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A Model of Proteostatic Energy Cost and Its Use in
Analysis of Proteome Trends and Sequence Evolution
Kasper P. Kepp*, Pouria Dasmeh¤

Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract
A model of proteome-associated chemical energetic costs of cells is derived from protein-turnover kinetics and protein
folding. Minimization of the proteostatic maintenance cost can explain a range of trends of proteomes and combines both
protein function, stability, size, proteostatic cost, temperature, resource availability, and turnover rates in one simple
framework. We then explore the ansatz that the chemical energy remaining after proteostatic maintenance is available for
reproduction (or cell division) and thus, proportional to organism fitness. Selection for lower proteostatic costs is then
shown to be significant vs. typical effective population sizes of yeast. The model explains and quantifies evolutionary
conservation of highly abundant proteins as arising both from functional mutations and from changes in other properties
such as stability, cost, or turnover rates. We show that typical hypomorphic mutations can be selected against due to
increased cost of compensatory protein expression (both in the mutated gene and in related genes, i.e. epistasis) rather
than compromised function itself, although this compensation depends on the protein’s importance. Such mutations
exhibit larger selective disadvantage in abundant, large, synthetically costly, and/or short-lived proteins. Selection against
increased turnover costs of less stable proteins rather than misfolding toxicity per se can explain equilibrium protein stability
distributions, in agreement with recent findings in E. coli. The proteostatic selection pressure is stronger at low metabolic
rates (i.e. scarce environments) and in hot habitats, explaining proteome adaptations towards rough environments as a
question of energy. The model may also explain several trade-offs observed in protein evolution and suggests how protein
properties can coevolve to maintain low proteostatic cost.
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Introduction

With vast amounts of genomics and proteomics data now
available, there is an urgent need for more accurate and detailed
general laws governing life, notably concerning cell cycles,
reproduction and survival choices, disease states, and correlating
genotype to phenotype, including the complex effects of post-
translational processing, protein-protein and gene-protein interac-
tions in living cells.

One possible unifier of life processes is energy: As formulated
already by Schrödinger [1], life is thermodynamically distinct, with
constantly renewed high-quality free energy required for building,
maintaining and reproducing its complex biological structures
under dispersion of heat [2,3]. One might expect this tendency to
reveal itself in the proteomics data and possibly, to provide a
rationale for the many correlations that are now emerging from
these data.

Another possible unifier is evolution, the process ultimately
responsible for shaping proteomic properties. Although different
proteins may be under different selection pressures relating to their
specific functions and properties [4,5], universal selection pressures
indeed operate on all proteins [6–8], e.g. to optimize translational
efficiency [9,10], to maintain the correct functional state and
stability (DG) [11–13], or to reduce the burden of misfolded and

unfolded proteins [14–16]. Some degree of universal selection is
evident from evolutionary rates of sequences correlating with a
range of properties, notably protein expression levels that can span
5–6 orders of magnitude [17] (the expression level and evolution-
ary rate, or E2R, anti-correlation), observed for both prokaryotes
[18] and eukaryotes [19], including mammals [20,21]. Such
evidence has led to new efforts with the goal of uncovering
universal selection pressures acting on proteomes using funda-
mental biophysical models [11,22–24], which provide a bottom-up
alternative to the brute-force of the equally necessary whole-cell
models [25].

One can classify the proposed universal selection pressures into
three categories. First, proteins should maintain their functional
state (usually a folded native state) to be functional [26] but are
modestly stable (20–60 kJ/mol [27]). For a two-state unfolding
mechanism [28], the contribution to the total fitness (W) of an
organism arising from one particular protein i would thus be
proportional to PF,i, the fraction of its folded, functional copies
within the cell [11]:

Wi!PF ,i~
1

1zexp DGi
RT

� � ð1Þ
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where DGi is the free energy of folding, R is the gas constant, and T
is temperature. Wi should be multiplied by appropriate constants,
including the total abundance Ai = Ui+Fi (the unfolded and folded
copy numbers of protein i per cell) and various cell-specific
parameters. Selection for thermodynamic stability, when com-
bined with DDG-distributions for arising mutations [29], explains
the marginal stability of proteins without any special adaptation
and accounts for fitness effects in viruses [11,13].

Second, the E2R anti-correlation [14,16] has been previously
explained as a selection against the toxicity of misfolded proteins in
the cell [16,22]. Highly expressed proteins would then be under a
stronger selection pressure since Ui scales linearly with Ai for a
given stability. Wi can then be written in protein-specific notation
[16,22]:

Wi!exp({cUi) ð2Þ

Here c is an unknown but empirically accessible universal fitness
cost of one misfolded protein [16,22].

Third, sequence bias towards lower biosynthetic cost of amino
acids [30,31] and lower cost of gene expression [32] are found in
all domains of life [33], i.e. some selection acts to reduce the
synthetic cost of a protein I (Es,i) [32]. Protein synthesis accounts
for ,20% of resting energy expenditure in man [34,35], ,30% in
the larvae Sciaenops ocellatus [36], up to 80% in fish [37], 20–30% in
grass [38], and typically ,75% in growing microorganisms [39].
Protein degradation may cost 1/5 of the mammalian total energy
expenditure [40], making protein production and clearance the
most energy-consuming processes in many organisms. Thus, it
seems warranted to investigate how the energy costs of proteostasis
affect cell survival and reproduction, and consequently, fitness and
evolution.

Despite the progress in understanding universal selection
pressures, many challenges remain. First, the three types of
selection suggest different molecular modes of action: one
represents selection for correct protein fold, one selection against
misfolded copies, and one selection against proteome synthesis
costs. Second, the protein’s functional profiency (e.g. kcat/KM) has
not so far been coupled to these properties. Third, the concept of
misfolding toxicity, probably inspired by diseases involving
misfolded peptides or proteins, often lacks well-defined toxic
modes of the overexpressed and misfolded proteins [41–43].
Fourth, since protein-synthesis costs can be of similar size as costs
associated with managing misfolded proteins [44], both properties
should be accounted for. Fifth, the roles of cell physiology and
proteome properties and the relative strength of the selection
acting on the different properties are unclear. For example, the
specific fitness cost, the c parameter in Equation 2, must somehow
be related to the physical reality of cellular processes.

