
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

Downloaded from orbit.dtu.dk on: Mar 29, 2023

Designing Scientific Software for Heterogeneous Computing
With application to large-scale water wave simulations

Glimberg, Stefan Lemvig

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Glimberg, S. L. (2013). Designing Scientific Software for Heterogeneous Computing: With application to large-
scale water wave simulations. Technical University of Denmark. DTU Compute PHD-2013 No. 317

https://orbit.dtu.dk/en/publications/d5e35d7c-99b7-4a81-a17b-503d8e79d2b6


Designing Scienti�c Software for

Heterogeneous Computing

With application to large-scale water wave simulations

Stefan Lemvig Glimberg

Kongens Lyngby 2013

IMM-PhD-2013-317



Technical University of Denmark

Department of Applied Mathematics and Computer Science

Matematiktorvet, building 303B,

2800 Kongens Lyngby, Denmark

Phone +45 4525 3351

compute@compute.dtu.dk

www.compute.dtu.dk IMM-PhD-2013-317



Preface

This thesis was prepared at the Technical University of Denmark in ful�llment
of the requirements for acquiring a PhD degree. The work has been carried out
during the period of May 2010 to November 2013 at the Department of Applied
Mathematics and Computer Science at the Scienti�c Computing section.

Part of the work has been carried out during my research visit to the Scienti�c
Computing section at University of Illinois at Urbana-Champaign, USA, autumn
2011. The visit was hosted by Prof. Luke Olson and partially sponsored by Otto
Mønsteds Fond for which I am grateful.

Lyngby, October 30th , 2013.

Stefan Lemvig Glimberg



ii



Summary (English)

The main objective with the present study has been to investigate parallel nu-
merical algorithms with the purpose of running e�ciently and scalably on mod-
ern many-core heterogeneous hardware. In order to obtain good e�ciency and
scalability on modern multi- and many- core architectures, algorithms and data
structures must be designed to utilize the underlying parallel architecture. The
architectural changes in hardware design within the last decade, from single
to multi and many-core architectures, require software developers to identify
and properly implement methods that both exploit concurrency and maintain
numerical e�ciency.

Graphical Processing Units (GPUs) have proven to be very e�ective units for
computing the solution of scienti�c problems described by partial di�erential
equations (PDEs). GPUs have today become standard devices in portable, desk-
top, and supercomputers, which makes parallel software design applicable, but
also a challenge for scienti�c software developers at all levels. We have developed
a generic C++ library for fast prototyping of large-scale PDEs solvers based on
�exible-order �nite di�erence approximations on structured regular grids. The
library is designed with a high abstraction interface to improve developer pro-
ductivity. The library is based on modern template-based design concepts as
described in Glimberg, Engsig-Karup, Nielsen & Dammann (2013). The library
utilizes heterogeneous CPU/GPU environments in order to maximize computa-
tional throughput by favoring data locality and low-storage algorithms, which
are becoming more and more important as the number of concurrent cores per
processor increases.

We demonstrate in a proof-of-concept the advantages of the library by assem-



iv Summary (English)

bling a generic nonlinear free surface water wave solver based on uni�ed potential
�ow theory, for fast simulation of large-scale phenomena, such as long distance
wave propagation over varying depths or within large coastal regions. Simula-
tions that are valuable within maritime engineering because of the adjustable
properties that follow from the �exible-order implementation. We extend the
novel work on an e�cient and robust iterative parallel solution strategy pro-
posed by Engsig-Karup, Madsen & Glimberg (2011), for the bottleneck problem
of solving a � -transformed Laplace problem in three dimensions at every time
integration step. A geometric multigrid preconditioned defect correction scheme
is used to attain high-order accurate solutions with fast convergence and scalable
work e�ort. To minimize data storage and enhance performance, the numerical
method is based on matrix-free �nite di�erence approximations, implemented to
run e�ciently on many-core GPUs. Also, single-precision calculations are found
to be attractive for reducing transfers and enhancing performance for both pure
single and mixed-precision calculations without compromising robustness.

A structured multi-block approach is presented that decomposes the problem
into several subdomains, supporting �exible block structures to match the phys-
ical domain. For data communication across processor nodes, messages are sent
using MPI to repeatedly update boundary information between adjacent cou-
pled subdomains. The impact on convergence and performance scalability using
the proposed hybrid CUDA-MPI strategy will be presented. A survey of the
convergence and performance properties of the preconditioned defect correction
method is carried out with special focus on large-scale multi-GPU simulations.
Results indicate that a limited number of multigrid restrictions are required, and
that it is strongly coupled to the wave resolutions. These results are encourag-
ing for the heterogeneous multi-GPU systems as they reduce the communication
overhead signi�cantly and prevent both global coarse grid corrections and inef-
�cient processor utilization at the coarsest levels.

We �nd that spatial domain decomposition scales well for large problems sizes,
but for problems of limited sizes, the maximum attainable speedup is reached
for a low number of processors, as it leads to an unfavorable communication
to compute ratio. To circumvent this, we have considered a recently proposed
parallel-in-time algorithm referred to as Parareal, in an attempt to introduce
algorithmic concurrency in the time discretization. Parareal may be perceived
as a two level multigrid method in time, where the numerical solution is �rst se-
quentially advanced via course integration and then updated simultaneously on
multiple GPUs in a predictor-corrector fashion. A parameter study is performed
to establish proper choices for maximizing speedup and parallel e�ciency. The
Parareal algorithm is found to be sensitive to a number of numerical and physi-
cal parameters, making practical speedup a matter of parameter tuning. Results
are presented to con�rm that it is possible to attain reasonable speedups, inde-
pendently of the spatial problem size.



v

To improve application range, curvilinear grid transformations are introduced
to allow representation of complex boundary geometries. The curvilinear trans-
formations increase the complexity of the implementation of the model equa-
tions. A number of free surface water wave cases have been demonstrated with
boundary-�tted geometries, where the combination of a �exible geometry rep-
resentation and a fast numerical solver can be a valuable engineering tool for
large-scale simulation of real maritime scenarios.

The present study touches some of the many possibilities that modern hetero-
geneous computing can bring if careful and parallel-aware design decisions are
made. Though several free surface examples are outlined, we are yet to demon-
strate results from a real large-scale engineering case.



vi



Summary (Danish)

Hovedformålet med dette studie har været, at undersøge parallele numeriske
algoritmer der kan eksekveres e�ektivt og skalerbart på moderne mange-kerne
heterogen hardware. For at opnå e�ektivitet og skalerbarhed på moderne multi-
og mange-kerne arkitekuterer må algoritmer og datastrukturer designes til at
udnytte den underliggende parallelle arkitektur. De seneste års skift indenfor
hardware design, fra enkelt- til multi-kerne arkitekturer, kræver at software-
udviklere identi�cerer og implementerer metoder der udnytter parallelitet og
bevarer numerisk e�ektivitet.

Graphical Processing Units (GPU'er) har vist sig at være særdeles gode be-
regningsenheder til løsning af videnskabelige problemer beskrevet ved partielle
di�erential ligninger (PDE'er). GPU'er er i dag standard i både bærbare, desk-
top og supercomputere, hvilket gør parallel software design aktuelt, men også
udfordrende, for videnskabelige softwareudviklere på alle niveauer. Vi har udik-
let et generisk C++ bibliotek til hurtig proto-typing af stor-skala løsere, ba-
seret på �eksibel-ordens �nite di�erence approximationer på strukturerede og
regulære net. Biblioteket er designet med at abstract interface for at forbedre
udviklerens produktivitet. Biblioteket er baseret på moderne template-baserede
designkoncepter som beskrevet i Glimberg, Engsig-Karup, Nielsen & Dammann
(2013). Biblioteket udnytter heterogene CPU/GPU systemer for at maximere
beregningse�ektiviteten ved at udnytte datalokalitet og hukommelsesbesbaren-
de algoritmer, hvilket kun bliver vigtigere og vigtigere i takt med at der kommer
�ere kerner per processor.

Vi demonstrerer, i et proof-of-concept, fordelene ved biblioteket ved at sammen-
sætte en ikke-linær vandbølgeløser baseret på potential �ow teori, til e�ektiv



viii Summary (Danish)

simulering af stor-skala fænomener, såsom langdistance bølgetransformationer
over varierende vanddybder eller indenfor større kystområder. Sådanne simu-
leringer har stor værdi indenfor maritime analyser på grund af de justerbare
egenskaber der følger med den �eksibel-ordens implementering. Vi udvider arbej-
det af en e�ektiv og robust iterativ parallel strategi, foreslået af Engsig-Karup,
Madsen & Glimberg (2011), til løsning af et � -transformeret Laplace problem
i tre dimensioner. En geometrisk multigrid pre-konditioneret defect correction
metode er benyttet til at opnå høj-ordens nøjagtige løsninger med hurtig kon-
vergens og skalerbar beregningsarbejde. For at minimere hukommelsesforbruget
og forbedre performance er den numeriske metode baseret på matrix-frie �nite
di�erence approximationer, implementeret til e�ektivt eksekvering på mange-
kerne GPU'er. Derudover er det vist at single-præcisions beregninger kan være
attraktive til at reducere hukommelsesoverførsler og forbedre performance, uden
at kompromitere nøjagtigheden af resultaterne.

En struktureret multi-blok teknik er præsenteret der inddeler problemet i �ere
delproblemer, der kan tilpasses det fysiske domæne. Beskeder sendes via MPI
for at opdatere randinformationer mellem nabo-blokke. Indvirkningen på kon-
vergens og performanceskalering med den foreslåede CUDA-MPI hybridmetode
er undersøgt og præsenteres. En undersøgelse af konvergens og performance
af defect correction metoden er lavet, med særlig fokus på stor-skala multi-
GPU simuleringer. Resultaterne indikerer at et begrænset antal af multigrid
restriktioner er nødvendigt og at antallet er stærkt koblet til bølgeopløsningen.
Disse resultater tilskyndes heterogene multi-GPU systemer, fordi de reducerer
kommunikations-overhead signi�kant og forhindrer både global coarse grid kor-
rektioner og ine�ektiv udnyttelse af processorerne på de grove grid niveauer.

Vi demonstrerer at spatial domæne dekompositionering skalerer godt for sto-
re problemstørrelser, men at for mindre problemer opnås den maksimale ha-
stighedsforøgelse for et lavt antal processorer, da det fører til et ugunstigt
kommunikations-til-beregnings forhold. For at imødekomme dette, har vi un-
dersøgt en algoritme til parallelisering i den tidslige dimension, kaldet Parare-
al. Parareal kan betragtes som en to-niveau multigrid metode i tid, hvor den
numeriske løsning først propageres med store tidsskridt. Disse mellemliggende
tidsskridt kan så benyttes som begyndelsesbetingelser for nøjagtigere beregnin-
ger der kan udføres parallelt vha. �ere GPU'er. Et parameterstudie er udført
for at demonstrere valg der optimerer speedup og parallel e�ektivitet. Parareal
algoritmen har vist sig at være sensitiv overfor er række af numeriske og fysiske
parametre, hvilket gør e�ektiv speedup til et spørgsmål om parametertuning.
Resultater præsenteres der bekræfter at der er muligt at opnå fornuftige hastig-
hedsforøgelser, uafhængigt at den rumlige diskretisering.

For at forbedre anvendelsesmulighederne indenfor mere komplekse modeller in-
troduceres kurvilinære koordinater. Brug af kurvilinære koordinater er demon-



ix

streret på en række testeksempler for bølgemodellen, hvor kombinationen af
�eksible geometrier og en hurtig numerisk løser kan være et værdifuldt inginør-
værktøj til stor-skala simulering af virkelige maritime scenarier.

Dette studie berører mange af de muligheder moderne heterogene beregninger
kan bringe hvis omhyggelige og parallel-bevidste beslutninger tages. Selvom �ere
eksempler på bølgesimuleringer er præsenteret, mangler vi endnu at vise en stor-
skala test baseret på en virkelig inginøropgave.



x



Acknowledgements

First, I would like to give great thanks to my main supervisor Assoc. Prof.
Allan P. Engsig-Karup for his strong commitment to the project and for all of
his knowledge-sharing. I truly appreciate all of the guidance and the strong
e�ort he has put into this project.

I would also like to thank all the people involved in the GPUlab project at
the Technical University of Denmark, in particular my co-supervisor Assoc.
Prof. Bernd Dammann and fellow students Nicolai Gade-Nielsen and Hans
Henrik B. Sørensen, for all of the inspiring and interesting conversations. I also
acknowledge the guidance and advice I have received from all those involved in
the OceanWave3D developer group meetings, and I thank Ole Lindberg for the
collaboration we have had.

I would also like to thank Prof. Jan S. Hesthaven, Wouter Boomsma, and Andy
R. Terrel for granting access to the latest hardware and large-scale compute
facilities. Scalability and performance tests were carried out at the GPUlab
at DTU Compute, the Oscar GPU cluster at the Center for Computing and
Visualization, Brown University, and the Stampede HPC cluster at the Texas
Advanced Computing Center, University of Texas. The NVIDIA Corporation
is also acknowledged for generous hardware donations to GPUlab.

This work was supported by grant no. 09-070032 from the Danish Research
Council for Technology and Production Sciences (FTP). I am very grateful for
the �nancial support that I have received from FTP, and from Otto Mønsteds
Fond and Oticon Fonden to cover parts of my travel expenses.



xii

Last, I would like to thank my beloved wife and our wonderful children for their
endless and caring support.



Declarations

The work presented in this dissertation is a compilation of all the work that has
been carried out during the project's three year period, some of which has been
described in the following published references:

� Engsig-Karup, A. P., Glimberg, S. L. , Nielsen, A. S., Lindberg, O..
Designing Scienti�c Applications on GPUs, Chapter: Fast hydrodynamics
on heterogenous many-core hardware. Chapman & Hall/CRC. Numerical
Analysis and Scienti�c Computing Series, 2013.

� Engsig-Karup, A. P., Madsen, M. G., Glimberg, L. S. . A massively
parallel gpu-accelerated model for analysis of fully nonlinear free surface
waves. In: International Journal for Numerical Methods in Fluids , vol.
70, pp. 20�36, 2011.

� Glimberg, S. L. , Engsig-Karup, A. P., Nielsen, A. S., Dammann, B..
Designing Scienti�c Applications on GPUs, Chapter: Development of soft-
ware components for heterogeneous many-core architectures. Chapman &
Hall/CRC Numerical Analysis and Scienti�c Computing Series , 2013.

� Glimberg, S. L. , Engsig-Karup, A. P., Madsen, M. G.. A Fast GPU-
accelerated Mixed-precision Strategy for Fully Nonlinear Water Wave Com-
putations, In: Proceedings of European Numerical Mathematics and Ad-
vanced Applications (ENUMATH) , 2011.

� Lindberg, O., Glimberg, S. L. , Bingham, H. B., Engsig-Karup, A. P.,
Schjeldahl, P. J.. Real-Time Simulation of Ship-Structure and Ship-Ship
Interaction. In 3rd International Conference on Ship Manoeuvring in Shal-
low and Con�ned Water, 2013.



xiv

� Lindberg, O., Glimberg, S. L. , Bingham, H. B., Engsig-Karup, A. P.,
Schjeldahl, P. J.. Towards real time simulation of ship-ship interaction -
Part II: double body �ow linearization and GPU implementation. In: Pro-
ceedings of The 28th International Workshop on Water Waves and Floating
Bodies (IWWWFB) , 2012.

Parts of these references have provided a basis for the work presented in this
dissertation as follows:

� Most of Chapter 2 has previously been published in Glimberg et al. (2013)

� Parts of Chapter 4 have previously been published in Glimberg et al.
(2013) and Engsig-Karup et. al. (2013)

� Parts of Chapter 5 have previously been published in Glimberg et al.
(2013) and Engsig-Karup et. al. (2013)



xv



xvi Contents



Contents

Preface i

Summary (English) iii

Summary (Danish) vii

Acknowledgements xi

Declarations xiii

1 Introduction to heterogeneous computing 1
1.1 HPC on a�ordable emerging architectures . . . . . . . . . . . . . 2

1.1.1 Programmable Graphical Processing Units . . . . . . . . 3
1.2 Scope and main contributions . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Setting the stage 2010 � 2013 . . . . . . . . . . . . . . . . 9
1.3 Hardware resources and GPUlab . . . . . . . . . . . . . . . . . . 10

2 Software development for heterogeneous architectures 13
2.1 Heterogeneous library design for PDE solvers . . . . . . . . . . . 15

2.1.1 Component and concept design . . . . . . . . . . . . . . . 16
2.1.2 A matrix-free �nite di�erence component . . . . . . . . . 16

2.2 Model problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Heat conduction equation . . . . . . . . . . . . . . . . . . 21
2.2.2 Poisson equation . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Multi-GPU systems . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Free surface water waves 33
3.1 Potential �ow theory . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 The numerical model . . . . . . . . . . . . . . . . . . . . . . . . . 37



xviii CONTENTS

3.2.1 E�cient solution of the Laplace equation . . . . . . . . . 37

3.2.2 Preconditioned defect correction method . . . . . . . . . . 39

3.2.3 Time integration . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Wave generation and wave absorption . . . . . . . . . . . 42

3.3 Validating the free surface solver . . . . . . . . . . . . . . . . . . 44

3.3.1 Whalin's test case . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Performance breakdown . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Defect correction performance breakdown . . . . . . . . . 54

3.4.2 A fair comparison . . . . . . . . . . . . . . . . . . . . . . 54

4 Domain decomposition on heterogeneous multi-GPU hardware 59
4.1 A multi-GPU strategy . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 A multi-GPU strategy for the Laplace problem . . . . . . 61

4.2 Library implementation and grid topology . . . . . . . . . . . . . 62

4.3 Performance benchmarks . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Decomposition of the free surface model . . . . . . . . . . . . . . 68

4.4.1 An algebraic formulation of the Laplace problem . . . . . 69

4.4.2 Validating algorithmic convergence . . . . . . . . . . . . . 70

4.4.3 The e�ect of domain decomposition . . . . . . . . . . . . 71

4.4.4 The performance e�ect of multigrid restrictions . . . . . . 73

4.4.5 The algorithmic e�ect of multigrid restrictions . . . . . . 74

4.4.6 Performance Scaling . . . . . . . . . . . . . . . . . . . . . 76

4.5 Multi-block breakwater gap di�raction . . . . . . . . . . . . . . . 79

5 Temporal decomposition with Parareal 83
5.1 The Parareal algorithm . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Parareal as a time integration component . . . . . . . . . . . . . 86

5.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Accelerating the free surface model using parareal . . . . . . . . 90

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Boundary-�tted domains with curvilinear coordinates 95
6.1 Generalized curvilinear transformations . . . . . . . . . . . . . . 97

6.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . 99

6.2 Library implementation . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Performance benchmark . . . . . . . . . . . . . . . . . . . 101

6.3 Free surface water waves in curvilinear coordinates . . . . . . . . 106

6.3.1 Transformed potential �ow equations . . . . . . . . . . . . 106

6.3.2 Waves in a semi-circular channel . . . . . . . . . . . . . . 107

6.3.3 Wave run-up around a vertical cylinder in open water . . 112

6.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 116



CONTENTS xix

7 Towards real-time simulation of ship-wave interaction 119
7.1 A perspective on real-time simulations . . . . . . . . . . . . . . . 120
7.2 Ship maneuvering in shallow water and lock chambers . . . . . . 123
7.3 Ship-wave interaction based immersed boundaries . . . . . . . . . 126
7.4 Current status and future work . . . . . . . . . . . . . . . . . . . 129
7.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A The GPUlab library 135
A.1 Programming guidelines . . . . . . . . . . . . . . . . . . . . . . . 135

A.1.1 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.1.2 Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.1.3 Vectors and device pointers . . . . . . . . . . . . . . . . . 137
A.1.4 Con�guration �les . . . . . . . . . . . . . . . . . . . . . . 138
A.1.5 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.1.6 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1.7 Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1.8 Matlab supporting �le formats . . . . . . . . . . . . . . . 140

A.2 Con�guring a free surface water wave application . . . . . . . . . 140
A.2.1 Con�guration �le . . . . . . . . . . . . . . . . . . . . . . . 140
A.2.2 The Matlab GUI . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 143



xx CONTENTS



Chapter 1

Introduction to
heterogeneous computing

Based on few years of observations, Gordon E. Moore predicted in 1965, that
the number of processor on an integrated circuit would double approximately
every two years [Moo65]. Though this prediction is almost �fty years old, it has
been remarkably accurate, though today it has become more of a prophecy or
trend setter for the industry to follow in order to keep up with their competitors.

Figure 1.1: Moore's law until 2011.

For many years, chip manufactures
were able to produce single-core pro-
cessors with increased clock frequen-
cies following Moore's law, enabling
faster execution of any software appli-
cation, with no modi�cations to the
underlying code required. However,
within the last ten years there has
been a remarkable change in the ar-
chitectural design of microprocessors.
Issues with power constraints and
uncontrollable heat dissipation have
forced manufactures to favor multi-
core chip design in order to keep up



2 Introduction to heterogeneous computing

with Moore's law [ITRon]. These architectural design changes have caused a
paradigm shift, and as a consequence software developers can no longer rely on
increased performance as a result of new and faster hardware. Sequential legacy
codes will have to be redesigned and re-implemented to �t the emerging parallel
platforms. Unfortunately, these parallel paradigms tend to introduce additional
overhead, causing less than linear performance improvements as the number of
processors increases. Well-designed algorithms with little or no sequential de-
pendency and communication overhead are essential for good performance and
scalability on parallel computers. Though the �rst parallel computers dates
back to the 1950s and high-performance computing (HPC) topics have been re-
searched for decades, parallel computing has been limited to few developers and
mostly focused on utilizing distributed clusters for advanced applications. With
recent trends, parallel computing is now more accessible for the masses than
ever before, and therefore it is now�more than ever�fundamentally important
that basic principles of e�cient, portable, and scalable parallel algorithms and
design patterns are investigated and developed.

1.1 HPC on a�ordable emerging architectures

As a consequence of these emerging multi-core processors, there has been a
rapidly growing market for low-cost, low energy, and easy accessible HPC re-
sources, with a broad target group of software developers and engineers from
di�erent research areas. Optimal utilization of all processor cores is becoming a
desirable feature for software developers and a necessity in almost any commer-
cial application. Today, multi-core processors have become the standard in any
personal desktop or laptop computer, many of them are also accompanied with
a many-core co-processing Graphical Processing Unit (GPU). This combined
setup constitutes a heterogeneous setup, where the GPU can be used as a spe-
cialized compute accelerator for given applications. The intense promotion of
programmable GPUs, has been a key contributor to the breakthrough in HPC
on mass-produced commodity hardware and they have opened up new oppor-
tunities within scienti�c computing and mathematical modeling. Pioneered by
Nvidia and AMD, graphics hardware has developed into easily programmable
high-performance platforms, suitable for many kinds of general purpose appli-
cations with no connection to computer graphics.



1.1 HPC on a�ordable emerging architectures 3

1.1.1 Programmable Graphical Processing Units

Graphical processors became popular as part of the growing gaming indus-
try during the 1990's. Back then, GPUs only supported specialized �xed-
function pipelines. During the early 2000s, the �rst work on General Purpose
GPU (GPGPU) computing was initiated, but required profound understanding
of graphical programming interfaces and shader languages, such as the Open
Graphics Library (OpenGL), Direct3D, OpenGL Shading Language (GLSL),
C for Graphics (Cg), or the High-level Shader Language (HLSL). These early
and promising results, presented by the rising GPGPU community, led to the
development of several high-level languages for graphics hardware, to help devel-
opers run applications on the GPUs. Though several languages were proposed,
e.g., BrookGPU[BFH+ 04, JS05] developed at Stanford University or Close-to-
The-Metal by ATI (now AMD), only two programming models remain as the
main competitors today; CUDA and OpenCL. CUDA (Compute Uni�ed De-
vice Architecture) is developed and maintained by the Nvidia Corporation and
therefore runs exclusively on Nvidia GPUs. The CUDA project was initiated in
2006, and has been subject to an aggressive promotion campaign by Nvidia, in
order to ensure a solid market share in both industrial, academic, and personal
computing. Therefore the proportion of CUDA documentation, articles, code
examples, user guides, etc. are still dominating, though the interest seems to
have peaked compared to OpenCL. OpenCL was initially developed by Apple
in 2008 with support from AMD, and was released later in 2008 and is now
maintained by the Khronos Group. OpenCL is a more versatile model as it
is designed for execution on any multiprocessor platform and not limited to
GPUs. Throughout this work we are using CUDA as our programming model,
both because it has proven to be the most mature and because it directly sup-
ports generic programming via C++ templates. We note that this dissertation
is not an introduction to CUDA or MPI programming. We expect the reader
to be familiar with the basic concepts of HPC and GPU programming, such as
the CUDA thread hierarchy, shared memory, kernels, ranks, etc. For a thor-
ough introduction to GPU architecture and CUDA programming we refer the
reader to the books [KmWH10, Coo12, Nvi13] or [SK10, Far11, Hwu11] for
more application oriented introductions. Introduction to MPI can be found in
[GLS99, GLT99].

The GPU obtained its popularity from its massively parallel design architecture,
based on the Single Instruction Multiple Thread (SIMT) model, meaning that
the multiprocessors execute the same instructions with multiple threads, yet
allowing conditional operations. The promotion of parallel GPU programming
has been carried by the manufacturers (Nvidia in particular), who have used
their noticeable peak performance numbers in comparisons to the traditional
CPU alternatives to emphasize their eligibility on the HPC market, cf. Figure



4 Introduction to heterogeneous computing

1.2.

Though the majority of GPUs are still produced and sold to the gaming in-
dustry, they have also established themselves as important components in high-
performance accelerated computing, by entering several of the top rankings on
the Top500 list of the most powerful computers in the world[Gmb]. In Novem-
ber 2012, the Titan supercomputer at Oak Ridge National Laboratory topped
the list with more than 27PFlops peak performance, at only 8209kW. Titan
has 18:688 compute nodes, each equipped with an Nvidia Tesla K20 GPU, pro-
viding more than 80% of its total peak performance. Titan was assembled as
an upgrade to the previous supercomputer Jaguar, achieving almost 10 times
performance speedup at approximately the same power consumption.

As of 2013, several of the fastest supercomputers in the world rely on co-
processing accelerators for high-performance, with Nvidia GPUs being the most
prominent. More than 50 of the Top500 supercomputers use accelerators to
speed up their computational performances. This number has increased from
below �ve in just six years [Gmb]. In addition, the increasing need for energy
e�cient supercomputers, as we approach the exascale era[DBM+ 11, BMK+ 10],
have forced supercomputer vendors to pay more and more attention to het-
erogeneous computers, because co-processors, such as the GPU, o�er an fa-
vorable performance to watt ratio. Today, the top of the Green500 list (mea-
sured in Flops/watt) is dominated by heterogeneous systems [FC]. The most
energy-e�cient supercomputer as of June 2013, breaks through the three billion
�oating-point operations per second per watt barrier for the �rst time. GPUs
are energy e�cient compared to CPUs, because the cores are running at approx-
imately one-forth of the speed of a CPU core. The GPU achieves its superior
performance because of the high number of cores running in parallel.

Traditionally supercomputers have been pro�led against the Linpack bench-
mark. However, this tradition seems to be changing, as Linpack is no longer a
good representative for supercomputing performance pro�ling. The number of
applications that rely on sparse matrix-vector products, stencil operations, and
irregular memory access patterns, such as those based on di�erential equations,
is increasing. In practice this means that these applications will be limited
by the memory bandwidth wall and cannot obtain the optimistic performance
measures in Figure 1.2a but rather those in 1.2b. Therefore, a new benchmark,
the High Performance Conjugate Gradient (HPCG), has been proposed to meet
the requirements of modern applications. Future Top500 lists will therefore be
available based on this performance scale as well.



1.1 HPC on a�ordable emerging architectures 5

(a) Floating point performance.

(b) Memory bandwidth

Figure 1.2: Peak performance and memory bandwidth for recent generations
of CPUs and GPUs. From [Nvi13].



6 Introduction to heterogeneous computing

1.2 Scope and main contributions

In this thesis we will try to address some of the challenges that face software de-
velopers when introduced to new programming paradigms for massively parallel
executions on GPUs. We will in particular discuss and present the challenges
that are related to computing the solution of partial di�erential equation (PDE)
problems and the related important components, as discussed by [ABC+ 06]. We
present results based on a generic software library, designed to handle simple
mathematical operations to more advanced and distributed computations, using
a high abstraction level. The library is referred to as the GPUlab library. Our
strategy has been to implement a proof-of-concept framework that utilize mod-
ern GPUs for parallel computations, in a heterogeneous CPU-GPU hardware
setup. Such a hardware setup constitutes what can be considered an a�ordable
standard consumer desktop environment. Therefore these new HPC program-
ming paradigms potentially have a much broader target group than previous
HPC software packages.

We present a generic strategy to build and implement software components for
the solution of PDEs based on regular and curvilinear structured grids and
matrix-free stencil operations. The library is implemented with generic C++
templates to allow a �exible, extensible, and e�cient framework to assemble cus-
tom PDE solvers. An overview of basic components, essential for the solution of
di�erent types of PDEs, is presented, with special emphasis on components that
can be used and modi�ed with little or no GPU programming experience. Dur-
ing the duration of this project, several GPU-supporting software libraries and
applications with di�erent objectives have emerged. Some libraries integrated
support for heterogeneous computing, e.g., PETSc[MSK10, BBB+ 13, BBB+ 11]
or Matlab. Other libraries emerged as purely GPU-accelerated frameworks;
Thrust[BH11], CUSP[BG09], Magma, ArrayFire, pyCUDA, ViennaCL, Open-
Current, etc.. The GPUlab library falls in the latter category and has similar-
ities to some of these libraries. A similar generic template based approach is
also used in the sparse matrix library CUSP, and to some extent in the vector
based Thrust library. The GPUlab library derives from Thrust, for easy and
portable vector manipulations. Though some of the aforementioned software li-
braries o�er functionalities that matched some of our requirements, we decided
to implement our own library, in order to ensure that we would have full con-
trol and a deep understanding of the implementations on all levels. Secondly, a
high-level library for PDE solvers utilizing some of the generic features available
in C++, was not fully developed at the beginning of our research.

As a recurring case study throughout this thesis, we have adopted and continued
the development of a fully nonlinear free surface water wave implementation:
OceanWave3D. Our work can be seen as a continuation to the work �rst initiated



1.2 Scope and main contributions 7

by Li & Fleming in 1997 [LF97], as they proposed an e�cient geometric multi-
grid strategy for solving the computationally expensive � -transformed Laplace
equation. A strategy for accurate high-order �nite di�erence discretization and
a fourth-order Runge-Kutta scheme was later proposed by Bingham and Zhang
in two spatial dimensions [BZ07] and later extended to three dimensions by
Engsig-Karup et al. [EKBL09]. The latter demonstrates an alternative use of
ghost points to satisfy boundary conditions and proposes to employ multigrid as
a precondioner to GMRES to allow e�cient higher order discritizations. Further
development and changes to the algorithmic strategy with respect to improved
parallel feasibility was carried out in [EKMG11], where an e�cient single-GPU
parallel implementation of a multigrid method for high-order discretizations
was proposed, which can be seen as a generalization of the original work due
to Li & Fleming[LF97]. As an outcome to the promising e�ciency and scala-
bility results presented in [EKMG11], we decided to continue development of
the uni�ed free surface model and to port the dedicated solver into the generic
GPUlab library to establish a performance portable application with better
development productivity, maintenance, and to enable large-scale simulations
on heterogeneous hardware systems ranging from desktops to large supercom-
puters. The redesigned free surface water wave solver has been the basis for
much of the research in this thesis, leading up to an industrial collaboration
on ship-wave interaction[LGB+ 12, LGB+ 13], two book chapters on scienti�c
GPU programming[GEKND13, EKGNL13] two articles [GEKM11, EKMG11],
and several conference contributions. The OceanWave3D model has also served
as a platform and benchmark application for almost all the software, including
library components, that has been developed throughout this PhD project. The
mathematical and the numerical model contain several properties and compo-
nents that are present in many PDE problems in various important engineering
applications and they are well-suited for e�cient parallel implementations. The
template-based GPUlab library has provided us with a basis for improving and
extending the free surface water wave implementation with library components
that can be reused for the solution of other PDE problems and explore new
paradigms for scienti�c computing and engineering applications.

As an extension to previous work, we present the addition of both spatial and
temporal decomposition techniques for fast simulation of large-scale phenomena.
We present the extension from a single-block into a multi-block strategy, with
automatic memory distribution across multiple GPUs, based on an extensible
and generic grid topology. In order to allow local low-storage grid operations in
parallel, arti�cial overlapping boundary layers are introduced and updated via
message passing (MPI [GLS99, GLT99]). The challenges of e�cient and scalable
data distribution and domain decomposition techniques on heterogeneous sys-
tems are discussed, where strong scaling is often challenging for PDE problems,
as the ratio between surface and volume increases while work per core decreases.
We have demonstrated that good weak scaling for large-scale modeling, based



8 Introduction to heterogeneous computing

on uni�ed potential �ow theory for engineering computations is indeed possible
with the recent advancement of high-performance accelerators. With these re-
sults we address the limitation observed by P. Lin in 2008 [Lin08], stating that
no uni�ed model exists for practical large-scale engineering applications, until
future advancement in computer power is made. Thus, present work clearly
demonstrates how modern heterogeneous high-performance computing can be
utilized to the advancement of numerical modeling of water waves, for accurate
wave propagation over varying depths from deep to shallow water. In Chap-
ter 4 we demonstrate examples of such large-scale simulations that can have a
great value in a wide range of engineering applications, such as long distance
wave propagation over varying depths or within large coastal regions. In the
same chapter we present and discuss performance measurements and scalability
aspects of using multiple compute devices to speed up the time-to-solution. Nu-
merical experiments based on distributed multi-block computations show that
very large-scale simulations are possible on present computer systems, for sys-
tem sizes in the order of billions of grid points in spatial resolution.

Multiple GPUs have also been utilized to extract parallelism in the time do-
main for initial value problems, using the parareal algorithm[LMT01, BBM+ 02,
Nie12]. Parareal is implemented as a regular time integrator component into
the library, with �exibility to de�ne and con�gure the integrators for �ne and
coarse time stepping. Reasonable performance speedups are reported for both
a heat conduction problem and for the free surface water wave problem. It has
been the �rst time that a heterogeneous multi-GPU setup has been utilized to
solve a free surface problem with temporal parallelization techniques.

A �nal extension to the library includes routines for curvilinear grid transforma-
tions, that allow representation of boundary-�tted geometries. These routines
are pro�led and demonstrated on a number of cases for the free surface water
wave model, i.e., water �ow in a circular channel and around o�shore mono-
piles in open water. Such an extension has value in marine engineering as it
allows for much more realistic settings and can in combination with the domain
decomposition techniques be utilized to reconstruct large maritime areas, such
as harbors and shore lines.

