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Abstract

This report presents a metaheuristic scheduler for inter-processor communi-
cation in multi-core platforms using time division multiplexed (TDM) net-
works on chip (NOC). Input to the scheduler is a specification of the target
multi-core platform and a specification of the application. Compared to
previous works, the scheduler handles a broader and more general class of
platforms.

Another contribution, which has significant practical implications, is the
minimization of the TDM schedule period by over-provisioning bandwidth
to connections with the smallest bandwidth requirements. Our results show
that this is possible with only negligible impact on the schedule period.

We evaluate the scheduler with seven different applications from the
MCSL NOC benchmark suite. We observe that the metaheuristics perform
better than the greedy solution. In the special case of all-to-all commu-
nication with equal bandwidths on all communication channels, we obtain
schedules with a shorter period than reported in previous work.



Chapter 1

Introduction

Today the hardware platforms used in general-purpose computing as well as
in embedded systems are moving in the direction of many cores connected by
a packet-switched network on chip (NOC) [1, 2]. Hard real-time systems are
implemented in a conservative way. But these are also moving in the direction
of multi-core platforms. The availability of many processing cores brings
interesting perspectives related to time-predictability, for example isolation
of applications executing on different processing cores. However, it also brings
a number of challenges. One of these challenges is the NOC, which is a global
and shared resource through which the cores communicate.

Most research in the field of NOC has addressed general-purpose comput-
ing or embedded systems that do not require hard real-time guarantees. In
order to be useful in hard real-time systems, the NOC must provide (virtual)
end-to-end circuits in order to avoid interference from traffic flows [3]. There
are two fundamental ways of implementing virtual circuits: (a) by time divi-
sion multiplexing (TDM) the hardware resources (routers and links) in the
NOC, or (b) by using non-blocking routers in combination with rate control
in the cores [3, 4].

Previous research has shown that TDM-based NOCs are far simpler to
implement, because they avoid buffering and arbitration in the routers. In
[3, 5] the difference in area between the two approaches is reported to be 1:10
– a strong argument in favor of TDM. A criticism often raised is that TDM-
based networks are not work-conserving; this is generally of less interest in
hard real-time systems, where the worst-case execution time is of importance.

In this report we address the scheduling of data-traffic in a TDM-based
NOC that supports message passing across virtual end-to-end circuits in a
multi-processor platform. There are two rather different variations of this
problem of mapping applications to hardware platforms. The first variation
maps the application onto a given hard real-time general-purpose platform.
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The second variation synthesizes a specific NOC platform for the given ap-
plication, including a TDM schedule.

The increasing cost of designing and fabricating integrated circuits and
the limited fabrication volume of most hard real-time systems speaks strongly
in favor of using platforms with some generality that can be used to imple-
ment a range of different applications. This is what we address in this report.
The context for our work is the T-CREST project [6] in which we are devel-
oping a general-purpose multi-processor platform designed for hard real-time
systems, and for which the scheduler described in this report is being used.
Details of the hardware implementation may be found in [7, 8].

The mapping of an application onto a general-purpose NOC-based multi-
core platform is generally understood to include the steps illustrated in Fig-
ure 1.1 [9, 10]. The application is modeled as a task graph where nodes
represent tasks and edges represent communication channels (end-to-end cir-
cuits). Edges and nodes can be annotated with different information – for
edges, required bandwidth is typically specified. From this starting point, the
first step is to assign tasks to processors and as part of this to decide which
tasks will share a processor. The result of this is a core communication graph
where the nodes represent processing cores and the edges represent commu-
nication flows between the cores. Again (required) bandwidth is typically
annotated to the edges. The binding of processors to cores in the platform
influences the traffic in the NOC. The binding is driven by minimizing the
number of router-to-router hops, and the total bandwidth of the communi-
cation flows that share a link in the NOC. These steps are not specific for
TDM-based NOCs and they are well studied in the literature. Early works
include [9].

The final step, and the topic of this report is to generate the TDM sched-
ule for the NOC. An important aspect of this problem is to allow a sufficiently
generic and parameterized specification of the NOC-based platform, in order
to allow the scheduler to target a large class of different multi-core platforms
using TDM-based NOCs. These parameters include the topology of the NOC
(regular as well as irregular topologies), the packet length, and the pipeline
depth of the routers and links. The scheduling problem can be modeled as
a fixed-flow, minimum-time integer multi-commodity flow problem that is
known to be NP-complete [11].
The report makes contributions in two areas:

• Our scheduler is more general and produces better results than pre-
viously published schedulers – more general in the sense that it uses
a highly parameterized specification of the target platform, and bet-
ter in the sense that it produces shorter schedules. Furthermore, the
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scheduler is available as open source.

• This report presents and explores a novel idea that aims at minimizing
the number of slots in a period of the generated TDM schedule. The
goal is to reduce the size of the schedule-tables (that can be very large)
such that they fit into the memory structures that are implemented
in the hardware platform (that we assume is given). Our results show
that it is possible to compress the schedules to around 100 slots for
actual benchmarks, with only a negligible increase of the frequency of
the TDM clock.