In this paper, the above-mentioned concepts are combined into
one function of the cellular proteostatic energy cost, derived from
steady-state protein turnover kinetics and thermodynamics of
protein folding. Subsequently, we show that minimization of this
energy cost function can explain several proteome-wide trends.
Furthermore, we explore the ansatz that evolutionary fitness is
proportional to offspring (or cell divisions) produced per time unit,
which again is proportional to the energy left for reproduction.
High-quality disposable energy is central for life [39] and perhaps
the main quality that defines it, and the fitness of any organism, in
the strictest sense the produced offspring, should if anything scale
with the energy available for this purpose.

The model unites for the first time selection acting on func-
tion, stability, biosynthetic cost, and turnover rates, includes

temperature and metabolic activity, and is consistent with known
trends in proteomic data relating to size, abundance, cost,
evolutionary rate, and turnover. The model provides quantitative
relations that can be used to evaluate the relative importance of
selection for these properties and provides possible answers to
observed trade-offs occurring in natural and laboratory evolution.
Finally, the model allows inclusion of compensatory expression of
isoforms and other genes related to the mutated protein, i.e.
epistasis.

Methods

Protein homeostasis model
First, the total energy expenditure per time unit of an organism

(dEt/dt) is considered equal to the energy produced (dEp/dt)
minus the savings rate of energy, S:

dEt

dt
~

dEp

dt
{S ð3Þ

For simplicity we assume no saved energy, i.e. S = 0. During
growth (e.g. the OX phase in yeast), if committed to reproduction,
the cell will divide once enough energy is available. However,
variations in S may result from survival strategies, cell cycle phases,
etc. to be investigated in future work and omitted here for
simplicity.

The proteostasis of protein i is now described by the simple
kinetic model:

mRNAi

ksi

? Fi

k1i

u
k2i

Ui

kdi

? Di ð4Þ

Here, mRNAi, Fi, Ui, and Di signify mRNA, folded, unfolded or
misfolded, and degraded copies of protein i in the cell.
Correspondingly, ksi, k1i, k2i, and kdi are the rate constants of
synthesis, unfolding, folding, and degradation of this protein. The
model resembles previous models [10,45], but expands degrada-
tion to act on misfolded copies and transcriptional and transla-
tional processes are considered constant, since we are concerned
here with the selection acting on the protein product. While
nucleotide substitutions may also affect translation speed and
accuracy [46], which is compatible with selection for energy-cost
minimization [16], the focus on the protein product is justified by
recent work showing that protein concentrations are more strongly
regulated and most likely under stronger selection pressure than
corresponding mRNA levels [47]. The model is also in line with
the recent findings by Shakhnovich and co-workers that fitness
depends on protein turnover acting on intermediates in an ‘‘active
cytoplasm’’ where the protein turnover variables may change [48].
The rates of change in Fi, Ui and Di at steady state are:

dFi

dt

� �

ss
~ksi(mRNAi){k1iFizk2iUi

dUi

dt

� �

ss
~k1iFi{k2iUi{kdiUi~0

dDi

dt

� �

ss
~kdiUi

8
>>>>>>><

>>>>>>>:

9
>>>>>>>=

>>>>>>>;

ð5Þ
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Here, the change in Ui, with its abundance being typically 1026

Ai or less, is ,0, giving k1i Fi = (k2i+kdi) Ui. Mass conservation
dFi

dt

� �

ss
~

dDi

dt

� �

ss
yields after rearrangement ksi = 2 kdi Ui/

(mRNAi). A typical value of mRNAi is 1024 Ai [49]. The ratio of
folded to unfolded copies is:

Fi

Ui
~

k2izkdi

k1i
~exp

{DGi

RT

� �
ð6Þ

DGi is the free energy of folding of protein i. ksi reflects the
slowest process of protein synthesis (often the folding process) [50].
However, for small proteins, typical refolding k2i are 101–105 s21

[51], i.e. ribosomal chain elongation (,15 aa/s, typically
1022 s21) becomes rate-limiting. The average half-life of proteins
in yeast implies an average kdi of ,0.016 s21 [52]. The probability
of a protein being folded is:

PF ,i~
Fi

FizUi
~

exp {DGi=RTð Þ
1zexp {DGi=RTð Þ

ð7Þ

Proteostatic cost function and fitness as chemical energy
available for reproduction

We now invoke the ansatz that the fitness W of an organism is
proportional to the offspring (or cell divisions) produced by the
organism per time unit, which again is proportional to the
chemical energy left for reproduction per time unit, dEr/dt. This
term can be expressed by the total energy produced (and thus,
consumed) minus the energy used to maintain basal processes,
dEm/dt:

W:
dEr

dt
~

dEt

dt
{

dEm

dt
{S&

dEt

dt
{

dEm

dt
ð8Þ

Here, dEt/dt is the total metabolic rate of the organism. In the
comparison of two individuals, all-else-being-equal, the one with
the proteome that requires the smaller maintenance energy will
have more energy available for reproduction and will thus have
higher relative fitness. Fitness approaches zero as dEt/dt<dEm/dt,
interpreted as the point of entering a dormant phase (e.g. the G0
phase for yeast or sporulation for diploid cells) and shifting to full
maintenance [53]. As proteostasis consumes most of the chemical
energy available to the organism [34,37,40], we consider other
costs C such as RNA metabolism and ion pumps constant. dEm/dt
is divided into the energy used for protein synthesis Es and
degradation Ed of the proteome per unit time, with regulation
costs such as post-translational modification contained within
these:

dEm

dt
~

dEs

dt
z

dEd

dt
zC ð9Þ

Using the kinetic scheme (4) and (5), we now write:

dEm

dt
~

XNp

i~1
(mRNAi)ksiCsiNaaiz

XNp

i~1
UikdiCdiNaaizC ð10Þ

Naai, Csi, and Cdi are the number of amino acids in protein i and
the synthetic and degradation cost (in units of phosphate bonds) of

an average amino acid in protein i, and Ui =
Ai

1z exp ({DGi=RT)
.

Using ksi = 2 kdiUi/(mRNAi), the total proteome fitness is the
summed contribution of all Np proteins:

W~
dEr

dt
~

dEt

dt
{C{

XNp

i~1

AikdiNaai(2CsizCdi)
1z exp ({DGi=RT)

ð11Þ

Equation 11 was derived from our ansatz assuming steady state,
that non-proteome costs are separable from proteome costs via C,
and that mainly non-native states are degraded. The fitness
function scales with the energy left for reproduction, expressed as
the remaining energy after proteome expenditure per time unit.