Besides the completion of this PhD project and the results presented in this the-
sis, perhaps the most important contribution that has come out of the project
and the development of the GPUlab library, are the possibilities that it has
opened for advanced engineering applications. With a thoroughly tested and
benchmarked library, researchers and industrial collaborators are now able to
bene�t from our research, relevant to their own projects or engineering ap-
plications. An industrial collaboration with FORCE Technology on real-time
ship-wave interaction in full mission marine simulators has already been estab-
lished and is ongoing. Such a project on real-time simulation with engineering



1.2 Scope and main contributions 9

accuracy shows how HPC on heterogeneous hardware can be used to make a
di�erence in the industry today, and is also an example of how the industry can
bene�t from the expertise and research that are carried out at the universities.
In addition to this collaboration, two student research projects have been able
to bene�t from the GPUlab library.

1.2.1 Setting the stage 2010 � 2013

Within the last three years, during the time period of this project, there have
been some signi�cant changes to the architectural design and the programming
guidelines for optimal utilization of the GPU. When GPGPU �rst became popu-
lar, there was a signi�cant di�erence between single- and double-precision arith-
metic performance. Some of the early CUDA-enabled devices did not even sup-
port double precision arithmetic. As a consequence, researchers used mixed
precision iterative re�nement techniques to obtain accurate double precision so-
lutions, with partial use of single-precision operations [GS10, G�10, BBD+ 09].
We also made a contribution using templates to setup a mixed precision ver-
sion of our solver [GEKM11]. Recent generations of the Nvidia Tesla series for
scienti�c computing have a more balanced ratio between single and double pre-
cision performance, so today mixed techniques receive less attention. The �rst
generations of CUDA enabled GPUs had only a small user controllable shared
memory cache. Optimal performance for near-neighbor-type operations, e.g.,
stencil or matrix-like operations, is only achievable if the shared cache is fully
utilized[DMV+ 08, Mic09]. Today there are both an automatic L1 and L2 cache
available, signi�cantly reducing the programming e�ort of implementing device
kernels with good performance. Interestingly, the GPU core clock frequency has
been almost unchanged during the three years. What has changed is the total
number of cores, from a few hundreds to several thousands, e.g. 240 cores in the
Tesla C1060 to 2,688 cores in the Tesla K20x. Maintaining core frequency, but
increasing the core count has been a deliberate choice from the manufacturers
to limit the power consumption. Though the memory bandwidth between the
chip and device memory has increased, it has not increased at the same rate as
the number of cores. This is a potential bottleneck problem, not only present in
GPU computing, but is appointed to be one of the major di�culties in future
HPC and a problem that will have to be addressed before we can reach the
exascale era[Key11].

During the last few years, improvements have been introduced to address the
bottleneck problem of data transfers on multi-GPU systems. Memory access
and message passing have been improved via new hardware features, such as in-
creased cache sizes, ECC support, Remote Direct Memory Access (RDMA), and
Uni�ed Virtual Address (UVA). In [WPL+ 11b, WPL+ 11a] the authors demon-



10 Introduction to heterogeneous computing

strate more than 60% latency reduction for exchanging small messages using
GPU-Direct with RDMA. In addition, two MPI distributions (MVAPICH2 and
OpenMPI) have pushed the lead towards more intuitive device memory trans-
fers, enabling support for direct device memory pointers. This is de�nitely the
road for future heterogeneous multi-device systems, because it enables transpar-
ent implementations with high productivity and high performance. However,
these features are at present limited to speci�c GPU generations and In�niband
interconnect drivers, that are not standard in many systems.

As a reaction to the emerging HPC market in commodity hardware, Intel pro-
posed an alternative to the GPU, when they launched their Many Integrated
Core Architecture (Intel MIC) in 2012. Though the MIC in many aspects is
similar to the GPU, it o�ers some interesting alternatives. Most noticeable is
that the MIC processor runs its own operating system, allowing more �exible
and direct interaction. The present work was initiated as a research project
on GPU programming, and therefore we will only consider this throughout the
thesis.

1.3 Hardware resources and GPUlab

Several computer systems have been used for software development and perfor-
mance measuring during this PhD project. Whenever relevant, we will refer to
three of these systems. The �rst two computers are desktop computers, located
at the Technical University of Denmark. They are both equipped with Nvidia
GPUs, one with two Tesla K20c GPUs, kindly donated by Nvidia, and one with
two GeForce GTX590 GPUs. The third test setup is a GPU cluster, located
at Brown University. Each compute node has an In�niband interconnection
equipped with two Tesla M2050 GPUs. Technical details are summarized in
Table 1.1.



1.3 Hardware resources and GPUlab 11

Name G4 G6 Oscar

No. Nodes 1 1 44

CPU Intel Xeon E5620 Intel Core i7-3820 Intel Xeon E5630
Cores 4 4 4
Clock rate 2.40 GHz 3.60 GHz 2.53 GHz
Total memory 12 GB 32 GB 24 GB

GPU y 2 x GeForce GTX590 2 x K20c 2 x Tesla M2050
CUDA driver 5.0 5.0 5.0
CUDA capability 2.0 3.5 2.0
CUDA cores 1024 2496 448
Clock rate 1215 MHz 706 MHz 1150 MHz
Peak performance z 2488.3 G�ops 3520 G�ops 1030.46 G�ops
Total memory 1.5 GB 5 GB 3 GB
Mem. bandwidth ? 328 GB/s 208 GB/s 148 GB/s
L2 chache 768 KB 1280 KB 768 KB
Shared mem/block 48 KB 48 KB 48 KB
Registers/block 32768 65536 32768

Table 1.1: Hardware con�gurations used throughout the thesis. Stats are per
GPU. yGTX590 consists of two GTX580 GPUs, e.i. a total of 4
GPUs in G4. zSingle precision arithmetics. ?With ECC o�.



12 Introduction to heterogeneous computing



Chapter 2

Software development for
heterogeneous architectures

Massively parallel processors designed for high throughput, such as graphical
processing units (GPUs), have in recent years proven to be e�ective for a vast
number of scienti�c applications. Today, most desktop computers are equipped
with one or more powerful GPUs, o�ering heterogeneous high-performance com-
puting to a broad range of scienti�c researchers and software developers. Though
GPUs are now programmable and can be highly e�ective computing units, they
still pose challenges for software developers to fully utilize their e�ciency. Se-
quential legacy codes are not always easily parallelized, and the time spent on
conversion might not pay o�. This is particularly true for heterogeneous comput-
ers, where the architectural di�erences between the main and co-processor can
be so signi�cant that they require completely di�erent optimization strategies.
The cache hierarchy management of CPUs and GPUs is an evident example
of this. In the past, industrial companies were able to boost application per-
formance solely by upgrading their hardware systems, with an overt balance
between investment and performance speedup. Today, the picture is di�erent;
not only do they have to invest in new hardware, but they must also account
for the adaption and training of their software developers. What traditionally
used to be a hardware problem, addressed by the chip manufacturers, has now
become a software problem for application developers.



14 Software development for heterogeneous architectures

Software libraries can be a tremendous help for developers as they make it easier
to implement an application, without requiring special knowledge of the underly-
ing computer architecture and hardware. A library may be referred to as opaque
when it automatically utilizes the available resources, without requiring speci�c
details from the developer[ABC+ 06]. The ultimate goal for a successful library
is to simplify the process of writing new software and thus to increase devel-
oper productivity. Since programmable heterogeneous CPU/GPU systems are a
rather new phenomena, there are only a limited number of established software
libraries that take full advantage of such heterogeneous high performance sys-
tems, and there are no de facto design standards for such systems either. Some
existing libraries for conventional homogeneous systems have already added sup-
port for o�oading computationally intense operations onto co-processing GPUs.
However, this approach comes at the cost of frequent memory transfers across
the low bandwidth PCIe bus.

In this chapter, we focus on the use of a software library to help application
developers achieve their goals without spending an immense amount of time on
optimization details, while still o�ering close-to-optimal performance. A good
library provides performance-portable implementations with intuitive interfaces,
that hide the complexity of underlying hardware optimizations. Unfortunately,
opaqueness sometimes comes at a price, as one does not necessarily get the
best performance when the architectural details are not visible to the program-
mer [ABC+ 06]. If, however, the library is �exible enough and permits developers
to supply their own low-level implementations as well, this does not need to be
an issue. These are some of the considerations library developers should take
into account, and what we will try to address in this chapter.

For demonstrative purposes we present details from a generic CUDA-based C++
library for fast assembling of partial di�erential equation (PDE) solvers, utiliz-
ing the computational resources of GPUs. This library has been developed as
part of research activities associated with the GPUlab, at the Technical Uni-
versity of Denmark and, therefore, is referred to as the GPUlab library. It
falls into the category of computational libraries, as categorized by Hoe�er and
Snir [HS11]. Memory allocation and basic algebraic operations are supported
via object-oriented components, without the user having to write CUDA speci�c
kernels. As a back-end vector class, the parallel CUDA Thrust template-based
library is used, enabling easy memory allocation and a high-level interface for
vector manipulation [BH11]. Inspirations for good library design, some of which
we will present in this chapter, originate from guidelines proposed throughout
the literature [HS11, GHJV95, SDB94]. An identi�cation of desirable proper-
ties, which any library should strive to achieve, is pointed out by Korson and
McGregor [KM92]. In particular we mention being easy-to-use, extensible, and
intuitive.



2.1 Heterogeneous library design for PDE solvers 15

The library is designed to be e�ective and scalable for fast prototyping of PDE
solvers, (primarily) based on matrix-free implementations of �nite di�erence
(stencil) approximations on logically structured grids. It o�ers functionalities
that will help assemble PDE solvers that automatically exploit heterogeneous
architectures much faster than manually having to manage GPU memory allo-
cation, memory transfers, kernel launching, etc.

In the following sections we demonstrate how software components that play im-
portant roles in scienti�c applications can be designed to �t a simple framework
that will run e�ciently on heterogeneous systems. One example is �nite di�er-
ence approximations, commonly used to �nd numerical solutions to di�erential
equations. Matrix-free implementations minimize both memory consumption
and memory access, two important features for e�cient GPU utilization and
for enabling the solution of large-scale problems. The bottleneck problem for
many PDE applications is to solve large sparse linear systems, arising from the
discretization. In order to help solve these systems, the library includes a set
of iterative solvers. All iterative solvers are template-based, such that vector
and matrix classes, along with their underlying implementations, can be freely
interchanged. New solvers can also be implemented without much coding e�ort.
The generic nature of the library, along with a prede�ned set of interface rules,
allows assembling components into PDE solvers. The use of parameterized-type
binding allows the user to assemble PDE solvers at a high abstraction level,
without having to change the remaining implementation.

Since this chapter is mostly dedicated to the discussion of software development
for high performance heterogeneous systems, the focus will be more on the devel-
opment and usage of the GPUlab library, than on speci�c scienti�c applications.
We demonstrate how to use the library on two elementary model problems and
refer the reader to Chapter 3 for a detailed description of an advanced applica-
tion tool for free surface water wave simulations. These examples are assembled
using library components similar to those presented in this chapter.

2.1 Heterogeneous library design for PDE solvers

In the following, we present an overview of the library and the supported fea-
tures, introduce the concepts of the library components, and give short code
examples to ease understanding. The library is a starting point for fast assem-
bling of GPU-based PDE solvers, developed mainly to support �nite di�erence
operations on regular grids. However, this is not a limitation, since existing
vector objects could be used as base classes for extending to other discretization
methods or grid types as well.



16 Software development for heterogeneous architectures

2.1.1 Component and concept design

The library is grouped into component classes. Each component should ful�ll a
set of simple interface and template rules, called concepts, in order to guarantee
compatibility with the rest of the library. In the context of PDE solving, we
present �ve component classes: vectors, matrices, iterative solvers for linear sys-
tem of equations, preconditioners for the iterative solvers, and time integrators.
Figure 2.1 lists the �ve components along with a subset of the type de�nitions
they should provide and the methods they should implement. It is possible to
extend the implementation of these components with more functionality that
relate to speci�c problems, but this is the minimum requirement for compatibil-
ity with the remaining library. With these concept rules ful�lled, components
can rely on other components to have their respective functions implemented.

A component is implemented as a generic C++ class, and normally takes as a
template arguments of the same types that it o�ers through type de�nitions:
a matrix takes a vector as template argument, and a vector takes the work-
ing precision type. The matrix can then access the working precision through
the vector class. Components that rely on multiple template arguments can
combine these arguments via type binders to reduce the number of arguments
and maintain code simplicity. We will demonstrate use of such type binders
in the model problem examples. A thorough introduction to template-based
programming in C++ can be found in [VJ02].

The generic con�guration allows the developer to de�ne and assemble solver
parts at the very beginning of the program using type de�nitions. Changing
PDE parts at a later time is then only a matter of changing type de�nitions.
We will give two model examples of how to assemble PDE solvers in Section 2.2.

2.1.2 A matrix-free �nite di�erence component

Common vector operations, such as memory allocation, element-wise assign-
ments, and basic algebraic transformations, require many lines of codes for a
purely CUDA-based implementation. These CUDA-speci�c operations and ker-
nels are hidden from the user behind library implementations, to ensure a high
abstraction level. The vector class inherits from the CUDA-based Thrust li-
brary and therefore o�ers the same level of abstraction that enhances developer
productivity and enables performance portability. Creating and allocating de-
vice (GPU) memory for two vectors can be done in a simple and intuitive way
using the GPUlab library, as shown in Listing 2.1 where two vectors are added
together.



2.1 Heterogeneous library design for PDE solvers 17

Vector

typedef value_type ;
typedef size_type ;

Vector ( size_type );
Vector ( Vector ) ;

void axpy ( value_type , Vector ) ;
void axpby ( value_type , Vector )

;
void copy ( Vector ) ;
value_type dot ( Vector ) ;
Vector * dupl icate () ;
void fi l l ( value_type ) ;
value_type nrmi () ;
value_type nrm2 () ;
void scal ( vale_type );
size_type size () ;

Matrix

typedef vector_type ;

void mult ( vector_type , vector_type );

EqSolver

typedef vector_type ;
typedef matr ix_type ;
typedef monitor_type ;
typedef precondi t ioner_type ;

EqSolver ( matr ix_type
,monitor_type );

void solve ( vector_type , vector_type )
;

void set_precondi t ioner (
precondi t ioner_type );

Preconditioner

typedef vector_type ;
typedef matr ix_type ;
typedef monitor_type ;

Precondit ioner ( matr ix_type
,monitor_type );

void operator () ( vector_type
,vector_type )

TimeIntegrator

template < typename rhs_type
, typename vector_type
, typename value_type >

void operator () ( rhs_type
,vector_type
,value_type
,value_type
,value_type );

Figure 2.1: Schematic representation of the �ve main components, their type
de�nitions, and member functions. Because components are tem-
plate based, the argument types cannot be known beforehand.
The concepts ensure compliance among components.

1 # include <gpulab / vector .h>
2

3 __global__ void add ( double * a , double const * b , int N)
4 {
5 int i = blockDim .x* blockIdx .x + threadIdx .x;
6 if ( i<N)
7 a[ i ] += b[ i ];
8 }
9

10 int main ( int argc , char *argv [])
11 {
12 int N = 1000;
13

14 // Basic CUDA example



18 Software development for heterogeneous architectures

15 double *a1 , *b1 ;
16 cudaMalloc (( void **)&a1 , N* sizeof ( double )) ;
17 cudaMalloc (( void **)&b1 , N* sizeof ( double )) ;
18 cudaMemset (a1 , 2.0 , N);
19 cudaMemset (b1 , 3.0 , N);
20 int blocksize = 128;
21 add <<<(N+ blocksize -1) / blocksize , blocksize >>>(a1 , b1 , N);
22

23 // gpulab example
24 gpulab :: vector <double , gpulab :: device_memory > a2(N, 2.0) ;
25 gpulab :: vector <double , gpulab :: device_memory > b2(N, 3.0) ;
26 a2.axpy (1.0 , b2) ; // BLAS1 : a2 = 1* b2 + a2
27

28 return 0;
29 }

Listing 2.1: Allocating, initializing, and adding together two vectors on the
GPU: �rst example uses pure CUDA C; second example uses the
built-in library template-based vector class

The vector class (and derived classes hereof) is compliant with the rest of the li-
brary components. Matrix-vector multiplications are usually what makes PDE-
based applications di�erent from each other, and the need to write a user speci�c
implementation of the matrix-vector product is essential when solving speci�c
PDE problems. The PDE and the choice of discretization method determine
the structure and sparsity of the resulting matrix. Spatial discretization is sup-
ported by the library with �nite di�erence approximations, and it o�ers an
e�cient, low-storage (matrix-free), �exible order implementation to help devel-
opers tailor their custom codes. These matrix-free operators are feasible for
problems where the matrix structure is known in advance and can be exploited,
such that the matrix values can be either precomputed or computed on the �y.
Furthermore, the low constant memory requirement makes them perfect in the
context of solving large-scale problems, whereas traditional sparse matrix for-
mats require increasingly more memory, see e.g., [BG09] for details on GPU
sparse matrix formats.

Finite di�erences approximate the derivative of some function u(x) as a weighted
sum of neighboring elements. In compact notation we write

@qu(x i )
@xq

�
�X

n = � �

cn u(x i + n ); (2.1)

where q is the order of the derivative, cn is a set of �nite di�erence coe�cients,
and � plus � de�ne the number of coe�cients that are used for the approxima-
tion. The total set of contributing elements is called the stencil, and the size of
the stencil is called the rank, given as � + � + 1 . The stencil coe�cients cn can
be derived from a Taylor expansion based on the values of � and � , and q, using
the method of undetermined coe�cients [LeV07]. An example of a three-point



2.1 Heterogeneous library design for PDE solvers 19

�nite di�erence matrix that approximates the �rst (q = 1 ) or second (q = 2 )
derivative of a one-dimensional uniformly distributed vector u of length 8 is
given here:

2

6
6
6
6
6
6
6
6
6
6
4

c00 c01 c02 0 0 0 0 0
c10 c11 c12 0 0 0 0 0
0 c10 c11 c12 0 0 0 0
0 0 c10 c11 c12 0 0 0
0 0 0 c10 c11 c12 0 0
0 0 0 0 c10 c11 c12 0
0 0 0 0 0 c10 c11 c12

0 0 0 0 0 c20 c21 c22

3

7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
4

u0

u1

u2

u3

u4

u5

u6

u7

3

7
7
7
7
7
7
7
7
7
7
5

�

2

6
6
6
6
6
6
6
6
6
6
6
6
4

u(q)
0

u(q)
1

u(q)
2

u(q)
3

u(q)
4

u(q)
5

u(q)
6

u(q)
7

3

7
7
7
7
7
7
7
7
7
7
7
7
5

:(2.2)

It is clear from this example that the matrix is sparse and that the same co-
e�cients are repeated for all centered rows. The coe�cients di�er only near
the boundaries, where o�-centered stencils are used. It is natural to pack this
information into a stencil operator that stores only the unique set of coe�cients:

c =

2

4
c00 c01 c02

c10 c11 c12

c20 c21 c22

3

5 : (2.3)

Matrix components precompute these compact stencil coe�cients and provide
member functions that compute the �nite di�erence approximation of input
vectors. Unit scaled coe�cients (assuming grid spacing is one) are computed
and stored to be accessible via both CPU and GPU memory. On the GPU, the
constant memory space is used for faster memory access [Nvi13]. In order to
apply a stencil on a non unit-spaced grid, with grid space � x, the scale factor
1=(� x)q will have to be multiplied by the �nite di�erence sum, i.e., (c00u0 +
c01u1 + c02u2)=(� x)q � u(q)

0 , as in the �rst row of (2.2).

Setting up a two-dimensional grid of size Nx � Ny in the unit square and comput-
ing the �rst derivative thereof is illustrated in Listing 2.2. The grid is a vector
component, derived from the vector class. It is by default treated as a device
object, and memory is automatically allocated on the device to �t the grid size.
The �nite di�erence approximation as in (2.1), is performed via a CUDA kernel
behind the scenes during the calls to mult and diff_x , utilizing the memory
hierarchy as the CUDA guidelines prescribe [Nvi13, Nvi12b]. To increase devel-
oper productivity, kernel launch con�gurations have default settings, based on
CUDA guidelines, principles, and experiences from performance testings, such
that the user does not have to explicitly specify them. For problem-speci�c
�nite di�erence approximations, where the built-in stencil operators are insu�-
cient, a pointer to the coe�cient matrix (2.3) can be accessed as demonstrated
in Listing 2.2 and passed to customized kernels.



20 Software development for heterogeneous architectures

1 # include <gpulab /grid .h>
2 # include <gpulab /FD/ stenci l .h>
3

4 int main ( int argc , char *argv [])
5 {
6 // In i t ia l ize grid dimensions
7 unsigned int Nx = 10 , Ny = 10;
8 gpulab :: grid_dim < unsigned int > dim(Nx ,Ny) ;
9 gpulab :: grid <double > u(dim); // 2D funct ion u

10 gpulab :: grid <double > ux(u) ; // 1st order derivat ive in x
11 gpulab :: grid <double > uxy (u) ; // Mixed derivat ive in x/y
12

13 // Put meaningful values into u here ...
14

15 // Stenci l size , alpha =beta =2 , 9pt 2D stenci l
16 int alpha = 2;
17 // 1st order derivat ive
18 gpulab :: FD :: stenci l_2d <double > stenci l (1 , alpha );
19 // Calculate uxy = du/dx + du/dy
20 stenci l .mult (u ,uxy ) ;
21 // Calculate ux = du/dx
22 stenci l . di f f_x (u ,ux ) ;
23 // Host and device pointers to stenci l coeffs
24 double const * hc = stenci l . coeffs_host () ;
25 double const * dc = stenci l . coeffs_device () ;
26

27 return 0;
28 }

Listing 2.2: Two-dimensional �nite di�erence stencil example: computing the
�rst derivative using �ve points (� = � = 2 ) per dimension, a
total nine-point stencil

In the following sections we demonstrate how to go from an initial value prob-
lem (IVP) or a boundary value problem (BVP) to a working application solver
by combining existing library components along with new custom-tailored com-
ponents. We also demonstrate how to apply spatial and temporal domain de-
composition strategies that can make existing solvers take advantage of systems
equipped with multiple GPUs. The next section demonstrates how to rapidly
assemble a PDE solver using library components. Appendix A contains addi-
tional examples and guidelines on how to use the GPUlab library.

2.2 Model problems

We present two elementary PDE model problems, to demonstrate how to assem-
ble PDE solvers, using library components that follow the guidelines described
above. The �rst model problem is the unsteady parabolic heat conduction equa-
tion; the second model problem is the elliptic Poisson equation. The two model
problems consist of elements that play important roles in solving a broad range
of more advanced PDE problems.



2.2 Model problems 21

We refer the reader to Chapter 3 for an example of a scienti�c application
relevant for coastal and maritime engineering analysis that has been assembled
using customized library components similar to those presented in the following.

2.2.1 Heat conduction equation

Firstly, we consider a two-dimensional heat conduction problem de�ned on a
unit square. The heat conduction equation is a parabolic partial di�erential
di�usion equation, including both spatial and temporal derivatives. It describes
how the di�usion of heat in a medium changes with time. Di�usion equations
are of great importance in many �elds of sciences, e.g., �uid dynamics, where
the �uid motion is uniquely described by the Navier-Stokes equations, which
include a di�usive viscous term [CM93, FP96].

The heat problem is an IVP, it describes how the heat distribution evolves
from a speci�ed initial state. Together with homogeneous Dirichlet boundary
conditions, the heat problem in the unit square is given as

@u
@t

� � r 2u = 0 ; (x; y) 2 
([0 ; 1] � [0; 1]); t � 0; (2.4a)

u = 0 ; (x; y) 2 @
 ; (2.4b)

where u(x; y; t ) is the unknown heat distribution de�ned within the domain 
 ,
t is the time, � is a heat conductivity constant (let � = 1 ), and r 2 is the
two-dimensional Laplace di�erential operator (@xx + @yy ). We use the following
initial condition:

u(x; y; t 0) = sin( �x ) sin(�y ); (x; y) 2 
 ; (2.5)

because it has a known analytic solution over the entire time span, and it satis�es
the homogeneous boundary condition given by (2.4b). An illustrative example
of the numerical solution to the heat problem, using (2.5) as the initial condition,
is given in Figure 2.2.

We use a Method of Lines (MoL) approach to solve (2.4). Thus, the spatial
derivatives are replaced with �nite di�erence approximations, leaving only the
temporal derivative as unknown. The spatial derivatives are approximated from
un , where un represents the approximate solution to u(tn ) at a given time tn

with time step size �t such that tn = n�t for n = 0 ; 1; : : :. The �nite di�erence
approximation can be interpreted as a matrix-vector product as sketched in
(2.2), and so the semi-discrete heat conduction problem becomes

@u
@t

= Au; A 2 RN � N ; u 2 RN ; (2.6)



22 Software development for heterogeneous architectures

0
0:5

1

0
0:5

1
0

0:5

1

xy

u

(a) t = 0 :00s

0
0:5

1

0
0:5

1
0

0:5

1

xy

(b) t = 0 :05s

0
0:5

1

0
0:5

1
0

0:5

1

xy

(c) t = 0 :10s

Figure 2.2: Discrete solution, at times t = 0s and t = 0 :05s, using (2.5) as the
initial condition and a small 20� 20 numerical grid.

where A is the sparse �nite di�erence matrix and N is the number of unknowns
in the discrete system. The temporal derivative is now free to be approximated
by any suitable choice of a time-integration method. The most simple integra-
tion scheme would be the �rst-order accurate explicit forward Euler method,

un +1 = un + �t Aun ; (2.7)

where n + 1 refers to the solution at the next time step. The forward Euler
method can be exchanged with alternative high-order accurate time integra-
tion methods, such as Runge-Kutta methods or linear multistep methods, if
numerical instability becomes an issue, see, e.g., [LeV07] for details on numer-
ical stability analysis. For demonstrative purposes, we simply use conservative
time step sizes to avoid stability issues. However, the component-based library
design provides exactly the �exibility for the application developer to select or
change PDE solver parts, such as the time integrator, with little coding e�ort.
A generic implementation of the forward Euler method that satis�es the library
concept rules is illustrated in Listing 2.3. According to the component guide-
lines in Figure 2.1, a time integrator is basically a functor, which means that
it implements the parenthesis operator, taking �ve template arguments: a right
hand side operator, the state vector, integration start time, integration end
time, and a time step size. The method takes as many time steps as necessary
to integrate from the start to the end, continuously updating the state vector
according to (2.7). Notice, that nothing in Listing 2.3 indicates whether GPUs
are used or not. However, it is likely that the underlying implementation of
the right hand side functor and the axpy vector function, do rely on fast GPU
kernels. However, it is not something that the developer of the component has
to account for. For this reason, the template-based approach, along with simple
interface concepts, make it easy to create new components that will �t well into
a generic library.



2.2 Model problems 23

1 struct forward_euler
2 {
3 template < typename F, typename T, typename V>
4 void operator () (F fun , V& x, T t , T tend , T dt )
5 {
6 V rhs (x) ; // Ini t ia l ize RHS vector
7 while ( t < tend )
8 {
9 if ( tend - t < dt )

10 dt = tend -t ; // Adjust dt for last t ime step
11

12 (* fun )(t , x , rhs ) ; // Apply rhs funct ion
13 x.axpy (dt , rhs ) ; // Update stage
14 t += dt ; // Next t ime step
15 }
16 }
17 }

Listing 2.3: Generic implementation of explicit �rst-order forward Euler
integration

The basic numerical approach to solve the heat conduction problem has now
been outlined, and we are ready to assemble the PDE solver.

2.2.1.1 Assembling the heat conduction solver

Before we are able to numerically solve the discrete heat conduction problem
(2.4), we need implementations to handle the the following items:

Grid. A discrete numerical grid to represent the two-dimensional heat distribu-
tion domain and the arithmetical working precision (32-bit single precision
or 64-bit double precision).

RHS. A right-hand side operator for (2.6) that approximates the second-order
spatial derivatives (matrix-vector product).

Boundary conditions. A strategy that ensures that the Dirichlet conditions
are satis�ed on the boundary.

Time integrator. A time integration scheme, that approximates the time deriva-
tive from (2.6).

All items are either directly available in the library, or can be designed from
components therein. The built-in stencil operator may assist in implementing
the matrix-vector product, but we need to explicitly ensure that the Dirichlet
boundary conditions are satis�ed. We demonstrated in Listing 2.2 how to ap-
proximate the derivative using �exible-order �nite di�erence stencils. However,



24 Software development for heterogeneous architectures

from (2.4b) we know that boundary values are zero. Therefore, we extend the
stencil operator with a simple kernel call that assigns zero to the entire bound-
ary. Listing 2.4 shows the code for the two-dimensional Laplace right-hand side
operator. The constructor takes as an argument the stencil half size � and
assumes � = � . Thus, the total two-dimensional stencil rank will be 4� + 1 .
For simplicity we also assume that the grid is uniformly distributed, Nx = Ny .
Performance optimizations for the stencil kernel, such as shared memory uti-
lization, are handled in the underlying implementation, accordingly to CUDA
guidelines [Nvi13, Nvi12b]. The macros, BLOCK1Dand GRID1D, are used to help
set up kernel con�gurations based on grid sizes, and RAW_PTRis used to cast the
vector object to a valid device memory pointer.

1 template < typename T>
2 __global__ void set_dir ichlet_bc (T* u , int Nx)
3 {
4 int i = blockDim .x* blockIdx .x+ threadIdx .x;
5 if ( i<Nx)
6 {
7 u[ i ] = 0.0;
8 u[(Nx -1) *Nx+i ] = 0.0;
9 u[ i *Nx ] = 0.0;

10 u[ i *Nx+Nx -1] = 0.0;
11 }
12 };
13

14 template < typename T>
15 struct laplacian
16 {
17 gpulab :: FD :: stenci l_2d <T> m_stenci l ;
18

19 laplacian ( int alpha ) : m_stenci l (2 , alpha ) {}
20

21 template < typename V>
22 void operator () (T t , V const & u, V & rhs ) const
23 {
24 m_stenci l .mult (u , rhs ) ; // rhs = du /dxx + du/dyy
25

26 // Make sure bc is correct
27 dim3 block = BLOCK1D ( rhs .Nx () ) ;
28 dim3 grid = GRID1D ( rhs .Nx () ) ;
29 set_dir ichlet_bc <<<grid ,block >>>( RAW_PTR ( rhs ) , rhs .Nx () ) ;
30 }
31 };

Listing 2.4: The right-hand side Laplace operator: the built-in stencil
approximates the two dimensional spatial derivatives, while the
custom set_dirichlet_bc kernel takes care of satisfying the
boundary conditions

With the right-hand side operator in place, we are ready to implement the solver.
For this simple PDE problem we compute all necessary initial data in the body
of the main function and use the forward Euler time integrator to compute the
solution until t = tend . For more advanced solvers, a built-in ode_solver class
is de�ned that helps take care of initialization and storage of multiple state



2.2 Model problems 25

variables. Declaring type de�nitions for all components at the beginning of the
main �le gives a good overview of the solver composition. In this way, it will be
easy to control or change solver components at later times. Listing 2.5 lists the
type de�nitions that are used to assemble the heat conduction solver.

1 typedef double value_type ;
2 typedef laplacian < value_type > rhs_type ;
3 typedef gpulab :: grid < value_type > vector_type ;
4 typedef vector_type :: property_type property_type ;
5 typedef gpulab :: integrat ion :: forward_euler t ime_integrator_type ;

Listing 2.5: Type de�nitions for all the heat conduction solver components
used throughout the remaining code

The grid is by default treated as a device object, and memory is allocated on
the GPU upon initialization of the grid. Setting up the grid can be done via
the property type class. The property class holds information about the discrete
and physical dimensions, along with �ctitious ghost (halo) layers and periodicity
conditions. For the heat conduction problem we use a non periodic domain of
size N � N within the unit square with no ghost layers. Listing 2.6 illustrates
the grid assembly.

1 // Setup discrete and physical dimensions
2 gpulab :: grid_dim <int > dim(N,N ,1) ;
3 gpulab :: grid_dim < value_type > p0 (0 ,0) ;
4 gpulab :: grid_dim < value_type > p1 (1 ,1) ;
5 property_type props (dim ,p0 ,p1) ;
6

7 // In i t ia l ize vector
8 vector_type u( props ) ;

Listing 2.6: Creating a two-dimensional grid of size N times N and physical
dimension 0 to 1

Hereafter the vector u can be initialized accordingly to (2.5). Finally we need
to instantiate the right-hand side Laplacian operator from Listing 2.4 and the
forward Euler time integrator in order to integrate from t0 until tend .

1 rhs_type rhs ( alpha ) ; // Create right - hand side operator
2 t ime_integrator_type solver ; // Create time integrator
3 solver (& rhs ,u ,0.0 f , tend ,dt ) ; // Integrate from 0 to tend using dt

Listing 2.7: creating a time integrator and the right-hand side Laplacian
operator.

The last line invokes the forward Euler time integration scheme de�ned in List-
ing 2.5. If the developer decides to change the integrator into another ex-
plicit scheme, only the time integrator type de�nition in Listing 2.5 needs to be
changed. The heat conduction solver is now complete.



26 Software development for heterogeneous architectures

2.2.1.2 Numerical solutions to the heat conduction problem

Solution time for the heat conduction problem is in itself not very interesting, as
it is only a simple model problem. What is interesting for GPU kernels, such as
the �nite di�erences kernel, is that increased computational work often comes
with a very small price, because the fast computations can be hidden by the
relatively slower memory fetches. Therefore, we are able to improve the accu-
racy of the numerical solution via more accurate �nite di�erences (larger stencil
sizes), while improving the computational performance in terms of �oating point
operations per second (�ops). Figure 2.3 con�rms, that larger stencils improve
the kernel performance. Notice that even though these performance results are
favorable compared to single core systems (� 10 GFlops double precision on a
2:5-GHz processor), they are still far from their peak performance, e.g., � 2:4
TFlops single precision for the GeForce GTX590. The reason is that the kernel
is bandwidth bound, i.e., performance is limited by the time it takes to move
memory between the global GPU memory and the chip. The Tesla K20 performs
better than the GeForce GTX590 because it obtains the highest bandwidth. Be-
ing bandwidth bound is a general limitation for matrix-vector-like operations
that arise from the discretization of PDE problems. Only matrix-matrix multi-
plications, which have a high ratio of computations versus memory transactions,
are able to reach near-optimal performance results [KmWH10]. These kinds of
operators are, however, rarely used to solve PDE problems.

1 2 3 4

10

20

30

40

50

60

�

G
F

lo
ps

single
double

(a) GeForce GTX590.