The report is organized as follows. In Chapter 2 we review related work.
In Chapter 3 we discuss and identify the details of the scheduling problem.
Following this, Chapter 4 presents the design and implementation of the
scheduler. A description of the benchmarks used in our experiments is given
in Chapter 5. Results from a range of benchmarks are prechapterin Chapter 6
and discussed in Chapter 7. Finally, Chapter 7.1 concludes the report.
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Figure 1.1: Mapping of an application onto a multi-core platform: (a) Task
graph for application, (b) core communication graph, (c) multi-core platform,
and (d) details of a node in the platform (router (R), links, network interface
(NI), processor and local memory).
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Chapter 2

Related work

The UMARS scheduler described in [12] can generate TDM schedules for
the Æthereal platform. An application-specific platform is generated along
with the schedule. This allows the scheduler to modify the topology of the
NOC as well as the pipeline depth of the links in the NOC in order to obtain
feasible schedules that satisfy the bandwidth requirements. The UMARS
scheduler operates in two phases: path allocation and TDM-slot allocation.
The path allocation phase is an all-pair shortest-path search, identifying
feasible paths on which each communication channel can be routed. The
TDM-slot allocation is a mapping of the allocated paths to TDM slots, in
such a way that collisions are avoided. The UMARS scheduler works at the
level of 3-word flits/packets and pipelining of routers and links is done in
multiples of three. Our work is different in several respects: (a) it addresses
the communication mapping of an application onto a given platform, (b) it
works at the level of 1-word phits, and (c) it supports any degree of pipelining
in links and routers.

Nostrum is another NOC that is based on TDM scheduling [13]. The
scheduler supports regular topologies (mesh, torus, etc.) and it operates
using the same two phases (path selection and slot allocation) that are used in
the UMARS scheduler. Compared to a conventional packet-switched NOC,
Nostrum is a bit more elaborated. It uses temporal-disjoint networks and
looped containers (like multiple slotted rings on top of an underlying mesh-
style topology). The number of virtual circuits through a router is limited
to the number of temporally disjoint networks.

The mapping and scheduling of fully connected core communication graphs
that offer virtual circuits with identical bandwidth between all pairs of pro-
cessor nodes onto platforms with regular NOC topologies (mesh, torus, tree,
etc.) is studied in [14]. The paper provides a number of theoretical lower
bounds on the schedule length and it presents an ILP-based scheduler that
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produces optimal schedules, in terms of schedule length. A very high run-
time limits the scheduler to platforms with a small or modest number of
nodes – for a platform with 25 nodes the run-time is reported to be 2 weeks.

The same problem – scheduling of all-to-all communication in platforms
using NOCs with regular and squared topologies (mesh, torus and bitorus)
– is studied in [15]. In order to be able to handle larger problems, a heuristic
scheduler is used. A unique aspect of this work is that the routing is iden-
tical in all routers. This may allow sharing of routing tables in routers in
technologies where this is possible (e.g. FPGAs).

The provisioning of all-to-all communication means that the same plat-
form and the same schedule can be used by different applications, but it also
results in rather large schedule periods. In a platform with m2 nodes the
schedule length grows by at least O(m3); indicated by the bisection bound
stated in [14]. In addition, many applications have sparsely connected core
communication graphs. For these reasons it is desirable to be able to handle
arbitrary core communication graphs as well as platforms with a range of
NOC topologies. This is what we address in this report.

The work presented in this report differs from the above in several re-
spects. Our scheduler is not limited to symmetric all-to-all core communica-
tion graphs, it targets a given platform, and it accepts a highly parameterized
specification of the TDM-based NOC used in the platform (NOC-topology,
pipeline depth of routers and links, different packet lengths on different chan-
nels in the core communication graph, etc.). The current version of the
scheduler supports regular topologies like 2D-mesh, bi-torus, etc., but it is
straightforward to specify other topologies including irregular ones. Further-
more the scheduler considers the above-mentioned parameters. All in all this
makes the scheduler far more generic than previously published work. Last
but not least, our work reveals some interesting insight into the period of the
TDM schedules and ways to reduce the period.
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Chapter 3

The Scheduling Problem

The task of the scheduler is to schedule and route the communication chan-
nels of the core communication graph onto the TDM-based NOC in a multi-
processor platform. The nodes in a core communication graph are processor
cores and the edges are communication channels annotated with bandwidth
requirements. The NOC must be configured to implement the communica-
tion channels.

Definition 1 An application has the directed core communication graph A(P,C),
where P is the set of processors and C is the set of communication channels.

Definition 2 A communication channel c ∈ C is the triple (psrc, pdest, b),
where psrc ∈ P is the sending processor, pdest ∈ P is the receiving processor
and b ∈ R is the required bandwidth in MB/s.

The aim of the scheduling is to avoid situations where multiple packets
compete for the same resource, i.e. a link in the NOC or an output port of
the router. This requires a common time reference (e.g. a clock signal) that
defines the time slots that are the basis for the scheduling. In the following
we call this the TDM clock. A packet consists of a sequence of data-words
that is sent in a corresponding sequence of TDM-clock cycles. The routers
and links in the NOC are typically pipelined, which has to be considered
when scheduling the traffic.