The selection coefficient
Arising mutations can potentially change one or more protein

properties. An arising mutant with fitness W9 has a selective
advantage/disadvantage, s9 = (W92W)/W, where W is the fitness of
the prevailing variant (wild-type), giving:

s0~

dE0
t
’

dt {C0{
PNp

i~1

A0
ik

0
diN

0
aai 2C0

sizC0
di

� �

1z exp ({DG0
i=RT) { dE

’
t

dt zCz
PNp

i~1

AikdiNaai 2CsizCdið Þ
1z exp ({DGi=RT)

dE’
t

dt {C{
PNp

i~1

AikdiNaai 2CsizCdið Þ
1z exp ({DGi=RT)

ð12Þ

Importantly, for a single, arising mutation in one protein i, all
other phenotypes and properties, the total metabolic rate, and
non-proteome costs C cancel out:

s0~

{A0
ik

0
diN

0
aai 2C0

sizC0
di

� �

1z exp ({DG0
i=RT) z AikdiNaai 2CsizCdið Þ

1z exp ({DGi=RT)

dE’
t

dt {C{
PNp

i~1

AikdiNaai 2CsizCdið Þ
1z exp ({DGi=RT)

ð13Þ

As described below, epistasis can be described explicitly by
modifying the parameters of additional proteins connected to the
mutated protein i in the general Equation 12, but to illustrate the
mechanics of the model, we consider Equation 13 in the following.
A mutation in a protein i could in principle affect any of the
properties in Equation 13: If N9aai?Naai, the mutation would be an
indel. The amino acid cost (which does not need to be simply the
precursor cost but can be the full synthetic cost per copy of the
specific protein) would be adjusted by C9si2Csi. If the mutant is
harder to degrade, kdi would decrease, etc.

Results

Selection against misfolded or unstable protein copies
As a first result, we show that previously proposed mechanisms

of selection acting to preserve protein stability [11,13] or prevent
misfolding [14,16] are special cases of Equation 13 and we resolve
the previously proposed empirical fitness cost parameter [16,22]
into its fundamental proteostatic variables. In the following,
the amount of Ui should strictly imply ‘‘nonfunctional’’ (not

(12)
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misfolded), as e.g. intrinsically disordered proteins are functional
without a well-defined native state. To see the correspondence to
previous findings, in the special case that only DGi changes for one
protein i,

DG0
i~DGizDDGi ð14Þ

the selection coefficient becomes:

s0~{
Naaikdi 2CsizCdið Þ U 0

i {Ui
� �

dEr=dt
~

{AiNaaikdi 2CsizCdið Þ exp DGizDDGið Þ=RT‰ �{ exp DGi=RT‰ �ð Þ
dEr=dt

ð15Þ

The denominator is, as seen from Equation 8 and 12, the
chemical energy spent on reproduction in the wild-type. We have
simplified Ui slightly, as most proteins are .10-fold more stable
than 2RT, i.e. exp(DGi/RT),1024 or less:

Ui~
Ai exp (DGi=RT)
1z exp (DGi=RT)

&Ai exp (DGi=RT) ð16Þ

Using this expression in Equation 15, selection pressure to
reduce proteome energy cost can be understood to work directly
on Ui, and the selective advantage is proportional to the difference
between the number of unfolded (or strictly: unfunctional) protein
copies that are targeted for degradation in the two variants, viz.
Equation 4. Thus, previously described selection for stability [11]
is a special case of Equation 15 (which is a special case of Equation
12) where all variables except stability of one mutated protein are
assumed constant.

Second, or model of proteostatic cost can also be compared with
previously proposed selection against Ui (unfunctional, misfolded
copies targeted for degradation), called m in previous work [16]. In
that work [16], it was assumed that any increase in Ui gives the
same change in W regardless of protein i in question (i.e. ci was
assumed universal and independent of i), giving the selection
coefficient for protein i:

si~ exp ({ciDUi){1&{ciDUi ð17Þ

The last step follows since any realistic selection coefficient will
be several orders of magnitude smaller than one. For si,0.01, this
expansion of the previously proposed Equation 2 is correct to
within four digits. The corresponding expression from our model
assuming that stability is the only changing property, i.e. Equation
15, is:

si~{Aici exp
DGizDDGi

RT

� �
{exp

DGi

RT

� �� �
~{ciDUi ð18Þ

Therefore, our model recovers the previously suggested
selection pressure against unfolded protein copies [16] and similar
expressions expressed by folding stabilities [22]. More importantly,
comparison of our Equations 13 and 18 reveals an explicit
interpretation of the empirical, dimension-less cost parameter ci
[16]:

ci~
Naaikdi 2CsizCdið Þ

dEr=dt
ð19Þ

Here, Naai is the number of amino acids in the protein, kdi is the
degradation rate constant in s21, Csi and Cdi are the per-amino-
acid costs of synthesizing and degrading the protein, and dEr/dt is
the total metabolic energy devoted to reproducing the organism,
as described in the Methods section.

To estimate a typical size of ci, we used a metabolic rate of
,0.9 J s21 g21 for a yeast cell mass of ,3.4610211 g at 37uC [54]
and 2/3 or ,0.6 J s21 g21 as the proteome respiration rate (dEt/
dt2C) [39]. With 10% reproductive energy, this gives dEt/dt2
C = 2.0610211 J s21 and dEr/dt = 2.0610212 J s21. An average
yeast protein has Naai,467 [55], and degradation costs ,1 ATP
molecule per amino acid [56], with ,30 kJ mol21 of a phosphate
bond, i.e. Cdi,30 kJ/mol. Synthesizing amino acids from precur-
sors in a minimal medium costs 10–80 phosphate bonds [32], with
a yeast-composition [57], weighted average of ,26 phosphate
bonds, giving Csi of ,800 kJ/mol (less in a rich medium). Protein-
chain synthesis is estimated at 11–19 ATP per amino acid [58], i.e.
Csi = 330–630 kJ/mol, plus costs of ribosome maintenance and
chaperones. We used a conservative Csi = 1500 kJ/mol. A typical
degradation constant kdi is 2.761024 s21 (,43 min half-life for an
average protein in yeast [52]). Using these experimentally known
parameters, we can then calculate the energetic selection pressure
acting on a typical yeast protein. Converting from kJ/mol to J and
dividing by Avogrados’ number yields