1 2 3 4
0

20

40

60

80

100

�

G
F

lo
ps

single
double

(b) Tesla K20c.

Figure 2.3: Single and double precision �oating point operations per second
for a two dimensional stencil operator on a numerical grid of size
40962. Various stencil sizes are used � = 1 ; 2; 3; 4, equivalent to
5pt, 9pt, 13pt, and 17pt stencils. Host memory transfers are not
included in timings.



2.2 Model problems 27

2.2.2 Poisson equation

The Poisson equation is a second-order elliptic di�erential equation, often en-
countered in applications within scienti�c �elds such as electrostatics and me-
chanics. We consider the two- dimensional BVP de�ned in terms of Poisson's
equation with homogeneous Dirichlet boundary conditions of the form

r 2u = f (x; y); (x; y) 2 
([0 ; 1] � [0; 1]); (2.8a)

u = 0 ; (x; y) 2 @
 : (2.8b)

Notice the similarities to the heat conduction equation (2.4). In fact, (2.8)
could be a steady-state solution to the heat equation, when there is no temporal
change @u

@t = 0 , but a source term f (x; y). Since the Laplace operator and the
boundary conditions are the same for both problems, we are able to reuse the
same implementation with few modi�cations.

In contrast to the heat equation, there are no initial conditions. Instead, we seek
some u(x; y) that satis�es (2.8), given a source term f (x; y), on the right-hand
side. For simplicity, assume that we know the exact solution, utrue , correspond-
ing to (2.5). Then we use the method of manufactured solutions to derive an
expression for the corresponding right-hand side f (x; y):

f (x; y) = r 2utrue = � 2� 2 sin(�x ) sin(�y ): (2.9)

The spatial derivative in (2.8) is again approximated with �nite di�erences,
similar to the example in (2.2), except boundary values are explicitly set to
zero. The discrete form of the system can now be written as a sparse linear
system of equations:

Au = f ; u; f 2 RN ; A 2 RN � N ; (2.10)

where A is the sparse matrix formed by �nite di�erence coe�cients, N is the
number of unknowns, and f is given by (2.9). Equation (2.10) can be solved
in numerous ways, but a few observations may help do it more e�ciently. Di-
rect solvers based on Gaussian elimination are accurate and use a �nite number
of operations for a constant problem size. However, the arithmetic complexity
grows with the problem size by as much as O(N 3) if the sparsity of A is not
exploited. Direct solvers are therefore mostly feasible for dense systems of lim-
ited sizes. Sparse direct solvers exist, but they are often di�cult to parallelize,
or applicable for only certain types of matrices. Regardless of the discretization
technique, the discretization of an elliptic PDE into a linear system as in (2.10)
yields a very sparse matrix A when N is large. Iterative methods for solv-
ing large sparse linear systems �nd broad use in scienti�c applications, because
they require only an implementation of the matrix-vector product, and they



28 Software development for heterogeneous architectures

often use a limited amount of additional memory. Comprehensive introductions
to iterative methods may be found in any of [Saa03, Kel95, BBC+ 94].

One bene�t of the high abstraction level and the template-based library design is
to allow developers to implement their own components, such as iterative meth-
ods for solving sparse linear systems. The library includes three popular iterative
methods: conjugate gradient, defect correction, and geometric multigrid. The
conjugate gradient method is applicable only to systems with symmetric pos-
itive de�nite matrices. This is true for the two-dimensional Poisson problem,
when it is discretized with a �ve-point �nite di�erence stencil, because then
there will be no o�-centered approximations near the boundary. For high-order
approximations (� > 1), we use the defect correction method with multigrid
preconditioning. See e.g., [TOS+ 01] for details on multigrid methods.

We will not present the implementation details for all three methods but brie�y
demonstrate the simplicity of implementing the body of such an iterative solver,
given a textbook recipe or mathematical formulation. The defect correction
method iteratively improves the solution to Ax = b, given an initial start guess
x0, by continuously solving a preconditioned error equation. The defect correc-
tion iteration can be written as

x k+1 = x k + M � 1(b � A x k ); A ; M 2 RN � N ; x ; b 2 RN ; (2.11)

where k is the iteration number and M is the preconditioner which should be
an approximation to the original coe�cient matrix A . To achieve fast numerical
convergence, applying the preconditioner should be a computationally inexpen-
sive operation compared to solving the original system. How to implement (2.11)
within the library context is illustrated in Listing 2.8. The host CPU traverses
each line in Listing 2.8 and tests for convergence, while the computationally
expensive matrix-vector operation and preconditioning, can be executed on the
GPU, if GPU-based components are used. The defect correction method has
two attractive properties. First, global reduction is required to monitor con-
vergence only once per iteration, during convergence evaluation, which reduces
communication requirements and provides a basis for e�cient and scalable par-
allelization. Second, it has a minimal constant memory footprint, making it a
suitable method for solving very large systems.

1 while (r . nrm2 () > tol )
2 {
3 // Calculate residual
4 A.mult (x , r ) ;
5 r . axpby (1 , -1, b) ;
6

7 // Reset ini t ial guess
8 d. fi l l (0) ;
9

10 // Solve M*d=r
11 M(d,r) ;
12



2.2 Model problems 29

13 // Defect correct ion update
14 x.axpy (1 , d) ;
15 }

Listing 2.8: Main loop for the iterative defect correction solver: the solver
is instantiated with template argument types for the matrix and
vector classes, allowing underlying implementations to be based
on GPU kernels

In the following section we demonstrate how to assemble a solver for the discrete
Poisson problem, using one of the three iterative methods to e�ciently solve
(2.10).

2.2.2.1 Assembling the Poisson solver

Assembling the Poisson solver follows almost the same procedure as the heat
conduction solver, except the time integration part is exchanged with an iter-
ative method to solve the system of linear equations (2.10). For the discrete
matrix-vector product we reuse the Laplace operator from the heat conduction
problem in Listing 2.4 with few modi�cations. The Laplace operator is now
a matrix component, so to be compatible with the component interface rules
in Figure 2.1, a mult function taking two vector arguments is implemented in-
stead of the parentheses operator. We leave out this code example as it almost
identical to the one in Listing 2.4.

At the beginning of the solver implementation we list the type de�nitions for
the Poisson solver that will be used throughout the implementation. Here we
use a geometric multigrid method as a preconditioner for the defect correction
method. Therefore the multigrid solver is assembled �rst, so that it can be
used in the assembling of the defect correction solver. Listing 2.9 de�nes the
types for the vector, the matrix, the multigrid preconditioner, and the defect
correction solver. The geometric multigrid method needs two additional tem-
plate arguments that are speci�c for multigrid, namely, a smoother and a grid
restriction/interpolation operator. These arguments are free to be implemented
and supplied by the developer if special care is required, e.g., for a custom
grid structure. For the Poisson problem on a regular grid, the library contains
built-in restriction and interpolation operators, and a red-black Gauss-Seidel
smoother. We refer the reader to [TOS+ 01] for extensive details on multigrid
methods. The monitor and con�g types that appear in Listing 2.9 are used
for convergence monitoring within the iterative solver and to control runtime
parameters, such as tolerances and iteration limits.

1 typedef double value_type ;



30 Software development for heterogeneous architectures

2 typedef gpulab :: grid < value_type > vector_type ;
3 typedef laplacian < vector_type > matr ix_type ;
4

5 // MULTIGRID solver types
6 typedef gpulab :: solvers :: mult igr id_types <
7 vector_type
8 , matr ix_type
9 , gpulab :: solvers :: gauss_seidel_rb_2d

10 , gpulab :: solvers :: gr id_handler_2d > mg_types ;
11 typedef gpulab :: solvers :: mult igrid <mg_types > mg_solver_type ;
12 typedef mg_solver_type :: monitor_type monitor_type ;
13 typedef monitor_type :: conf ig_type conf ig_type ;
14

15 // DC solver types
16 typedef gpulab :: solvers :: defect_correct ion_types <
17 vector_type
18 , matr ix_type
19 , monitor_type
20 , mg_solver_type > dc_types ;
21 typedef gpulab :: solvers :: defect_correct ion <dc_types > dc_solver_type ;

Listing 2.9: Type de�nitions for the Laplacian matrix component and the
multigrid preconditioned iterative defect correction solver

With the type de�nitions set up, the implementation for the Poisson solver
follows in Listing 2.10. Some of the initializations are left out, as they follow
the same procedure as for the heat conduction example. The defect correction
and geometric multigrid solvers are initialized and then multigrid is set as a
preconditioner to the defect correction method. Finally the system is solved via
a call to solve() .

1 matr ix_type A( alpha ); // High - order matr ix
2 matr ix_type M(1) ; // Low - order matr ix
3

4 /* Omitted : create and init vectors u , f */
5

6 conf ig_type config ; // Create conf igurat ion
7 config . set (" iter " ,30) ; // Set max iterat ion count
8 config . set (" rtol " ,1e -10) ; // Set relat ive tolerance
9 monitor_type monitor ( config ) ; // Create monitor

10 dc_solver_type solver (A , monitor ) ; // Create DC solver
11 mg_solver_type precond (M, monitor ) ; // Create MG precondit ioner
12 solver . set_precondi t ioner ( precond ); // Set precondit ioner
13 solver . solve (u , f ) ; // Solve M^ -1( Au = f)
14 if ( monitor . converged () )
15 printf ( " SUCCESS \n") ;

Listing 2.10: Initializing the preconditioned defect correction solver to
approximate the solution to Au = f

2.2.2.2 Numerical solutions to the Poisson problem

The discrete Poisson problem (2.10) has been solved using the three iterative
methods presented above. Convergence histories for the conjugate gradient



2.3 Multi-GPU systems 31

method and geometric multigrid method, using two di�erent resolutions, are
illustrated in Figure 2.4a. Multigrid methods are very robust and algorithmi-
cally e�cient, independent of the problem size. Figure 2.4a con�rms that the
rate of convergence for the multigrid method is unchanged for both problem
sizes. Only the attainable accuracy is slightly worsened, as a consequence of a
more ill-conditioned system for large problem sizes.

Defect correction in combination with multigrid preconditioning enables e�cient
solution of high-order approximations of the Poisson problem, illustrated in
Figure 2.4b. The multigrid preconditioning matrix M is based on a low-order
approximation to (2.10), whereas matrix A is a high-order approximation. When
M is a close approximation to A , defect correction converges most rapidly. This
is the e�ect that can be seen between the three convergence lines in Figure 2.4b.

(a) Convergence histories for the con-
jugate gradient (CG) and multigrid
(MG) methods, for two di�erent
problem sizes.

(b) Defect correction convergence his-
tory for three di�erent stencil sizes.

Figure 2.4: Algorithmic performance for the conjugate gradient, multigrid,
and defect correction methods, measured in terms of the relative
residual per iteration.

2.3 Multi-GPU systems

CUDA-enabled GPUs are optimized for high memory bandwidth and fast on-
chip performance. However, the role as a separate co-processor to the CPU can
be a limiting factor for large-scale scienti�c applications, because the GPU mem-
ory capacity is �xed and is only in the range of a few Gigabytes. In comparison,



32 Software development for heterogeneous architectures

it is not unusual for a high-end workstation to be equipped with � 32GB of
main memory, plus a terabyte hard disk capacity for secondary storage. There-
fore, large-scale scienti�c applications that process Gigabytes of data, require
distributed computations on multiple GPU devices. Multi-GPU desktop com-
puters and clusters can have a very attractive peak performance, but the ad-
dition of multiple devices introduces the potential performance bottleneck of
slow data transfers across PCIe busses and network interconnections. The ratio
between data transfers and computational work has a signi�cant impact on the
possibility for latency hiding, and thereby on overall application performance.

Developing software that exploit the full computational capabilities of modern
clusters, GPU-based or not, is no trivial matter. Developers are faced with the
complexity of distributing and coordinating computations on nodes consisting
of many-core CPUs, GPUs and potentially other types of accelerators as well.
These complexities give rise to challenges in �nding numerical algorithms, that
are well suited for such systems, forcing developers to search for novel methods
that utilize concurrency. In Chapter 4 and 5 we address some of the di�cul-
ties in designing software for distributed systems and demonstrate both spatial
and temporal decomposition techniques as a means for enhanced performance
throughput and large-scale simulation.



Chapter 3

Free surface water waves

Applications for hydrodynamic simulations are used in many areas of coastal
and o�shore engineering. Most models today are based on Boussinesq-type for-
mulations, where the three-dimensional uni�ed potential �ow problem is sim-
pli�ed analytically to a two-dimensional problem under the assumption that
the vertical pro�le has polynomial variation. Much research has been done
on Boussinesq-type models for several decades, since the original work of Pere-
grine [Per67] and later pioneered by Abott et al. [APS78, AMW84]. More recent
research focuses on higher-order formulations that more accurately capture the
e�ects of fully nonlinear and dispersive water waves traveling over varying depths
to far o�shore. These formulations tend to introduce numerical di�culties due
to the higher order derivatives.

The quality and application range of hydrodynamic simulations based on Boussinesq-
type formulations are traditionally evaluated against the more accurate poten-
tial �ow theory, which has been perceived as too computationally expensive for
practical engineering applications [Lin08]. Potential �ow theory requires the
solution of a Laplace problem arising from the fully three-dimensional prob-
lem. An e�cient scalable strategy for solving the transformed Laplace problem,
based on low-order �nite di�erence discretization and geometric multigrid, was
�rst proposed by Li and Fleming in 1997 [LF97]. Their strategy led the way
for more accurate and e�cient methods, as it was still unsuitable for large-scale
engineering applications.



34 Free surface water waves

Our work takes o�set in the development and improvements to the strategy
originally proposed by Li and Fleming. The strategy extended in [BZ07] with
high-order discretizations via high-order numerics and vertical grid clustering to
enable accurate and e�cient solutions in two dimensions. A �exible-order dis-
cretization for the three-dimensional problem was then proposed by [EKBL09],
with a more robust discretization strategy and a Laplace solver based on multi-
grid preconditioned GMRES. The total strategy proposed by [EKBL09] led to
the �rst Fortran90 implementation of what was then referred to as the Ocean-
Wave3D model1.

The development of new massively parallel high-performance commodity hard-
ware, is a perfect driver for developing and revisiting these techniques for e�cient
simulation of maritime engineering applications. In [EKMG11], we implemented
a dedicated massively parallel solver based on �exible-order discretization and a
multigrid preconditioned defect correction method, and we demonstrated that it
is indeed possible to signi�cantly reduce the barriers for practical use of poten-
tial �ow theory as a modeling basis for hydrodynamic simulations. To establish
the model as an e�cient parallel tool, the entire algorithm was �rst redesigned,
implemented, and evaluated using a dedicated solver based on the CUDA for C
programming model. The CUDA for C extension was used because no extensions
were available for Fortran90 at the time of the proof-of-concept. The promising
intermediate performance results convinced us to continue the development of
the GPU-accelerated OceanWave3D solver and to implement the solver using
our generic library in order to enhance portability and productivity of future
development. The OceanWave3D model, based on uni�ed potential �ow theory,
is a relevant modeling basis, because it emphasizes some of the new engineering
possibilities that modern a�ordable hardware brings. In addition, a potential
�ow model is a good test bed for prototyping and designing software algorithms
for PDE solvers, as it contains components that are essential in a broad range
of scienti�c applications, such as a computationally demanding elliptic problem
along with hyperbolic free surface conditions. When this work began, there
were few engineering applications that utilized massively parallel heterogeneous
systems. Our focus is to try and demonstrate by a proof-of-concept some of the
possibilities that these modern programming paradigms can o�er.

1Development and research based on the OceanWave3D model are currently employed
by researches at the Department of Mechanical Engineering and the Department of Applied
Mathematics and Computer Science at the Technical University of Denmark.



3.1 Potential �ow theory 35

3.1 Potential �ow theory

The uni�ed potential �ow equations are a subclass of the more complete Euler
equations, and are valid only under the assumption of incompressible, irrota-
tional, and inviscid �ow. A comprehensive introduction to hydrodynamics is
given by Svendsen and Jonnson [SJ76]. Details on numerical modeling aspects
can be found in e.g., [Lin08] or in the shorter survey by Dias and Bridges [DB06].
A variety of numerical techniques for solving such hydrodynamic model problems
have been presented throughout the literature, see e.g., [Yeu82, LF97, EK06].
A concise derivation of the the fully nonlinear water wave model based on po-
tential �ow theory is presented in [EKGNL13]. In this section we intend only
to present the governing equations as they will be used in the remainder of
this work and we refer the reader to the above mentioned literature for a more
thorough introduction.

Under the assumption of irrotational �ow, the velocity vector �eld u(x; y; z) �
(u; v; w)T , is uniquely de�ned by the gradient of the velocity potential � (x; y; z),
such that u � (@x �; @y �; @z � )T . The evolution of the free surface elevation � ,
and the potential ~� at the free surface, are described by a kinematic and a
dynamic free surface boundary condition

@t � = � r � � r ~� + ~w(1 + r � � r � ); (3.1a)

@t
~� = � g� �

1
2

(r ~� � r ~� � ~w2(1 + r � � r � )) ; (3.1b)

where r is the horizontal di�erential operator r � (@x @y )T , g is the gravita-
tional acceleration, and ~w is the vertical velocity evaluated at the free surface
~w � @z � jz= � .

Figure 3.1: Setup of a free surface wa-
ter wave model.

The unsteady free surface elevation
� (x ; t) is measured from the still-
water level at z = 0 . A conceptual
illustration of a two-dimensional nu-
merical wave tank with a free surface
water wave setup is given in Figure
3.1.

The vertical velocity at the surface
~w, can be computed from the full ve-
locity potential. Due to mass conti-
nuity, the velocity potential satis�es
the Laplace equation everywhere in-
side the domain. Along with bound-
ary conditions the following (elliptic)



36 Free surface water waves

Laplace equation uniquely de�nes the
velocity potential

� = ~�; z = � (3.2a)

r 2� + @zz � = 0 ; � h � z < � (3.2b)

@z � + r h � r � = 0 ; z = � h; (3.2c)

where h is the still water depth. The system of equations is closed by imposing
proper boundary conditions on the outer boundaries @
 , surrounding the do-
main of interest. In the vertical direction, the �ow is bounded at the bottom
z = � h, by the kinematic free-slip condition (3.2c) and at the surface z = � ,
with Dirichlet conditions given by the time-dependent dynamic free surface con-
dition(3.1b).

Along the vertical boundaries we assume only bottom-mounted, vertical surface-
piercing, and fully re�ecting (impermeable) walls with free slip boundary con-
ditions. In this case all outward pointing boundary normals are �xed to the
horizontal plane, e.i. n � (nx ; ny ; 0)T , and the �uid �ows only along the tan-
gential direction of the walls,

n � u = nx u + ny v

= nx @x � + ny @y � = 0 ; 8x 2 @
 : (3.3)

Wave generation and wave absorption are considered in Section 3.2.4, where we
�nd that with impermeable boundaries in combination with su�ciently large
generation and absorption zones, the absence of radiation boundaries is not sig-
ni�cant. Thus, we are able to reuse the boundary condition (3.3), in combination
with wave generation and absorption zones.

Under some circumstances, when wave amplitudes are small and dispersive wave
e�ects are minor , i.e., r � (x ; t) � 0; 8x; t, the nonlinear free surface equations
can be reduced to linear form,

@t � = ~w; (3.4a)

@t
~� = � g�: (3.4b)

The linear free surface conditions are useful for stability analysis and validation
cases where analytic solutions are known. We emphasize that when we refer to
the linear or nonlinear system, it refers to the PDE, and not the Laplace problem,
which is always a linear system of equations.

In free surface water wave modeling it is often convenient to use dimensionless
numbers for comparison and characterization of various waves. The wave num-
ber k is given by k � 2�=L , where L is the wavelength. Also the wave number



3.2 The numerical model 37

times the still water depth kh, is used to determine if the wave is propagating in
a deep or a shallow water situation. The wave steepness S is de�ned as the ratio
between wave height and wavelength S � H=L . Sometimes we refer to wave
steepness in terms of maximum attainable value, i.e., H=L = 50%(H=L )max .
For a thorough introduction to wave characterization we refer the reader to
[SJ76].

3.2 The numerical model

Numerical solutions to potential �ow model problems are attractive to gain
unique insight due to the underlying accurate properties. To ensure practical
solutions of large-scale problems based on potential �ow theory, it is of great im-
portance that the numerical strategy is based on e�cient, scalable, distributed,
data-local, and parallel methods. We use a �nite di�erence discretization for
approximating the spatial derivatives in (3.1) and (3.2), based on the generic
matrix-free implementation presented in Section 2.1.2. The order of accuracy
can be controlled via a �exible order implementation, which allow the user to
control the size of the discretization stencils. Finite di�erence methods are
among the simplest and best performing discretization methods, due to high
data-locality (at least along one dimension) and the structured domains, which
require no index lookup table.

In the context of GPUs, the above mentioned numerical method translates
well into the GPU programming model, because the computation of each �-
nite di�erence approximation per grid point is embarrassingly parallel, since no
communication between threads is required. Furthermore, structured grids are
easily represented in memory and allow parallel execution with e�cient collo-
cated memory access patterns, such that adjacent threads also access adjacent
memory locations.

3.2.1 E�cient solution of the Laplace equation

The Laplace problem (3.2) with boundary conditions is a fully three-dimensional
problem, whereas the free surface boundary conditions (3.1a) and (3.1b) are
only two-dimensional. Computing the solution to the discrete Laplace problem
therefore involves signi�cantly more computational work, which makes it the
performance bottleneck. We have implemented and analyzed a scalable and
low-memory iterative strategy for e�ciently solving the Laplace problem on
heterogeneous hardware in [EKMG11, GEKM11]. The numerical strategy is



38 Free surface water waves

Figure 3.2: Vertical � -transormation.

brie�y outlined in the following sections.

From a numerical point of view it is impractical that the shape of the phys-
ical domain changes due to the time-dependent free surface conditions. A � -
transformation is therefore applied in the vertical direction such that

� (x ; z; t) =
z + h(x )
d(x ; t)

; 0 � � � 1; (3.5)

where d(x ; t) = � (x ; t) + h(x ) is the total water depth from the sea bottom
to the water surface. This enables a transformation of the physical problem
into a time-invariant computational domain, at the expense of time-varying
coe�cients and mixed derivatives. The � -transformation is illustrated in Figure
3.2. Once the � -transformation is applied, the original Laplace problem (3.2) is
transformed as well,

� = ~�; � = 1 ; (3.6a)

r 2� + r 2� (@� �) + 2 r � � r (@� �)+

(r � � r � + ( @z � )2)@�� � = 0 ; 0 � � < 1; (3.6b)

n � (r ; @z �@� )� = 0 ; (x ; � ) 2 @
 ; (3.6c)

where the transformed velocity potential �( x ; �; t ) = � (x ; z; t) holds all informa-
tion about the �ow kinematics in the entire �uid volume. The spatial derivatives



3.2 The numerical model 39

of � appearing in (3.6) can be directly derived from (3.5) as

r � =
1 � �

d
r h �

�
d

r �; (3.7a)

r 2� =
1 � �

d

�
r 2h �

r h � r h
d

�
�

�
d

�
r 2� �

r � � r �
d

�

�
1 � 2�

d2 r h � r � �
r �
d

� (r h + r � ) ; (3.7b)

@z � =
1
d

: (3.7c)

All of these � -coe�cients can be computed using �nite di�erence approximations
with the same accuracy as the remaining approximations, given the known free
surface elevation and bottom function at any given instance of time. Under
the assumption of linearized free surface conditions, r � (x ; t) � 0; 8x; t, the
transformed Laplace problem and the transformation coe�cient simpli�es as
well.

We use �exible-order �nite di�erence stencils to discretize the spatial derivatives
in (3.6) as well. All derivatives are computed from one dimensional approxima-
tions, using a controllable number of adjacent grid points to meet the desired
order of accuracy. We use a matrix-free implementation to exploit that only a
few di�erent �nite di�erence coe�cients are required. This strategy signi�cantly
reduces the memory consumption, as the matrix-free operator uses a constant
amount of memory, independent of the problem size. When the spatial deriva-
tives in (3.6) are approximated with �nite di�erences, the transformed Laplace
problem can be written as a linear system of equations,

A� = b; A 2 RN � N ; � ; b 2 RN ; (3.8)

where N is the product of the number of discrete grid points in each dimension
Nx , Ny , and Nz , respectively. This discrete system of equations is fully coupled,
sparse and non-symmetric. The matrix-free stencil operator based on �exible-
order �nite di�erence presented in Section 2.1.2 is utilized to create a custom
matrix component that computes the matrix-vector product in (3.8).

3.2.2 Preconditioned defect correction method

In [LF01], the discrete Laplace problem (3.8) was discretized using low-order
�nite di�erences and solved with a geometric multigrid method. The idea of
multigrid methods as proposed by Brandt in 1977[Bra77] has since proven to be
among the most e�cient iterative methods to solve sparse linear systems arising
from the discretization of partial di�erential equations. Multigrid methods have



40 Free surface water waves

successfully been used to solve a broad range of applications [TOS+ 01, BHM00].
Multigrid methods possess the very attractive feature, that the computational
time to satisfy a given convergence criterion is linearly proportional to the num-
ber of unknowns. Unfortunately geometric multigrid is not directly applicable
for computing solutions based on high-order discretizations due to stability is-
sues [TOS+ 01].

In recent work we have proposed a preconditioned iterative defect correction
method (PDC), to allow high-order accurate discretization with a constant low-
storage overhead and scalable work e�ort as outlined in Section 2.2.2. Instead
of solving (3.8), we solve the left-preconditioned system

M � 1A� = M � 1b; M � 1 2 RN � N ; (3.9)

Where M is a preconditioner, such that M � 1 � A � 1 can be computed at
a low computational cost. The preconditioned defect correction method then
generates a sequence of iterates, starting from an initial guess � [0] and continues,

� [k ] = � [k � 1] + M � 1r [k � 1] ; r [k � 1] = b � A � [k � 1] ; k = 1 ; 2; : : : ; (3.10)

until a given convergence criteria is satis�ed. We can also formulate the de-
fect correction method as a stationary iterative method, in terms of the time-
invariant iteration matrix G,

� [k ] = � [k � 1] + M � 1r [k � 1] (3.11)

= � [k � 1] + M � 1(b � A � [k � 1]) (3.12)

= ( I � M � 1A)
| {z }

G

� [k � 1] + M � 1b| {z }
c

(3.13)

= G� [k � 1] + c; (3.14)

in which the iteration matrix G can be used for convergence analysis. The choice
of the preconditioner M , and therefore G, is important for the convergence of the
defect correction method, and has been analyzed in the context of free surface
water waves in [EK14]. The preconditioner M is chosen as a coarse grid solver
based on nested grids to form a geometric multigrid preconditioner. In previous
work it has been demonstrated that M can be based on a linearized second-
order �nite di�erence approximation, for e�cient solution of the fully nonlinear
system in (3.6), as �rst used in [EKBL09]. The second-order approximation
and linearization reduce the computational work of computing the residuals in
the preconditioning phase. A textbook recipe for the defect correction method,
preconditioned with one geometric multigrid V-cycle is presented in in Table
3.1.

The most important subroutines are outlined in Table 3.1 and will be pro�led in
Section 3.4. The number of multigrid levels can be controlled with the value of



3.2 The numerical model 41

PDC (A ; x ; b )
1 i = 0
2 r = b � A x // Residual
3 while jj r jj > � and i < i max
4 GMG (M ; d ; r ) // Precondition
5 x = x + d // Correct
6 r = b � A x // Residual
7 i = i + 1
8 end while

GMG (M ; x ; b )
1 k = K // User de�ned
2 VCYCLE (k; M ; x ; b )

VCYCLE (k; M ; x ; b )
1 if k == 0
2 Smooth (x ; b ) // Coarse-smooth
3 else
4 Smooth (x ; b ) // Pre-smooth
5 r = b � M x // Residual
6 Restrict ( r ; d )
7 VCYCLE (k � 1; M ; e; d )
8 Prolongate (e; r )
9 x = x + r // Correct

10 Smooth (x ; b ) // Post-smooth
11 end if

Table 3.1: Recipe for the iterative defect correction (PDC) method, precondi-
tioned with a geometric multigrid (GMG) V-cycle using K coars-
enings.

K and it will in�uence the algorithmic convergence rate. On the coarsest level
either a direct solve or multiple smoothings should be performed. In order to
reuse library components we perform a controllable number of smoothings on the
coarsest grid level. For good numerical and algorithmic convergence it is advised
to restrict until the coarsest level[TOS+ 01]. However, coarse grid levels reduce
the parallel performance, as the ratio between the number of parallel threads
and discrete grid points become less favorable. In Section 4.4.4 we demonstrate,
based on numerical experiments, that there is a less strict requirement for solving
the Laplace problem arising from the discretization of a water wave problem.
There are several smoothing (or relaxation) techniques to choose from. Unless
otherwise stated, we will use a Red-Black Z-line Gauss-Seidel smoother based
on a modi�ed Thomas algorithm, see [EKMG11] for details. This smoothing
strategy in combination with semi-coarsening has proven to be very algorithmic
e�ective for both deep and shallow water problems and it can be implemented
to run e�ciently in parallel as a per-thread line solver.

The PDC and GMG algorithms are implemented into our library in the same
generic way as previously described. Building the solver using a prede�ned type
binder class could look as follows, assuming that proper types for the vector,
matrix, and preconditioner are set beforehand.

1 // Defect Correct ion type binder
2 typedef solvers :: defect_correct ion_types <
3 vector_type
4 , matr ix_type
5 , precondit ioner_type > dc_types ;
6 typedef solvers :: defect_correct ion <dc_types > dc_solver_type ;
7

8 // Create solver , assume vectors x and b, matr ix A , and precondit ioner P are
already created

9 dc_solver_type solver ( A ) ; // Create solver
10 solver . set_precondi t ioner ( P ) ; // Set precondit ioner
11 solver . solve (x , b) ; // Solve Ax = b



42 Free surface water waves

Listing 3.1: Assembling the defect correction solver to compute the solution
of Ax = b

3.2.3 Time integration

The Initial Value Problem (IVP) de�ned by the free surface conditions are dis-
cretized with a method of lines approach. The discretization of the spatial
derivatives yields a system of ordinary di�erential equations that we can write
as a semi-discrete system,

@t (�; ~� ) = N (�; ~� ); N : R2M ! R2M ; (3.15)

where N is a nonlinear operator that approximates the spatial derivatives. We
use the classical four stage and 4th -order accurate explicit Runge-Kutta method
(ERK4) to solve (3.15). Explicit Runge-Kutta schemes are attractive as stability
constraints are often well understood and they are straightforward to parallelize.
However, for explicit time integration schemes, the Courant-Friedrichs-Lewy
(CFL) condition de�nes a necessary condition on the time step size for stable
integration. For temporal integration of free surface water waves we de�ne the
CFL condition in terms of the dimensionless Courant number Cr and the wave
celerity c,

Cr = c
� t
� x

� Crmax : (3.16)

where Crmax depends on the method used to solve (3.15). For explicit time
integration typically Crmax = 1 , though the stability analysis based on the local
linearization (3.4), carried out in [EKGNL13], indicates that the time step is not
severely limited by the horizontal resolution given a speci�c choice of vertical
discretization, Nz . Numerical experiments �nd that this less strict condition is
also true for the nonlinear model, as long as the waves are not too steep. These
are attractive properties as they imply that the model is robust, insensitive to
time step sizes and applicable for local grid re�nements.

3.2.4 Wave generation and wave absorption

Wave generation and wave absorption are essential in order to perform a range
of validation and engineering cases where waves propagate through or into the
domain of interest. In order to generate and absorb waves we insert a generation



3.2 The numerical model 43

zone and an absorption zone in each end of the domain. Unless otherwise
stated, the generation zone will be in the west side of the domain and the
absorption zone in the east side. The generation zone forces the impact of an
analytic wave function, while the absorption zone dampens the waves amplitudes
towards zero. Several techniques exist for generation of waves. One common
method forces a given wave function directly onto the numerical solution in the
relaxation zones after each intermediate time step, see e.g. [LD83]. Such an
approach requires that the time integrator is modi�ed, which is not favorable,
because it would violate the generic component design and require that the
time integrator is designed speci�cally for a given problem. We prefer a more
generic approach, introducing an embedded penalty forcing technique that adds
a forcing term to the right hand side of the IVP. With this setup, the right hand
side operator is modi�ed and not the time integrator itself. In terms of a general
IVP, @t q = L(q), we add a forcing term such that

@t q =�( x)L (q) +
1 � �( x)


(q0(x ; t1) � q(x; t)) ; x 2 
 � ; (3.17)

where  is scaled to be approximately equal to the time step size  � � t, q0

is the target solution at time t, and 
 � de�nes the relaxation zone. �( x) is
a function R2 ! R, that controls the strength of the forcing terms within the
relaxation zones. Outside the relaxation zones � = 1 and inside it is 0 � � < 1.
Furthermore � should be chosen so that there is a soft transition between the
zones and the inside domain, i.e. @x � = 0 at the transition. We adopt the
following form of relaxation functions, as presented by Engsig-Karup[EK06], for
generation and absorption, respectively,

� gen (x̂) = 1 � (1 � x̂)p (3.18)

� abs(x̂) = � 2x̂3 + 3 x̂2; (3.19)

where p can be used to control the curvature of � gen , see examples in Figure
3.3. The size of the relaxations zones can be controlled as an input con�guration
parameter and will be set in terms of the wavelength, x̂ = x=(�L x ), where L x is
the wavelength and � controls the size of the relaxation zone. It is advisable to
use at least one wavelength for each of the relaxation zones. Short zones may
cause instability and wave re�ections.

Propagation of linear sinusoidal waves over a �at bottom in a closed two-
dimensional domain with generation and absorption zones given by (3.18) and
(3.19), with p = 4 is demonstrated. The length of the wave tank is L x = 8L and
the waves travel in a time period of t = [0 ; 40]. The wavelength is L = � ,
kh = 1 and H=L = 30%(H=L )max . The size of the spatial resolution is
(Nx ; Nz ) = (513 ; 9) and a Courant number Cr = 0 :75 is used. Both relax-
ation zones are of length L . The free surface elevation at t = 40 s is illustrated
in Figure 3.4 and the free surface elevation at x = 5 as a function of time is



44 Free surface water waves

Figure 3.3: Relaxation functions for the generation (left) and absorbtion
(right) zones.

illustrated in 3.5. There is a good match between the analytic and the numerical
solution both in the spatial and temporal domain, with less than two percent
relative amplitude and phase error.

0 2 4 6 8 10 12 14 16 18 20 22 24
� 2

� 1

0

1

2
�10� 2

x

z

�
� true

Figure 3.4: Linear numeric and analytic free surface elevation at time t = 40
using relaxation zones.