The TDM clock should be seen as variable parameter that can be set
for a given application. In most situations, the bandwidth required by the
application does not need the NOC to run at its maximum clock frequency.
This allows the use of a TDM clock with a lower frequency.

Input to the scheduler is a specification of the application and a specifi-
cation of the platform. The application is specified by a core communication
graph as explained in Chapter 1 and Figure 1.1.
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A platform specification describes the platform on which to route the
communication from the core communication graph. The platform specifica-
tion describes routes and links, as explained in Chapter 1, the routers and
links have multiple parameters. In the following definitions we assume that
pipeline depths for routers and links are 1 and 0, respectively, in order to
keep the definitions simple. It is also possible to specify the packet size for
each individual channel in the core communication graph, but in most cases
the entire NOC will use only one packet size.

Definition 3 A platform specification is the directed graph T (N,L), where
N is the set of nodes in the platform and L is the set of directed physical links
connecting two unique nodes. A node n ∈ N consists of a router connected
to a local processor. A directed physical link l ∈ L is the tuple (nsrc, ndest),
where src, dest ∈ N2, i.e., two-dimensional Cartesian coordinates.

Given a core communication graph and a platform specification, the task
of the scheduler is to determine the routing and scheduling of the data traffic
in the NOC. Figure 3.1 shows a close-up of Figure 1.1(c) and illustrates the
routing and scheduling of traffic out of processor core p02, i.e., channels c1 and
c4 in the core communication graph shown in Figure 1.1(b). The scheduler
allows a channel in the core communication graph to be provided by multiple
communication paths through the NOC. To ensure that packets arrive in
order, the scheduler allows only shortest-path communication channels. For
channel c1 there is only one option, as processor cores p02 and p12 are direct
neighbors (connected by one link between routers in tiles 02 and 12). For
channel c4, three different paths marked c4’, c4’ and c4”’ may be used. This
assumes that the total pipeline depth from p02 to p12 is the same along all
three paths (to ensure in-order delivery of packets). The ports connecting
p02 and p21 to their respective router must be able to carry all the data traffic
corresponding to channels c1 and c4.

A communication path is the route of one packet traversing the NOC from
its source to its destination. The communication path consists of a sequence
of neighboring scheduled links in consecutive time slots. A scheduled link is
a physical link together with a time slot.

Definition 4 A scheduled link s ∈ S is the pair (l, t), where l ∈ L is the
physical link considered at time slot t ∈ N0.

Definition 5 A communication path is the vector ~φ = 〈s0, s1, . . . , slast〉 ∈ Φ

of scheduled links s ∈ S with ~φ[i].t+ 1 = ~φ[i+1].t and ~φ[i].l.pdest = ~φ[i+1].l.psrc.
Φ is the set of all possible communication paths.
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p02 (channels c1 and c4 from figure 1.1(b). Several or all of the paths marked
c4’, c4” and c4”’ may be used to implement channel c4. In the schedule
shown, only paths c4’ and c4” are used.

When the scheduler schedules the communication channels, it needs to
know how many packets it needs to schedule in one TDM period. The band-
width of the communication channels is given in MB/s, this bandwidth needs
to be normalized to a number of packets per period. Because we want to min-
imize the schedule period, we cannot directly convert between MB/s and the
number of packets per TDM period. Therefore, we normalize the bandwidth
of each communication channel to the bandwidth of the communication chan-
nel with the smallest bandwidth requirement. This bandwidth is rounded up
to the nearest integer; this (dimensionless) bandwidth is then the required
number of packets in one TDM period.

Definition 6 The normalization of the bandwidth of a communication chan-
nel is given by the norm function.
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norm : b 7→

 b

min
cm∈C

cm.b


A valid schedule is a specific set of communication paths that satisfy the

normalized bandwidth requirements of the core communication graph. In a
valid schedule, no link must be part of two different communication paths in
the same time slot. The objective of the scheduler is to minimize the TDM
period. This minimization may be exploited to decrease latency (and increase
bandwidth), or to lower the frequency of the TDM clock (while preserving
the bandwidth).

Definition 7 A schedule is a specific set of paths Φ∗ ⊂ P(Φ), where P(·) is
the powerset. The schedule period of a schedule is the function period : Φ∗ 7→
max
~φ∈Φ∗
{~φ[last].t}.

Definition 8 The scheduler sched : (A, T ) → Φ∗ maps the channels of A,
given the platform T , to a specific set of communication paths Φ∗, i.e., a
valid schedule.
Constraint: No overlapping paths ~φa 6= ~φb : ∀

i,j

~φa[i] 6= ~φb[j]

Objective: Minimize period(Φ∗), where Φ∗ is the produced schedule from
specific A∗, T ∗.

In the generated schedule, the channel with the smallest bandwidth re-
quirement is scheduled to send exactly one packet and the scheduler aims
at generating a schedule with the shortest possible period that satisfies the
normalized bandwidth requirements. Based on this schedule period, the min-
imum frequency of the TDM clock that satisfies the absolute bandwidth re-
quirements is determined.