ci~
Naaikdi 2CsizCdið Þ

dEr=dt
~

467|2:7|10{4s{1| 1000J=kJð Þ|3030kJmol{1

2:0|10{12Js{1|6:0|1023mol{1 ~3:1|10{7

ð20Þ

This value is for a typical yeast protein if 10% proteome energy
is devoted to reproduction. Typical values of the involved
parameters are given in Table 1. Due to the variations in these
properties, notably kdi, the value of ci can vary by more than three
orders of magnitude for different proteins i, i.e. the assumption
[16] that this parameter is independent on the protein in question
(i.e. that ci = c for all proteins i) is not valid. These large variations
in individual protein properties make sensitivity analysis less
meaningful until specific parameters for individual proteins can be
used directly in the model to test the model’s implications. The
reason why the fitness cost is not universal but protein-dependent
is, simply speaking, that the selection acting against misfolded
copies at any time in a cell is highly dependent on the kinetic
turnover and cost of the protein i, since these are proportional to
the proteostatic handling costs.

Proteostatic selection against mutations that impair
protein function

In the following, we will show that selection against mutations
that impair the functional proficiency of a protein, i.e. hypomor-
phic mutations [59], can be understood from our proteostasis
model. If a protein is mutated to the effect of reduced proficiency
(e.g. if kcat/KM of an enzyme is reduced), then all-else-being equal,
to maintain homeostasis, the protein would be required in more
copies, i.e. Ai would increase to preserve total turnover of the
affected reaction.

(15)
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The reduced proficiency may be compensated by changing the
expression of multiple other proteins involved in the same aspect
of homeostasis as the affected protein (epistasis). In the simplest
case, this occurs by increased expression of isoforms [60], or of
other proteins with similar functions [61]. Also, the total
expression and turnover relating to the mutated protein itself
can change in the ‘‘active cytoplasm’’ as demonstrated recently
[48]. The extent of compensatory expression of the mutated gene
and of other genes (epistasis) are important to understand the full
proteostatic effects of mutations in a given protein, and such
compensation will be protein-specific: For highly systemic
proteins, compensation may be large, as seen e.g. in sickle cell
disease where hemoglobin mutations reduce the oxygen-carrying
ability of the protein and substantially increase the protein’s
expression [62,63], or in cancers where mutant p53 are subject to
higher expression levels [64]. This leads to increased proteostatic
costs, because of the larger Ai required to maintain critical
functions. If a mutation almost completely impairs an essential
protein (i.e. an amorphic mutation [59] of a systemic protein), the
individual will be purged from the population either because
compensatory expression may be so energy-consuming that the
organism cannot maintain itself, or because of the absence of the
protein function itself. In contrast, mutations in less important
proteins will involve limited compensation, with dormant genes as
the extreme examples.

Importantly, these effects can be directly included in our
general fitness function (Equation 11) and the associated
selection coefficient (Equation 12), by changing the abundance
of the additional, affected genes. However, since these effects are

protein-dependent but directly includable in the model, we will not
consider such variations in the following. To show that function-
impairing mutations can be selected against due to energy costs,
we thus ignore epistasis, assuming that all other proteins are
unaffected, i.e. reducing Equation 12 to Equation 13. However, it
is clear from Equation 11 and 12 that compensatory epistasis of
hypomorphic mutations will also increase proteostatic costs via
larger abundances Aj of protein(s) j connected to the mutated
protein i.

We will show below that selection of function-affecting
mutations can be affected by proteostatic energy costs associated
with the mutation rather than the impaired function itself, and that
such selection can explain the conservation of abundant proteins.
The increased expression of a hypomorphic mutant will incur a
fitness cost not only due to function itself but also due to less
available chemical energy, providing a general contribution to the
selection against function-impairing mutations that should prob-
ably be considered in protein evolution.

Highly expressed proteins are under stronger
proteostatic selection

Figure 1 shows a ‘‘selection landscape’’ (relative fitness
landscape normalized to wild-type fitness) of si, computed from
our model (Equation 13) as a function of changing properties of
protein i, with all other properties of the proteome being constant.
Normalization by the wild-type fitness was done using the
2610212 W used for reproduction in our model yeast cell. When
selection coefficients are close to zero, the effect of a mutation is
nearly neutral. The protein in this case has average size, stability,
and turnover properties. Figure 1 shows the impact of mutations
where the wild-type abundance Ai,WT is changed, e.g. in response
to functionally impairing or improving mutations. The space
covers the range of abundances typically encountered in a yeast
cell (0–100,000). Figure 1A displays the general proteostatic
selection acting on mutations that cause changed expression, for a
variable WT abundance, Ai,WT, using the default values of Table 1.
Figures 1B, 1C, and 1D all display results for one typical WT
abundance, Ai,WT = 10,000.

Figure 1A shows a simple linear increase in selection pressure as
WT and mutant abundances differ. For a typical, well-expressed
yeast protein of Ai = 10,000, a mutation that reduces kcat 10-fold
giving 10-fold higher abundance, ceteris paribus, would carry a
proteostatic selective disadvantage of 21028. However, as
Figures 1B–1D show, such a protein will be under stronger
selection if the term Ai6Naai6kdi6(2Csi+Cdi) is larger than average.
A highly expressed protein (copy number 100,000) that has its
functional proficiency impaired by only 10-fold would require
900,000 additional copies of itself to maintain homeostasis, causing
highly expressed proteins to be more conserved, because many
more of their arising mutations would reduce the chemical energy
available for reproduction. Using the same parameters as in
Figure 1 and Table 1, such a protein would have a selective
disadvantage of 1027, similar to typical effective population sizes
even with other protein properties being average. Since stronger
selection against deleterious mutations leads to increased conser-
vation of amino acids, an E-R anti-correlation arises naturally
from our model.

In reality, all the properties of a protein will change upon
mutation: stability and proficiency will change, as will expression,
turnover, and proteostatic precursor cost per protein. As described
recently, stability and abundance both affect evolutionary rates
and act together via mutation-selection balance to keep selection
pressures more independent of expression levels [22]. This
important mechanism was seen in evolutionary simulations but

Table 1. Parameters required for calculating the fitness
function, and their default values.