3.3 Validating the free surface solver

Stable, robust, and accurate free surface water wave solutions with a consistency
proposed by the spatial and temporal discretizations are paramount for a valid
implementation. The OceanWave3D solver, assembled from library parts, has
therefore been subject to a long range of validation tests in both two and three
dimensions, most of which we will omit from this work. The spatial �exible-
order �nite di�erence approximations and the 4th -order accurate Runge-Kutta



3.3 Validating the free surface solver 45

0 5 10 15 20 25 30 35 40
� 2

� 1

0

1

2
�10� 2

Time [s]

z
[m

]

�

Figure 3.5: Linear free surface elevation at � (x = 5 ; t) using relaxation zones.

integration scheme is however veri�ed here. The con�guration is based on a non-
linear traveling wave, due to Fenton & Rienecker[FR82], in a two-dimensional
periodic wave tank of length L x = 2 . The wave number is k = � , kh = 2 � , and
H = 0 :04244. The order of accuracy for the spatial approximations depends
on the size of the stencil and is of the order O(� x2� ), where � is the sten-
cil half width. The temporal approximations are always of 4th -order accuracy.
Consistency results based on � = 1 ; 2; 3 with the expected convergence rates
are demonstrated in Figure 3.6. The expected orders of accuracy for both the
temporal and spatial approximations of O(k4 + h2� ) are con�rmed, where k is
the time step size and h is the grid space size.

3.3.1 Whalin's test case

We here validate the solver using a classical benchmark for propagation of non-
linear waves over a semicircular shoal. The benchmark is based on Whalin's
experiment [WoEU71], which is often used in validation of dispersive water wave
models for coastal engineering applications because it captures all relevant fea-
tures of the implemented model. Experimental results exists for incident waves
with wave periods T = 1 ; 2; 3s and wave heights H = 0 :0390; 0:0150; 0:0136m.
All three test cases have been discretized with a computational grid of size
(257� 41 � 7) to resolve the physical dimensions of L x = 35 m, L y = 6 :096m.
The still water depth decreases in the direction of the incident waves as a semi-
circular shoal from 0:4572m to 0:1524m with an illustration of the free surface
given in Figure 3.7a at t = 50 s. The time step � t is computed based on
a constant Courant number of Cr = c� x=� t = 0 :8, where c is the incident
wave speed and � x is the grid spacing. Waves are generated in the generation
zone 0 � x=L � 1:5, where L is the length of incident waves, and absorbed
again in the zone 35 � 2L � x � 35m. All computations are carried out with



46 Free surface water waves

single-precision �oating-points, indicating that single-precision is su�cient for
achieving engineering accuracy for this test case, as there has been no di�er-
ence, other than machine-precision, between the single- and double-precision
results. There is an overt performance improvement for single-precision com-
pared to double-precision, also reported in [GEKM11]. The reduced memory
requirement impacts both the total memory footprint, but also doubles the
throughput at all memory levels.

A harmonic analysis of the wave spectrum at the shoal center line is computed
and plotted in Figure 3.7 for comparison with the analogous results obtained
from the experiments. The three harmonic amplitudes are computed via a
Fast Fourier Transform (FFT) method using the last three wave periods up to
t = 50 s. There is good agreement between the computed and experimental
results, in addition no loss of accuracy resulting from the use of single-precision
arithmetic has been recorded for the Whalin test case. Double-precision results
are intentionally left out, as they equal the single-precision results.



3.3 Validating the free surface solver 47

(a) � = 1

(b) � = 2

(c) � = 3

Figure 3.6: Consistency for the temporal ERK4 scheme and the spatial �nite
di�erence approximations with varying stencils sizes. Results are
measured for the nonlinear travelling wave over.



48 Free surface water waves

(a) Whalin's case at t = 50s and T = 2 s

0 10 20 30
0

1

2

3
�10� 2

x [m]

A
m

pl
itu

de
[m

]

(b) T = 1 s)

0 10 20 30
0

0:5

1

�10� 2

x [m]

A
m

pl
itu

de
[m

]

(c) T = 2 s)

0 10 20 30
0

0:5

1

�10� 2

x [m]

Exp. 1st

Exp. 2nd

Exp. 3rd

1st

2nd

3rd

(d) T = 3 s)

Figure 3.7: Harmonic analysis for the experiment of Whalin for T = 1 ; 2; 3s re-
spectively. Experimental and computed results are in good agree-
ment. Figures are only showing single-precision resutls, however
double-precision results are equal to machine precision.



3.4 Performance breakdown 49

3.4 Performance breakdown

Performance measurements for the free surface model are presented throughout
this work, in the context where new features are introduced. Here we present
a performance breakdown of the basic single-GPU implementation of the free
surface solver, on some of the most recent GPU architectures.

The free surface water wave problem based on potential �ow theory has the
special property that only the free surface itself has to be integrated in time
and not the fully three-dimensional problem described by the Laplace problem.
Thus, the four stage ERK4 time integrator requires a smaller memory footprint,
as the state variables are only two-dimensional, and the memory required by the
Laplace solver can be reused for each stage evaluation. A memory scaling test
is illustrated in Figure 3.8 for increasing problem sizes in terms of total number
of grid points N = Nx Ny Nz , based on both single- and double-precision. The
problem size is based on a constant vertical resolution Nz = 9 and increasing
horizontal resolutions. The scaling test con�rms that there is linear scaling for
both single- and double-precision as the problem size increases. An impressive
problem size of almost 108 degrees of freedom can be used for discretization
on a single GPU. For the smaller problem sizes the memory footprint does
not scale perfectly. We expect that this e�ect is caused by the generic vector
containers, that may automatically allocate more memory than requested, in
order to maintain optimal memory alignment.

104 105 106 107 108
100

101

102

103

104

N

M
em

or
y

[M
B

]

K20c (double)

K20c (single)

O (N )

Figure 3.8: Memory scaling test for single- and double-precision.

The memory wall is the performance limiting factor for applications based on



50 Free surface water waves

matrix-vector like operations, such as the �nite di�erence stencils computations
used to compute the solution of (3.8). The reason is simply that the arith-
metic intensity is too low compared to the number of memory transactions.
Care should therefore be taken to ensure coalesced and minimal memory access
to reduce the e�ect of the memory wall. One bene�t from stencil approxima-
tions is that we are able to pre-compute the stencil coe�cients and access them
from either the low-latency shared or constant memory for optimal throughput.
When a kernel is bandwidth limited, adding extra �oating point operations will
not a�ect the overall execution time signi�cantly, so-called �ops-for-free. One
technique that will increase the number of �oating-point operations is to in-
crease the order of accuracy by increasing the stencil size � . The number of
�oating-point operations for a one dimensional �nite di�erence approximation
is 4� + 1 and the corresponding number of memory reads are 4� + 2 . However,
with cached memory from adjacent grid points and stencil coe�cient, memory
access will be less expensive and we are able to obtain an improved perfor-
mance throughput in terms of �oating-point operations per second (Flop/s).
Absolute performance timings for computing the residual r = b � A x , based
on the matrix-free �nite di�erence stencil with � = 1 ; 2; 3 and with single- and
double-precision �oating-points are illustrated in Figure 3.9 and 3.10. Timings
based on a linearized discretization along with the fully nonlinear system are
also illustrated. There is good linear scaling for problems sizes above 105 grid
points, whereas for problems below 105 there are not enough degrees of freedom
for the GPU to su�ciently hide memory latency while also occupying all cores.
As one would expect, computations based on higher order approximation are
more time consuming. However, as before proposed, the corresponding increase
in �oating-point operations leads to a favorable throughput increase as demon-
strated in Figure 3.11. Based on the power consumption of a GPU (� 250W),
an estimated �ops per watt performance �gure could also be formed on the
basis of the results in Figure 3.11, again highlighting that methods based on
high-order discretizations are more energy-e�cient.



3.4 Performance breakdown 51

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(a) Single-precision, Linear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(b) Single-precision, Nonlinear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(c) Double-precision, Linear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(d) Double-precision, Nonlinear

Figure 3.9: Absolute timings for computing r = b � A x , based on the linear
and nonlinear discretizations with di�erent stencil sizes. Using
single- and double-precision, on G4 (GeForce GTX590).



52 Free surface water waves

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(a) Single-precision, Linear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(b) Single-precision, Nonlinear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(c) Double-precision, Linear

103 104 105 106 107 108
10� 5

10� 4

10� 3

10� 2

10� 1

100

N

T
im

e
[s

]

� = 1
� = 2
� = 3

O (N )

(d) Double-precision, Nonlinear

Figure 3.10: Absolute timings for computing r = b � A x , based on the linear
and nonlinear discretizations with di�erent stencil sizes. Using
single- and double-precision, on G6 (Tesla K20c).



3.4 Performance breakdown 53

103 104 105 106 107 108
10� 1

100

101

102

N

G
F

lo
p/

s

� = 1
� = 2
� = 3

(a) Single-precision

103 104 105 106 107 108
10� 1

100

101

102

N

G
F

lo
p/

s

� = 1
� = 2
� = 3

(b) Double-precision

Figure 3.11: Performance throughput for computing r = b�A x . Using single-
and double-precision, on G4 (GeForce GTX590).



54 Free surface water waves

3.4.1 Defect correction performance breakdown

Computing the solution of the � -transformed Laplace problem is the perfor-
mance bottleneck of the free surface solver. A performance breakdown of the
preconditioned defection correction is therefore carried out, with each of the sub-
routines outlined in Table 3.1. We measure the time it takes to complete one
defect correction iteration, because this measure is independent of the physical
problem and only depends on the discretization parameters. For this perfor-
mance test, the vertical resolution is kept �xed at Nz = 9 while the horizontal
resolution is increased repeatedly in the x- and y-directions. The fully nonlinear
system is solved with a 6th -order accurate (� = 3 ) �nite di�erence approxima-
tion in the outer defect correction iteration, while one multigrid V-cycle with
two Red-Black Z-line Gauss-Seidel smoothings is used for preconditioning to-
gether with a linearized 2nd -order �nite di�erences approximation; in short we
write DC+MG-ZLGS-1V(1,1). Absolute and relative performance results are
presented in Figure 3.12 and 3.13. From the absolute timings we see the same
pattern as from the previous results: that they scale well only for su�ciently
large problem sizes. The relative performance results in Figure 3.13 tell us that
for large problem sizes, the high-order residual and the smoother are responsible
for the majority of the compute times. The combined performance scalability
for the compute time per defect correction, is summarized in Figure 3.14. These
results con�rm again that this is a memory bound application as the results
follow directly from the memory bandwidth of the individual GPUs. The Tesla
K20c GPU has the highest bandwidth of 208GB/s while the Tesla M2050 band-
width is lowest at 144GB/s. The high-end gaming GPU, the GeForce GTX590
has an intermediate bandwidth of 164GB/s. From these performance tests we
see that with just a single GPU we are able to compute the solution of a free
surface water wave problem with 107 to 108 degrees of freedom in both single-
and double-precision, with iteration times well below one second. Furthermore,
these performance results are in good agreement with the results previously re-
ported in [EKMG11], which was based on a dedicated solver. Thus, we conclude
that the generic library implementation does not introduce signi�cant overhead
despite providing a higher level of abstraction.

3.4.2 A fair comparison

In Figure 3.14 we provided the timings based on an fairly optimized single
threaded Fortran90 version of the same numerical free surface solver used in
[EKBL09, DBEKF10]. The CPU performance results are measured on a Linux-
based system equipped with an Intel Core i7 at 2:8GHz and with an e�ective
CPU-to-RAM bandwidth of 11:5GB/s.



3.4 Performance breakdown 55

10 3 10 4 10 5 10 6 10 7 10 8
10 � 4

10 � 3

10 � 2

10 � 1

10 0

10 1

N

T
im

e
[s

]

Residual (high)

Residual (low)

Restriction

Prolongation

Smoothing

Axpy

2-norm

O ( N )

Figure 3.12: Absolute timings on G6 for each of the subroutines in a defect
correction iteration. Double-precision.

10 4 10 5 10 6 10 7
0

20

40

60

80

100

N

%

Residual (high)

Residual (low)

Restriction

Prolongation

Smoothing

Axpy

2-norm

Figure 3.13: Percantage of total compute time on G6 for each of the subrou-
tines in a defect correction iteration. Double-precision.

It is our experience, that there seems to be some confusion and skepticism in
the literature and among researchers, when it comes to comparing performance
results. Stating that GPUs are several (100-1000) times faster than equivalent
CPUs does not say anything about the reference for achieving such speedups.
The key to these problems is that these numbers are often provided with no
context and without su�cient details. In fact it can be quite easy to mislead the
reader by leaving out details, as humorously described by Bailey [Bai91, Bai92,
Bai09]. No optimized GPU application will be thousand times faster than an
equally optimized CPU version that utilizes all CPU cores. However, we believe
that a fair comparison is indeed valid, if the right comparison basis is presented.
A fair comparison requires that su�cient details of the test environments are



56 Free surface water waves

104 105 106 107 108
10� 3

10� 2

10� 1

100

101

N

T
im

e/
Ite

r
[s

]

Tesla M2050
Tesla K20c
GeForce GTX590
Intel i7

(a) Single-precision

104 105 106 107 108
10� 3

10� 2

10� 1

100

101

N

T
im

e/
Ite

r
[s

]

Tesla M2050
Tesla K20c
GeForce GTX590
Intel i7

(b) Double-precision

Figure 3.14: Performance comparisons and scalability of timings per pre-
condtioned defect correction iteration on di�erent heterogeneous
hardware.

provided, that details about the algorithms are outlined, and that timings are
presented, preferably both absolute and relative timings. When this information
is provided, it is fair to compare applications that have not received the same
level of optimization, then the comparison will be of the two applications, and
not necessarily the hardware on which they are executed.

In Figure 3.14 we provide the comparison between the two versions of the same



3.4 Performance breakdown 57

numerical solver, based on a fairly optimized single-threaded double-precision
Fortran90 implementation and the optimized massively parallel CUDA imple-
mentation. The corresponding speedups are reported in Figure 3.15, where
signi�cant speedups are obtained for all con�gurations, in good agreement with
[EKMG11]. The single-precision performance results are naturally superior, and
we would like to point out, that during our work we have never experienced a
case where single-precision would fail to solve a problem that would be solved in
double-precision. The robustness of the single-precision calculations stems from
the use of a robust iterative solver.

104 105 106 107
0

20

40

60

80

100

120

N

S
p

ee
du

p

M2050 (double)

M2050 (single)

K20c (double)

K20c (single)

GTX590 (double)

GTX590 (single)

Figure 3.15: Relative speedups obtained with the parallel GPU implementa-
tion compared to the single-threaded CPU version of the same
solver.



58 Free surface water waves



Chapter 4

Domain decomposition on
heterogeneous multi-GPU

hardware

Decomposing a boundary value problem into smaller subdomains is an attractive
way to extract parallelism into an application. There are two main motivations
for doing so. First, the computational work can be distributed and solved in
parallel to achieve better overall performance. Secondly, memory distribution
lowers the memory requirements per node and allows for larger global problems
to be solved. However, communication between compute nodes does not come
for free, and frequent message passing tends to dominate the overall perfor-
mance, especially for smaller problem sizes. Domain decomposition techniques,
such as the class of classical overlapping Schwartz methods, �rst introduced by
Schwarz in 1870, can be considered as a preconditioners to iterative solvers, see
e.g., [SBG96]. Each subdomain solver approximates a local solution (possibly
in parallel) to some accuracy, before communicating and updating boundary in-
formation with adjacent subdomains. This procedure is repeated until a global
accuracy criterion is met. One advantage of these methods is that the local
solutions can be approximated with no communication between subdomains,
and even di�erent numerical solvers can be used within each subdomain. The
disadvantages are that global convergence depends on the size of the overlaps
and that larger overlaps lead to increasingly redundant computational work.



60 Domain decomposition on heterogeneous multi-GPU hardware

Furthermore, the overlap size and position in�uence how rapidly information
travels between subdomains at each Schwartz iteration, and therefore how fast
the overall method converges. For some elliptic problems, a global coarse grid
correction strategy can improve convergence by ensuring propagation of infor-
mation between all subdomains. For boundary value problems with �nite signal
speed, e.g., the weakly dispersive Boussinesq equations, satisfactory convergence
speed can be obtained with reasonable overlaps of the order of the water depth,
as presented in [GPL04, CPL05].

4.1 A multi-GPU strategy

CUDA enabled GPUs are optimized for high memory bandwidth and fast on-
chip performance. However, the role as a separate co-processor to the CPU
can be a limiting factor for large-scale scienti�c applications, because the GPU
memory capacity is �xed and is only in the range of a few Gigabytes. There-
fore, large-scale scienti�c applications that process Gigabytes of data, require
distributed computations on multiple GPUs. Multi-GPU desktop computers
and clusters can have a very attractive peak performance, but the addition of
multiple devices introduces the potential performance bottleneck of slow data
transfers across PCI Express busses and network interconnections, as outlined
in Figure 4.1. The ratio between data transfers and computational work has
a signi�cant impact on the possibility for latency hiding, and thereby overall
application performance. Thus, speedups should not be expected for smaller
problem sizes where there is an unfavorable ratio between communication and
computations. In the following sections we investigate the cost of data trans-
fers between GPUs and demonstrate how the number of processors and grid
topology in�uence the overall performance and scalability.

Device memory Device memory

Host memory Host memory

kernel kernel

PCIe

Network

PCIe
GPUDirect/RDMA

Figure 4.1: Message passing between two GPUs involves memory transfers
across lower bandwidth connections. A kernel call is �rst required
if data is not sequentially stored in the GPU memory. Recent gen-
erations of Nvidia GPUs, CUDA, and MPI support direct transfers
without explicitely transfering data through the host.



4.1 A multi-GPU strategy 61

The objective of this work is to enable scalable computations on distributed
systems to enable large-scale simulations on heterogeneous clusters, where the
solver can account for a large number of time steps and many billions degrees
of freedom in the spatial discretisation. We therefore introduce a natural (but
nontrivial) extension of the GPUlab library, to support distributed data and
parallel computations on heterogeneous hardware with multiple GPUs, using
a hybrid MPI-CUDA implementation. We implement a multi-block method
based on a domain decomposition technique that automatically decomposes the
global computational grid into local subgrids. We detail how this technique can
be used to transparently solve very large linear system of equations arising from
�nite di�erence discretizations of �exible order.

4.1.1 A multi-GPU strategy for the Laplace problem

From previous work [LF97] we know that multigrid convergence for the Laplace
problem is close-to-optimal and converges in very few iterations to engineering
accuracy for both deep and shallow waters. Also, the system of equations aris-
ing from higher order approximations, based on �exible order �nite di�erences,
have been shown to have good convergence with the iterative defect correction
method and multigrid preconditioning[EKBL09]. We therefore seek a decompo-
sition technique for large scale simulations that preserves the attractive algebraic
multigrid convergence with a low penalty on the overall performance. Our multi-
block decomposition technique will therefore introduce arti�cial ghost (halo)
layers between adjacent subdomains, with sizes equal to the stencil sizes. The
computational domain is �rst decomposed into non-overlapping subdomains,
then ghost layers are added to account for grid points that are distributed across
adjacent subdomains, similar to the approach presented e.g. in [ALB98]. The
size of the ghost layers can be adjusted to match the size of the �nite di�erence
stencils. In practice it can be advantageous to ensure that geometric multigrid
operates on grids of uneven dimensions. We therefore allow one layer of grid
points, next to the ghost layers, to be distributed to both of the adjacent sub-
domains, see Figure 4.2. Ghost points are updated block wise, indicated by
the arrows, every time information from adjacent domains are queried. Thus,
the subdomains are not decoupled and one subdomain cannot solve the local
boundary value problem without communicating with its neighbors. As a con-
sequence the iterative solution to the Laplace problem converges exactly as it
would do without decomposition. Any solver that works on the non-distributed
problem therefore works with the same algorithmic e�ciency on the distributed
problem.

The vertical resolution for any free surface model is much smaller than the
horizontal resolution. Vertical grid points in the order of ten are su�cient for



62 Domain decomposition on heterogeneous multi-GPU hardware

Figure 4.2: A one dimensional topology decomposition of a grid of global size
17 � 5 into two subgrids with two layers of ghost points. � and
� represent internal grid points and ghost points respectively. �
represents internal points that are shared between the two grids
to ensure uneven internal dimensions.

many applications in coastal engineering, while the number of horizontal grid
points is dictated by the size of the physical domain and the wavelengths. For
practical applications, it is often desirable to extend the physical domain hori-
zontally to restore large maritime areas, long wave propagations or large harbor
facilities. In these situations the ratio between internal grid points and ghost
points becomes more favorable for large-scale simulations because of the volume
to surface ratio. For the same reason communication time is expected to be less
dominant for large-scale free surface problems. Furthermore we will present a
thorough examination of the multigrid coarsening strategy, to demonstrate that
rapid numerical convergence can be maintained with few restrictions and with
no need for coarse global grid corrections.

4.2 Library implementation and grid topology

For message passing we use MPI and create a local communication space in order
to avoid interference with other communicators, as recommended by Hoe�er and
Snir [HS11]. Appendix A gives examples on how to initialize the library with
MPI support.

The multi-block extension should be implemented so that it will not interfere
with existing implementations. The library already contains the grid class for
single-block grid representation. We extend this class with an extra grid topol-
ogy template argument, and set the default value as a non-distributed topol-
ogy implementation. An update member function is added to the grid class,
that simply forwards the grid itself to the topology update function. With
this �exible template-based setup the user is able to create custom topology



4.2 Library implementation and grid topology 63

implementation. The library contains default topology operators for one- and
two-dimensional grid distributions. Listing 4.1 illustrates a template for the
basic topology interface.

1 template < typename size_type , typename value_type >
2 class topology
3 {
4 public :
5 int N , S , E , W, T , B; // MPI ranks for neighbors , north , south , ...
6 int P , Q, R; // Global grid topology size
7 int p , q , r ; // Local grid topology IDs
8

9 /* *
10 * Create local grid property dimensions based on global dimensions
11 */
12 template < typename property_type >
13 void create_local_props ( property_type const & gprops , property_type *

lprops )
14 {
15 // Fi l l out local propert ies ( lprops )
16 }
17

18 /* *
19 * Update grid over lapping zones
20 */
21 template < typename grid_type >
22 void update ( gr id_type const & g) const
23 {
24 // Communicate with neighbors to update grid ghost layers
25 }
26 };

Listing 4.1: Template for a grid topology implementation.

When a grid is initialized with the global grid dimensions, the create_local_props
function is automatically called to compute the local grid properties based on
the given topology implementation. We use the MPI built-in Cartesian topology
routines to help partition our grids. This multi-block topology implementation
will be able to signi�cantly improve developer productivity for creating data-
distributed grid and vector objects and for updating boundary information. The
only thing required to turn a single-block solver into a multi-block solver is to
change the type de�nition for the grid type, exempli�ed in Listing 4.2.

1 using namespace gpulab ;
2 typedef f loat value_type ;
3 typedef topology_xy <size_t , value_type > topology_type ;
4 typedef grid < value_type , device_memory , topology_type > grid_type ;

Listing 4.2: Setting up type de�nitions for a multi-block grid with horizontal
grid decomposition topology_xy ).

Instead of initializing a grid from the global grid properties, it is also possible to
create a custom topology con�guration and then use local grid properties. This
technique will be utilized in Section 4.5 to manually detach two of the blocks in
order to create a breakwater simulation.



64 Domain decomposition on heterogeneous multi-GPU hardware

One challenge that arises from the multi-block setting is how to ensure good load
balancing. In the prede�ned library implementations, we use the MPI Cartesian
topology routines to decompose the grid and we ensure that all local grids are
of similar discrete sizes. However, if data is distributed to multiple GPUs with
di�erent performance, or the user manually creates a bad distribution, the solver
will be limited by the slowest link, because updating boundary information is a
collective operation. We have not experienced any noticeable performance issues
with load imbalance, but it is an issue that may be relevant in some settings.

4.3 Performance benchmarks

Message passing between GPUs is nontrivial, and only few stable MPI releases
support pointers to GPU memory. Good progress on e�cient and transparent
GPU-to-GPU communication is being made within MPI communities, particu-
larly MVAPICH2[WPL+ 11b, WPL+ 11a, Nvi12a]. However, as of writing, there
are restrictions on the supported In�niBand controllers, and MPI requires spe-
cialized con�gurations with non-default settings. In the absence of access to
such a con�gured system, the following results are based on an implementa-
tion where communication between two or more GPUs are performed by �rst
transferring data between the device and host memory, before invoking the ap-
propriate MPI calls, cf. Figure 4.1. We believe that simple and transparent
integration of message passing using MPI on heterogeneous systems will be a
key feature in the near future as distributors and researches continue to make
hybrid message passing easier[ABD+ 13], and also extending support for non-
contiguous data movement as presented by [JDB+ 12, WPL+ 11a].

Updating decomposed subgrids with boundary information via ghost layer up-
dates imposes a potential performance bottleneck, thus all communication over-
head should be minimized if possible. We have created a mirco-benchmark that
will provide us with information about the e�ciency and scalability of message
passing between multiple GPUs on the two test environments G4 and Oscar.
For the �rst test we use two MPI processes to measure the time it takes to
exchange messages of increasing size between two GPUs connected to the same
motherboard. For this test we use both pinned (page-locked) and non-pinned
host memory. According to the CUDA guidelines[Nvi13], pinned host memory
can be utilized for faster memory transfers between the host and device. The
performance results are presented in terms of absolute timings in Figure 4.3a
and memory bandwidth in Figure 4.3b. There are several important things to
notice from these timings. Firstly, since the two GPUs are on the same board,
the MPI send/receive call is a local memory operation that requires no network
transfer. Therefore this is very e�cient for all message sizes and requires the



4.3 Performance benchmarks 65

100 101 102 103 104 105 106 107

10� 6

10� 4

10� 2

100

Message size [bytes]

T
im

e
[s

]

Total
Total pinned
cudaMemcpy
cudaMemcpy pinned
MPI_Sendrecv
MPI_Sendrecv pinned

O(n)
1MB

(a) Absolute timings. Total timings include all transfer times and additional overhead
time to allocate and free memory.

100 101 102 103 104 105 106 107
10� 1

100

101

102

103

104

Message size (bytes)

B
an

dw
id

th
[M

B
/s

]

cudaMemcpy
cudaMemcpy pinned
MPI_Sendrecv
MPI_Sendrecv pinned
cudaMemcpy +
MPI_Sendrecv
cudaMemcpy +
MPI_Sendrecv pinned

(b) Memory bandwidth performance

Figure 4.3: Performance scaling for two processors on G4. Send/receive trans-
fers from GPU to GPU, with and without pinned memory.

least time. The irregular peaks that appear for the MPI calls, are something
that we often observe at random locations and therefore something we expect to
be caused by internal MPI controllers. The next thing we should notice is that
even though pinned memory enables the highest peak bandwidth for large mem-
ory transfers between the host and the device (cudaMemcpy), there is almost
no di�erence for memory transfers below 1MB. In order to put these message



66 Domain decomposition on heterogeneous multi-GPU hardware

sizes into perspective, we know from Section 3.4 that on a single GPU, we are
able to solve a discretized boundary value problem with up to almost 108 de-
grees of freedom. Assuming that such a discrete problem is three-dimensional,
and has an equal number of grid points in all three directions, then three lay-
ers of ghost points with double-precision �oating-points would require less than
5MB. In practice this would often be much smaller, particularly for the free
surface water wave model. The �nal, but most important, thing to notice from
Figure 4.3, is that the time to allocate and deallocate host memory requires a
signi�cant amount of extra overhead and that for pinned memory it is more
time consuming. As a result of this benchmark, we make sure that the generic
topology implementation creates a memory pool that will be reused for multiple
grid updates in order to minimize allocation overhead.

For the next benchmark we will test device-to-device memory transfers on the
Oscar GPU-cluster, with a di�erent number of MPI processes and devices. We
measure again the time it takes to send and receive a message. The messages are
sent in a circle, such that each MPI process has two neighbors, and then sends
to the one and receives from the other. The procedure is repeated 100 times
to be able to compute an average. The timing results are reported in Figure
4.4. We observe that Oscar is very sensitive to interference, visible from the
jumping behaviour. Though we have executed the benchmark several times, we
continuously get di�erent results with similar behaviour. We have not been able
to identify if it is caused by user interference, software issues, or the physical
cluster topology. However, during multiple test runs we have observed good
results based on all con�gurations.

100 101 102 103 104 105 106 107
10� 4

10� 3

10� 2

10� 1

Message size [bytes]

T
im

e
[s

]

n = 2
n = 4
n = 8
n =16
n =32
n =64
1MB

Figure 4.4: Absolute timings for n MPI processors on Oscar. Send/receive
messages from GPU to GPU.



4.3 Performance benchmarks 67

We now present a benchmark where a grid decomposed into subgrids exchanges
boundary information based on a horizontal topology implementation as pre-
sented in Section 4.2. We use a numerical grid of increasing global size (Nx ; Ny ; Nz ) =
(2i ; 2i ; 32), for i = 3 ; 4; : : : ; 12with overlaps of size � = 1 ; 2; 3; 4. The total num-
ber of ghost grid points per subgrid is then bounded up to,

� � 2�N z

�
Nx

P
+

Ny

Q

�
; (4.1)

Figure 4.5 illustrates performance scalability for updating a grid decomposed
into two subrids with (P; Q) = (1 ; 2) on the same compute node on Oscar. In
contrast to the previous benchmarks, these timings also include the kernel call
that is required to �rst move ghost layer information into a contiguous memory
location before the device to host copies. In [WPL+ 11b] the authors evaluate
non-contiguous MPI data communication on GPU clusters, and propose the
same approach for multi-dimensional data sets. They also emphasize that man-
ual data movement in multi-GPU settings poses one of the biggest hurdles to
overall performance and programmer productivity, which again emphasizes the
importance of well-designed library support. There is a natural extra time cost
for updating grids with increasing ghost layer sizes, but as Figure 4.5b indicates,
there is no extra cost in terms of bandwidth performance.

104 106 108
10� 4

10� 3

10� 2

N

T
im

e
[s

]

� = 1
� = 2
� = 3
� = 4

O ( � )

(a) Absolute timings

103 104 105 106 107
100

101

102

103

Message size [bytes]

B
an

dw
id

th
[M

B
/s

]

(b) Bandwidth

Figure 4.5: Grid update performance on two GPUs, using four di�erent over-
lap sizes. The global grid size is N = Nx Ny Nz . Tested on Oscar,
single-precision.

In Figure 4.6 the same setup is tested, this time with eight GPUs on multiple
nodes, so that (P; Q) = (2 ; 4). For the smaller problems of sizes less than
N < 106, there is a noticeable larger overhead for sending multiple messages
compared to the timings in 4.5a. This extra overhead is not surprising since
messages are now transferred across the network. As a results we also see that



68 Domain decomposition on heterogeneous multi-GPU hardware

the memory bandwidth performance decreases slightly. For larger problem sizes
the performances scales well in both cases.

104 106 108
10� 4

10� 3

10� 2

N

T
im

e
[s

]

� = 1
� = 2
� = 3
� = 4

O ( � )

(a) Absolute timings

103 104 105 106 107
100

101

102

103

Message size [bytes]

B
an

dw
id

th
[M

B
/s

]

(b) Bandwidth

Figure 4.6: Grid update performance on eight GPUs, using four di�erent
overlap sizes. The global grid size is N = Nx Ny Nz . Tested
on Oscar, single-precision.

4.4 Decomposition of the free surface model

To solve the free surface water wave problem on multiple GPUs we use the data
and domain decomposition technique presented above. We will again focus on
e�cient solution of the � -transformed Laplace problem as this is the perfor-
mance bottleneck. The purpose of the proposed decomposition technique is to
preserve the attractive algorithmic convergence rate of the multigrid precondi-
tioned defect correction method. If the arti�cial ghost boundary information is
continuously updated before the information is needed, there will be no penalty
on the algorithmic convergence and we will be able to solve the full global
Laplace problem without the additional Schwartz iterations. The disadvantage
of this technique is that it requires multiple grid updates, but as described in
the previous section, the time per grid update is small compared to the time
per defect correction as presented in Section 3.4. Thus, we expect the domain
decomposition technique to have satisfactory weak scaling properties for the
solution of the Laplace problem.

We will start by presenting an algebraic formulation of the decomposed Laplace
problem. Then we will validate and test performance scalability of the multigrid
preconditioned defect correction method, with special focus on the multigrid



4.4 Decomposition of the free surface model 69

coarsening strategy. Last, we demonstrate a free surface case where the multi-
block solver is utilized to decouple domains, in order to emulate a breakwater.

4.4.1 An algebraic formulation of the Laplace problem

The introduction of new arti�cial ghost layers that connect subdomains can
be introduced into the equations for the discrete Laplace problem (3.6). To
clarify the conceptual change we derive an algebraic formulation of a discrete
Laplace problem, that takes into account the extra conditions for the ghost
points introduced across the arti�cial boundaries between an arbitrary number
of subdomains.

Assume that a domain 
 is decomposed into P non-overlapping domains, such
that 
 = [ P

i =1 
 i . Then the transformation of the original system of equations

Ax = b into Â x̂ = b̂ can be described in terms of two sets of restriction matrices
R i and Gi . R i is the restriction matrix that selects exactly the elements x i from
x that belongs to the subdomain 
 i , i.e. so that we have x i = R i x . Then
R i 2 RN i � N , where N i is the number of elements in 
 i (excluding ghost points)
and N is the total number of elements in 
 . The restriction matrix R i is sparse
and contains only one entry per row. The second restriction matrix Gi selects
exactly the elements in x that will be covered by ghost points belonging to
subdomain 
 i . We have Gi 2 RQ i � N , where Qi is the number of ghost points
introduced by subdomain 
 i . Because all ghost points added by subdomain 
 i

always represents elements from other subdomains 
 j 6= i , the non-zero columns
of R i and Gi are distinct.

In the general case, when an arbitrary dimensional domain 
 is decomposed
into P subdomains, the corresponding system of equations Â x̂ = b̂, based on a
�nite di�erence discretization with overlapping ghost points can be written in
the form

2

6
6
6
6
6
6
6
6
4

A 1 R 1 AG T
1

A 2 R 2 AG T
2

. . .
. . .

A P R P AG T
P

0 G1 R T
2 � � � G 1 R T

P �I
G2 R T

1 0 � � � G 2 R T
P �I

...
...

. . .
...

. . .
GP R T

1 GP R T
2 � � � 0 �I

3

7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

x 1
x 2

...
x P
g1
g2

...
gP

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

b 1
b 2

...
b P
0
0
...
0

3

7
7
7
7
7
7
7
5

;

where gi is the ghost points added to the system by the i th subdomain. Matrix
Â can be divided into 4 blocks, indicated by the dotted lines. The upper left
block contains the original contributions from A , however only the entries that



70 Domain decomposition on heterogeneous multi-GPU hardware

apply internally to each subdomain, and not across arti�cial boundaries, are
included. The upper right block connects the cut-o� portions of A to the ghost
points added to the system by the extension of x into x̂ . Together, the two
lower blocks ensure that each ghost point matches exactly one element in another
subdomain. This is guaranteed since each equation from the lower blocks reduces
to x j � gi = 0 , such that ghost point g from subdomain 
 i must be equal to x
in subdomain 
 j .