The normalization of bandwidth requirements may result in very long
schedules – the channel with the smallest bandwidth requirement is assigned
one slot and all other channels are assigned a number of slots corresponding
to their normalized bandwidth. As the TDM schedule table for each node
has to be implemented in hardware in the NI, it is desirable to limit the
number of table entries and therefore to derive schedules with a modest pe-
riod. Based on previously published hardware designs, we consider 64-128
entries as realistic and 256 entries on the high side. By assigning more band-
width to the channel with the smallest required bandwidth, the normalized
bandwidth of all other channels is reduced, and this results in a reduced
TDM-schedule period. In Chapter 6 we show that it is possible to compress
the TDM schedules of typical benchmark applications to below 100 slots.
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During a physical time window a channel of cause needs the same number of
slots and the compressed TDM schedule is simply repeated more times. In
many cases the TDM-schedule period is reduced by the same factor as the
normalized bandwidths are reduced, and this means that the frequency of the
TDM clock is the same. When aggressively compressing the TDM schedule,
the NOC may start to saturate, and the schedule period is no longer reduced
proportional to the normalized bandwidths. This may be compensated for
by increasing the frequency of the TDM clock. This schedule compression is
an important contribution of the report.

As the platform is given, there is no guarantee that the required absolute
bandwidths (for example MB/s) can be supported by the platform – some
links in the NOC may not have enough bandwidth even when the TDM clock
is running with the maximum frequency. To accept a produced schedule, we
need to verify that it provides enough bandwidth on the specified platform.
If the inequality in equation 3.1 holds, the produced schedule provides more
than the required bandwidth from the core communication graph.

Breq <
Bsched

period
·Dp · fmax (3.1)

In equation 3.1 Breq is the maximum bandwidth of any channel in the
core communication graph in MB/s, and Bsched is the number of time slots
allocated to the communication channel with the largest bandwidth require-
ment in one TDM-schedule period. period is number of slots in a TDM
period, fmax is the maximum operating frequency of the NOC, and Dp is the
number of bytes that can be transferred in one time slot.

The inequality only needs to be verified for the communication channel
with the largest required bandwidth, because the remaining communication
channels are assigned more than the required bandwidth.
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Chapter 4

The metaheuristic scheduler

Our metaheuristic scheduler produces a schedule that satisfies the given nor-
malized bandwidth requirements while minimizing the TDM schedule period.
It implements two different metaheuristic algorithms. In this section we give
a brief outline of the metaheuristic algorithms that we have used and their
implementation.

4.1 Metaheuristics

A metaheuristic is a high-level optimization strategy that can be used to
explore large search spaces. The non-problem-specific metaheuristics guide
the search process and the search process is usually non-deterministic [16].
Metaheuristics are used to find good, but not guaranteed optimal, solutions
to NP-hard problems.

The two metaheuristics we have implemented are Greedy Randomized
Adaptive Search Procedure (GRASP) [17] and Adaptive Large Neighborhood
Search (ALNS) [18]. These metaheuristics are chosen because they are well
suited for searching very large search spaces. GRASP and ALNS work well
for problems with no clear sense of direction, as opposed to the metaheuristic
TABU search [19, Chapter 6], which saves the path in the solution space that
it has already searched to avoid going back to an already visited solution.

The GRASP pseudo code is shown in Algorithm 1. GRASP creates a
greedy randomized initial solution and tries to improve it through a local
search, until it finds a local optimum. This local search is performed by
selecting an operator from the operator table. Each entry in the operator
table is an operator and the probability of the given operator being selected;
the sum of probabilities in the operator table is 1. The probabilities in the
operator table are updated after each of the iterations, depending on the
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Algorithm 1 GRASP(A,T ) – Pseudo code for the GRASP metaheuristic.

Require:
A: the normalized core communication graph
T : the platform specification

1: Best ← initialSolution(A,T )
2: operator ← OperatorTable.select()
3: Best.localSearch(operator)
4: while Time left do
5: Solution ← initialSolution(A,T )
6: operator ← OperatorTable.select()
7: Solution.localSearch(operator)
8: if eval(Solution) better eval(Best) then
9: Best ← Solution
10: OperatorTable.update()
11: return Best

results of the performed local search. This process of creating an initial
solution and improving it is then repeated for a given amount of time. In
each of the iterations, the best solution is updated if the current solution is
better.

The ALNS pseudo code is shown in Algorithm 2. ALNS creates an initial
solution that satisfies the normalized core communication graph. Then part
of the solution is destroyed and repaired and this process is repeated. There-
fore, the initial solution used might heavily influence the result. During the
design and programming of the scheduler, a number of methods for generat-
ing initial solutions were tested, and they are described in Section 4.2. In the
destroy function, the operator is chosen probabilistically, and the probabili-
ties are updated according to the improvements of the different operators in
each of the iterations. The operators select which paths to destroy; after the
paths are destroyed the same paths are repaired in a random greedy fashion.
This is done for a given amount of time, and the globally best-seen solution
is saved.

For both ALNS and GRASP, the operators are chosen adaptively to en-
sure that the best operator for the problem is used. The jspdensity?? density
of the schedule might influence which operator is best. We calculate the ratio,
r, between the period of the previous schedule and the new current schedule.
To allow ALNS to move away from local minima, we want the probability of
choosing a given operator to converge slowly, so we multiply by

√
r rather

than r. This slow convergence is similar to setting a higher temperature
in simulated annealing [19, Chapter 7]. If

√
r > 1, the current solution is

13



Algorithm 2 ALNS(A,T ) – Pseudo code for the ALNS metaheuristic.

