-trips of the wave. (d)
Transmission (Ts , T ) and reflection (Rs , R) coefficients as a function
of time in cases with (s) and without switching of E0. Parameters are
f = 2.69 THz and L = 4.8 mm, and the acoustic impedance of the
surrounding media is Z = 3 × 107 kg/(m2 s).

of E0. Over time, huge transmissions and reflections are built
up when switching is imposed. On the other hand, there is no
additional amplification of sound in making a slab round-trip
for a constant applied field since the gain experienced in
propagating forward is lost upon propagating backward.

We have demonstrated how sound amplification in PZ
materials can be substantially enhanced when operated at
ENZ response. We utilized this finding by designing a switch-
controlled optomechanical device producing larger-than-unity
scattering coefficients of the radiated sound field, and we
foresee that this technique will find many striking applications
for sensing and spectroscopy. The fact that acoustic gain can
be much higher than realized in the works by White and
Hutson [10–12] makes the present idea less sensitive to crystal
noise for sound amplification at ENZ conditions, resulting in
a high signal-to-noise ratio. To embed this concept in future
and current systems, one needs to consider possible saturation
of gain as a result of nonlinear sound interaction and increased
material absorption. We note also that acoustic dissipation
mechanisms play an increasing role at higher frequencies.
There are other methods for obtaining acoustic gain, such
as parametric amplification in a magnetostrictive solid [17].
Furthermore, we stress that amplification of sound has also
been reported in nonclassical systems, giving rise to phonon
lasing and amplification in Stark ladder superlattices [18–20].
The present idea, based on the piezoelectric effect that exists in
a large class of semiconductors where the unit cell is inversion
asymmetric, does not require direct excitation of photons. An
incoming acoustic wave will, under the application of a dc
electric field, experience amplification. Acoustic amplification
can also be generated in the absence of an incoming acoustic
wave by applying a dc and an ac electric field component
simultaneously. In recent years several intriguing phenomena
in acoustic metamaterials have been explored [21–26]. We
envision that the present idea of sound amplification could
find use in metamaterial-related applications at much lower
frequencies, providing active compensation of losses at res-
onance and the design of audible gain by structuring PZ
materials.

J.C. gratefully acknowledges financial support from the
Danish Council for Independent Research and a Sapere Aude
grant (Grant No. 12-134776).
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