It should be noted that in practice this system is never formed explicitly and
that the introduction of new equations into the original system of equations due
to ghost points, merely indicates the communication that will be required by
the underlying implementation to update all ghost points values.

4.4.2 Validating algorithmic convergence

One advantage of the multi-GPU method presented here is that it preserves
the very attractive algorithmic e�ciency of multigrid. Figure 4.7 illustrates the
convergence history for the preconditioned defect correction method applied to
a simple nonlinear traveling wave simulation. The convergence history con�rms
that in fact the norm of the residual converges equally for both the single-
and multi-GPU implementations within machine precision. The notation 
 P =4

represents decomposition into four subdomains, and thus the use of four GPUs
to compute the solution.

0 2 4 6 8

10� 9

10� 7

10� 5

10� 3

Iter.

jj
rj

j 1


 P=1


 P=4

Di�erence

Figure 4.7: Convergence history for the defect correction iterations using one
and four subdomains. The results con�rm that the algorithmic
e�ciency is preserved. Single-precision arithmetic is used.



4.4 Decomposition of the free surface model 71

4.4.3 The e�ect of domain decomposition

As a �rst test case we consider how the introduction of multiple subdomains, and
thereby multiple GPUs, in�uence the performance of each individual subroutine
of the defect correction algorithm. We refer the reader to Table 3.1 for an
overview of these subroutines.

We compute the average timings based on 100defect correction iterations for an
increasing number of unknowns. One multigrid V-cycle with Red-Black Z-line
smoothing is used for preconditioning together with 6th -order accurate �nite
di�erence for the spatial discretization. We denote the number of V-cycle levels
by K . In this test we use K = 1 , which means that the V-cycle continues until
the coarsest level (5 � 5 � 3) is reached for each subdomain. A semi-coarsening
strategy that best preserves the grid isotropy is chosen, meaning that the grid
is restricted only in the horizontal dimensions until the grid spacing is of similar
size to the vertical grid spacing. Hereafter all dimensions are restricted. At
each multigrid level we use 2 pre- and post-smoothings, and 4 smoothings at
the coarsest level. It is important to notice that the smoother is used also at
the coarsest grid level and not a direct solver. The relative and absolute timings
for each subroutine and for an increasing number of subdomains, 
 P jP =1 ;2;4,
are reported in Table 4.1. 'Residual (high)' in the �rst column refers to the
6th -order residual evaluation in the defect correction loop, while 'residual (low)'
refers to the 2nd -order linear residual evaluation in the preconditioning phase.
A graphical representation of the relative time consumption for 
 1 is illustrated
in Figure 4.8.

105 106 107
0

20

40

60

80

100

N

%

Residual (high)

Residual (low)
Restriction
Prolongation
Smoothing
Axpy
2-norm

Figure 4.8: Performance breakdown of each subroutine of the preconditioned
defect correction method for 
 1. Tested on Oscar.

We note from the numbers in Table 4.1 that increasing the number of subdo-
mains, and thereby the number of GPUs, improves the overall computational
times only for problems larger than 513� 513� 9. This is acceptable, as in



72 Domain decomposition on heterogeneous multi-GPU hardware

129 � 129 � 9 257 � 257 � 9 513 � 513 � 9 1025 � 1025 � 9
Subroutine 
 P Percent Time Percent Time Percent Time Percent Time
Residual (high) 1 15.2 0.0010 25.9 0.0036 34.2 0.0133 39.1 0.0529
Residual (low) 1 20.9 0.0014 23.5 0.0033 23.6 0.0092 23.0 0.0311
Smoothing 1 37.3 0.0025 32.5 0.0045 28.3 0.0110 27.4 0.0371
Restriction 1 11.9 0.0008 10.3 0.0014 7.0 0.0027 4.9 0.0067
Prolongation 1 12.1 0.0008 5.7 0.0008 5.0 0.0019 3.9 0.0053
Axpy 1 1.6 0.0001 1.4 0.0002 1.4 0.0005 1.3 0.0018
2-nrm 1 1.0 0.0001 0.7 0.0001 0.6 0.0002 0.4 0.0006
Total 1 100.0 0.0068 100.0 0.0139 100.0 0.0389 100.0 0.1355

Residual (high) 2 6.3 0.0009 10.0 0.0021 17.0 0.0071 27.5 0.0271
Residual (low) 2 18.7 0.0026 19.5 0.0042 22.8 0.0096 22.0 0.0216
Smoothing 2 50.7 0.0070 45.9 0.0099 38.1 0.0160 34.3 0.0337
Restriction 2 15.6 0.0022 14.2 0.0031 14.5 0.0061 9.4 0.0092
Prolongation 2 7.7 0.0011 9.3 0.0020 6.6 0.0028 5.5 0.0054
Axpy 2 0.6 0.0001 0.6 0.0001 0.7 0.0003 1.0 0.0009
2-nrm 2 0.5 0.0001 0.4 0.0001 0.4 0.0002 0.4 0.0004
Total 2 100.0 0.0139 100.0 0.0216 100.0 0.0420 100.0 0.0983

Residual (high) 4 3.7 0.0007 5.2 0.0014 9.9 0.0041 17.8 0.0139
Residual (low) 4 12.6 0.0023 14.1 0.0037 18.0 0.0074 18.9 0.0149
Smoothing 4 64.1 0.0119 59.1 0.0155 51.8 0.0212 42.0 0.0330
Restriction 4 10.8 0.0020 11.5 0.0030 13.2 0.0054 10.5 0.0083
Prolongation 4 7.8 0.0015 9.2 0.0024 6.3 0.0026 9.7 0.0076
Axpy 4 0.4 0.0001 0.4 0.0001 0.5 0.0002 0.7 0.0005
2-nrm 4 0.5 0.0001 0.4 0.0001 0.3 0.0001 0.3 0.0003
Total 4 100.0 0.0186 100.0 0.0262 100.0 0.0409 100.0 0.0784

Table 4.1: Relative and absolute timings for each of the subroutines based
on an increasing number of unknowns and subdomains. Tested on
Oscar.

general there is little or no reason for introducing multiple GPUs to solve a
problem that itself �ts within the memory of one GPU. Each GPU is massively
parallel, thus multiple GPUs increase both load balancing issues and costly com-
munication overhead. Strong scaling, measured in terms of number of GPUs,
for problems of moderate sizes should therefore not be expected to be good in
general.

Based on the relative numbers we see that in particular smoothing becomes more
dominant as the number of subdomains increases. Table 4.2 lists the number of
subroutine calls as a function of multigrid levels K . Each of these subroutines
requires a ghost layer update. It is evident that even for low K , there are
signi�cantly more calls to the smoothing routine compared to the remaining
subroutines. It is therefore particularly desirable to decrease the number of
restrictions in order to also reduce the number of smoothings and consequently
lower communication requirements.

However, multigrid achieves its unique linear work scalability and grid indepen-
dent convergence properties from the fact that it reduces all error frequencies
by smoothing on all grid levels. This is in general important for elliptic prob-



4.4 Decomposition of the free surface model 73

lems where all grid points are strongly coupled. What we will demonstrate by
example, is that the coupling between distinct water waves are so weak, that
smoothing only on the multigrid levels where the waves are well sampled is su�-
cient. Our hypothesis is that once the waves are undersampled due to repeated
coarsening, there will be little or no e�ect of further restrictions. Since only the
smoother, and not a direct solver, is applied on the coarsest grid level, reducing
the total number of grid coarsenings will lead to improve overall performance,
provided that the algorithmic convergence is preserved.

Subroutine K = 1 K = 3 K = 5 K = 7
Residual (high) 1 1 1 1
Residual (low) 1 3 5 7
Smoothing 8 16 24 32
Restriction 1 3 5 7
Prolongation 1 3 5 7
Axpy � 2 4 6 8
2-nrm y 1 1 1 1

Table 4.2: Number of calls to each subroutine as a function of multigrid
V-cycle coarsenings K . � is a local operation and can be
computed with no communication. y is a collective operation
(MPI_Allreduce), but requires no explicit update of the ghost
boundaries.

4.4.4 The performance e�ect of multigrid restrictions

We now study how the number of multigrid restrictions e�ect the numerical
performance for both the single- and multi-block solver. We use the absolute
time per outer defect correction iteration, � , as a measure of performance. Thus,
these timings are independent of any physical properties within the free surface
problem as the algebraic convergence is not considered. � is measured and
reported in Table 4.3 for a variation of restrictions K and number of subdomains

 P . The remainder of the settings are the same as in the previous example.

Two di�erent speedup measures are reported in Table 4.3; 	 1 is the speedup
using fewer restrictions: K = 1 ; 2; 5 compared to K = 1 , with the same number
of subdomains 
 P . 	 1 is the speedup from using multiple subdomains 
 P jP =
2; 4; 8 compared to 
 1, with the same number of restrictions K . We see that
	 1 � 1 and that 	 1 jK =1 � 	 1 jK =3 � 	 1 jK =5 � 	 1 jK = 1 , which is to be
expected, since the time to compute one V-cycle with K = i is a subproblem
of computing a V-cycle with K = i + 1 . 	 1 is a measure of strong scaling with
respect to the number of GPUs (subdomains). As mentioned before, multiple
GPUs are feasible only for problems of reasonable size. Based on the reported
numbers we conclude that there is good potential for improving the overall
numerical performance, given that few restrictions (low K ) is su�cient for rapid



74 Domain decomposition on heterogeneous multi-GPU hardware

129 � 129 � 9 257 � 257 � 9 513 � 513 � 9 1025 � 1025 � 9

 P K � 	 1 	 1 � 	 1 	 1 � 	 1 	 1 � 	 1 	 1

1 1 0.0068 1.0 1.0 0.0139 1.0 1.0 0.0389 1.0 1.0 0.1355 1.0 1.0
1 1 0.0042 1.6 1.0 0.0097 1.4 1.0 0.0322 1.2 1.0 0.1218 1.1 1.0
1 3 0.0055 1.2 1.0 0.0119 1.2 1.0 0.0363 1.1 1.0 0.1315 1.0 1.0
1 5 - - - 0.0132 1.0 1.0 0.0376 1.0 1.0 0.1336 1.0 1.0

2 1 0.0139 1.0 0.5 0.0216 1.0 0.6 0.0420 1.0 0.9 0.0983 1.0 1.4
2 1 0.0055 2.5 0.8 0.0108 2.0 0.9 0.0237 1.8 1.4 0.0735 1.3 1.7
2 3 0.0119 1.2 0.5 0.0164 1.3 0.7 0.0335 1.3 1.1 0.0854 1.2 1.5
2 5 - - - 0.0216 1.0 0.6 0.0400 1.1 0.9 0.0929 1.1 1.4

4 1 0.0186 1.0 0.4 0.0262 1.0 0.5 0.0409 1.0 1.0 0.0784 1.0 1.7
4 1 0.0074 2.5 0.6 0.0114 2.3 0.9 0.0185 2.2 1.7 0.0451 1.7 2.7
4 3 0.0153 1.2 0.4 0.0196 1.3 0.6 0.0297 1.4 1.2 0.0590 1.3 2.2
4 5 - - - 0.0262 1.0 0.5 0.0377 1.1 1.0 0.0709 1.1 1.9

8 1 0.0150 1.0 0.5 0.0210 1.0 0.7 0.0308 1.0 1.3 0.0543 1.0 2.5
8 1 0.0069 2.2 0.6 0.0084 2.5 1.1 0.0145 2.1 2.2 0.0288 1.9 4.2
8 3 - - - 0.0177 1.2 0.7 0.0230 1.3 1.6 0.0416 1.3 3.2
8 5 - - - - - - 0.0308 1.0 1.2 0.0509 1.1 2.6

Table 4.3: Absolute timings per defect corretion iteration and attainable
speedups for four di�erent problem sizes. Tested on Oscar (Tesla
M2050). Time in seconds.

convergence. For example, for a problem size of (1025� 1025� 9) decomposed
into four subdomains and solved on four GPUs 
 4, there is a 1:3 speedup if
three multigrid restrictions (K = 3 ) are su�cient compared to K = 1 , and
there is a 2:2 speedup compared to the single-block solver. The following test
is set up to clarify whether these speedups can in fact be achieved by reducing
the number of multigrid levels.

4.4.5 The algorithmic e�ect of multigrid restrictions

To unify the �ndings from the previous examples we now introduce and solve a
speci�c nonlinear free surface problem. The purpose of this numerical experi-
ment is to clarify whether the hypothesis of imposing fewer restrictions, and thus
fewer smoothings to minimize communication, based on the �ndings in Table
4.1, can in fact lead to performance improvements as reported in Table 4.3. The
�nal link that we need to demonstrate is whether the algebraic convergence can
be maintained with few restrictions. We use a two-dimensional Gaussian distri-
bution as the initial condition to the free surface elevation within a numerical
wave tank with no �ux boundaries,

� (x; y; t ) = � e � x 2 + y 2

2 � 2 ; t = 0 ; (4.2)

where � = 0 :15 and � = 0 :05. The wavelength is approximately � = 1 and the
wavenumber k = 2 � . The distance from the seabed to still water level is h = 1



4.4 Decomposition of the free surface model 75

and therefore kh = 2 � , which is intermediate depth. The physical size of the
domain is stretched to �t the initial wave with approximately the number of
grid points that we wish to examine. The number of grid points per wave is
denoted Nw , and we test for four di�erent values Nw = 4 ; 8; 16; 32. Figure 4.9
illustrates how the nonlinear wave travels within the �rst seconds with di�erent
wave resolutions. We see that the initial wave rapidly propagates throughout
the domain and creates multiple waves of various amplitudes and wavelengths.

N w = 32

N w = 16

N w = 8

(a) T = 0 s (b) T = 2 s (c) T = 4 s

Figure 4.9: Nonlinear waves traveling in a closed basin with no �ux bound-
aries, illustrated at three distinct time steps. Horizontal grid di-
mensions are 129� 129. The inital Gaussian wave is discretized
with approximatelly Nw = 32; 16; 8 grid points.

At each time stage, the Laplace problem (3.8) is solved to a relative accuracy
tolerance of 10� 4. Then the number of outer defect corrections are counted. We
take su�cient time steps for the average number of iterations to settle within
three digits of accuracy. The results are collected in Table 4.4, where the number
of grid points per wavelength and number of restrictions are varied. The results
are encouraging as they indeed con�rm that the number of useful restrictions
depends strongly on the discretization of the waves. Load balancing between
the GPU threads and multiple GPUs will therefore not be an issue as there is no



76 Domain decomposition on heterogeneous multi-GPU hardware

reason to restrict beyond the wave resolution. The average number of iterations
in the table also con�rms that convergence is independent on the global grid
resolution.

The convergence history in Figure 4.7 con�rmed that convergence is independent
of the number of subdomains. Thus the average iteration counts reported in
Table 4.4 apply, regardless of how many subdomains (GPUs) are used.

129 � 129 � 9 257 � 257 � 9 513 � 513 � 9 1025 � 1025 � 9
K N w Avg. Iter. Avg. Iter. Avg. Iter. Avg. Iter.
1 32 19.31 19.30 19.30 19.30
2 32 10.74 10.64 10.64 10.64
3 32 7.41 7.26 7.24 7.24
4 32 5.97 5.85 5.84 5.84
5 32 5.79 5.75 5.75 5.75

1 32 5.79 5.75 5.74 5.74

1 16 10.95 10.95 10.95 10.95
2 16 7.52 7.51 7.51 7.51
3 16 6.54 6.54 6.54 6.54
4 16 6.46 6.46 6.46 6.46
5 16 6.44 6.44 6.44 6.44

1 16 6.44 6.44 6.44 6.44

1 8 6.34 6.34 6.34 6.34
2 8 4.78 4.78 4.78 4.78
3 8 4.12 4.12 4.12 4.12
4 8 4.08 4.08 4.08 4.08
5 8 4.08 4.08 4.08 4.08

1 8 4.08 4.08 4.08 4.08

1 4 4.73 4.73 4.73 4.73
2 4 4.13 4.13 4.13 4.13
3 4 4.12 4.12 4.12 4.12
4 4 4.12 4.12 4.12 4.12
5 4 4.12 4.12 4.12 4.12

1 4 4.12 4.12 4.12 4.12

Table 4.4: The average number of iterations for obtaining a relative tolerance
of 10� 4 for various numbers of multigrid levels.

4.4.6 Performance Scaling

We use again the time per defect correction iteration as a measure of perfor-
mance. To reduce communication we utilize the multigrid analysis and assume
that three multigrid levels are su�cient. The GPU cluster performance results
are summarized in Figure 4.10a and 4.10b. The single block timings, 
 1, evolve
as expected: the overhead of launching kernels is evident only for the smallest
problem sizes, while for larger problems the time per iteration scales well. From
the multi-GPU timings we observe a clear di�erence when communication over-
head dominates and when it does not. Almost exactly after one million degrees



4.4 Decomposition of the free surface model 77

of freedom, communication overhead becomes less signi�cant, and the use of
multiple compute units becomes bene�cial.

Figure 4.10b illustrates weak scaling relative to one GPU, as the ratio between
the number of GPUs and the problem size is kept constant. There is penalty
of approximately 15%when introducing multiple GPUs, indicated by the drop
from one to multiple GPUs. Hereafter weak scaling remains almost constant
and there is no critical penalty for adding extra GPUs.

103 104 105 106 107 108 109
10� 3

10� 2

10� 1

100

N

T
im

e/
Ite

r
[s

]


 1


 2


 4


 8


 16

(a) Absolute timings.

0 2 4 6 8 10 12 14 16
0

0:5

1

No. GPUs

E
�c

ie
nc

y

Weak scaling
Ideal

(b) Weak scaling, using N � 3:5 � 107 per GPU.

Figure 4.10: Performance scaling for the defect correction iteration, on Oscar,
single-precision.

For this performance scale test we have gained access to the Stampede cluster
at the University of Texas. Stampede is a Dell Linux cluster based on compute
nodes equipped with two Intel Xeon E5 (Sandy Bridge) processors, 32GB of
host memory, and one Nvidia Tesla K20m GPU, all connected with Mellanox



78 Domain decomposition on heterogeneous multi-GPU hardware

FDR In�niBand controllers. The Stampede cluster is con�gured such that up
to 32 GPU nodes can be occupied at once. Performance results are illustrated
in Figure 4.11. The con�guration is the same as for the previous performance
test on Oscar. These performance results are even better than those obtained
on Oscar and we observe weak scaling with less than a 10%e�ciency drop. We
also notice that with a setup of just 16 GPUs, we are able to solve problems
with more than one billion degrees of freedom in practical times. With an
approximate time per iteration of t it = 0 :5s at N = 109, it would be possible to
compute a full time step in 10 to 20 seconds, assuming convergence in 5 to 10
iterations. With a time step size of � t = 0 :05, a one minute simulation can be
computed in 3 to 6 hours. This is well within a time frame considered practical
for engineering purposes. If all 32 GPUs are available, that time would reduce
to almost half.

104 105 106 107 108 109 1010
10� 3

10� 2

10� 1

100

N

T
im

e/
Ite

r
[s

]


 1


 2


 4


 8


 16


 32

(a) Absolute timings.

0 5 10 15 20 25 30 35
0

0:5

1

No. GPUs

E
�c

ie
nc

y

Weak scaling
Ideal

(b) Weak scaling, using N � 3:5 � 107 per GPU.

Figure 4.11: Performance scaling for the defect correction iteration, on Stam-
pede, single-precision.



4.5 Multi-block breakwater gap di�raction 79

4.5 Multi-block breakwater gap di�raction

Breakwaters are built along populated coastal regions, such as beaches and har-
bors, to reduce and di�ract incoming water waves before they reach the coast.
Accurate simulation of breakwater di�raction is therefore of engineering inter-
est as a tool for optimizing coastal protection with proper structural designs.
Wave di�raction through a breakwater gap transform the water waves into semi-
circular wave fronts with the largest wave heights remaining along the direction
of incident waves. In these waters it is particularly important to locate unwanted
wave accumulation causing damaging e�ects.

Figure 4.12: Breakwater gap di�raction solution with a gap of size 2L .

Experimental studies have been carried out by Pos and Kilner [PK87] in 1987 for
six di�erent gap con�gurations, using the breakwater gap-to-wavelength b, as a
dimensionless measure. In the same paper they also compare the experimental
data to numerical results based on a �nite element model with good results
that con�rm that wave di�raction is primarily a linear wave phenomenon. Nu-
merous numerical studies based on di�erent model equations and discretization
strategies have been carried out for analysis of breakwater gap di�raction, see
e.g., [EK06]. A common challenge for many numerical models arises due to the
presence of the (in�nitely) thin breakwater and singularities around the break-
water tip. Ordinary use of ghost points in a �nite di�erence setup is impossible,
because such points coincide with internal grid points at the other side of the
breakwater. Consequently the user would have to implement ad hoc solutions to
circumvent this issue. Numerical treatment of the breakwater tip is also pointed
out by Pos and Kilner to be error prone and may be the main reason for the
di�erences between the experimental and numerical data.

In this study our goal is not to contribute with new or thorough analysis of wa-
ter wave di�raction results, but to demonstrate some of the nice features that
the multi-block approach brings. An example of a breakwater gap di�raction



80 Domain decomposition on heterogeneous multi-GPU hardware

-5 -2 0 9

0

-7

x/L

y/L Zgen

Zabs

Figure 4.13: Example of a breakwater gap di�raction setup. Incident waves
are generated in the generation zone Zgen at the western bound-
ary before encountering the breakwater.

5

6

9

6

5

1

9

1

n0 n1

n2 n3

Figure 4.14: Domain decomposition of the breakwater gap di�raction domain
from Figure 4.13 into four subdomains. The ghost layer bound-
ary connection (red) between node n0 and n1 are deatached and
exchanged with a traditional Neumann condition.

setup is illustrated in Figure 4.13, where the breakwater is assumed to be in-
�nitely thin. Symmetry across the direction of incident waves at y=L = 0 is
utilized to model only half of the domain. Using the multi-block solver with
a two-dimensional horizontal topology we are able to split the domain into
four subdomains, such that the breakwater becomes the interface between two
blocks, see Figure 4.14. Since the boundary conditions can be set individually



4.5 Multi-block breakwater gap di�raction 81

for each subdomain, we can easily change the boundary condition for the eastern
boundary of subdomain n0 and western boundary for subdomain n1 into the
classical no �ux condition using Neuman boundaries. Manually setting up the
subdomain for n0 using the topology implementation presented in Section 4.2
is illustrated in Listing 4.3.

1 // Setup topology connect ions and dimensions
2 topology_type topo ;
3 topo .P = 2; // 2x nodes along x- direct ion
4 topo .Q = 2; // 2x nodes along y- direct ion
5 topo .R = 1; // 1x node along z- direct ion
6 BC_TYPE bc_east , bc_west , bc_south , bc_north ;
7 if ( rank ==0) // This is n0
8 {
9 topo .p = 0; // Grid x - index = 0

10 topo .q = 0; // Grid y - index = 0
11 topo .E = MPI_PROC_NULL ; // No neighbor to the east ( Breakwater )
12 topo .W = MPI_PROC_NULL ; // No neighbor to the west
13 topo .N = 2; // Node 2 to the north
14 topo .S = MPI_PROC_NULL ; // No neighbor to the south
15

16 // Boundary condit ions
17 bc_east = BC_NEU ;
18 bc_west = BC_NEU ;
19 bc_north = BC_DD ;
20 bc_south = BC_NEU ;
21

22 // Create grid propert ies here using the bc types ...
23 }
24 // ... Do the same for rank =1 ,2 ,3 and create grids using topo ...

Listing 4.3: Manually setting up a 2 � 2 topology and the connections for the
node with rank= 0 (n0 in Figure 4.14).

The decomposition into individual subdomains solves the problem with insuf-
�cient ghost points across the breakwater, because each domain now has an
individual set of ghost points that do not need to represent internal grid points.
This kind of topology control in combination with boundary �tted domains
opens up new perspectives for e�cient large-scale simulation of applications
with complex scenery.

To test the breakwater gap di�raction model we generate incident monochro-
matic linear sinusoidal waves within the generation zone Zgen = 3L , with wave
height of size H = 0 :055m, wave period T = 0 :59s, and wavelength L = 0 :495m.
A �at seabed with still-water depth of h = 0 :125 is used throughout the domain
and a gap with a total width of b = 2L . For the discretization we use 17 grid
points per wavelength, a vertical resolution of Nz = 9 , and a Courant number
Cr = 0 :5 resulting in a time step � t = 0 :0184s. In practice we exploit that the
numerical solver is very fast, to create a large domain behind the breakwater,
large enough for the waves not to re�ect and interfere with the solution close to
the gap. This also avoids unintended wave re�ections from the absorption zones
to a�ect the solution.



82 Domain decomposition on heterogeneous multi-GPU hardware

Wave di�raction is computed as the size of the wave envelope relative to the
incident wave height H comp =H . The di�raction contours are plotted in Figure
4.15 and are in good agreement with the numerical results by e.g., Engsig-
Karup [EK06] in the vicinity of the gap. It is again emphasized that these results
come with no special treatment or ad hoc solutions to model the breakwater, but
is a positive result of a well-designed generic multi-block approach for distributed
computing.

Figure 4.15: Linear di�raction close to the breakwater gap. Values are relative
to the incident wave height. The total gap size is equal to two
wavelengths, b = 2L .



Chapter 5

Temporal decomposition
with Parareal

The use of spatial domain decomposition methods is widespread, as they have
proven to be e�cient for a wide range of problems. These data-parallel meth-
ods are e�cient for solving large-scale problems and for reducing computational
times by distributing data and thereby reducing the work load per processor.
However, applications that are facing numerical problems of limited sizes can
rapidly reach a speedup limit for a low number of processors, due to a perfor-
mance decrease when the number of processors increases, as this leads to an
increasingly unfavorable ratio between communication and computation. This
issue is continuously worsened by the memory wall [ABC+ 06]; the fact that
communication speed is increasing at a far slower pace than compute speed,
This trend is even expected to continue for years to come and is considered one
of the grand challenges facing development and architectural design of future
high-performance systems [Kea11, BMK+ 10]. Also, there are applications based
on ordinary di�erential equations, where classical domain decomposition meth-
ods are not even applicable [Mad08]. For these types of applications, a method
for adding parallelism in the temporal domain is of great interest. Decoupling
the temporal domain is however, not as straightforward as spatial decomposi-
tion, since time is sequential by nature. For this reason these methods have not
received the same attention in the literature and have not been proven to work
e�ciently on as many cases. However, with the continuously increasing num-
ber of parallel compute units in modern hardware, alternative parallelization



84 Temporal decomposition with Parareal

strategies than data-parallel methods, are becoming more and more attractive.

The book by Burrage[Bur95] in 1995 presents a survey of numerical methods for
computing the solution of evolution problems using parallel computers. He clas-
si�es these methods into three groups of parallelism - across the system, across
the method, and across the time. The �rst two groups often have strict limi-
tations to their application range and on performance scalability. Parallelism
across the method, such as parallel Runge-Kutta methods[IN90], have the dis-
advantages that they only work with a �xed number of processors and therefore
are not suitable for arbitrarily large-scale parallelism. The third category, con-
taining the multishooting methods due to Bellen and Zennaro[BZ89], is of more
interest, as these methods are often suitable for a broader range of problems.
One such method that introduces concurrency across the time is the Parareal al-
gorithm, proposed by Lion et al. (2001)[LMT01]. Parareal is a parallel iterative
method based on task-parallelism, via temporal decomposition. Thus, Parareal
is an algorithm that is purely designed for parallization, by introducing more
concurrency to the solution of initial value problems, as it would only lead to an
additional workload in its sequential version. Gander and Vandewalle showed in
[GV07] that the algorithm can be written both as a multiple shooting method
and as a two-level multigrid-in-time approach, even though the original idea
came from spatial domain decomposition. The method has many exciting fea-
tures: it is fault resilient and has di�erent communication characteristics than
those of the classical spatial domain decomposition methods. Fault resilience
follows from the iterative nature of the algorithm and implies that a process
can be lost during computations and regenerated without restarting the entire
computations. Regeneration can be exploited to minimize total run time in
case of such temporary hardware failures. This is an attractive feature for HPC
systems as the total number of compute nodes continues to grow. Parareal has
also been demonstrated to work e�ectively on a wide range of problems and it
is not limited by any number of parallel tasks, thus enabling large-scale par-
allelism. Also, once the proper distribution infrastructure is implemented, it
can be wrapped around any type of numerical integrator, for any type of initial
value problem.

Our work on temporal domain decomposition with the Parareal algorithm is a
continuation to some of the work presented in [Nie12], where a thorough feasibil-
ity study of the algorithm was presented. Parareal results based on our work, on
the parallelization of the free surface water wave model, was initiated and based
on these experiences we have implemented the Parareal algorithm as a generic
library component. By experiments we have demonstrated its applicability to
fully three-dimensional free surface water waves. Our main focus is to investi-
gate whether it is possible, based on a number of test cases, to obtain practical
speedups with the Parareal algorithm on heterogeneous multi-GPU systems. To
the authors knowledge, this is the �rst time that temporal parallelization using



5.1 The Parareal algorithm 85

multple GPUs has been demonstrated.

5.1 The Parareal algorithm

The Parareal algorithm was �rst presented in 2001, in a paper by Lions et
al. [LMT01], and later introduced in a slightly revised predictor-corrector form
in 2002 by Ba�co et al. [BBM+ 02]. The Parareal-in-time approach proposes to
break the global problem of time evolution into a series of independent evolution
problems on smaller intervals, see Figure 5.1. Initial states for these problems are

T0 T1 TN TN +1

Space

T ime

GPU 1 GPU N

Figure 5.1: Time domain decomposition. A process is assigned to each in-
dividual time subdomain to compute the initial value problem.
Consistency at the time subdomain boundaries is obtained with
the application of a computationally e�cient integrator in con-
junction with the Parareal iterative predictor-corrector algorithm.

needed and computed by a simple, less accurate, but computationally e�cient
sequential integrator. The smaller independent evolution problems can then
be solved in parallel. The solution generated during the concurrent integration
with accurate propagators but inaccurate initial states, is used in a predictor-
corrector fashion in conjunction with the coarse integrator to propagate the
solution faster, now using the information generated in parallel. We de�ne the
decomposition in N intervals, that is,

T0 < T 1 < � � � < T n = n� T < T n +1 < T N ; (5.1)

where � T is the size of the time intervals and n = 0 ; 1; : : : ; N . The general
initial value problem on the decomposed time domain is de�ned as

@u
dt

+ A(u) = 0 ; u(T0) = u0; t 2 [T0; TN ] ; (5.2)



86 Temporal decomposition with Parareal

where A can be a linear or nonlinear operator on u. To solve the di�erential
problem (5.2) we de�ne an operator F � T that operates on some initial state
Un � u(Tn ) and returns an approximate solution to (5.2), at time Tn +� T . Such
an operator is achieved by the implementation of a numerical time integrator,
using some small time-step �t � � T in the integration. The numerical solution
to (5.2) can then be obtained by applying the �ne propagator sequentially for
n = 1 ; 2; : : : ; N .

Ûn = F � T

�
Tn � 1; Ûn � 1

�
; Û0 = u0: (5.3)

For the purpose of Parallel acceleration of the otherwise purely sequential pro-
cess of computing F N

� T u0 � u(TN ), we de�ne the coarse propagator G� T . G� T

also operates on some initial state Un , propagating the solution over the time
interval � T , now using another time step �T . Typically �t < �T < � T . For
the Parareal algorithm to be e�ective, the coarse propagator G� T has to be
substantially faster to evaluate than the �ne propagator F � T . There are many
ways of constructing the coarse propagator, the simplest one being to apply
the same numerical integrator as for the �ne propagator, but taking larger time
steps. We refer the reader to [Nie12] for an introduction to other methods. The
coarse operator reads

~Un = G� T

�
Tn � 1; ~Un � 1

�
; ~U0 = u0: (5.4)

Using the de�ned F � T and G� T operators, the predictor-corrector form of the
Parareal algorithm can be written in a single line as

Uk+1
n = G� T

�
Uk+1

n � 1

�
+ F � T

�
Uk

n � 1

�
� G � T

�
Uk

n � 1

�
; Uk

0 = u0; (5.5)

with the initial prediction U0
n = Gn

� T u0 for n = 1 : : : N and k = 1 : : : K . N
being the number of time subdomains, while K � 1 is the number of predictor-
corrector iterations applied.

5.2 Parareal as a time integration component

The Parareal algorithm is implemented in the GPUlab library as a separate
time integration component, using a fully distributed work scheduling model, as
proposed by Aubanel [Aub11]. The model is schematically presented in Figure
5.2. The Parareal component hides all communication and work distribution
from the application developer. It is generically implemented such that a user
only has to decide what coarse and �ne propagators to use. Setting up the
type de�nitions for Parareal time integration using forward Euler for coarse



5.3 Computational complexity 87

propagation and fourth order Runge-Kutta for �ne propagation could then be
de�ned as in Listings 5.1. The number of GPUs used for parallelization depends
on the number of MPI processes that execute the application.

1 typedef gpulab :: integrat ion :: forward_euler coarse ;
2 typedef gpulab :: integrat ion :: ERK4 fine ;
3 typedef gpulab :: integrat ion :: parareal <coarse , fine > integrator ;

Listing 5.1: Assembling a Parareal time integrator using forward Euler for
coarse propagation and an explicit Runge-Kutta method for �ne
propagation

T ime

Iter: k = 0 Iter: k = 1 Iter: k = 2 Iter: k = 3

GPU:1

GPU:2

GPU:3

GPU:4

GPU:5

GPU:6

TG

TG

TG

TG

TG

TG

TF

TF

TF

TF

TF

TF

TG

TG

TG

TG

TG

TF

TF

TF

TF

TF

TG

TG

TG

TG

TF

TF

TF

TF

TG

TG

TG

Figure 5.2: Visualization of the fully distributed work scheduling model for
the Parareal algorithm. Each GPU is responsible for computing
the solution on a single time subdomain. The computation is
initiated at rank 0 and cascades through to rank N where the
�nal solution is updated.