Require:
A: the normalized core communication graph
T : the platform specification

1: Current ← initialSolution(A,T )
2: Best ← Current
3: while Time left do
4: operator ← OperatorTable.select()
5: Current.destroy(Current)
6: Current.repair(Current)
7: if eval(Current) better eval(Best) then
8: Best ← Current
9: OperatorTable.Update()

10: return Best

shorter than the previous, so we increase the probability of the same opera-
tor being selected in the next iteration. The operators are explained in more
detail in Section 4.3.

The metaheuristic algorithms continuously try to minimize the number
of slots in the TDM schedule; therefore a user should allow the scheduler to
run for as long as can be afforded. Since the schedule is generated at compile
time, it is affordable to let it run for several hours.

4.2 Generating initial solutions for GRASP

and ALNS

The initial solutions are built to satisfy the bandwidth requirements of the
normalized core communication graph; they are built using a greedy algo-
rithm with an adjustable degree of randomness. We have applied random-
ization for the two types of routing decisions in the algorithm. The first
is the decision of which output port to choose when a communication path
is routed. The second is the order in which the communication paths are
routed. In the deterministic case, the algorithm sorts the set of unscheduled
paths by the length from its source to its destination. The sorted set of com-
munication paths is then placed in the schedule one at a time, always picking
the longest remaining channel. In any case, a communication path is routed
in the earliest possible time slot. We have implemented the algorithm with
the following combinations of randomization:

1. Deterministic, no randomization.
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2. Randomization of choosing the next output port.

3. Randomization of both the next output port and order of paths.

4. (Only for GRASP) Takes parameter β, the percentage of paths to be
swapped in the sorted set of unscheduled paths. If β = 0, the behavior
is equal to the second combination of randomization. If β = 1 the
behavior is equal to the third combination of randomization.

Good values for beta have been found by running the algorithm on many
different problems of different sizes with a wide range of β values. For mesh
topologies, we found 0.2 to be a good value and for bi-torus we found 0.02
to be a good value.

4.3 Operators

In this section we discuss which changes to a solution can lead to optimiza-
tions, and we select which operations to implement and use in the scheduler.
In order to decrease the period of an existing solution, the end of the sched-
ule should be moved backwards. Intuition says that an existing solution
generated by the scheduler is more dense in the beginning than in the end,
therefore there is more freedom to reroute paths in the end of the schedule.
After each of the optimization iterations, all communication paths are routed
completely. The quality of a solution is measured by the period of the TDM
schedule.

Definition 9 The dominating paths are the set
D = {~φ ∈ Φ∗ : ~φ[last].t = period(Φ∗)}

The dominating paths are the direct cause preventing a shorter schedule.
Removing complete communication paths and rerouting them one at a time
will not reduce the number of slots in the TDM schedule. Removing a col-
lection of communication paths that prevent each other from being routed
earlier might lead to a shorter schedule period when they are rerouted ran-
domly. To make adaptive decisions on which operators to choose, we need a
set of diverse operators to choose from. We have implemented the operators:
Dominating paths, Dominating rectangle, Late paths and Random.

Definition 10 Three basic selection functions:
links : ~φ 7→ {0 ≤ i ≤ ~φ[last] : ~φ[i].l}
touches : L∗,Φ∗ 7→ {~φ ∈ Φ∗ : links(~φ) ∩ L∗ 6= ∅}
rect : ~φ→ P(L) returns the links within the bounding box spanned by ~φ.
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The dominating paths operator selects the dominating paths and the
paths that are routed on the same physical links as the dominating paths,
no matter which time slot they are routed in.

Definition 11 The dominating paths operator selects the set DP of paths to
reroute, where

DP = touches

⋃
~φ∈D

links(~φ),Φ∗


The dominating rectangle operator selects all paths that are routed on

the physical links in the bounding box of each dominating path, no matter
which time slot they are routed in.

Definition 12 The dominating rectangle operator selects the set DR of paths
to reroute, where

DR = touches

⋃
~φ∈D

rect(~φ),Φ∗


The late paths operator selects the paths that end in the last time slot

(the dominating paths) and the paths that end in the second-last time slot.

Definition 13 The late paths operator selects the set
DL = {~φ ∈ Φ∗ : ~φ[last].t ≥ period(Φ∗)− 1}

The Random operator selects a random-sized set of randomly selected
paths. At least two paths are always selected and up to 10 % of all existing
paths can be selected.

4.4 Implementation

Our scheduler is written in C++11, using BOOST 1.49[20] and pugixml 1.0∗

as 3rd party libraries. The source code of our scheduler can be downloaded
at https://github.com/t-crest/poseidon.git. The source code builds
successfully on Linux and Cygwin. The scheduler reads an input XML file
describing the core communication graph of the application and the plat-
form specification. The communication is then scheduled and the resulting
schedule is written to an output XML file.