PARAMETER
DEFAULT
VALUE UNITS

E(ATP) 30 kJ/mol

cell mass (yeast) 3.40E-11 g

mi (Mass of average amino acid (aa)) 130 g/mol

dE/dt (total specific respiration rate) 0.90 J s21 g21

C (cost of non-proteome respiration) 0.30 J s21 g21

dE/dt Yeast proteome part ( = dE/dt2C) 0.60 J s21 g21

dE/dt total Proteome expenditure 2.04E-11 J s21

F (Fraction of dE/dt spend on reproduction) 0.10

dEr/dt (reproductive energy, = F dE/dt) 2.04E-12 J s21

dEm/dt (maintanance energy, = (12F) dE/dt) 1.84E-11 J s21

Naai (length of protein i) 467

Mi Mass of protein with Naai ( = mi Naai) 60710 g/mol

Ai (copy number of protein i per cell) 10000

DGi (free energy of folding, protein i) 37 kJ/mol

mRNAi = Ai/4800 (mRNA level) 20.8

R (rate of chain synthesis aa/s) 15 s21

kribosome ( = R/Naai) 3.21E-02 s21

kdi 2.69E-04 s21

Csi (synthetic cost per aa in protein i) 1500 kJ/mol

Cdi (cost of degrading avr. aa) 30 kJ/mol

kfi (folding rate constant) 1.00E-05 s21

ksi ( = Min of kribosome and kfi) 1.00E-05 s21

doi:10.1371/journal.pone.0090504.t001
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is consistent with our deduced selection pressure that grows with
abundance but decreases with stability of the protein, viz.
Equation 15. The empirically confirmed [22] anti-correlation
between DG and DDG of fixated mutations follows already from
the fact that more stable proteins are, for the same expression level
and other parameters being similar, under less selection pressure
(Equation 15) i.e. they can accept more deleterious mutations with
larger DDG values. In Protherm, DDG values of mutations are
however not the result of natural evolution but protein engineer-
ing. The reason for the anti-correlation in Protherm [22] may be
due to the fact that less stable proteins can accept less destabilizing
mutations also in the laboratory where all proteins are under
stability constraints relating to the expression protocol. Since our
fitness function reduces to that of Ref. 22 in the limit where only
stability changes upon mutation, our model is consistent with these
findings, although the cause of selection (the phenotype actually
selected for) is energy, not stability.

Thus, our model can explain one of the most persistent
correlations in proteomics, that between evolutionary conservation
and expression level, and it unifies in one framework mutations
that affect protein function, stability, turnover, and handling costs
allowing estimates of their relative importance, while also
accounting for epistasis (the full Equation 12). For systemic

proteins with full (same-gene or via epistasis) compensation,
proteostatic selection can be substantial: If a mutation reduces kcat
or increases KM of an enzyme by 10-fold, which is quite feasible as
it involves only a few kJ/mol of changing activation or substrate
binding free energies, to preserve steady-state turnover, the copy
number of the mutant and its associated genes would need to be
ten times higher in the simplest case, i.e. even apparently subtle
functional mutations can involve proteostatic fitness costs large
enough to affect selection. Such a high cost can hardly be realized
by the cell, and thus, compensatory expression will be incomplete,
so that the cell suffers a combination of increased proteostatic costs
and decreased overall protein function. Homeostasis may then be
adjusted to the lower proficiency of the mutated protein as far as
the mutated protein is connected to other protein functions.

Proteostatic selection on short-lived proteins
From Figure 1B, disadvantageous mutants of proteins with

shorter life times (larger kd) will be more strongly selected against.
Thus, many regulatory proteins that are highly connected in a
network sense will tend to be more conserved, not necessarily
because they are more connected but also because they have high
turnover rates (viz. Equation 13). For example, E. coli transcription
factors that are highly connected in networks have fast turnover

Figure 1. Selection spaces si (fitness-differences normalized to wild-type fitness) for mutations causing increased mutant protein
expression (Ai,mutant). (A) Selection acts against increased protein abundance of mutant vs. wild-type (Ai,WT) (Default values of parameters from
Table 1). (B) High-turnover proteins (with large values of kd,i) are under stronger selection pressure to perform optimally. (C) For a high-turnover
protein (life time ,1 minute, kd = 0.01 s21, larger proteins are under stronger selection to perform optimally, ceteris paribus. (D) Selection pressure is
stronger for proteins that are synthetically expensive, as measured by Cs,i (kd = 0.01 s21).
doi:10.1371/journal.pone.0090504.g001
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despite being highly expressed [65], and such proteins will be
under substantial selection pressure according to our model, which
thus provides a new mechanism behind the evolutionary
conservation of some highly connected proteins. In fact, the
nature of the actual fitness reduction causing conservation of
connected proteins is not very tangible but becomes very tangible
when considering the energetic consequences of short-lived
proteins suddenly required at multiple-fold higher mutant levels.

Selection on larger and more synthetically costly proteins
Figure 1C and 1D show the selection coefficients of the same

typical protein with mutations ranging from beneficial (hypermor-
phic), giving lower expression than 10,000, to impairing (hypo-
morphic), giving higher expressions, up to 100,000, now with
variable protein length (Naai) and protein synthesis cost per amino
acid (Csi). Again, compensatory expression is used here to illustrate
the nature of the selection pressure, and the actual magnitude of
the partial compensation and epistasis effects can be accounted for
in specific proteins via Equation 12 by adjusted the abundances Ai,
Aj, etc. of involved proteins after mutation.

In accordance with Equation 13, selection pressure increases
with protein size and synthetic cost, so that a smaller fraction of
typical arising mutations are nearly neutral for the larger and more
expensive proteins. The model explains the experimental obser-
vation that for typical yeast proteins with Naai.250, larger proteins
are more conserved [66] (although for the minority of proteins
smaller than Naai,250, the reverse is seen). The model captures
this effect for the majority of proteins, since slower evolution in
most (normal-sized and large) proteins results from stronger
selection against typical hypomorphic mutations, because larger
proteins are more proteostatically expensive, all else (notably
expression levels) being equal, i.e. compensatory expression is
more costly. For small proteins, the reverse positive correlation
probably arises from the smaller size-range and the relatively fewer
sites that do not affect function directly, although this requires
more investigation. As seen from Figure 1D, the model also
explains why there is a bias in protein sequences across all three
domains of life towards synthetically cheaper amino acids [30–33]:
Selection for proteome energy makes any typical hypomorphic
arising mutation more strongly selected against when Csi is higher,
since compensatory expression of the mutant will be more costly
due to the more expensive amino acids involved in the protein in
general. Since the typical arising mutation is hypomorphic, a
larger fraction of such typical mutations will be purged in the
proteostatically costly (large, abundant, expensive, short-lived)
proteins, causing an anti-correlation between evolutionary rate
and these properties.