5.3 Computational complexity

In the analysis of the computational complexity, we �rst recognize that both
the coarse and the �ne propagators, regardless of the type of discretization,
involve a complexity that is proportional to the number of time steps being
used. Let us de�ne two scalar values CF and CG as the computational cost of
performing a single step with the �ne and coarse propagators, respectively. The
corresponding computational complexity of integrating over an interval � T is
then given by CF

� T
�t and CG

� T
�T . R is introduced as the relation between the two;

that is, R measures how much faster the coarse propagator is compared to the
�ne propagator for integrating the time interval � T . The total computational



88 Temporal decomposition with Parareal

cost for Parareal over N intervals is then proportional to

(K + 1) N CG
� T
�T

+ KN CF
� T
�t

: (5.6)

Recognizing that the second term can be distributed over N processors, we are
left with

(K + 1) N CG
� T
�T

+ K CF
� T
�t

: (5.7)

The above should be compared to the computational complexity of a purely
sequential propagation, using only the �ne operator,

TN � T0

�t
CF = N

� T
�t

CF : (5.8)

We can now estimate the speedup, here denoted  , as the ratio between the
computational complexity of the purely sequential solution, and the complexity
of the solution obtained using the Parareal algorithm (5.7). Neglecting the
in�uence of communication speed and correction time, we are left with the
estimate

 =
N � T

�t CF

(K + 1) N CG
� T
�T + kCF

� T
�t

=
N

(K + 1) N CG
CF

�t
�T + K

: (5.9)

If we additionally assume that the time spent on coarse propagation is negligible
compared to the time spent on the �ne propagation, i.e., the limit CG

CF

�t
�T ! 0,

the estimate reduces to  = N
K . It is thus clear that the number of iterations

K for the algorithm to converge sets an upper bound on the obtainable parallel
e�ciency. The number of iterations needed for convergence is intimately coupled
with the ratio R between the speed of the �ne and the coarse integrators CF

CG

�T
�t .

Using a slow, but more accurate coarse integrator will lead to convergence in
fewer iterations K , but at the same time it also makes R smaller. Ultimately,
this will degrade the obtained speedup as can be deduced from (5.9). Thus,
R cannot be made arbitrarily large since the ratio is inversely proportional to
the number of iterations K needed for convergence. The estimated theoretical
speedup for given values of R and K is illustrated in Figure 5.3, it is evident
that the e�ciency drops rapidly when k increases. This relationship between R
and K imposes a challenge in obtaining speedup and is a trade-o� between time
spent on the fundamentally sequential part of the algorithm and the number of
iterations needed for convergence. It is particularly important to consider this
trade-o� in the choice of stopping strategy; a more thorough discussion on this
topic is available in [Nie12] for the interested reader. Measurements on parallel
e�ciency are typically observed to be less than 50%[Nie12], depending on the
problem and the number of time subdomains, which is also con�rmed by our
measurements using multiple GPUs. This suggests that data-parallel methods



5.3 Computational complexity 89

(a) K = 1 . (b) K = 2 .

Figure 5.3: Theoretical speedup for two di�erent values of K and an increasing
number of processors.

are often a better choice for speeding up PDE solvers, as we have demonstrated
in Section 4.4.6. Though, Parareal may have the advantage for problems where
there is not enough data for data-parallel methods to be fully e�ective.

For demonstrative purpose we �rst present a small parameter study using Parareal
on the two-dimensional heat problem (2.4), at a coarse resolution (Nx ; Ny ) =
(16; 16) and for a integration period t = [0 ; 1]s. The value of R is regulated by
using a su�ciently small constant time step size for the �ne integrator and then
adjusting the time step size for the coarse integrator. We use simple forward Eu-
ler integration for both coarse and �ne integration. The problem is �rst solved
purely with the �ne integrator to be able to compare the solution obtained with
the Parareal algorithm. The error after the �rst Parareal iteration is reported
in Figure 5.4a, and the total number of iterations to obtain a solution with a
relative error less than 10� 5 is reported in Figure 5.4b. In Figure 5.5 speedup
and parallel e�ciency measurements are presented. When R increases, at some
point an extra Parareal iteration is required for the relative error to go below
the tolerance, as illustrated in Figure 5.4b, this extra iteration clearly impacts
the attained speedup and parallel e�ciency depicted in Figure 5.5. The results
con�rm that speeding up a PDE solver is possible on a heterogeneous system,
but it also con�rms that the attainable speedups depend on several factors and
that it can be di�cult to predict.



90 Temporal decomposition with Parareal

0

100
0

10

20

0:5

1
�10� 2

RGPUs

jje
re

lj
j 1

(a) The relative error after one parareal
iteration ( k = 1 ).

50
100

150
10

20
1

2

3

RGPUs

K
(b) Iterations K needed to obtain a rel-

ative error less than 10� 5 .

Figure 5.4: Parareal convergence properties as a function of R and number
of GPUs used. The error is measured as the relative di�erence
between the purely sequential solution and the parareal solution.

0 50 100 150
0

10

20
0

5

10

R
GPUs

S
p

ee
du

p

(a) Measured parallel speedup

0 50 100 150
0

10

20
0

0:5

1

R
GPUs

E
�c

ie
nc

y

(b) Measured parallel e�ciency

Figure 5.5: Parareal performance properties as a function of R and number
GPUs used. Notice how the obtained performance depends greatly
on the choice of R as a function of the number of of GPUs. Tested
on Oscar.

5.4 Accelerating the free surface model using parareal

The Parareal library component makes it possible to easily investigate potential
opportunities for further acceleration of the water wave model on a heteroge-
neous system and to assess practical feasibility of this algorithmic strategy for
various wave types.



5.4 Accelerating the free surface model using parareal 91

In section 5.3 it is assumed that communication costs can be neglected and
a simple model for the algorithmic work complexity is derived. It is found
that there are four key discretization parameters for Parareal that need to be
balanced appropriately in order to achieve high parallel e�ciency. They are the
number of coarse-grained time intervals N , the number of iterations K , the ratio
between the computational cost of the coarse to the �ne propagator CG=CF and
the ratio between �ne and coarse time step sizes �t=�T .

Ideally, the ratio CG=CF is small and convergence happens in just one iteration,
K = 1 . This is rarely the case, as it requires the coarse propagator to achieve
accuracy close to that of the �ne propagator, while at the same time being
substantially more e�ciently, these two objectives obviously being con�icting.
Obtaining the highest possible speedup is a matter of trade-o�, typically, the
more GPUs used, the faster the coarse propagator should be. The performance
of Parareal depends on the given problem and the discretization. Thus, one
would suspect that di�erent wave parameters in�uence the feasibility of the
algorithm. This was investigated in [Nie12] and indeed the performance does
change with wave parameters. Typically the algorithm works better for deep
water waves with low to medium wave amplitude. In this case nonlinear and
dispersive e�ects are minor and only small changes to the wave characteristic
happens within each time step.

103 105 10710� 1

100

101

102

103

N (problem size)

T
im

e
[s

]

1 GPU

2 GPUs

4 GPUs

8 GPUs

16 GPUs

(a) Performance scaling.

104 105 106
0

2

4

6

N (problem size)

S
p

ee
du

p

(b) Speedup.

Figure 5.6: Parareal timings for an increasing number of water waves traveling
one wavelength, each wave resolution is (33 � 9). Speedup for
two to sixteen compute nodes compared to the purely sequential
single-GPU solver. Tested on Oscar.

We have performed a scalability study for Parareal applied to two-dimensional



92 Temporal decomposition with Parareal

nonlinear stream function waves to demonstrate that there is a spatial inde-
pendence on the attainable speedup. Each wave is discretized with (Nx ; Nz ) =
(33; 9) grid points, and the total problem size N = Nx Ny is assembled from
multiple waves in a periodic domain. For this test we adjust the time step of
the �ne and coarse solver such that R � 8, in which case one iteration K = 1 , is
su�cient. The study shows that moderate speedups are possible for this hyper-
bolic system, see Figure 5.6. Using four GPU nodes a speedup of slightly more
than two was achieved while using sixteen GPU nodes resulted in a speedup
of slightly less than �ve. What should be noticed is the Parareal algorithm is
completely insensitive to the size of the problem solved. Parareal is a time de-
composition technique, thus scalability applies to the temporal dimension not
the spatial. The Parareal algorithm can therefore be a competitive alternative
for parallelization of problems of limited spatial sizes. As demonstrated in Fig-
ure 5.6, parallel e�ciency decreases quite fast for this case when using more
GPUs. This limitation is due to the use of a fairly slow and accurate coarse
propagator and linked to a known di�culty with Parareal applied to hyperbolic
systems. For hyperbolic systems, instabilities tend to arise when using a very
inaccurate coarse propagator. This prevents using a large number of time sub-
domains, as this by Amdahl's law also requires a very fast coarse propagator.
The numbers are still impressive though, considering that it comes as additional
speedup to an already e�cient solver.

2 4 6 8
0:5

1

1:5

2

2:5

R

S
p

ee
du

p

2 4 6 8
0

0:2

0:4

0:6

R

E
�c

ie
nc

y

2 GPUs

4 GPUs

8 GPUs

16 GPUs

32 GPUs

Figure 5.7: Parallel time integration using the Parareal method. R is the ratio
between the complexity of the �ne and coarse propagators. Tested
on Oscar.

Performance results for the Whalin test case, as presented in Section 3.3.1, is
also reported in Figure 5.7. There is a natural limitation to how much we can
increase R, because of stability issues with the coarse propagator. In this test
case we simulate from t = [0 ; 1]s, using up to 32GPUs. For low R and only two
GPUs, there is no attained speedup, but for con�guration with eight or more
GPUs and R � 6, we are able to get more than 2 times speedup as illustrated in



5.5 Concluding remarks 93

Figure 5.7. Though these hyperbolic systems are not optimal for performance
tuning using the Parareal method, results still con�rm that reasonable speedups
are in fact possible on heterogenous systems.

5.5 Concluding remarks

The Parareal method is observed to be a potential approach for speeding up
small-scale problems due to the reduced communication and overhead involved.
For su�ciently large problems, where su�cient work is available to hide the
latency in data communication, we �nd that the spatial domain decomposition
method is more favorable, as it does not involve the addition of extra iterations
and thereby allows for ideal speedup, something usually out of reach for the
Parareal algorithm. An important thing to note here is that it is technically
possible to extend the work and wrap the Parareal method around the domain
decomposition method, thereby obtaining a combined speedup of both methods.
This can be of great interest in the sense that for any problem size, increasing
the number of spatial subdomains will eventually degrade speedup due to the
latency in communication of boundaries. However, such a combination requires
a non-trivial support for handling multiple MPI communicators, which is yet to
be supported by the library.

We recognize that some of the results presented for the free surface water wave
model were obtained by setting an pessimistic time step for the �ne integrator
in order to increase R. For explicit time integration of hyperbolic problems
there are strict stability requirements on the time step sizes and the coarse
integrator cannot violate these. In this work we have only considered �ne and
coarse integrators based on similar explicit schemes. However, there are options
to increase R, by reducing the computational work of the coarse integrator that
have not been investigated in present work. We see �ve possible modi�cations
that will allow a more e�cient coarse integration: 1) Use the linearized potential
�ow system. 2) Use only low-order discretizations. 3) Use a coarser numerical
grid, 4) set a less strict tolerance for the solution to the Laplace equation. 5)
Use mixed-precision calculations. Though these modi�cations will be able to
signi�cantly speedup the coarse integration part, there are no guarantees that
the total time-to-solution will be faster, because it can also lead to extra Parareal
iterations. We intend to pursue some of the answers to these questions in future
work.



94 Temporal decomposition with Parareal



Chapter 6

Boundary-�tted domains
with curvilinear coordinates

Spatial discretization based on �nite di�erences is a popular choice within a
broad range of scienti�c applications for several reasons; it is probably the most
simple and widely used discretization method available, high-order accuracy is
straight forward, consistency analysis is well understood, and the absence of ex-
tra index maps reduces the memory requirement, enhances the performance,
and possibly increases developer productivity. Furthermore, the one-to-one
mapping between discrete grid points and the thread hierarchy of massively
parallel processors, such as the GPU, is ideal for high performance throughput,
as demonstrated in some of the early articles on heterogeneous computing, e.g.,
[KDW+ 06, DMV+ 08, Mic09]. The above mentioned reasons have been driving
motivations for the present work, and to the authors knowledge, the �nite dif-
ference based free surface water wave solver is now one of the most versatile and
e�cient tools available for simulation of dispersive and nonlinear water waves.

However, �nite di�erence methods also pose challenges for certain types of ap-
plications, particularly because of problems with mass conservation in �uids,
and because of the di�culties in representing complex geometries. To address-
ing these problems, the classes of �nite volume or �nite element methods in
combination with unstructured grids have traditionally been utilized[EGH03].
As an additional step towards a complete and applicable tool for coastal en-
gineering, we address the latter issue by introducing generalized curvilinear



96 Boundary-�tted domains with curvilinear coordinates

coordinate transformations in order to represent �exible and user-controllable
geometries. Curvilinear coordinate transformations is a widely used approach
to reduce the limitations of �nite di�erence approximations and have also been
used to analyze both linear and nonlinear free surface wave-structure interac-
tions [LF01, SDK+ 01, BN04, ZZY05, zFlZbLwY12], though only few are con-
cerned with fully three-dimensional models[DBEKF10]. In order to represent
the mapping we use a unique one-to-one mapping between all horizontal grid
points, from a su�ciently smooth (di�erentiable) physical region to a logically
rectangular region. The coordinate transformation introduces additional terms
to the partial di�erential equations, that will have to be accounted for. We ex-
tend the GPUlab library with additional kernel-based �nite di�erence routines
that will support developers in computing the solution of coordinate transformed
spatial derivatives. Explicit numerical di�erentiation of the physical coordinates
is utilized to allow a generic implementation, that can be used for any valid user-
generated input grid. The introduction of algebraic grid transformations reduces
the performance throughput because the number of memory transactions is in-
creased. The computation of spatial derivatives based on �nite di�erence ap-
proximations are no longer able to rely on constant grid spacing, but has to
compute grid-speci�c transformation coe�cients by reading information from a
grid that holds the physical information. The challenge is therefore to minimize
the additional memory overhead, therefore we present a numerical benchmark
that will reveal some of the performance characteristics of the chosen method.

Grid (or mesh) generation can be di�cult for highly detailed and complex ge-
ometries and therefore developers often rely on third party software to generate
the grids. Di�erent grid types exist with various properties to match di�erent
geometries and numerical approaches. Either structured or unstructured grids
based on triangular, quadrilateral, or tetrahedral elements are among the most
used. Fast and optimal grid generation is a topic of its own, and will not be
extensively covered in this thesis, instead we refer the reader to the work avail-
able in the literature on this subject, e.g., [HX96]. We will comment on some
of the issues related to grid generation relevant to the given examples. Many
software libraries for grid generation exist and it can be advantageous to rely on
such third party packages to avoid cumbersome grid re�nements. The test cases
presented in this chapter all have boundary-�tted grids that can be computed
fairly easy from analytic expressions and so we will not detail the process of grid
generation further.

In the following sections we �rst consider curvilinear transformations of the hor-
izontal coordinates to represent fully surface penetrating and bottom mounted
structures. The transformation equations between a physical domain of in-
terest and a classical Cartesian reference domain (computational domain) are
presented along with a generic implementation strategy. Examples of di�erent
applications are also examined and compared to either analytic or experimental



6.1 Generalized curvilinear transformations 97

data. The e�cient GPU-based free surface solver allows us to compute the so-
lution of relatively large and complex wave-structure interaction within minutes
or up to approximately an hour.

6.1 Generalized curvilinear transformations

0 2 4 6
0

2

4

6

x

y

0 0:5 1
0

0:5

1

�

�

0 0:5 1
0

0:5

1

�

�

0 2 4 6
0

2

4

6

x

y

Figure 6.1: Top: One-to-one mapping of a 16� 32 discrete grid, representing
the quarter annulus in Cartesian coordinates (x; y) to the left and
in computational coordinates (� 1; � 2) within the unit square to
the rigth. Bottom: contour plot of a cosine function within the
physical domain and its corresponding transformed representation.

We seek to express the relationship between �rst and second order partial dif-
ferential equations between the physical space and a computational space. We
de�ne the following general relation between a two-dimensional physical domain
(x; y) and a time-invariant computational domain (�;  )

� � � (x; y);  �  (x; y); (6.1)

such that � and  are independent variables in the transformed computational
domain. An example of a transformation between the quarter annulus in the
physical domain and the unit squared computational domain is illustrated in



98 Boundary-�tted domains with curvilinear coordinates

Figure 6.1. If the computational grid is chosen to be rectangular as in the �gure,
the grid spacing is constant along each dimension. Thus, in the computational
domain we are able to reuse the same constant coe�cient stencil operators based
on �nite di�erence approximations, as we use in a regular (non-curvilinear)
setup. However, the coordinate transformation introduces additional terms to
the di�erential equations. Using the above notation and the chain rule for partial
di�erential equations, �rst order derivatives with respect to the original physical
coordinates (x; y) of a function u, can be described in the computational domain
(�;  ) via the following relations

@u
@x

=
@�
@x

@u
@�

+
@
@x

@u
@

; (6.2a)

@u
@y

=
@�
@y

@u
@�

+
@
@y

@u
@

; (6.2b)

or simply, using the short notation @u=@x= ux

ux = � x u� +  x u ; (6.3a)

uy = � y u� +  y u : (6.3b)

These equations contain derivatives with respect to the physical coordinates.
In practice we prefer the derivatives to be de�ned in terms of the computation
domain, because it allows us to use constant stencil coe�cient operators. In
addition, what is known beforehand is usually the mapping from the computa-
tional to the physical domain. Thus, since the mapping is required to be unique
and any mapping and its inverse would lead to the original point in the starting
coordinate system, the following relations hold

� x =
1
J

y ; � y = �
1
J

x  ; (6.4a)

 x = �
1
J

y� ;  y =
1
J

x � : (6.4b)

where J is the Jacobian, given as the determinant of the Jacobi matrix

J = det( J) = det
��

x � x 

y� y

��
= x � y � x  y� : (6.5a)

The value of the Jacobian determines how much an area under transformation
contracts of expands. Given the above equations, the �rst order derivatives of
u can now be described exclusively within the computational reference domain
as

ux =
y u� � y� u

J
; (6.6a)

uy =
x � u � x  u�

J
; (6.6b)



6.1 Generalized curvilinear transformations 99

and for the second order and mixed derivatives the following relations can be
derived

uxx = ( y2
 u�� � 2y� y u� + y2

� u )=J2

+ [( y2
 y�� � 2y� y y� + y2

� y )(x  u� � x � u )

+ ( y2
 x �� � 2y� y x � + y2

� x  )(y� u � y u� )]=J3; (6.7a)

uyy = ( x2
 u�� � 2x � x  u� + x2

� u )=J2

+ [( x2
 y�� � 2x � x  y� + x2

� y )(x  u� � x � u )

+ ( x2
 x �� � 2x � x  x � + x2

� x  )(y� u � y u� )]=J3; (6.7b)

uxy = [( x � y + x  y� )u� � x � y� u � x  y u�� ]=J2

+ [( x � y � x  y� )=J2 + ( x  y J � � x � y J  )=J3]u�

+ [( x  y�� � x � y� )=J2 + ( x � y� J  � x  y� J � )=J3]u ; (6.7c)

where the derivatives of the Jacobian with respect to the computational coor-
dinates, appearing in (6.7c), can be derived as

J � = x �� y � y�� x  � x � y� + y� x � ; (6.8a)

J  = x � y � y� x  � x  y� + y x � : (6.8b)

The derivations for all of the above equations and their mathematical properties
are quite comprehensive and not particularly relevant for the present work.
We refer to literature, e.g., the book by Liseikin [Lis99] for a mathematical
introduction to grid generation methods, or for a more practical approach, the
work by Kopriva [Kop09].

6.1.1 Boundary conditions

Boundary conditions may be de�ned in terms of the physical boundary normals,
such as the no-�ux Neumann boundary conditions stating that no �uid is allowed
to pass through the boundary,

n � r u = 0 ; (x; y) 2 @
 ; (6.9)

where n = ( nx ; ny )T is the normal de�ned at the physical domain boundary
@
 , expressed in Cartesian coordinates. We also need a relation that allow
us to approximate (6.9) based on the boundary of the computational domain.
We notice that the boundary normals on the regular computational domain
are trivial, ne = (1 ; 0)T , nw = ( � 1; 0)T , nn = (0 ; 1)T , and ns = (0 ; � 1)T

for the east, west, north, and south boundaries respectively. The relationship



100 Boundary-�tted domains with curvilinear coordinates

between the normals in the two coordinate systems can be described in terms
of a rotation matrix R where the following relation holds,

�
nx

ny

�
= R� 1

�
n�

n

�
=

0

@
� xp

� 2
x +  2

x

 xp
� 2

x +  2
x

� yp
� 2

y +  2
y

 yp
� 2

y +  2
y

1

A
�

n�

n

�
; (6.10)

where nc = ( n� ; n )T is one of the trivial normals at the boundary of the
computational domain. Combining (6.10) and (6.4) we are able to compute the
normals at the physical boundary with the same order of accuracy as our �nite
di�erence approximations.

6.2 Library implementation

First of all, adding support for curvilinear domains in the GPUlab library must
not interfere with existing implementations and should provide an intuitive way
of extending solvers to utilize curvilinear domains. To achieve this, we have
extended the original grid class with one extra member pointer, pointing to a
transformation object. When this pointer is null (default) no curvilinear trans-
formation is associated with the grid, thus existing implementations need no
modi�cation. If the pointer is not null, then it points to a simple container that
again points to two grids that de�ne the horizontal coordinates of the physical
domain (the x and y (6.1)). These two coordinate-grids are of the same ob-
ject type as the grid itself. Creating a grid object and assigning it a speci�c
transformation is illustrated in Listing 6.1.

1 typedef gpulab :: grid <double , gpulab :: device_memory > grid_type ;
2 typedef gr id_type :: t ransformat ion_type transformat ion_type ;
3

4 grid_type U;
5 grid_type X;
6 grid_type Y;
7

8 // Fi l l X and Y with geometr ic information
9

10 t ransformat ion_type transform ( alpha );
11 t ransform . set_X (&X);
12 t ransform . set_Y (&Y);
13 U. set_transformat ion (& transform );

Listing 6.1: Initialize a grid for the solution (U) and two grids for the physical
coordinate information (X and Y).

The transformation object only stores pointers to the two grids to allow multiple
solutions to share the same coordinate transformation. This will signi�cantly
reduce the memory footprint, as only one copy of X and Y needs to be stored.



6.2 Library implementation 101

When a grid contains a valid pointer to their transformation object, they should
pass along the Xand Ypointers to the GPU kernels, and library subroutines will
provide support for computing the spatial derivatives in (6.6) and (6.7). The
implementation of the �nite di�erence approximations in curvilinear coordinates
is validated in Figure 6.2, based on the quarter annulus grid from Figure 6.1.

10� 3 10� 2 10� 1 100
10� 10

10� 7

10� 4

10� 1

� �

jj
ej

j 1

u x
u y
u xx
u yy
u xy

O(� � 2 )

(a) � = 1

10� 3 10� 2 10� 1 100
10� 10

10� 7

10� 4

10� 1

� �

jj
ej

j 1

u x
u y
u xx
u yy
u xy

O(� � 4 )

(b) � = 2

Figure 6.2: Consistency veri�cation for approximating the �rst and second
order derivatives in a curvilinear domain using two di�erent stencil
sizes � = 1 ; 2. Results are computed and compared to the analytic
known cosine function in the quarter annulus grid as illustrted in
Figure 6.1

6.2.1 Performance benchmark

The range of applications that will bene�t from accurate representation of com-
plex geometry is greatly increased with the addition of curvilinear grid support.
However, as emphasized by the derived transformation equations (6.6) and (6.7),
these computations require an increased number of �oating-point operations and
memory accesses. Thus, a performance decrease is expected for applications re-
lying heavily on the calculation of transformed spatial di�erential equations. A
benchmark of two approaches for computing the �rst and second order trans-
formed derivatives in one direction is presented. The two versions have distinct
advantages, so it is not obvious which is the most optimal.

The �rst version (v1) computes all transformations coe�cients based on the x
and y coordinates for each grid point. This leads to restricted memory access
for these two coordinates, but it also requires each thread to access more than
one element in order to perform the stencil computation. The stencil size, � ,



102 Boundary-�tted domains with curvilinear coordinates

determines how many extra memory accesses that are required to compute the
derivative. An example of how threads within one thread-block collaborate
to read from global memory into shared memory is illustrated in Figure 6.3.
The increased number of operations required to compute the derivative also
signi�cantly increase the register count, causing the kernel occupancy to drop.
All kernel implementations have been evaluated on G6, with a Tesla K20c GPU,
supporting compute capability 3:5. In this case, there is a decrease from 100%to
75% for the kernel computing the �rst-order transformed derivatives compared
to the non-transformed version. Accordingly, there is a decrease from 100% to
50% for the second-order derivative kernel.

Figure 6.3: An (8 � 8) thread-block reading global memory into a (10 � 10)
shared memory block. Since � = 2 there are two layers on each
side of the block that will have to be read from global memory.
An (8 � 8) thread-block is used for illustrative purpose, in pratice
a (16� 16) thread-block gives better performance.

The second version (v2) simply reads the coe�cients from pre-computed grids.
This version requires additional kernel input arguments. Up to ten extra ar-
guments (x � , x  , x � , x �� , x  , y� , y , y� , y�� , and y ), compared to the
two for the �rst version. However, the second version is somewhat more simple
implementation-wise, as there are less on-the-�y computations. The reduced
number of registers causes the occupancy to remain at 100%, for the �rst-
order kernel. Computing the second-order derivatives causes the occupancy



6.2 Library implementation 103

to decrease to 50%, because of additional registers required to compute the
�rst-order and cross-derivatives of u according to (6.7). The time it takes to
pre-compute the transformation coe�cients is not included in the following tim-
ings, because these coe�cients can be pre-computed once and will then remain
constant throughout the application lifetime, assuming the domain is time in-
dependent.

For both of the above versions, it applies that increased memory access to the
grid u, from which the derivatives are computed, is also increased according
to (6.6) and (6.7). A template for the kernels that have been benchmarked is
illustrated in Listing 6.2. Best performance has been found with a CUDA kernel
con�guration of 16� 16 threads per thread-block, we refer the reader to [Nvi13]
for details on kernel con�gurations. Performance timings per grid point are
plotted in Figure 6.4, as a function of increasing problem size. The numerical
domain ratio is kept constant such that Nx = Ny for all tests and a �ve point
stencil (� = 2 ) is used for approximation of all spatial derivatives. The blue
lines indicate the time it takes to compute the derivatives in the computational
domain, without applying any transformation to it. Thus, it represents a lower
bound for the two transformed versions, as they include the same amount of
work plus the computation of the additional transformation coe�cients. Notice
that the blue lines are almost identical for the �rst- and second-order derivatives
(u� ; u�� ). This is because the number of memory accesses and computations are
the same, only the values of the stencil coe�cient di�ers. This is not the case
for the transformed derivatives, as the computation of second-order derivatives
involves signi�cantly more �oating-point and memory transactions.

1 __global__
2 void Ux( double const * u // Input
3 , double * ux // Output
4 , double const * X
5 , double const * X_xi1 // [ v2 ]
6 , double const * X_xi2 // [ v2 ]
7 , double const * Y
8 , double const * Y_xi1 // [ v2 ]
9 , double const * Y_xi2 // [ v2 ]

10 , double dxi1
11 , double dxi2
12 , int Nx
13 , int Ny
14 , double const * Dx // Stenci l coeffs
15 , int alpha )
16 {
17 int i = threadIdx .x* blockDim .x + threadIdx .x;
18 int j = threadIdx .y* blockDim .y + threadIdx .y;
19

20 // Shared memory index ident i f iers
21 dim3 T( threadIdx .x+alpha , threadIdx .y+ alpha );
22 dim3 B( blockDim .x+2* alpha , blockDim .y+2* alpha ) ;
23

24 // Load Dx to shared memory Dxs
25 // Load u to shared memory Us
26 // [ v1 ] Load X to shared memory Xs
27 // [ v1 ] Load Y to shared memory Ys



104 Boundary-�tted domains with curvilinear coordinates

28

29 // Only internal grid points
30 if ( i >= alpha && i<Nx - alpha && j >= alpha && j<Ny - alpha )
31 {
32 double idxi1 = 1.0/ dxi1 ;
33 double idxi2 = 1.0/ dxi2 ;
34

35 // First order u - derivat ives
36 double u_xi1 = FD :: FD2D_x (Us , idxi1 ,T ,B ,alpha ,Dxs ) ;
37 double u_xi2 = FD :: FD2D_y (Us , idxi2 ,T ,B ,alpha ,Dxs ) ;
38

39 // First order X- and Y- derivat ives
40 double x_xi1 = // [ v1 ] Compute , [v2 ] Read
41 double x_xi2 = // [ v1 ] Compute , [v2 ] Read
42 double y_xi1 = // [ v1 ] Compute , [v2 ] Read
43 double y_xi2 = // [ v1 ] Compute , [v2 ] Read
44

45 ux [ i+ j*Nx ] = FD :: t ransformat ion :: FD2D_x (u_xi1 , u_xi2 , x_xi1 , x_xi2 , y_xi1
, y_xi2 ) ;

46 }
47 }

Listing 6.2: and [v2] refer to code that only applies to version 1 or 2,
respectively.]Template for computing the derivative of a two
dimensional grid in curvilinear coordinates. [v1] and [v2] refer
to code that only applies to version 1 or 2, respectively.

Interestingly, the second version (v2), outperforms the �rst version for all prob-
lem sizes. Thus, the increased number of input arguments and distinct memory
locations do not slow performance as much as the additional computational
work, misaligned memory accesses, and increased register count required by the
�rst version (v1). We also recognize the classical two-phase GPU performance
characteristic; an intermediate phase where there is not enough work to fully
exhaust all processors and a second phase (in this case N > 105) where the
computational time scales strongly with the problem size.

The corresponding bandwidth throughput for each kernel is illustrated in Figure
6.5. The throughput is computed as the number of bytes required to store the
discrete grid times the number of e�ective read/writes. All kernels will be at
best memory bound, as the computational work per grid point is constant and
relatively low, independent of the problem size. The non-transformed and the
second version approach a throughput of 100GB/s, which is relatively close to
the e�ciently bandwidth on this system (Tesla K), measured to be � 140GB/s
using the standard CUDA bandwidth test. Thus, these results are satisfactory,
taking into account that also the stencil coe�cients are loaded from global mem-
ory and are not included in the throughput computations. These performance
results lead to the�somewhat surprising�conclusion, that for this setup, it is
bene�cial to pre-compute the transformation coe�cients and avoid the extra
on-the-�y computations. The results also indicate, that with the introduction
of curvilinear coordinate transformation, we should expect up to one order of



6.2 Library implementation 105

102 104 106 108
10� 4

10� 3

10� 2

10� 1

100

N (prob. size)

tim
e/

N
[�s

]

u �

u x , ( v1)

u x , ( v2)

(a) First order derivatives.

102 104 106 108
10� 4

10� 3

10� 2

10� 1

100

N (prob. size)

tim
e/

N
[�s

]

u ��

u xx , ( v1)

u xx , ( v2)

(b) Second order derivatives.

Figure 6.4: Absolute timings per grid point for computing the non-
transformed (u� , u�� ) and transformed (ux , uxx ) derivatives. Tim-
ings are based on �ve point �nite di�erence stencils, � = 2 . Tested
on G6, double-precision, and with ECC on.

102 104 106 108
10� 2

10� 1

100

101

102

N (prob. size)

B
an

dw
id

th
[G

B
/s

]

u �

u x , ( v1)

u x , ( v2)

(a) First order derivatives.

102 104 106 108
10� 2

10� 1

100

101

102

N (prob. size)

B
an

dw
id

th
[G

B
/s

]

u ��

u xx , ( v1)

u xx , ( v2)

(b) Second order derivatives.

Figure 6.5: Bandwidth � = 2 . Tested on G6, double precision, and with ECC
on.

magnitude performance reduction for the computation of second-order deriva-
tives, which is also what we experience for the potential �ow solver. Even with
this performance reduction, we expect this approach to be superior compared
to unstructured methods, where irregular memory patterns and load balancing
can be signi�cant performance barriers.



106 Boundary-�tted domains with curvilinear coordinates

6.3 Free surface water waves in curvilinear coor-
dinates

The addition of curvilinear coordinates �nds many applications in free surface
water wave modeling, where the boundary can be �tted to match those of a real
scene. It enables complex modeling of o�-shore structures, harbors, shorelines,
or combinations hereof, that have signi�cant engineering value over traditional
regular domains. A �exible representation of the discrete domain can also be
utilized to adapt the grid to the wavelengths, such that a higher resolution is
used where shorter waves are present and thus minimize over- or under-resolved
waves.

The use of curvilinear grids in free surface modeling has been proposed for vari-
ous numerical models and applications in literature before. A movable curvilin-
ear two-dimensional shallow water model was derived in [SS95] to simulate and
study the e�ect of storm surge �ooding in the Bohai Sea. A nonlinear Boussi-
nesq model was later proposed by the same author in generalized curvilinear
coordinates, and was applied to several test examples, including the Ponce de
Leon Inlet in Florida [SDK+ 01]. More work on free surface models in curvilinear
coordinates are found in [LZ01, BN04, ZZY05, zFlZbLwY12].

6.3.1 Transformed potential �ow equations

The kinematic and dynamic free surface boundary conditions in (3.1) along with
the � -transformed Laplace problem contain �rst- and second-order derivatives
in both horizontal directions, described by r � (@x ; @y )T . These equations
transform due to the curvilinear coordinate transformation according to (6.6)
and (6.7), such that,

r =
�

@x

@y

�
=

 
y  @� � y � @

J
x � @ � x  @�

J

!

; (6.11)

and

r 2 = @xx + @yy =
1

J 2 [(y2
 + x2

 )@�� � 2(y� y + x � x  )@� + ( y2
� + x2

� )@ ]

+
1

J 3 [(T1 + T3)(x  @� � x � @ ) + ( T2 + T4)(y� @ � y @� )]

(6.12)



6.3 Free surface water waves in curvilinear coordinates 107

where the four variables

T1 = ( y2
 y�� � 2y� y y� + y2

� y ); (6.13a)

T2 = ( y2
 x �� � 2y� y x � + y2

� x  ); (6.13b)

T3 = ( x2
 y�� � 2x � x  y� + x2

� y ); (6.13c)

T4 = ( x2
 x �� � 2x � x  x � + x2

� x  ); (6.13d)

are all constant under the same coordinate transformation. The free surface
solver has been modi�ed according to these new expressions based on the im-
plementation techniques outlined in the previous section. An eigenvalue test has
been carried out to con�rm the stability of the linearized system in curvilinear
coordinates. The linearized system matrix-vector notations is given by

�
@t �
@t

~�

�
=

�
0 @z

� g 0

�

| {z }
A

�
�
~�

�
: (6.14)

We have assembled the full matrix A for a small problem size of (Nx ; Ny ; Nz ) =
(17; 33; 9), based on the coordinate transformation of the quarter annulus from
Figure 6.1. The water depth is h = 1 m and a symmetric three point stencil is
used for approximation of the transformation coe�cients. With this discretiza-
tion, the eigenvalues of A must be purely imaginary, which is con�rmed by the
eigenspectra in Figure 6.6.