∗Source code can be downloaded at http://pugixml.googlecode.com/files/

pugixml-1.0.zip
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Table 4.1: Comparison of the schedule length for the all-to-all case. The
table shows the results produced by the symmetric heuristic scheduler [15],
the lower bounds from [14], the optimal solutions from [14] and the results we
have obtained by the greedy approach, the ALNS approach and the GRASP
approach. The schedule lengths are expressed in TDM slots, and the numbers
in bold are the best results for the given topology and network size.

Size

Previous work This work
Opt. Lower Sym. GREEDY ALNS GRASP
[14] bound[14] [15]

Mesh
3× 3 10 8 28 13 11 11
4× 4 18 16 59 24 21 21
5× 5 34 25 112 41 39 37
6× 6 – 54 – 66 65 61
7× 7 – 66 – 98 98 95
8× 8 – 128 481 144 143 139
9× 9 – 135 – 201 201 195

10× 10 – 250 974 271 271 267
15× 15 – 600 3467 886 886 900

Bitorus
3× 3 10 8 11 12 10 10
4× 4 18 15 20 21 19 19
5× 5 28 24 28 32 30 30
6× 6 – 35 – 45 45 43
7× 7 – 48 – 64 63 61
8× 8 – 64 88 87 87 85
9× 9 – 90 – 113 113 113

10× 10 – 125 158 154 154 151
15× 15 – 420 481 471 471 477

From the platform specification the scheduler generates a data structure
with a notion of time slots in which it can schedule the communication chan-
nels from the core communication graph. For each communication channel,
the scheduler schedules a communication path for each normalized unit of
bandwidth.

The communication channels that is to be scheduled contends for the
links in the network. Thus it is intuitive to have data related to each link
and router represented only once. This means we use a distributed data
structure that stores scheduling information for each link.
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One of our simplifying decisions is to only route channels along shortest
paths, as this will automatically guarantee in-order packet arrival. For this,
we need to compute local routing decisions for all pairs of processors. Since
our network graph is very regular, as each router only has a maximum out-
degree of four and all links have unit cost, we can easily find the shortest
path via a breadth-first search. We simply start at the destination and do
a BFS. Computing all these shortest paths can be done in O(n2) time and
O(n) space.
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Chapter 5

Benchmarks

For the benchmarks in this report, we assume that our platform is either a
square mesh or a square bi-torus. In addition we assume that the pipeline
depth of all routers is one, that the pipeline depth of all links is zero, and
that the packet size is one data word. In this way a packet can traverse a
router in one clock cycle.

We will experiment with two different types of benchmarks. The first
is the special case of all-to-all communication where core communication
graphs are fully connected graphs with a bandwidth of one on each channel.
The second type is the more general case of application-specific schedules
from the MCSL benchmarks suite[21]. In all our experiments, we create a
core communication graph and a platform specification. For the platform
specification we only change the topology and the network size.

In the MCSL benchmark suite the tasks are already mapped onto proces-
sors, so the benchmarks are basically core communication graphs. As some
processors execute more tasks, and as these tasks may have different com-
munication behaviors, we associate the maximum data rate as the required
bandwidth for the different channels in the core communication graph. The
required bandwidth on the communication channels of the core communica-
tion graph can be calculated using the following equation:

ci = max
t∈τ

αi(t), ci ∈ C

where αi(t) is the data rate between the processors ci.psrc and ci.pdest at
time t, and τ is the time interval when the application is executing. The
normalized core communication graph is found as described in Section 3.

If the produced schedule is longer than the number of time slots supported
by the hardware platform, the schedule needs to be shortened/compressed.
One way to achieve this is to normalize the bandwidths with a larger con-
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stant than the smallest bandwidth. Another normalization function with a
normalization factor as a parameter can be seen in Equation 5.1. The nor-
malization function normf takes the bandwidth and the new normalization
factor as input parameters.

normf : b, σ 7→

 b

σ min
cm∈C

cm.b

 (5.1)

Where, σ is the normalization factor. Normalizing with a large σ degrades
the relationship between bandwidths, because the minimum bandwidth is
always 1. As σ increases at some point the overall performance drops. Taken
to the extreme, the shortest possible schedule is when we normalize with a
factor equal to the bandwidth of the largest communication channel. This
results in a normalized core communication graph where all channels have a
required bandwidth of one packet per TDM period. The TDM period needs
to be repeated σ times to provide the same amount of data to be transferred
as the uncompressed schedule.
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Chapter 6

Results

The scheduler always produces a solution that satisfies the bandwidth re-
quirements of the normalized core communication graph, and the goal of
the scheduler is to minimize the schedule period. This again minimizes the
frequency of the TDM clock at which the absolute required bandwidths are
met. Below we present results for the all-to-all communication and for the
core communication graphs derived from the MCSL benchmark applications.

6.1 All-to-All Communication

To evaluate the performance of our scheduler in the special case of all-to-
all communication, we schedule the communication patterns for different
network sizes on both mesh and bi-torus topologies. Table 4.1 shows the
results and compares against the results of the heuristic scheduler in [15]
and against the optimal results and theoretical lower bounds given in [14].
All our results have been obtained by running our metaheuristic scheduler
for two hours on a computer with an i7-3630QM (4 cores @ 2.4 GHz) with
16 GB of memory.