Fixation probabilities of arising mutations
In the following, we take this discussion a step further by

computing the probability of fixating mutations depending on
their biochemical properties. The rate of evolution scales with the
mutation rate times the fixation probability Pfix,i of new arising
mutants, which again increases with their selective advantage [67]:

Pfix,i~
2s0

iNeff =N
1{ exp ({4Neff s0

i)
ð21Þ

where Neff and N are the effective and census population sizes.
Positive selection, if strong enough to lead to fixated mutants, will
increase stability to reduce Ui costs, consistent with previous
findings [11].

Figure 2 shows the nonlinear region of the fixation probability
space for mutations that lead to changed expression vs. variable
protein length and turnover constants, calculated with Neff = 107,
corresponding to the selection spaces in Figure 1B and 1C. The
probability of fixation increases as less mutant protein is required
in beneficial mutations (WT abundance = 10,000 copies), and the
probability increases faster for larger and short-lived proteins.
These proteins are in turn less likely to accept impairing mutations
that lead to increased protein expression, due to the cost selection
against them. Since evolutionary rates are proportional to fixation
probabilities, this implies that larger or short-lived proteins are
more evolutionary conserved near fitness optimum where impair-
ing mutations dominate, but will evolve faster if (less likely)
beneficial new mutations occur.

Stability effects of typical mutations directly affect fitness
via proteostatic energy costs

Until now, we have discussed general mutations that change the
functional proficiency of the protein, leading to compensatory
increased or reduced protein expression. In the following, we
discuss how stability-changing mutations can affect proteostasis.
This is quite relevant since mutations on average are significantly
destabilizing (typically by ,5 kJ/mol [13]).

The average DGi of a yeast protein can be assumed to be 2
37 kJ/mol at 37uC [68]. An abundant protein (Ai,100,000) of
average stability has 0.037 unfolded copies at steady state. A
typical arising mutation would destabilize by ,5 kJ/mol and
DDGi.12 kJ/mol may occur in ,15% of arising mutations [29].
For such a mutation, there would be ,4.5 unfolded copies at any
time during steady state (in comparison, the total 50 million
proteins of average stability per cell give ,19 unfolded copies at
steady state). When this DUi = 4.5 is multiplied by ci, the selection
disadvantage passes 1026, or 10-fold the inverse, typical effective
population size Neff of yeast (,107) [69], and similar to the
empirical estimate for an unfolded protein copy (,1026) derived
from growth-retarded yeast mutants carrying nonfunctional,
misfolding protein [70]. Our model thus recapitulates experimen-
tally observed selection against misfolding and explains it as due to
proteome cost minimization, with no explicit misfolding toxicity.

The fixation probabilities of mutations that affect stability are
shown in Figure 3 using the parameters of Table 1. The chart to
the left shows the dependence as a function of protein abundance,
and the chart to the right shows the dependence on turnover (kd)
for Ai = 10,000. The typical ,5 kJ/mol-destabilizing mutations
(shown at 32 kJ/mol stability of the mutant) are selected against in
more abundant proteins, causing their fixation probabilities to
approach zero, while in less abundant proteins, such mutations are
accepted with rates resembling neutral evolution (,1/Neff). Thus,
not only functional mutations, but typical mutations regardless of
functional effect, since these are on average destabilizing, will
cause more abundant proteins to evolve more slowly, confirming
previous explicit simulations [11,22] but explaining these in terms
of fundamental proteostatic parameters. Thus, we find that highly
abundant proteins are more evolutionary conserved for two
reasons: Typical arising mutations are destabilizing enough to be
more selectively disadvantageous in more abundant proteins, due
to the increased cost of managing the less stable mutant, and
function-impairing mutants will be more selected against in
abundant proteins where the compensatory expression cost is
larger, causing typical arising mutations to be more often purged
(thus slowing evolutionary rates) in abundant, costly, large, and
short-lived proteins.
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Evolution of protein stability: Correspondence to
experimental distributions

We then investigated whether our model’s selection against
proteostatic costs can reproduce the well-known empirical
distribution of protein stabilities, which are skewed Gaussians or
bi-Gaussians with average stabilities of the order of 25 to 2
8 kcal/mol and with the distribution tailing towards higher
stability [11,13,29,68]. To this aim, we used an iterative numerical
algorithm to compute the final distribution of stability of proteins
when their fitness is quantified by Equation 11.

The distribution of protein stabilities is a limiting distribution
under mutation-selection balance, i.e. typical, destabilizing muta-
tions occurring by random drift are countered by more stabilizing
mutations with increased fixation probability after the stability has
been reduced by such drift [7,8,11,12]. The specific characteristics
of the distribution (i.e., shape and different moments) thus depend
on parameters such as the distribution of fitness effects and Pfix of
arising mutations. The DDG value of each arising mutation was
sampled from the distribution of mutational effects on protein
stability (DDG distribution) with the following bi-Gaussian function
[29]:

P DDGð Þ~
p1����������
2ps2

1

q exp {
DDG{m1ð Þ2

2s2
1

" #

z

(1{p1)
����������
2ps2

2

q exp {
DDG{m2ð Þ2

2s2
2

" # ð22Þ

where p1 is a weight factor of the first Gaussian and (12p1) is a
weight factor of the second Gaussian, roughly corresponding to
core and surface amino acids of the protein, m1 and m2, are the
average values of each Gaussian function, and s1 and s2 the
standard deviations. For a typical protein, values of m1, m2, s1, and
s2 of 0.566 0.12, 1.966 0.53, 0.906 0.16, and 1.936 0.29,
respectively, can be used [29]. Upon the first mutation, DG0 is
changed to a distribution of DGs with probabilities drawn from
Equation 22, given the initial distribution, P1(DG). In the second
mutation phase, each protein with its corresponding DG drifts
toward lower stabilities caused from pure sampling (Equation 22),
however, scaled by probability of fixation (Equation 21). In other
words, a protein can become less stable by an arising mutation but
this mutation can either be fixed in or purged from the population
depending on its probability of fixation. We described transition of