6.3.2 Waves in a semi-circular channel

To test and verify the capability of the boundary-�tted free surface solver, we
demonstrate two classical water wave problems where solutions are available for
linear waves and a nonlinear problem where experimental data are provided.

For the �rst test we propagate linear waves through a semi-circular channel
with vertical walls and a constant water depth, for which analytic solutions
have been studied, see work by Dalrymple et al.[DKM94]. There exist several
numerical results based on curvilinear coordinat transformed Boussinesq-type
models[SDK+ 01, wZsZ10], with �nite di�erence approximations in staggered
grids[zFlZbLwY12] and based on mild slope equations as well[ZZY05]. The
physical coordinates to the circular channel can be described in terms (�;  ),

x = ( r 1 + � (r 2 � r 1)) cos(� ); (6.15)

y = ( r 1 + � (r 2 � r 1)) sin( � ); (6.16)



108 Boundary-�tted domains with curvilinear coordinates

� 1 � 0:5 0 0:5 1

� 10

0

10

Re(� )

Im
(�
)

Eigenspectrum of Jacobian matrix for linearized system

Figure 6.6: Eigenspectrum based on the linearized system with coordinate
transformations. The imaginary part of all eigenvalues are less
than 10� 14.

where r 1 is the inner radius and r 2 is the outer radius. We create a semi-circular
channel with dimensions r 1 = � and r 2 = 2 � , discretized with a numerical
grid of size (N � ; N  ; Nz ) = (129 ; 257; 9). The incoming waves are generated
with a wavelength of L = 1 m, the wave depth is h = 1 m, and a wave period
of T = 0 :8s. The wave height is H = 0 :042m corresponding to (H=L ) =
30%(H=L )m ax. We use 6th -order accurate �nite di�erence approximations and
a Courant number Cr = 0 :4. Waves are generated in a generation zone in
front of the channel corresponding to the technique presented in Section 3.2.4.
However, to support more �exible generation and relaxation zones we now use
a discrete grid function to determine the location of the two zones as illustrated
in Figure 6.7. Positive values correspond to generation zones, wheres negative
values are absorption zones. We utilize our fast GPU-based solver to create a
long channel behind the circular channel to avoid a negative impact from waves
re�ected from the absorption zone. The total discrete problem size therefore
amounts to (N � ; N  ; Nz ) = (129 ; 1025; 9).

After the waves are propagated through the channel and settled at a steady
state, the wave pro�le at the inner and outer walls are captured. The numerical
wave pro�les are depicted in Figure 6.8 together with the analytic solution by
Dalrymple. As a measure of the quantitative mismatch between the analytic
and the numerical solutions we use the index of agreementproposed by Willmott



6.3 Free surface water waves in curvilinear coordinates 109

Figure 6.7: Wave generation and absorption zones. The long relaxation chan-
nel is used to minimize spurious wave re�ections.

in 1981 [Wil81],

d = 1 �
P N

i =1 (yi � x i )2

P N
i =1 (jyi � x̂ j + jx i � x̂ j)2

; (6.17)

where x i are the true values, yi are the numerically approximated values, and x̂ is
the mean value of x i . The index of agreement d, was developed as a standardized
agreement measure for model predictions and varies between 0 and 1, where 1
is a perfect match. Based on the solution wave pro�les in Figure 6.8 we get
din = 0 :9992 and dout = 0 :9989. These numbers agree well with the results
presented both by Zhang et al. [ZZY05] and Shi et al. [SDK+ 01]. However,
due to the high-order �nite di�erences approximation, we have obtained these
results with only half the number of grid points at the free surface inside the
channel.

An illustrative example of the initial waves propagating into the channel at
four distinct stages is given in Figure 6.9. The �rst waves travel almost in a
straight line until they hit the outer wall and are re�ected around the bend. A
qualitative comparison to the analytic solution is given in Figure 6.10, where
there are almost no noticeable di�erences.



110 Boundary-�tted domains with curvilinear coordinates

0 20 40 60 80 100 120 140 160 180
� 1

� 0:5

0

0:5

1

! [� ]

2
�

(!
)

H

Numerical Exact Error

0 20 40 60 80 100 120 140 160 180

� 2

0

2

! [� ]

2
�

(!
)

H

Figure 6.8: The solution at the inner (top) and outer (bottom) walls of the
semi-curcular channel at t = 65T .

(a) t = 10T: (b) t = 20T:

(c) t = 30T: (d) t = 40T:

Figure 6.9: Propagating wave contours in a semi circular channel at four dif-
fernt stages. The waves enter at the southeast corner and are
re�ected in the northeastern region of the channel creating large
wave amplitudes.



6.3 Free surface water waves in curvilinear coordinates 111

Figure 6.10: Comparison between the analytic (right) and numerical (left)
solution at t = 60T . High-order approximations with � = 3 are
used. Visually the match is close to perfect as there are almost
no detectable di�erences.



112 Boundary-�tted domains with curvilinear coordinates

6.3.3 Wave run-up around a vertical cylinder in open wa-
ter

Figure 6.11: Wave run-up around a
vertical cylinder.

Accurate prediction of wave scatter-
ing and wave loads around a bottom
mounted circular cylinder is a valu-
able engineering tool for construc-
tion design of e.g., o�shore wind-
mills or oil rigs. Most often it is
desirable to avoid ill-positioned ge-
ometries to cause wave ampli�cation
close to o�shore structures. How-
ever, the opposite can also be true,
as demonstrated by Hu and Chan
(2005) [HC05], where a carefully or-
ganized forest of pillars are placed in
a lens-shaped array to refract waves
into a wave energy converter.

In this test we consider the wave run-
up around a single cylinder surface
boundary in open water. This is one
of only a few cases including wave-structure interaction, where an analytic so-
lution is known. For linear plane incident waves scattering around a cylinder
with �at sea bed, the closed form solution due to MacCamy and Fuchs [MF54]
is used for comparison.

As for the breakwater gap di�raction test in Section 4.5, one approach to rep-
resent the cylinder is to decomposed the global domain of interest and use the
multi-block solver in combination with boundary-�tted domains to reassemble
the cylinder geometry. A grid decomposed into three subdomain that reassem-
bles the vertical cylinder well is illustrated in Figure 6.12. Though this approach
seems promising, there is a grid singularity that will have to be addressed. There
are no discontinuities within each subdomain, but there exists two critical points
in this setup, directly at the front and at back of the cylinder. These points are
shared between two adjacent subdomains and the transition across the border is
discontinuous and the corner �nite di�erence approximations would be wrong,
see close up in Figure 6.13. Ad hoc solutions can be implemented to impose the
no-�ux boundary condition explicitly at the corner points, but we prefer not to
make case-speci�c corrections as they interfere with the generic library design.



6.3 Free surface water waves in curvilinear coordinates 113

Figure 6.12: Decomposition of the computational domain into three subdo-
mains. The colors indicate wave generation (red) and wave ab-
sorption (blue). The grid is coarsened in order to enhance the
visual presentation.

Figure 6.13: Ghost point overlap at the front of the cylinder. The blue points
are continuous across the interface. The red point creates a dis-
continuous transition accross the interface.

Instead we use a modi�ed version of the circular coordinates,

x = ( r 1 + � (r 2 � r 1) cos(� )=2) (1 + ( � (1 + ! ) � ! cos(4� )) ; (6.18)

y = ( r 1 + � (r 2 � r 1) sin(� )=2) (1 + ( � (1 + ! ) � ! cos(4� )) ; (6.19)

where ! controls how much the circular channel is stretched, we have uses
! = 0 :2 in for the frid illustrated in Figure 6.14. To avoid spurious wave
re�ections we again set up a computational domain that is large enough to
prevent wave re�ections to return before the waves are fully evolved at the
vicinity of the cylinder. A cylinder centered at (0; 0) with a radius of a = 0 :5m
is used along with a domain of physical dimensions L x � 20m and L y � 10m.



114 Boundary-�tted domains with curvilinear coordinates

Linear plane waves are generated with wavelength L = 1 m over a �at sea bed
with a water depth of h = 1=(2� ) m to give a constant dimensionless depth
kh = 1 . The wave generation absorption zones are illustrated in Figure 6.14. A
time step of � t = 0 :01 is used to ensure stable behavior close to the cylinder
together with a resolution of (N � ; N  ; Nz ) = (1025; 129; 9) and a 6th -order �nite
di�erence approximations.

Figure 6.14: Numerical grid and relaxation zones for the vertical cylinder in
open water. The grid is coarsened in order to enhance the visual
presentation.

As a measure of the wave load that would impact the cylinder, the maximum
wave crest around the cylinder is recorded. For comparison we show the com-
puted and the analytic wave envelopes in Figure 6.15. If we again use the index
of agreement (6.17), we get an almost perfect match of d = 0 :9999. The contour
plot and the polar coordinate representation of the wave run-up also con�rm
the good match with the analytic solution in Figure 6.16.

The in�uence of nonlinear di�raction on bottom mounted cylinder structures is
demonstrated by Kriebel[Kri90, Kri92], to be of signi�cant importance, where
the inclusion of second-order Stokes theory is found to change the wave ampli-
tudes around the cylinder predicted by linear theory with up to 50%. Results
also indicate that Stokes second-order theory is insu�cient to fully capture all
nonlinear e�ects present in their experimental results for steep waves. We re-
peat the experiment with one of the experimental setup as proposed by Kriebel
in [Kri92], numerical results are also presented in [DBEKF10]. The cylinder



6.3 Free surface water waves in curvilinear coordinates 115

Figure 6.15: Linear wave run-up around the vertical cylinder relative to the
incident wave height. The left side of the plot (low ! ) represents
the back side of cylinder. There is a good match between the
numerical envelopes and the analytic solution.

radius is a = 0 :1625m and the water depth is h = 0 :45m. Nonlinear incident
waves of length L = 2 :730m, and wave height H = 0 :053m are generated, such
that kH = 0 :122. The same numerical grid is used as for the linear test. The
nonlinear wave run-up around the cylinder is illustrated in Figure 6.17. Our
numerical solution predicts a slightly larger wave run-up than the experimental
data. This is however in agreement with the numerical results presented both
by [Kri92] and [DBEKF10].



116 Boundary-�tted domains with curvilinear coordinates

(a) Maximum wave envelope contours. Top: numer-
ical solution. Bottom: analytic solution.

(b) Wave run-up in polar coordi-
nates.

Figure 6.16: The linear wave envelopes relative to the incident wave heights.

(a) Wave run-up. (b) Polar

Figure 6.17: Nonlinear wave run-up around the cylinder. kH = 0 :122, kh =
1:036, ka = 0 :374. Experimental data from Kriebel [Kri92].

6.4 Concluding remarks

The introduction of generalized curvilinear coordinates has signi�cantly in-
creased the range of applications that can bene�t from boundary-�tted domains
to better reassemble real engineering problems. With some classical examples
we have demonstrated how the free surface water wave solver can be used to
simulate both linear and nonlinear waves in complex scenery. Combined with
the multi-block solver to solve large-scale problems, as indicated by the perfor-
mance scaling results in Section 4.4.6, the present free surface tool o�ers some



6.4 Concluding remarks 117

unique opportunities for fast and accurate assessment of coastal engineering
applications.

We point out, that we have experienced a degradation of the algorithmic per-
formance of the Laplace solver for some of the boundary-�tted examples. The
number of preconditioned defect correction iterations has increased between
50% to 100% for the above examples. We know that the most e�cient multi-
grid coarsening strategy is based on coarsening along those dimensions that will
best preserve the physical grid isotropy. When working on the computational
domain, the multigrid coarsening strategy selects the coarsening dimensions
based on � � and �  and not the physical properties � x and � y. However,
due to the curved coordinate lines, � x and � y are not constant, and it can be
impossible to select a coarsening strategy that always preserves isotropy in the
global domain. This remains a challenge, and more analysis has to be carried
out to fully understand the impact.



118 Boundary-�tted domains with curvilinear coordinates



Chapter 7

Towards real-time
simulation of ship-wave

interaction

A solid foundation for further development and collaborations with industry has
been established with the implementation and demonstration of the generic and
high performance free surface water wave simulation tool. As motivated in the
former chapters, the portable GPUlab library and the e�cient free surface solver,
accurately accounting for dispersive and nonlinear e�ects can be a valuable
tool in many aspects of marine engineering. The remainder of this chapter is
dedicated to the research that has been carried out in close collaboration with
FORCE Technology, a Danish approved Technology Service (GTS) company
with leading world-wide assets in maritime technologies.

The joint collaboration focuses on the development of a ship hydrodynamic
model for real-time simulation, including ship-wave and ship-ship interaction
as part of a full mission marine simulator. Such full-scale marine simulators
are used for educating and training of marine o�cers and maritime engineering.
Accurate and realistic interaction with ship generated wave forces are important
to maintain as realistic an environment as possible. E�ects such as the forces
that occur when two ships approach each other are particular critical and impor-
tant for safely maneuvering of tugboats. Current state-of-the-art hydrodynamic



120 Towards real-time simulation of ship-wave interaction

models implemented in full-mission simulators are based on fast interpolation
and scaling of experimental model data and the results are therefore limited by
the amount and accuracy of the available data. The main challenge for real-time
ship-wave interaction is to �nd a proper balance between an approximate repre-
sentation of ships that maximizes computational performance, but it also gives
more accurate and reliable results compared to previous interpolation methods.
There is�to the author's knowledge�no other tools that are able to overcome the
real-time restriction with a model as accurate as the one proposed. Thus, this
will be pioneering work and a unique opportunity for FORCE Technology to be
�rst movers on an international marked.

The collaboration with FORCE Technology has led to an intermediate step on
the path towards achieving real-time ship-wave interaction. Research at FORCE
Technology continues to be active and the following sections demonstrate a se-
lection of the most important �ndings achieved until now. The generic and
component-based GPUlab library signi�cantly improved the developer produc-
tivity for the extension of OceanWave3D into supporting ship-wave and ship-ship
interactions.

7.1 A perspective on real-time simulations

With the present GPU-based implementation of the OceanWave3D solver, real-
time simulations should be within reach and the solver would be suitable for
these applications as it is both scalable, e�cient, and robust. The potential
�ow model is also very attractive since it accurately accounts for dispersive
waves from deep to shallow waters, setups that will be relevant in any marine
simulator. In previous work we roughly estimated the time to compute a wave
period for various wave resolutions[EKMG11], from which we concluded that
real-time simulations can be achieved within an additional speedup factor of
approximately one order of magnitude for three dimensional problems with one
million degrees of freedom. Let us reconsider some of these approximations and
include recent hardware trends to better estimate and predict future capabilities.
If we wish to estimate the compute time t it takes to compute one wave period
T , as a function of time per defect correction iteration I t , we get,

t
T

� I t K; K �
SRK I avg NP P W

Cr
; (7.1)

where SRK is the number of Runge-Kutta ODE solver stages, I avg is the average
number of defect correction iterations per solve, NP P W is the number of points
per wavelength, and Cr is the Courant number.



7.1 A perspective on real-time simulations 121

The value of K depends heavily on the wave characteristics, but we are able to
estimate a lower and upper bounds based on a few assumptions. The number
of Runge-Kutta stages is constant for this method, at SRK = 4 . We will also
assume a constant Courant number Cr = 0 :8. Nonlinear wave e�ects in com-
bination with the water depth determine the algorithmic convergence rate of
the preconditioned defect correction method together with the stopping crite-
ria [EK14]. The average number of iterations for mildly to fully nonlinear waves
and a tolerance of 10� 5 are usually within the range I avg = 4 -15. The num-
ber of points per wavelength should be set according to the order of the �nite
di�erence approximations and will in�uence the accuracy of wave dispersion.
Reasonable results are often achievable with NP P W = 8 -16. In combination
these numbers give us the following estimates K low = 160 and K high = 1200.
In order to achieve real-time simulations it is evident that the time to compute
one wave period is less than the wave period itself, i.e., t < T , which leads to,

I t <
1
K

: (7.2)

For a given K we can now compute 1=K and compare it directly to the per-
formance measurements. Timings based a high-end consumer GPU, GeForce
GTX590 is illustrated in Figure 7.1. We can immediately see that real-time is
achievable only for low values of K , thus, when there is fast convergence and few
points per wavelength, and for resolutions up to 3� 105 degrees of freedom. That
would cover a fully three dimensional simulation with e.g, 257� 129� 9 degrees
of freedom. As demonstrated in Chapter 4, even the multi-GPU setup will not
improve performance at these resolutions. From the �gure we see that there is
almost no di�erence between high- and low-order discretizations in the region
feasible for real-time computations, which only favors high-order discretizations
further, because K would be able to be smaller for high-order discretizations,
due to a less strict requirement on the number of points per wavelength.

For practical ship hydrodynamics setups in a numerical wave tank, the tank
would have to be at least 3Lpp long in the sailing direction and 1Lpp in the
transverse direction, where Lpp is the ship length. The number of points per
ship length is then determined by the wavelength l , generated by the ship,
and the number of points per wavelength NP P W , which leads to the following
estimate for total number of degrees of freedom,

N � 3
�

Lpp
l

NP P W

� 2

Nz ; (7.3)

where Nz is the number of vertical grid points. As an example, consider a large
tanker of length Lpp = 270 m sailing with an intermediate speed, such that the
Froude number Fr = 0 :08, de�ned as Fr = U=

p
g Lpp, where U is the sailing

speed. Then the waves generated by the tanker will be of length l � 11m



122 Towards real-time simulation of ship-wave interaction

104 105 106 107 108
10� 4

10� 3

10� 2

10� 1

100

N

T
im

e/
Ite

r
[s

]
6th -order

4th -order

2nd -order
K = 160
K = 1200

Figure 7.1: Real-time perspectives based on the two extreme values of K and
the defect correction iteration time I t . Using the GeForce GTX590
(G4), single precision, MG-RBZL-1V(1,1).

resolved with e.g., NP P W = 10 grid points. The total degrees of freedom,
assuming that 9 vertical grid points are su�cient, will then be N � 1:6 � 106.
Figure 7.1 demonstrates that this is not within the real-time limit for the given
setup. However, for N � 1:6 � 106 we see that I t � 0:02, from which we can
conclude that K can be no more than 50 for this to be real-time, or in other
words, we need at least another speedup factor of 3:2 to achieve the goal of
real-time computations with the given setup.

It is now tempting to ask whenwill it be possible to do real-time computations
for these hydrodynamic ships models? One should be careful when speculating
about future hardware trends, but if we assume the following: 1) The solver is
completely memory bound. 2) No further optimizations are made. 3) The GPU
memory bandwidth increases with the same rate as the previous generations.
Then we should be able to make an estimated guess. Comparing two consecutive
generations of GPUs, e.g., the GeForce GTX480 and GTX580 or Tesla C2070
and K20, there is a bandwidth increase of approximately 40%. If this trend
continues, a 3:2 speedup is achievable within two to three GPU generations,
which historically translates to a maximum of �ve years.

Though all these numbers are based on rough estimates and heavily depends on
the wave characteristics and ship hydrodynamics, they do indicate that within
a reasonable near time horizon, interactive free surface water wave simulations
with engineering accuracy will be a reality. This suggest that now is a good
time to invest and pursue this goal.



7.2 Ship maneuvering in shallow water and lock chambers 123

7.2 Ship maneuvering in shallow water and lock
chambers

A feasible model for fast and accurate ship hydrodynamics has been developed
and improved continuously during the collaboration period. The �rst functional
model was developed and evaluated for the 3rd International Conference on
Ship Maneuvering in Shallow and Con�ned Water, with non-exclusive focus
on ship behavior in locks [VDM12, LGB+ 13]. The objective was to reconstruct
numerically a set of experiments carried out with an 1=80 scale laboratory model
as seen in Figure 7.2. The experiments reassemble a large 12.000 TEU container
carrier entering the newly designed locks in the Panama canal. Experimental
details are available in [VDM12].

Figure 7.2: Experimental setup of a large vessel entering a lock chamber in
the new Panama Canal. 1=80 scale.

In order to maximize performance the �rst version of the ship hydrodynamic
model is based on potential �ow theory with linear free surface boundary con-
ditions and 2nd -order �nite di�erence approximations. The motivation for these
simpli�cations is to �rst produce a proof-of-concept implementation that will
be stable and have the best possible performance before introducing the more
advanced nonlinear parts. In future versions the nonlinear conditions will be
considered when compute times are within or close to the real-time restriction
for interactive applications.

A moving frame of reference is introduced in the time dependent equations to
keep the ship �xed at the center of the numerical wave �eld such that

x = x0 � Ut; y = y0; z = z0; (7.4)

where (x0; y0; z0) is origin in the �xed global coordinate system and U is the
ship velocity in the x-direction. The linear kinematic and dynamic free sur-
face boundary conditions are likewise modi�ed to re�ect the moving frame of



124 Towards real-time simulation of ship-wave interaction

reference,

@t � � U@x � � w = 0 ; z = 0 ; (7.5a)

@t � � U@x � + g� +
p
�

= 0 ; z = 0 ; (7.5b)

where the new quantities � are the water density and p is the free surface pres-
sure. The velocity vector u � (u; v; w) is de�ned in the forward, transverse, and
vertical directions, respectively. We consider again no-�ux boundary conditions
on the seabed and on the surface of the rigid bodies,

n � r � = 0 ; z = � h (7.6a)

n � r � = n � uB ; (x; y; z) 2 SB (7.6b)

where n � (nx ; ny ; nz )T is the normal to the boundary surface SB , and uB =
(U;0; 0)T .

A pressure distribution and a double body linearization is utilized to capture
the main �ow characteristics as a steady state solution [Rav10], that can be
pre-computed and scaled linearly with respect to the reference velocity U. This
rather simple approach was selected to minimize its in�uence on the overall
e�ciency. For further details on this hydrodynamic ship model we refer the
reader to [LGB+ 13].

In addition to the hydrodynamic ship model, the GPUlab library was extended
with support for handling multiple captive objects in the computational domain.
A captive body was implemented, derived as a special instance of a �oating body,
with the main objective of controlling physical position and velocity as a function
of time. A brief example of creating and adding a captive body (e.g., a ship)
to the simulation is illustrated in Listing 7.1. The brief example demonstrates
that once the underlying implementations are complete, the assembly phase can
be implemented generically using an object oriented approach.

1 using namespace gpulab ;
2

3 // Create body and set shape
4 captive_body <double > ship ;
5 ship . set_shape ( /* set ship hull shape */ ) ;
6

7 // Assign a pair of t ime and posit ion
8 ship . get_t ime_posi t ion () . insert ( /* time , posit ion */ ) ;
9

10 captive_scene < captive_body <double > > scene ;
11 scene .add (ship ) ;
12

13 // Apply pressures on eta at t ime t=1s
14 scene . update (1.0 , eta ) ;



7.2 Ship maneuvering in shallow water and lock chambers 125

Listing 7.1: Constructing a ship object and assigning captive data and a shape.
The ship is added to the scene manager and pressure is applied to
the free surface elevation according to the hull shape and position
at time t = 1s.

Both the ship hull and the locks are approximated with a pressure distribution
in the dynamic free surface condition (7.5b). The pressure is approximated with
a quasistatic assumption such that the pressure on is given by

p = � � (� U@x � +
1
2

u � u + g� 0); (7.7)

where � o is the draft from either the ship hull of the lock. The pressure contri-
bution acting on the free surface allows a convex representation of the ship hull
and locks. Therefore the bulbous bow was removed from the original container
carrier mesh to be represented by a single valued function in the horizontal co-
ordinates. Though this kind of approximation based on pressure contributions
has shown to be applicable for ships sailing at low Froude numbers, it turns out
not to be a good approximation to the locks [Rav10]. The vertical lock walls are
represented via a pressure contributions that pushes the surface almost down
to the seabed. Large gradients in the free surface elevation and potential will
therefore occur regardless of the numerical resolution.

A numerical experiment was performed according to the guidelines in [VDM12],
with a 12,000 TEU container carrier entering the lock at very low Froude num-
bers. The numerical resolution is Nx � Ny � Nz = 513 � 193� 17, all variables
are normalized with the ship length Lpp = 348m, such that the domain size is
L x = 5 , L y = 1 , and L z = 0 :048. The hydrodynamic ship model results in a
reasonable wave �eld generated by the carrier in the entrance part of the lock,
illustrated in Figure 7.3. The steep gradients that are present at the interface
between the locks and the free surface generate spurious waves as the carrier
enters the lock. These arti�cial waves dominate the relatively small waves gener-
ated by the ship, as clearly visible in Figure 7.4. Though �ltering methods could
be applied to remove some of the spurious waves in the vicinity of the locks,
it would unintentionally also a�ect the waves generated by the ship when the
ship approaches the lock walls. The present hydrodynamic ship model therefore
proved not to be suitable for representation of near-vertical geometries such as
the lock in a moving frame of reference. Since the present model is to be imple-
mented in a full mission marine simulator where such geometries are likely to
exist, alternative methods have been investigated.



126 Towards real-time simulation of ship-wave interaction

Figure 7.3: Free surface elevation and potential amplitudes before the ship
enterns the lock, shortly after the startup phase. Numbers are
normaliced by the ship length Lpp = 348m.

Figure 7.4: Free surface elevation and potential amplitudes when the ship
enters the lock. Numbers are normaliced by the ship length
Lpp = 348m.

7.3 Ship-wave interaction based immersed bound-
aries

The previous hydrodynamic ship model based on pressure distributions is not
applicable for scenery that we want to consider. The lock entrance example
clearly demonstrated weaknesses in the numerical modeling of deep and dis-



7.3 Ship-wave interaction based immersed boundaries 127

continuous geometries. Also the single value representation of ship hulls is a
simpli�cation that puts signi�cant restrictions on the application range.

In the search for alternatives we explored a technique based on immersed bound-
ary conditions, because these methods potentially have a �exible and accurate
representation of geometries based on computational inexpensive techniques.
The idea for an immersed boundary was originally introduced by Peskin, used
for blood �ow simulations in the heart using the Navier-Stokes equations [Pes02].
It has also been applied in the context of turbulent modeling of �oating bodies
interaction with water waves [YSW+ 07, YS09]. It is however, to the authors
knowledge, the �rst time with this joint work, that it is applied to with the
purpose of real-time simulation of ship generated water waves.

The principle of the immersed boundary method is to represent geometries via
�nite di�erence or �nite volume boundary approximations directly at the bound-
ary of the geometry. Immersed boundaries are therefore treated much like the
original outer domain boundaries. For the representation of ship hulls we impose
the inhomogeneous Neumann condition (7.6b) for the solution of the Laplace
equation, by introducing �ctitious ghost points inside the ship hull and then ap-
proximating the boundary conditions with stencils that take into account these
ghost points. This is an attractive approach because the original fast GPU-based
implementation of the Laplace operator can be re-used with small modi�cation,
both preserving performance and improving developer productivity.

Figure 7.5: Discrete representation of a ship hull using immeresed boundaries.
 is �uid grid points, 
 is body ghost points, � is a body point,
� is inactive interior body points.

One challenge for the immersed boundary method lies in the setup phase, where
we need to properly identify the internal ghost points and compute the corre-



128 Towards real-time simulation of ship-wave interaction

sponding �nite di�erence coe�cients satisfying (7.6b). A pre-processing phase
is introduced where ghost points inside the body, which belong to a �nite dif-
ference stencil, are identi�ed and the corresponding body points are found via
normal projections to the body surface, see Figure 7.5. The stencil coe�cients
are pre-computed via Taylor expansions from the body point to each �uid point
at the outer tangential plane within a given Euclidean distance plus the ghost
point, as illustrated in red. Taylor expansions up to second order are used to
reduce the size of the resulting system of equations, but can be generalized to
higher orders. The Taylor expansion from the body point to each of the �uid
points in three spatial dimensions is

f (x1 + � 1; x2 + � 2; x3 + � 3) �
2X

i =0

2X

j =0

2X

k=0

� i
1� j

2� k
3

i !j !k!
f ( i;j;k ) (x1; x2; x3):

The expansions with respect to each point can be arranged in an overdetermined
linear system of equations (assuming there is more �uid points than expansion
terms),

Af = b; A 2 R� � � ; f 2 R� ; b 2 R� ; (7.8)

where A is assembled from the Taylor expansion coe�cients, f represents each
derivative f ( i;j;k ) at the body point, and b holds the values of each �uid and
ghost points. � is equal to the number of expansion terms up to second order (27
in three dimensions) and � is the number of points considered. A is assembled
using a coordinate system with a normal basis spanned by the tangential plane
and the body normal. The �rst derivative, normal to the body surface, is then
directly represented in one entry of f . The system can be solved with a weighted
least squares method,

A T WA f = A T Wb; W 2 R� � � ; (7.9)

where W is a diagonal matrix containing the weights. The coe�cients corre-
sponding to the surface normal derivative are now located in the second row of
[A T WA ]� 1A T W . These coe�cients can be pre-computed for each body ghost
point and then later be used for satisfying the inhomogeneous Neumann bound-
ary condition, by isolating the value for the ghost point using,

�X

p=1

cm � i (p) ;j (p) ;k (p) � n � uB : (7.10)

This calculation is performed in parallel on the GPU for each ghost point every
time the boundary condition needs to be satis�ed. Promising results have been
obtained with the present immersed boundary method. Research is still active,
and investigation for e.g., optimal search radii size and least square weights are
ongoing. A parameter analysis of the weight matrix W is part of ongoing work.



7.4 Current status and future work 129

The immersed boundary method has additional advantageous properties; The
method is not restricted to either �oating bodies or �oor mounted and surface
piercing geometries, which means that we can easily represent submerged bodies
or complex ship hulls with bulbous bows. The method also seems promising with
respect to performance, since most of the computational work is part of the pre-
processing phase and because the original fast Laplace operator works with no
changes. Only ghost points close to the body surface need to be updated, which
is a relatively small task due to the volume to surface ratio.

7.4 Current status and future work

The project on real-time simulation of ship-ship interaction continues at FORCE
Technology after the completion of the present work. The development of the
numerically and computationally e�cient hydrodynamic model is now being
rigorously tested and validated. A snapshot of waves generated by a container
carrier, based on the current immersed boundary implementation, is illustrated
in Figure 7.6. The next step is to merge the computational model into the
full mission marine simulator software, which will increase the requirements for
reliability and robustness due to human interaction and complex simulation en-
vironments. Also a thorough performance optimization analysis will be carried
out to pursue real-time performance at reasonable resolutions, to match the re-
quirements of the marine simulator and to clearly set the standards within inter-
active ship-ship simulations. Performance results obtained with spatial domain
decomposition in Section 4.4.6 indicated that there is no attainable speedup for
the problem sizes considered for the hydrodynamic ship-wave model. However,
a parameter study of the Parareal algorithm and the present model can possibly
lead to speedups on heterogeneous systems where multiple GPUs are available.
This will be investigated if single-GPU optimizations do not lead to su�cient
speedup.

This collaboration is a good example of the possibilities that become available
after development of a generic software framework. The GPUlab library, and
the free surface water wave tool in particular, have been a perfect starting point
for the collaboration on which the ship hydrodynamic research has been able
to build directly on. The hardware abstraction provided by the library has
enabled a lighter coding e�ort, that still enables execution in parallel on many-
core heterogeneous computer systems.



130 Towards real-time simulation of ship-wave interaction

Figure 7.6: Free surface wave generation based on immersed boundary condi-
tions. Waves are generated by a KCS container ship with Froude
number Fr = 0 :2.



7.5 Conclusion and outlook 131

7.5 Conclusion and outlook

Massively parallel heterogeneous systems continue to enter the consumer mar-
ket, and there has been no identi�cation that this trend will stop in years to
come. Though these massively parallel many-core architectures have proven
to be computationally e�cient, with high performance throughput for a vast
amount of applications[BG09, Mic09, GWS+ 09, G�10, EKMG11], they still pose
signi�cant challenges for software developers[EBW11], and they are still to be-
come standard within the industry.

The present work can be considered as a reaction to the recent development
of massively parallel architectures where we attempt to address some of the
questions and challenges that follow from the new generation of hardware. One
of the main challenges is that these heterogeneous systems require software
vendors to adjust to new programming models and optimization strategies. We
have presented our ideas for a generic GPU-based library for fast proto-typing of
PDE solvers. A high-level interface with simple implementation concepts have
been presented with the objective of enhancing developer productivity and to
ensure performance portability and scalability.

Based on the proof-of-concept nonlinear free surface water wave model, we
have presented details of a domain decomposition technique in three spatial
dimensions for distributed parallel computations on both desktop and cluster
platforms. The spatial domain decomposition technique preserves algorithmic
e�ciency and further improves performance of the single-block version of the
solver, cf. recent studies [EKBL09, EKMG11, GEKM11]. If the performance
speedups that we have reported for the single-block solver in Section 3.4 of up
to 100 compared to the single-threaded CPU solver, are combined with either
the results reported with spatial domain decomposition or Parareal, then we
achieve speedups that signi�cantly beat Moore's law. We mean by this that the
performance improvements we have achieved within 3-4 years of development,
cannot be explained only by Moore's law, but is a product of Moore's law and
improved algorithmic design choices and e�cient implementations.

The numerical model is implemented using the GPUlab library based on Nvidia's
CUDA programming model and is executed on a recent generation of pro-
grammable GPUs. In performance tests, we have demonstrated good weak
scalability in absolute as well as measures for relative speedups and e�ciency
in comparison to the single-GPU implementation. Scaling results based on the
multi-block solver have detailed how the free surface model is capable of solv-
ing systems of equations with more than one billion degrees of freedom for the
�rst time. These impressive numbers can be obtained with a reasonable sized
cluster equipped with 16 or more GPUs. Even at these large-scale problems



132 Towards real-time simulation of ship-wave interaction

we outlined that simulations are in fact possible within reasonable turn-around-
times. Also, we highlight that multi-GPU implementations can be a means for
further acceleration of run-times in comparison with single-GPU computations.
A study of the multigrid coarsening strategy has led to the conclusion that few
multigrid levels are su�cient for fast convergence of the Laplace problem. These
results imply that a signi�cant reduction in communication can be obtained to
maximize performance throughput.

The library has already successfully been used for development of a fast tool
intended for scienti�c applications within maritime engineering, cf. Chapter 7.
We intend to further extend the library, as we explore new techniques, suitable
for parallelization on heterogeneous systems, that �t the scope of our applica-
tions. The library and the free surface water wave solver, in their present stages,
are ideal for further collaboration on PDE applications that may bene�t from
parallelization on heterogeneous systems.