As seen in Table 4.1 our scheduler produces better results than the sym-
metric scheduler [15] in all cases except the 5 × 5 bi-torus. This conforms
to the fact that the symmetric scheduler is restricted to produce solutions
where all routers execute the same schedule, whereas our scheduler has more
freedom and hence is able to find solutions with a shorter schedule period.

For the bi-torus our schedules are approx. 30 % longer than the analytical
lower bound from [14]. As seen in Table 4.1, the optimal schedule period for
a 3 × 3 bi-torus network is 10, and both our ALNS and GRASP schedulers
are able to find schedules with this period. For the other cases for which
optimal schedules are known, our scheduler finds solutions whose schedule
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Figure 6.1: The link utilization of a greedy all-to-all schedule on a network
with a bi-torus topology. The optimal link utilization is calculated from[22],
along with the upper bound on the link utilization that is derived from the
lower bound of the schedule period.

periods are only slightly larger.
Comparing the GREEDY solutions with the metaheuristic solutions (ALNS

and GRASL) produced in Table 4.1, we see that the metaheuristic algorithms
produce better results in most cases. For the large network sizes, the im-
provement by the metaheuristics diminishes. There are several reasons for
this. Firstly the link utilization increases with the number of nodes as seen
in Figure 6.1 for the bi-torus and the greedy scheduler. The link utilization
increases because the average communication channel length grows with the
network size. This limits the ability to reroute paths.

6.2 Application-Specific Schedules

In this section we investigate the general case of scheduling arbitrary com-
munication patterns. The communication patterns of interest are communi-
cation graphs from real applications. The MCSL NOC Benchmark Suite [21]
provides statistical traffic patterns for seven different applications mapped
onto different topologies of different sizes. The seven benchmarks represent
different types of traffic patterns, such as one-to-many, many-to-many, grid-
like patterns and combinations of these. These communication patterns are
also valid for real-time systems, as they contain a dynamic control applica-
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tion, encoding and decoding of error-correcting codes and general mathemat-
ical operations.

The normalized communication patterns are scheduled with the presented
scheduler on mesh and bi-torus topologies of different sizes. In Table 6.1 we
show the obtained schedule period of the benchmark applications generated
with ALNS and GRASP.
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Figure 6.2: The measured and ideal schedule period as a function of σ of all
the benchmark applications mapped on an 8× 8 bi-torus platform.

The long schedules shown in Table 6.1 are bound by IO of the most
communication-intensive processors in the network. Another observation
that can be made from the table is the irregularity of the schedule lengths.
There is no correlation between the schedule period of an application mapped
to a mesh topology or a bi-torus topology of the same size.

In practice it is not feasible to implement the hardware tables needed to
support the longest schedules shown in Table 6.1 (1000+ time slots). Based
on the hardware complexity of the NOC-implementation, we consider RAM
or ROM tables with 64-128 entries to be acceptable and tables with 256
entries to be a on the high side.

Therefore, it is interesting how much the schedule period can be com-
pressed before the overall performance decreases. Varying the normalization
factor, we can observe how the resulting schedule periods change. In Fig-
ure 6.2 we show how the schedule period changes as a function of the normal-
ization factor σ for the benchmark applications in an 8×8 bi-torus platform.
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We picked this topology because it reflects a likely topology. We have also ex-
perimented with a 16× 16 bi-torus platform, where we found similar results.
The dotted lines are the initial schedule period divided by the increasing
σ. They indicate how the schedule period would decrease in the ideal case,
where bandwidths are not affected (c.f., the discussion in Chapter 3). If the
measurements are above the dotted line, the schedule period is longer than
what corresponds to the compression factor. This represents a decrease in
bandwidth (in the normalized domain) and this must be compensated for by
an increase in the frequency of the TDM clock.

We see that the curves for all the applications follow the ideal lines well
below 1000 time slots. When the curves break off from the ideal lines, this is
because the increasing compression factor causes an over-allocation of band-
width to the communication channels with the smallest requirements. It is
seen that all applications can be scaled down to less than 100 TDM slots
with a negligible performance degradation compared to the unscaled version.
In most cases this can be compensated for by increasing the frequency of
the TDM clock used in the NOC. We consider this insight and the idea of
compressing the schedules an important contribution of the report.
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Table 6.1: The number of TDM slots in a period for the MCSL benchmark
applications [21]. The applications are: (1) Reed-Solomon encoding, (2)
Reed-Solomon decoding, (3) ROBOT Dynamic control problem, (4) SPEC95
multi-electron derivatives, (5) 1024 point Fast Fourier transform of complex
numbers, (6) Sparse matrix multiplication, (7) H.264 720p video decoding.
The results are generated by the ALNS and GRASP metaheuristics, only the
shortest schedule period is shown. Unmarked numbers mean that ALNS-
generated and GRASP-generated schedules of the same length in time slots.
Numbers marked with a ∗and a †are generated by ALNS and GRASP, re-
spectively.