Figure 2. Fixation probabilities as a function of protein properties for a typical yeast population (Neff = 107). A mutation of a wild-type
protein with Ai = 10,000 leads to compensatory altered mutant expression Ai,mutant to maintain homeostasis. Fixation probabilities are shown for
variable protein size (left) and degradation rate constant (right).
doi:10.1371/journal.pone.0090504.g002

Figure 3. Probability of fixation of arising mutations vs. their stability. The plots are calculated for an average yeast protein with Neff = 107

and a stability of 37 kJ/mol Left: Fixation of mutants vs. the abundance of the protein. For most common, destabilizing mutations, abundant proteins
evolve slower by several factors (viz. mutants at ,30 kJ/mol). Right: Fixation vs. the turnover constant of the protein. Proteins with short life times
(large kd) have nearly zero fixation probability for most common mutations, whereas long-lived proteins accept mutations more often.
doi:10.1371/journal.pone.0090504.g003
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a protein with free energy DGi in each phase to DGj in the next
phase by the following probability:

P DGi?DGj
� �

~P DDG~DGi{DGj
� �

|Pfix DGi,DGj
� �

ð23Þ

Where P(DDG = DGi2DGj) is the corresponding probability of
an arising mutation with DDG value and Pfix(DGi,DGj) is the
probability of fixation of an arising mutation that changes the
background stability DGi to DGj. With the initial distribution of
protein stabilities, P1(DG), we can calculate the distribution of DG
of the second phase from the following integral:

Pt2 (DG)~
ð?

{?

Pt1 DGið ÞP DGi?DGj
� �

dDGi ð24Þ

This iterative procedure was continued with t3, t4, …,tn each
representing one new fixed non-synonymous mutation in the
population, converging to a limiting distribution of DGs.

Figure 4A shows the evolution of the DG distribution (in black)
starting from either DG0 = 23 kcal/mol or DG0 = 29 kcal/mol for
a protein with an abundance of 212 molecules per cell. Both

trajectories converge to the equilibrium distribution (shown in red)
that peaks at DG = 26.5 kcal/mol, i.e. the sampled distribution.
For both initial values, the DG distributions converge to the final
distribution after ,14 mutations, as judged from a Kolmogorov-
Smirinov two-sample test. The overall shape and skewedness of
the final distribution is consistent with the distribution of protein
stabilities reported previously [11] and with that found empirically
from the Protherm data base, but notably, it was produced here
under an influence of a fitness function (viz. Pfix) that has
proteostatic energy cost as its main phenotype and stability as the
variable protein property.

After showing the correspondence to purely stability-based
fitness functions, with our model, we can now investigate how
properties such as copy number, habitat temperature, and total
cell metabolic rate affect the equilibrium stability distribution, as
shown in Figure 4B–4D. From Figure 4B and Figure 4C, the
model predicts highly expressed proteins and proteins in hot
habitats to evolve to higher stabilities. Both of these results are
consistent with general findings [68,71–73] but importantly, in our
model, selection acts on the phenotype of total proteostatic energy
cost. Since we use realistic parameters for this calculation, it
suggests that selection acting on thermophiles is largely interpret-
able as selection against increased turnover costs of denaturated
proteins at higher temperatures, not against misfolded proteins per
se [68], although the result is similar. Our model also predicts that

Figure 4. Evolution of protein stability according to the model. (A) Equilibrium distribution of DG obtained from an initial DG of 23 kcal/mol
(red curve) and DG = 212 kcal/mol (black) via consecutive mutations (blue curves), using the fixation probability of Equation 21, the selection
coefficient of Equation 15, the standard parameters of Table 1, and the iterative scheme, Equations 22–24. (B) Equilibrium distribution of DG for
proteins with copy numbers of 104 (blue), 105 (green), 106 (red), and 107 (cyan) with a total cellular metabolic rate of 2.861022 Js21g21. (C)
Equilibrium distribution of DG for proteins at temperature of 37uC (blue), 47uC (green), 57uC (red), and 67uC (cyan), using 212 copies per cell and a
metabolic rate of 2.861022 Js21g21. (D) Equilibrium distribution of DG for total metabolic rates of 0.9 Js21g21 (blue), 9 Js21g21 (green), 90 Js21g21

(red), and 900 Js21g21 (cyan) for a protein with 212 copies in the cell.
doi:10.1371/journal.pone.0090504.g004
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adaptation to thermostability is dependent on the protein’s
proetostatic properties, e.g. abundance, size, and synthetic cost.
Our model suggests that selection against misfolding is not
necessarily associated with a specific toxic phenotype or loss of
function of the natively folded protein, but rather with selection
against the increased chemical energy costs of protein turnover
following from an increase of the degradation-prone protein pool
(U).

Figure 4D shows how the equilibrium stability distribution
depends on the total metabolic rate of the cell. Cells with lower
metabolic rates are predicted to exhibit a shift towards more stable
proteins if the proteome is similar, i.e. with the same parameters,
copy numbers, etc. From Equation 13, the selection coefficient of a
newly arising mutation under such conditions is inversely
proportional to the total metabolic rate of the organism. Since
the total metabolic rate is restricted by energy availability in the
habitat [74], selection pressure against proteostatic cost grows as
resources become scarce. This finding is also fully consistent with
experimental results, e.g. from adaptations towards low proteome
maintenance in microalgae under low photon flux [75]. In
contrast, under conditions of plenty, deleterious mutations (i.e.,
having negative s) in a population of organisms will be less selected
against and thus tend to be fixated more frequently, causing a shift
in the stability distribution. In other words, the resource level of
the habitat becomes an important parameter in the evolution in
the same manner as the temperature.

Discussion

The derived model has been shown above to provide
evolutionary selection pressure of significance enough to shape
proteome properties, and the model produces variations in
selective pressure that can explain experimentally observed
correlations between protein abundance, evolutionary rate, size,
and synthetic cost. It reveals new features such as the fundamental
nature of previously proposed fitness costs [16], the interplay
between and relative importance of protein properties, and the
unification of functional and ‘‘biophysical’’ [22] mutations.
Although we disregarded epistasis and only considered one protein
property to change at the time, the general form of the model
(Equation 12) can directly account for epistasis and incomplete
compensatory expression by adjusting the parameters of the

mutated protein and related proteins in the mutant proteome
accordingly. Some implications of the model and their relation to
empirical findings are summarized in Table 2. Below, we discuss
additional consequences of the model that can explain experi-
mental observations.