The GPUlab library has been developed and designed exclusively by the author
himself. A major e�ort has been put into the development of all the generic
design and implementation of iterative solvers, time integrators, the matrix-free
stencil operators etc.. Also, the implementation and validation of the free sur-
face wave solver on heterogeneous hardware have taken a signi�cant amount of
time. This con�rms our motivation for the project itself, that software devel-
opment for massively parallel processors is very time consuming, and the need
for well designed, portable, and e�cient software libraries is key to future de-
velopments. In particular, the process of debugging parallel programs running
on heterogeneous hardware is a troublesome procedure.

7.6 Future work

Our work has tried to address a number challenges that arise in heterogeneous
computing and software design. However, along the way there have been a num-
ber of unanswered questions and new challenges that arise. We suggest that the
following topics can be used for directing future research towards supplementing
or improving our work.

Large-scale engineering case The combination of an e�cient multi-block
and boundary-�tted free surface wave solver opens up new opportunities
for fully three-dimensional large-scale applications of practical interest in
maritime engineering. With interconnected and boundary-�tted domains
it would be possible to construct large and complex harbor facilities. In



7.6 Future work 133

future work we would like to demonstrate practical examples based on the
present free surface solver.

Parareal fault resilience Parareal possesses several interesting features, fault
resilience being a highly relevant feature of execution on massively paral-
lel HPC clusters. A numerical experiment that �rst of all con�rms this
property along with a deeper analysis of how well and fast Parareal is able
to fully recover from an erroneous process would be of interest. A study
of how stable Parareal will be if multiple processors are lost may also be
of interest.

Autotuning There is a number of kernel con�guration parameters that are
based on basic knowledge of good programming practice. However, these
con�gurations are not guaranteed to be optimal on any heterogeneous
system. An autotuning module that can be executed on speci�c heteroge-
neous systems can be used to reveal if there are alternative con�gurations
that would result in improved performance. Such a module would be a
valuable tool to maximize performance portable settings.

OpenCL In this work we have exclusively considered the CUDA for C pro-
gramming model. Though OpenCL traditionally has not been able to
o�er the same degree of documentation, it is not designed speci�cally for
GPU programming, but is designed to execute on heterogeneous system
in general. An interesting analysis of CUDA vs. OpenCL or especially
OpenCL on alternative systems, e.g., multi-core CPUs or the Intel MIC,
would be of interest. The CUDA programming model has proven very at-
tractive for development of Nvidia GPU-based applications. However, we
believe that the restriction to Nvidia GPUs will eventually cause CUDA
to play a minor role in future HPC environments.

Green computing Massively parallel processors are able to o�er an e�ective
performance per watt ratio, and therefore they are expected to play an
important role in future HPC systems where energy consumption is a
primary challenge. A better understanding of the power consumption of
the GPU and the system as a whole in relation to performance throughput
is a relevant concern and will be important for future hardware design.



134 Towards real-time simulation of ship-wave interaction



Appendix A

The GPUlab library

The GPUlab library is a generic C++/CUDA/MPI library designed for fast
prototyping of large-scale PDE solvers � without compromising performance.

The library hides CUDA-speci�c implementation details behind a generic in-
terface that will allow developers to assemble PDE solvers at a much higher
abstraction level. The library is designed to be e�cient, portable and to en-
hance developer productivity. The library is component-based, and it provides
a good starting point, from which custom designed components can be imple-
mented, to assemble advanced PDE solvers. Thus, it is expected that the users
are able to implement custom components that may contain CUDA speci�c
implementations. The library will provide the basis for many of these custom
components. The following sections will present a brief introduction to the
programming guidelines and principles. Examples will demonstrate the use of
speci�c components.

A.1 Programming guidelines

The GPUlab library is a header-only library, which means that everything is
contained in header �les. Therefore the library should not be pre-compiled and



136 The GPUlab library

there is no linking stage.

For the GPUlab library to work properly in multi-GPU settings, it needs to
setup a private MPI communicator and assign each GPU to individual processes.
Therefore a program should at least follow this template:

1 # include <gpulab / gpulab .h>
2

3 int main ( int argc , char ** argv )
4 {
5 using namespace gpulab ;
6

7 // In i t ia l ize GPUlab
8 if ( gpulab :: init (argc , argv ))
9 {

10 // DO STUFF HERE
11 }
12 // Final ize GPUlab
13 gpulab :: f inal ize () ;
14 return 0;
15 }

There is always one optional input parameter that can be passed to the pro-
gram, it is the name of a con�guration �le. If not speci�ed, the default value
config.ini is used.

A.1.1 Templates

The library heavily depends on template arguments, which allow a �exible and
user-controllable environment. We therefore recommend to use type de�nitions
at the very beginning of the program to control the assembling of the PDE
solvers. The program might start with:

1 // Basic type def ini t ions
2 typedef f loat value_type ;
3 typedef gpulab :: vector < value_type , gpulab :: device_memory > vector_type ;
4 typedef gpulab :: vector < value_type , gpulab :: host_memory > host_vector_type ;
5 typedef myLaplaceMatr ix < device_vector_type > matr ix_type ;
6

7 typedef typename grid_type :: property_type property_type ;
8 typedef typename grid_type :: dim_size_type dim_size_type ;
9 typedef typename grid_type :: dim_value_type dim_value_type ;

This will allow you to control e.g., the working precision or the matrix imple-
mentation only one place in the code.



A.1 Programming guidelines 137

A.1.2 Dispatching

Due to the template-based design it is not directly possible to determine the
type of objects, but sometimes it is convenient to treat host and device vectors
di�erently. To do this one can create a overloaded function with dispatching:

1 typedef gpulab :: vector <double , gpulab :: device_memory > d_vector_type ;
2 typedef gpulab :: vector <double , gpulab :: device_memory > h_vector_type ;
3

4 int main ( int argc , char ** argv )
5 {
6 if ( gpulab :: init (argc , argv ))
7 {
8 d_vector_type x (10) ; // Device vector
9 h_vector_type y (10) ; // Host vector

10

11 foo (x) ; // Wil l be dispatched to device code
12 foo (y) ; // Wil l be dispatched to host code
13 }
14 gpulab :: f inal ize () ;
15 return 0;
16 }
17

18 template < class V>
19 void foo (V &a)
20 {
21 // Dispatch to the right funct ion
22 foo (a , typename V:: memory_space () ) ;
23 }
24

25 template < class V>
26 void foo (V &a, gpulab :: device_memory )
27 {
28 // a is a device vector
29 }
30

31 template < class V>
32 void foo (V &a, gpulab :: host_memory )
33 {
34 // a is a host vector
35 }

A.1.3 Vectors and device pointers

The vector class is derived from the Thrust[BH11] vector objects and therefore
o�ers the same container iterators and operators, e.g.:

1 typedef gpulab :: vector <double , gpulab :: device_memory > vector_type ;
2

3 vector_type a (20) ; // vector of size 20
4 thrust :: sequence (a. begin () ,a.end () ) ; // Fi l l a with 1 ,2 ,... ,19

The vector class is also a wrapper for a pointer that points to either host or
device memory. If a device pointer is required to send to a kernel function, then



138 The GPUlab library

do:

1 typedef gpulab :: vector <double , gpulab :: device_memory > vector_type ;
2

3 vector_type a (10) ; // vector of size 10
4 double * ptr = RAW_PTR (a); // pointer to device memory

A.1.4 Con�guration �les

The GPUlab is initialized with a (possibly empty) con�guration �le, named
config.ini that should be in the same directory as the executable. The con�g-
uration �le is a simple text �le. Every line in the �le de�nes a key and a value.
In order to retrieve information from the con�guration �le use:

1 double tol ;
2 int N;
3 GPULAB_CONFIG_GET ("N" ,&N ,100) ; // Get N from config , default value

= 100
4 GPULAB_CONFIG_GET (" tolerance " ,&tol ,0.0) ; // Get tolerance from config ,

default value = 0

If the key is not found in the con�guration database, the default value will be
used. The GPUlab library will automatically try to convert the value onto the
same type as provided.

it is also possible to insert entries into the con�guration database. They only
exist during the lifetime if the program and are not stored in the text �le.

1 double tol = 0.1;
2 int N = 30;
3 GPULAB_CONFIG_SET ("N" ,N); // Set N to 30
4 GPULAB_CONFIG_SET (" tolerance " , tol ) ; // Set tolerance to 0.1

A.1.5 Logging

The GPUlab library will automatically log some information to the screen during
a run. The level at which information will be displayed can be controlled via
the con�guration �le and can be any of:

1 log_level DEBUG
2 log_level INFO
3 log_level WARNING
4 log_level ERROR

From anywhere in your code you can log information by doing:



A.1 Programming guidelines 139

1 int N = 100;
2 GPULAB_LOG_DBG ("This is debugging \n") ;
3 GPULAB_LOG_INF ("For your information , N = %i \n" , N);
4 GPULAB_LOG_WRN ("This is a warning \n") ;
5 GPULAB_LOG_ERR ("This is an error \n") ;

A.1.6 Input/Output

There is build in routines for reading and writing vectors to binary format.

1 # include <gpulab / io / print .h>
2 # include <gpulab / io / read .h>
3

4 using namespace gpulab ;
5 vector <double , device_memory > a (100) ;
6 vector <double , device_memory > b;
7 io :: print (a , io :: TO_BINARY_FILE ,1 , "a.bin ") ; // Print to fi le a.bin
8 io :: read ("b.bin " , io :: BINARY ,1) ; // Read from fi le b.bin

A.1.7 Grids

The grid class is an extension to the vector class and it holds extra dimensional
information. Here is an example of how to to create a two-dimensional grid
with Dirichlet boundary conditions in the x-direction and Neumann boundary
conditions in the y-direction:

1 # include <gpulab /grid .h>
2 typedef gpulab :: grid <double , gpulab :: device_memory > grid_type ;
3 typedef typename grid_type :: property_type property_type ;
4 typedef typename grid_type :: dim_size_type dim_size_type ;
5 typedef typename grid_type :: dim_value_type dim_value_type ;
6

7 dim_size_type dim (100 ,50) ; // Grid size 100 x 50
8 dim_value_type p0 ( 0, 0) ; // Physical x0 , y0
9 dim_value_type p1 ( 1, 1) ; // Physical x1 , y1

10 dim_size_type g0 ( 0, 2) ; // Ghost layers x0 , y0
11 dim_size_type g1 ( 0, 2) ; // Ghost layers x1 , y1
12 dim_size_type o0 ( 0, 0) ; // Offset x0 , y0
13 dim_size_type o1 ( 0, 0) ; // Offset x1 , y1
14 dim_size_type bc0 ( BC_DIR , BC_NEU ); // Boundary condit ions
15 dim_size_type bc1 ( BC_DIR , BC_NEU ); // Boundary condit ions
16

17 property_type props2d (dim ,p0 ,p1 ,g0 ,g1 ,o0 ,o1 ,bc0 ,bc1 ) ;
18

19 grid_type U( props2d );
20 grid_type * W = U. dupl icate () ;



140 The GPUlab library

A.1.8 Matlab supporting �le formats

To support post- and pre-processing in Matlab we have also created functions
to read, write and reshape vectors and grids in binary �les. Simply use:

1 v1 = 1:100;
2 print2gpu ( 'v .bin ' ,v1 , ' precision ' , ' double ')
3 v2 = readgpu ( 'v .bin ' , ' precision ' , ' double ')

A.2 Con�guring a free surface water wave appli-
cation

A.2.1 Con�guration �le

The con�guration of a free surface application can be controlled with the GPU-
lab input con�guration �le. Most of the con�guration parameters have default
values, but in order to control the wave characteristics one can specify:

1 # WAVE CHARACTERISTICS
2 L 1.0
3 Lx 4.0
4 Ly 1.0
5 h 1.0
6 k 6.283185
7 H 0.042436
8 c 1.261316
9 T 0.792823

10 percent 30.0
11 l inear 0
12 periodic 0

For the discretization settings the following parameters can be speci�ed:

1 # DISCRETIZATION PARAMETERS
2 alpha 3
3 Nx 257
4 Ny 129
5 Nz 9
6 Cr 0.6
7 tend 20

And �nally some of the con�guration parameters that controls the multigrid
preconditioned defect correction solver:

1 # LAPLACE SOLVER PARAMETERS
2 i ter 20
3 v1 2



A.2 Con�guring a free surface water wave application 141

4 v2 2
5 vc 4
6 K 4
7 rtol 0.0001
8 atol 0.00001
9 mgcycle V

A.2.2 The Matlab GUI

Manually con�guring the wave characteristics can be troublesome as they have
to match each other. We have therefore creates a simple Matlab GUI that will
help create the con�guration �les, see Figure A.1



142 The GPUlab library

Figure A.1: The Matlab GUI for creating con�guration �les to the free surface
water wave solver.



Bibliography

[ABC+ 06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, and K. A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University of Cali-
fornia, Berkeley, 2006.

[ABD+ 13] A. M. Aji, P. Balaji, J. Dinan, W.-C. Feng, and R. Thakur.
Synchronization and ordering semantics in hybrid MPI+GPU
programming. In 3rd International Workshop on Accelerators
and Hybrid Exascale Systems (AsHES), 2013.

[ALB98] E. Acklam, H. P. Langtangen, and A. M. Bruaset. Parallelization
of explicit �nite di�erence schemes via domain decomposition,
1998.

[AMW84] M. Abott, A. McCowan, and I. Warren. Accuracy of short-
wave numerical models. ASCE Journal of Hydraulic Engineer-
ing, 110(10):1287�1301, 1984.

[APS78] M. Abott, H. Petersens, and O. Skovgaard. On the numerical
modelling of short waves in shallow water. Journal of Hydraulic
Research, 16(3):173�203, 1978.

[Aub11] E. Aubanel. Scheduling of tasks in the parareal algorithm. Par-
allel Computing, 37:172�182, 2011.



144 BIBLIOGRAPHY

[Bai91] D. H. Bailey. Twelve ways to fool the masses when giving per-
formance results on parallel computers. Supercomputing Review,
pages 54�55, 1991.

[Bai92] D. H. Bailey. Misleading performance reporting in the super-
computing �eld. Technical report, Numerical Aerodynamic Sim-
ulation (NAS) Systems Division, NASA Ames Research, 1992.

[Bai09] D. H. Bailey. Misleading performance claims in parallel compu-
tations. In Proceedings of the 46th Annual Design Automation
Conference, DAC '09, pages 528�533. ACM, 2009.

[BBB+ 11] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and
H. Zhang. PETSc developers manual. Technical report, Argonne
National Laboratory, 2011.

[BBB+ 13] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 -
Revision 3.4, Argonne National Laboratory, 2013.

[BBC+ 94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst.
Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods, 2nd Edition. SIAM, 1994.

[BBD+ 09] M. Baboulin, A. Buttarib, J. Dongarra, J. Kurzak, J. Langouc,
J. Langou, P. Luszczek, and S. Tomov. Accelerating scien-
ti�c computations with mixed precision algorithms. Computer
Physics Communications, 180:2526�2533, 2009.

[BBM+ 02] L. Ba�co, S. Bernard, Y. Maday, G. Turinici, and G. Zérah.
Parallel in time molecular dynamics simulations. Physical Review
E., 66(057701), 2002.

[BFH+ 04] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Hous-
ton, and P. Hanrahan. Brook for GPUs: stream computing on
graphics hardware. ACM Trans. Graph. , 23(3):777�786, 2004.

[BG09] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC '09:
Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pages 1�11. ACM, 2009.

[BH11] N. Bell and J. Hoberock. Thrust: A productivity-oriented library
for CUDA. in GPU Computing Gems, Jade Edition, Edited by
Wen-mei W. Hwu, 2:359�371, 2011.



BIBLIOGRAPHY 145

[BHM00] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid
Tutorial . Society of Industrial and Applied Mathematics, SIAM,
2000.

[BMK+ 10] D. L. Brown, P. Messina, D. Keyes, J. M. , R. Lucas, J. Shalf,
P. Beckman, R. B. , A. Geist, J. Vetter, B. L. Chamberlain,
E. Lusk, J. Bell, M. S. Shephard, M. Anitescu, D. Estep, D. Es-
tep, A. Pinar, and M. A. Heroux. Scienti�c grand challenges,
crosscutting technologies for computing at the exascale. Techni-
cal report, U.S. Department of Energy, 2010.

[BN04] S. Beji and K. Nadaoka. Fully dispersive nonlinear water wave
model in curvilinear coordinates. Journal of Computational
Physics, 198(2):645�658, 2004.

[Bra77] A. Brandt. Multi-level adaptive solutions to boundary-value
problems. Mathematics of Computation, 31(138):333�390, 1977.

[Bur95] K. Burrage. Parallel and Sequential Methods for Ordinary Di�er-
ential Equations. Monographs on Numerical Analysis. Clarendon
Press, 1995.

[BZ89] A. Bellen and M. Zennaro. Parallel algorithms for initial-value
problems for di�erence and di�erential equations. Journal of
Computational and Applied Mathematics, 25(3):341�350, 1989.

[BZ07] H. B. Bingham and H. Zhang. On the accuracy of �nite-
di�erence solutions for nonlinear water waves. Journal of En-
gineering Mathematics, 58:211�228, 2007.

[CM93] A. Chorin and J. Marsden. A Mathematical Introduction to Fluid
Mechanics. Texts in Applied Mathematics. Springer, 1993.

[Coo12] S. Cook. CUDA Programming: A Developer's Guide to Parallel
Computing with GPUs. Applications of GPU Computing Series.
Elsevier Science, 2012.

[CPL05] X. Cai, G. Pedersen, and H. Langtangen. A parallel multi-
subdomain strategy for solving boussinesq water wave equations.
Advances in Water Resources, 28:215�233, 2005.

[DB06] F. Dias and T. J. Bridges. The numerical computation of freely
propagating time-dependent irrotational water waves. Fluid Dy-
namics Research, 38(12):803 � 830, 2006. Free-Surface and In-
terfacial Waves.



146 BIBLIOGRAPHY

[DBEKF10] G. Ducrozet, H. Bingham, A. Engsig-Karup, and P. Ferrant.
High-order �nite di�erence solution for 3d nonlinear wave-
structure interaction. Journal of Hydrodynamics, 22(5):225�230,
2010.

[DBM+ 11] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio,
J.-C. Andre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braun-
schweig, F. Cappello, B. Chapman, X. Chi, A. Choudhary,
S. Dosanjh, T. Dunning, S. Fiore, A. Geist, B. Gropp, R. Har-
rison, M. Hereld, M. Heroux, A. Hoisie, K. Hotta, Z. Jin,
Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes,
B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr,
M. S. Mueller, W. E. Nagel, H. Nakashima, M. E. Papka,
D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir,
T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto,
W. Tang, J. Taylor, R. Thakur, A. Trefethen, M. Valero, A. Van
Der Steen, J. Vetter, P. Williams, R. Wisniewski, and K. Yelick.
The international exascale software project roadmap. Inter-
national Journal of High Performance Computing Applications,
25(1):3�60, 2011.

[DKM94] R. A. Dalrymple, J. T. Kirby, and P. Martin. Spectral meth-
ods for forward-propagating water waves in conformally-mapped
channels. Applied Ocean Research, 16(5):249 � 266, 1994.

[DMV+ 08] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil computa-
tion optimization and auto-tuning on state-of-the-art multicore
architectures. In SC '08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, pages 1�12. IEEE Press, 2008.

[EBW11] D. Eschweiler, D. Becker, and F. Wolf. Patterns of ine�cient
performance behavior in GPU applications. In Proceedings of
the 2011 19th International Euromicro Conference on Parallel,
Distributed and Network-Based Processing, PDP '11, pages 262�
266. IEEE Computer Society, 2011.

[EGH03] R. Eymard, T. Gallouët, and R. Herbin. Handbook of Numerical
Analysis, chapter Finite Volume Methods, pages 713�1020. 2003.

[EK06] A. P. Engsig-Karup. Unstructured Nodal DG-FEM Solution of
High-Order Boussinesq-type Equations. Technical University of
Denmark, Department of Mechanical Engineering, 2006.



BIBLIOGRAPHY 147

[EK14] A. P. Engsig-Karup. Analysis of e�cient preconditioned defect
correction methods for nonlinear water waves. To appear: Inter-
national Journal for Numerical Methods in Fluids, 2014.

[EKBL09] A. Engsig-Karup, H. Bingham, and O. Lindberg. An e�cient
�exible-order model for 3D nonlinear water waves. Journal of
Computational Physics, 228:2100�2118, 2009.

[EKGNL13] A. P. Engsig-Karup, S. L. Glimberg, A. S. Nielsen, and O. Lind-
berg. Designing Scienti�c Applications on GPUs, chapter Fast
hydrodynamics on heterogenous many-core hardware. Chapman
& Hall/CRC Numerical Analysis and Scienti�c Computing Se-
ries, 2013.

[EKMG11] A. P. Engsig-Karup, M. G. Madsen, and S. L. Glimberg. A
massively parallel GPU-accelerated model for analysis of fully
nonlinear free surface waves. International Journal for Numeri-
cal Methods in Fluids, 70(1):20�36, 2011.

[Far11] R. Farber. CUDA Application Design and Development. Appli-
cations of GPU computing. Morgan Kaufmann, 2011.

[FC] W. Feng and K. W. Cameron. Top 500 green supercomputer
sites, www.green500.org.

[FP96] J. Ferziger and M. Peri¢. Computational methods for �uid
dynamics. Numerical methods: Research and development.
Springer-Verlag, 1996.

[FR82] J. D. Fenton and M. M. Rienecker. A fourier method for solv-
ing nonlinear water-wave problems: application to solitary-wave
interactions. Journal of Fluid Mechanics, 118:411�443, 1982.

[G�10] D. Göddeke. Fast and Accurate Finite-Element Multigrid Solvers
for PDE Simulations on GPU Clusters. PhD thesis, Der Fakultät
für Mathematik der Technischen Universität Dortmund, 2010.

[GEKM11] S. L. Glimberg, A. P. Engsig-Karup, and M. G. Madsen. A
fast GPU-accelerated mixed-precision strategy for fully nonlin-
ear water wave computations. Proceedings of European Nu-
merical Mathematics and Advanced Applications (ENUMATH),
pages 645�652, 2011.

[GEKND13] S. L. Glimberg, A. P. Engsig-Karup, A. S. Nielsen, and
B. Dammann. Designing Scienti�c Applications on GPUs,
chapter Development of software components for heterogeneous
many-core architectures. Chapman & Hall/CRC Numerical
Analysis and Scienti�c Computing Series, 2013.



148 BIBLIOGRAPHY

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns - Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional Computing Series, 1995.

[GLS99] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Par-
allel Programming with the Message Passing Interface,2nd edi-
tion. MIT Press, 1999.

[GLT99] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message-Passing Interface. MIT Press, 1999.

[Gmb] P. GmbH. Top 500 supercomputer sites, www.top500.org.

[GPL04] S. Glimsdal, G. Pedersen, and H. P. Langtangen. An inves-
tigation of domain decomposition methods for one-dimensional
dispersive long wave equations. Advances in Water Resources,
27(11):1111�1133, 2004.

[GS10] D. Göddeke and R. Strzodka. Cyclic reduction tridiag-
onal solvers on GPUs applied to mixed precision multi-
grid. IEEE Transactions on Parallel and Distributed Systems,
99(PrePrints):1�13, 2010.

[GV07] M. Gander and S. Vandewalle. Analysis of the parareal time-
parallel time-integration method. SIAM Journal of Scienti�c
Computing, 29(2):556�578, 2007.

[GWS+ 09] D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. Mc-
Cormick, and S. Turek. Co-processor acceleration of an unmod-
i�ed parallel solid mechanics code with FEASTGPU. Interna-
tional Journal of Computational Science and Engineering, 2009.

[HC05] X. Hu and C. T. Chan. Refraction of water waves by periodic
cylinder arrays. Physical Review Letters, 95:154501, 2005.

[HS11] T. Hoe�er and M. Snir. Writing parallel libraries with MPI
- common practice, issues, and extensions. In Y. Cotronis,
A. Danalis, D. Nikolopoulos, and J. Dongarra, editors, Recent
Advances in the Message Passing Interface, volume 6960 of Lec-
ture Notes in Computer Science, pages 345�355. Springer Berlin
/ Heidelberg, 2011.

[Hwu11] W. Hwu. GPU Computing Gems Jade Edition. Applications of
GPU Computing Series. Elsevier Science, 2011.

[HX96] J. Häuser and Y. Xia. Modern Introduction to Grid Genera-
tion . Department of Parallel Computing Center of Logistics and
Expert Systems, 1996.



BIBLIOGRAPHY 149

[IN90] A. Iserles and S. P. Norsett. On the Theory of Parallel Runge�
Kutta Methods. IMA Journal of Numerical Analysis , 10(4):463�
488, 1990.

[ITRon] ITRS. International Technology Roadmap for Semiconductors,
Assembly and Packaging, 2011 Edition.

[JDB+ 12] J. Jenkins, J. Dinan, P. Balaji, N. F. Samatova, and R. Thakur.
Enabling fast, noncontiguous GPU data movement in hybrid
MPI+GPU environments. 2012 IEEE International Conference
on Cluster Computing, 0:468�476, 2012.

[JS05] C. Jiang and M. Snir. Automatic tuning matrix multiplication
performance on graphics hardware. In IEEE PACT , pages 185�
196. IEEE Computer Society, 2005.

[KDW+ 06] S. Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and
K. Yelick. Implicit and explicit optimizations for stencil com-
putations. In Proceedings of the 2006 workshop on Memory sys-
tem performance and correctness, MSPC '06, pages 51�60. ACM,
2006.

[Kea11] D. Keyes and V. T. et al. Task force on software for science
and engineering. Technical report, National Science Foundation.
Advisory Committee for CyberInfrastructure, 2011.

[Kel95] C. Kelley. Iterative Methods for Linear and Nonlinear Equations.
Society for Industrial and Applied Mathematics, 1995.

[Key11] D. E. Keyes. Exa�op/s: The why and the how. Journal of
Comptes Rendus Mecanique, 339:70�77, 2011.

[KM92] T. Korson and J. D. McGregor. Technical criteria for the spec-
i�cation and evaluation of object-oriented libraries. Journal of
Software Engineering, 7(2):85�94, 1992.

[KmWH10] D. B. Kirk and W. mei W. Hwu. Programming Massively Par-
allel Processors: A Hands-on Approach (Applications of GPU
Computing Series). Morgan Kaufmann, 1st edition, 2010.

[Kop09] D. Kopriva. Implementing Spectral Methods for Partial Di�eren-
tial Equations: Algorithms for Scientists and Engineers. Math-
ematics and Statistics. Springer Science+Business Media B.V.,
2009.

[Kri90] D. Kriebel. Nonlinear wave interaction with a vertical circular
cylinder. part i: Di�raction theory. Ocean Engineering, 17(4):345
� 377, 1990.



150 BIBLIOGRAPHY

[Kri92] D. Kriebel. Nonlinear wave interaction with a vertical circular
cylinder. part ii: Wave run-up. Ocean Engineering, 19(1):75 �
99, 1992.

[LD83] J. Larsen and H. Dancy. Open boundaries in short wave simu-
lations - a new approach. Coastal Engineering, 7:285�297, 1983.

[LeV07] R. J. LeVeque. Finite di�erence methods for ordinary and par-
tial di�erential equations - steady-state and time-dependent prob-
lems. SIAM, 2007.

[LF97] B. Li and C. A. Fleming. A three dimensional multigrid model
for fully nonlinear water waves. CE, 30:235�258, 1997.

[LF01] B. Li and C. A. Fleming. Three-dimensional model of navier-
stokes equations for water waves. Waterway, Port, Coastal, and
Ocean Engineering, pages 16�25, 2001.

[LGB+ 12] O. Lindberg, S. L. Glimberg, H. B. Bingham, A. P. Engsig-
Karup, and P. J. Schjeldahl. Towards real time simulation of
ship-ship interaction - part ii: double body �ow linearization and
GPU implementation. In Proceedings of The 28th International
Workshop on Water Waves and Floating Bodies (IWWWFB),
2012.

[LGB+ 13] O. Lindberg, S. L. Glimberg, H. B. Bingham, A. P. Engsig-
Karup, and P. J. Schjeldahl. Real-time simulation of ship-
structure and ship-ship interaction. In 3rd International Con-
ference on Ship Manoeuvring in Shallow and Con�ned Water,
2013.

[Lin08] P. Lin. Numerical Modeling of Water Waves. Taylor & Francis,
2008.

[Lis99] V. D. Liseikin. Grid Generation Methods. Scienti�c Computa-
tion. Springer-Verlag, 1999.

[LMT01] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d'edp par un
schéma en temps pararéel. C.R. Acad Sci. Paris Sér. I math,
332:661�668, 2001.

[LZ01] Y. S. Li and J. M. Zhan. Boussinesq-type model with boundary-
�tted coordinate system. Journal of Waterway, Port, Coastal,
and Ocean Engineering, 127(3):152�160, 2001.

[Mad08] Y. Maday. The parareal in time algorithm. Technical Report
R08030, Universite Pierré et Marie Curie, 2008.



BIBLIOGRAPHY 151

[MF54] R. MacCamy and R. Fuchs. Wave Forces on Piles: A Di�raction
Theory. Technical memorandum. U.S. Beach Erosion Board,
1954.

[Mic09] P. Micikevicius. 3d �nite di�erence computation on GPUs using
CUDA. In GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, pages 79�84.
ACM, 2009.

[Moo65] G. E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8), 1965.

[MSK10] V. Minden, B. Smith, and M. Knepley. Preliminary implementa-
tion of petsc using GPUs. Proceedings of the 2010 International
Workshop of GPU Solutions to Multiscale Problems in Science
and Engineering, 2010.

[Nie12] A. S. Nielsen. Feasibility study of the parareal algorithm. Master
thesis, Technical University of Denmark, Department of Infor-
matics and Mathematical Modeling, 2012.

[Nvi12a] Nvidia. Nvidia GPUDirect technology and cluster computing.
online matrial. 2012.

[Nvi12b] Nvidia. CUDA C Best Practices Guide. online material, 2012.

[Nvi13] Nvidia. CUDA C Programming Guide. online material. 2013.

[Per67] D. Peregrine. Long waves on a beach. Journal of Fluid Mechan-
ics, 27(4):815�827, 1967.

[Pes02] C. S. Peskin. The immersed boundary method. Acta Numerica,
11:479�517, 2002.

[PK87] J. Pos and F. Kilner. Breakwater gap wave di�raction: an ex-
perimental and numerical study. Journal of Waterway, Port,
Coastal, and Ocean Engineering, 113(1):1�21, 1987.

[Rav10] H. C. Raven. Validation of an approach to analyse and under-
stand ship wave making. 15:331�344, 2010.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, 2003.

[SBG96] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decom-
position: Parallel Multilevel Methods for Elliptic Partial Di�er-
ential Equations. Cambridge University Press, 1996.



152 BIBLIOGRAPHY

[SDB94] A. Skjellum, N. E. Doss, and P. V. Bangaloret. Writing libraries
in MPI. Technical report, Department of Computer Science and
NSF Engineering Research Center for Computational Fiels Sim-
ulation. Mississippi State University, 1994.

[SDK+ 01] F. Shi, R. A. Dalrymple, J. T. Kirby, Q. Chen, and A. Kennedy.
A fully nonlinear boussinesq model in generalized curvilinear co-
ordinates. Coastal Engineering, 42:337�358, 2001.

[SJ76] I. A. Svendsen and I. G. Jonsson. Hydrodynamics of coastal re-
gions, volume 3. Den private inginoerfond, Technical University
of Denmark, 1976.

[SK10] J. Sanders and E. Kandrot. CUDA by Example: An Introduc-
tion to General-Purpose GPU Programming. Addison-Wesley
Professional, 1st edition, 2010.

[SS95] F. Shi and W. Sun. A variable boundary model of storm surge
�ooding in generalized curvilinear grids. International Journal
for Numerical Methods in Fluids, 21(8):641�651, 1995.

[TOS+ 01] U. Trottenberg, C. W. Oosterlee, A. Schuller, contributions by
A. Brandt, P. Oswald, and K. Stuben. Multigrid . Academic
Press, 2001.

[VDM12] M. Vantorre, G. Delefortrie, and F. Mostaert. Behaviour of ships
approaching and leaving locks: Open model test data for vali-
dation purposes. Technical report, WL2012R815_08e. Flanders
Hydraulics Research and Ghent University - Division of Mar-
itime Technology: Antwerp, Belgium, 2012.

[VJ02] D. Vandevoorde and N. M. Josuttis. C++ Templates: The Com-
plete Guide. Addison-Wesley Professional, 1st edition, 2002.

[Wil81] C. J. Willmott. On the validation of models. Physical Geography,
2(2):184�194, 1981.

[WoEU71] R. W. Whalin, U. S. A. C. of Engineers, and W. E. S. (U.S.).
The Limit of Applicability of Linear Wave Refraction Theory in
a Convergence Zone. Research report. Waterways Experiment
Station, 1971.

[WPL+ 11a] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur,
and D. K. Panda. Optimized non-contiguous MPI datatype com-
munication for GPU clusters: Design, implementation and eval-
uation with MVAPICH2. In Proceedings of the 2011 IEEE In-
ternational Conference on Cluster Computing, CLUSTER '11,
pages 308�316. IEEE Computer Society, 2011.



BIBLIOGRAPHY 153

[WPL+ 11b] H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K.
Panda. MVAPICH2-GPU: optimized GPU to GPU communi-
cation for in�niband clusters. Computer Science - Research and
Development, 26(3-4):257�266, 2011.

[wZsZ10] H. wei Zhou and H. sheng Zhang. A numerical model of nonlin-
ear wave propagation in curvilinear coordinates. China Ocean
Engineering, 24(4):597�610, 2010.

[Yeu82] R. W. Yeung. Numerical methods in free-surface �ows. In An-
nual review of �uid mechanics, Vol. 14, pages 395�442. Annual
Reviews, 1982.

[YS09] J. Yang and F. Stern. Sharp interface immersed-boundary/level-
set method for wave-body interactions. Journal of Computa-
tional Physics, 228:6590�6616, 2009.

[YSW+ 07] J. Yang, N. Sakamoto, Z. Wang, P. Carrica, and F. Stern. Two
phase level-set/immersed-boundary cartesian grid method for
ship hydrodynamics. Ninth International Conference on Nu-
merical Ship Hydrodynamics, 2007.

[zFlZbLwY12] K. zhao FANG, Z. li ZOU, Z. bo LIU, and J. wei YIN. Boussi-
nesq modelling of nearshore waves under body �tted coordinate.
Journal of Hydrodynamics, Ser. B, 24(2):235 � 243, 2012.

[ZZY05] H. Zhang, L. Zhu, and Y. You. A numerical model for wave prop-
agation in curvilinear coordinates. Coastal Engineering, 52:513�
533, 2005.


	Preface
	Summary (English)
	Summary (Danish)
	Acknowledgements