Network (1) (2) (3) (4) (5) (6) (7)
size Mesh

3× 3 197 †4,249 529 75 29 †17 473
4× 4 91 7,951 1,009 114 43 †15 886
5× 5 91 ∗12,723 1,345 145 †82 19 ∗1,422
6× 6 91 †22,492 1,345 ∗519 †112 15 2,066
7× 7 91 22,584 1,345 †650 †143 20 †2,833
8× 8 91 †16,431 1,345 †1,571 †129 14 †3,718
9× 9 90 22,497 1,344 †630 †183 13 –

10× 10 80 16,536 1,344 ∗1,374 †183 †14 –
11× 11 80 †16,431 1,344 †601 †197 †15 –
12× 12 †80 22,476 1,344 514 †182 †15 –
13× 13 †85 22,476 1,344 594 †189 †17 –
14× 14 †95 22,531 1,344 †1,322 †178 †15 –
15× 15 †98 †22,476 1,344 1,622 †189 14 –
16× 16 †101 †16,430 1,344 †565 †145 †15 –

Bi-torus
3× 3 225 ∗3,202 529 40 24 15 305
4× 4 393 7,951 1,248 184 41 16 571
5× 5 561 †9,601 1,233 2,306 68 13 †1,417
6× 6 161 †12,401 1,233 389 84 †13 1,331
7× 7 151 †22,477 1,233 2,018 †99 16 1,825
8× 8 151 †12,417 1,233 †1,103 98 17 2,395
9× 9 150 †22,476 1,232 1,192 †117 11 –

10× 10 140 22,502 1,232 †1,466 †115 12 –
11× 11 110 †12,402 1,232 †1,382 ∗122 †16 –
12× 12 392 †23,200 1,232 †1,291 †116 12 –
13× 13 420 †23,200 1,232 †718 114 †12 –
14× 14 420 †16,960 1,232 †605 113 15 –
15× 15 392 †16,960 1,232 †1,585 †111 †13 –
16× 16 392 †17,138 1,232 †1,939 88 †13 –
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Chapter 7

Discussion

Summarizing the results, we see that our scheduler produces very good results
for the special case of all-to-all communication. The all-to-all schedules are
hard to optimize because their link utilization is very high and their core
communication graph is fully connected. When looking at the results of
the all-to-all schedules, we can see that the schedule period length grows
polynomially with the number of nodes in the network. For large networks it
might not be feasible to support an all-to-all schedule. First of all, the latency
is very high and the bandwidth to a single core is very limited. Secondly, the
tables would be very large, increasing the size of the interconnect hardware.
Finally, an application mapped onto a 16×16 platform, where all cores need
to communicate to all other cores, is quite unlikely. In the tool flow, an
all-to-all schedule would lead to simplifications. The mapping of tasks to
processors is simplified because the bandwidth is equally low to all cores.
Therefore, the mapping of tasks has very little effect on the performance,
only the latency changes depending on the mapping.

From the application-specific schedules of the benchmark application, it
looks plausible that we can set a limit on the number of time slots that
a general-purpose platform needs to support. For the applications in the
benchmark suite it seems a good limit on the number of time slots is around
100. If we limit the number of time slots to 100, we can schedule all of the
applications from the benchmark with only a negligible performance decrease
compared to the unlimited case. Given a limit on the time slots available
in the hardware platform, the tool flow should do a binary search for the
optimal normalization factor.

Overall the application-specific schedules provide an excessive amount of
bandwidth compared to the all-to-all schedules. The excessive amount of
bandwidth can be removed by reducing the clock frequency of the network
or reducing the width of the links, a combination of the two will save both
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power and area.

7.1 Conclusion

The report presented a metaheuristic scheduler for inter-processor commu-
nication in multi-core platforms using time division multiplexed (TDM) net-
works on chip (NOC). This scheduling problem is NP-complete and we use a
metaheuristic approach to solve it. Our scheduler supports two approaches:
a greedy randomized adaptive search procedure and an adaptive large neigh-
borhood search. The scheduler is intended for use in a design flow where
an application is mapped onto a pre-designed and therefore fixed platform.
Input to the scheduler is a specification of the NOC in the platform and a
specification of the application in the form of a core communication graph
(including the binding of nodes in this graph to processors in the platform).

The input formats used to specify the core communication graph of the
application, and the NOC used in the platform, are highly parameterized
and allow specification of graphs of arbitrary topologies. For the NOC, it
is possible to specify the pipeline depth in the routers and in the individual
links. For the application it is possible to specify a packet size for each chan-
nel. Compared to previous work, the scheduler therefore handles a broader
and more general class of applications and a broader and more general class
of platforms.

For the special case of all-to-all communication with identical bandwidth,
our scheduler produces better results than reported in previous work. The
scheduler was also evaluated for a set of larger and non-symmetric applica-
tions from the MCSL NOC benchmark suite. Among our results here is the
observation that our metaheuristics perform better than the greedy solution.

The scheduler uses a dimensionless and normalized representation of
bandwidth requirements, and the report shows that the period of the TDM
schedule can be reduced by assigning excess bandwidth to channels requiring
little bandwidth. For the MCSL NOC benchmarks, the schedule lengths can
in many cases be compressed to less than 100 TDM slots with close to no
increase in the TDM-clock frequency.
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