First, the factorization of protein properties in our model
(Equation 15) implies coupling of these properties during
evolution. While it is known that proteomes are biased towards
reduced synthetic cost per amino acid [30,31,76,77] viz. the
selective advantage of cheaper amino acids, it has also been shown
that bias towards cheaper amino acids correlates with both protein
size and abundance [31,78]; this observation is explained by the
2Ai6Naai6kdi6Csi product in our model. As Ai spans five orders of
magnitude in yeast [17,19], abundant proteins will be under much
stronger selection, explaining why evolutionary conservation
correlates most strongly with expression/abundance levels among
several properties. Correspondingly, the significantly lower
expression of large proteins [49,66,79] is understandable from
our model since proteostatic maintenance costs scale with Ai6Naai.
Also the observation that protein stability tends to increase with
chain size [50,80] can be partly rationalized by our model as not
due to the physics of protein size (many small proteins are highly
stable) but due to selection for stability in larger and more highly
expressed proteins.

Although more computational work and more experimental
tests are need to fully understand these mechanisms, the property-
coupling in our model may explain several anomalies relating to
proteome adaptation, such as the observation that cysteine is not
selected for cost in most proteomes [33]. This can be explained if
the cost reduction due to stability of cysteine bridges out-weights
the disadvantage of its higher precursor cost, i.e. a trade-off
between Csi and DGi. Similarly, less selection for precursor cost in
thermophiles [77] is understandable from the same type of Csi2
DGi trade-off in favor of more thermostable proteins. Finally, the
observed stability-function trade-offs relevant to both natural and
laboratory evolution [81] can be partly explained by our model: In
future work, we will look at such couplings and how they may have
contributed to the shaping of proteomes.

Proteins are marginally stable even if no selection acts on
stability itself, due to the mutation-selection balance between the
drift towards destabilization caused by the majority of randomly
arising mutations and the explicit selection towards maintaining

Table 2. Implications of the model relating to experimental observations.

Model implications Reason Observed empirically

Abundant proteins are on average more evolutionary conserved Equation 13: si / Ai Ref 19, 20, 21

Bias for lower synthetic cost in proteomes Equation 13: si / Csi Ref 30, 31, 32, 33, 76, 77

Bias for lower synthetic cost in particular in abundant and large
proteins

Equation 13: si / Csi6Ai6Naai Ref 31, 78

Misfolded proteins have a fitness cost Equation 17: si/DUi Ref 15, 16, 22

Thermophilic proteins are on average, all else being equal,
more stable

Equation 18: T scales down DGi and increases Ui
and its costs

Ref 68, 71, 72

Abundant proteins are on average, all else being equal,
more stable

Equation 18: Proteostatic selection to minimize Ui Ref 22

Less expression of large proteins Equation 13: si / Ai6Naai Ref 49, 66, 79

Trade-offs between stability, proficiency, and cost
(e.g. thermophiles have more cystines despite their cost)

Equation 12/13: Couplings between Ai, kdi, Csi, Cdi,
and DGi

Ref 33, 81

Epistasis Equation 12: Parameters for protein j change upon
mutating i

Ref 4, 5

doi:10.1371/journal.pone.0090504.t002
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stability at a level that does not undermine fitness [82]. In our
model, we have identified a contribution to the selection pressure
that constantly works against the random, destabilizing drift: It is,
at least partly consistent with minimization of proteostatic costs.
Also, intrinsically disordered proteins are not avoiding description
by the model as they will also possess both functional, less
functional, and nonfunctional states, even if the terms folding and
misfolding may be less applicable, giving similar proteostatic
consequences. Also, the role of chaperones beyond the initial
correct folding of the peptide chain may include a refolding
strategy to reduce the cost of compensatory costly degradation and
synthesis.

There are several ways to test the validity and range of the
model. For example, the resources available in the environment,
which limit the metabolic rate, should affect the proteostatic
selection pressure since a scarce environment and associated lower
metabolic rates would increase selection for low maintenance
costs. Such a test requires careful analysis of homologous proteins
in variable habitats. Recent analysis of yeast suggests that
adaptation towards lower biosynthetic costs indeed occurs during
low-resource stress [83]. At the organism level, the experience with
cell cycles and dormant states suggest that low resources will cause
even a single cell line to switch off reproduction, pointing to the
profound link between energy availability and reproduction
strategies. Finally, the disposable soma theory is very much a
manifestation of multiple observations linking increased energy
availability to shorter life times and higher reproductive levels,
consistent with our model in which excess chemical energy is
ultimately proportional to reproduction and hence, fitness.

Conclusions

While many selection pressures are likely to act on a protein,
shaping the differences seen across protein classes, the overall
trends of proteomic properties point to universal components of
the selection pressure [6–8,11–16]. As a notable example, protein
concentrations are under strong selection pressures even in

primates [47] and, together with stability, in diving mammals
[84]. We have described in this work a selection pressure acting to
minimize proteostatic maintenance costs that can explain this
observation and a range of other empirical trends in proteomic
data. Notably, the corresponding fitness function scales with the
remaining proteostatic energy available for reproducing the
organism, which is intuitively appealing. Using simple kinetics of
protein turnover and thermodynamics of protein folding at steady
state, the model recapitulates correlations between evolutionary
rates, protein synthesis cost, abundance, size, and stability, and
provides simple and universal explanations for the fitness cost of
typical mutations, both those affecting function and stability.

The model explains why most typical mutations that slightly
impair function or stability are selected against, not necessarily due
to compromised cell function but also via the proteostatic cost of
compensatory higher protein expression. It shows that selection
against protein misfolding (or generally: nonfunctional states of a
protein) is consistent with increased proteostatic energy costs of
handling such misfolded protein copies, in agreement with recent
findings in E. coli [44]. The model also provides a framework for
understanding and relating biases in precursor ATP cost, protein
size, stability, and abundance to organism temperature, habitat
resources, and metabolic rates. The interplay between protein
properties not previously combined allows modeling of trade-offs,
epistasis, co-evolution of properties, and compensatory expression,
and provides a mechanism for understanding empirically observed
stability-function trade-offs [81]. Once the protein-specific param-
eters Ai, Naai, kdi, Csi, Cdi, and DGi are collected for specific
proteins, the model may help to understand the evolution and the
cellular importance of such individual proteins.
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