Design study of a 10 MW MgB2 superconductor direct drive wind turbine generator

Abrahamsen, Asger Bech; Magnusson, Niklas; Liu, Dong; Stehouwer, Ewoud; Hendriks, Ben; Polinder, Henk

Publication date: 2014

Citation (APA):
Design study of a 10 MW MgB$_2$ superconductor direct drive wind turbine generator

Asger B. Abrahamsen1, Niklas Magnusson2, Dong Liu3, Ewoud Stehouwer4, Ben Hendriks4 and Henk Polinder3

DTU Wind Energy1, SINTEF Energy Research2, Delft University of Technology3 and DNV-GL4

Abstract

A design study of a 10 MW direct drive wind turbine generator based on MgB$_2$ superconducting wires is presented and the cost of the active materials of the generator is estimated to be between 226 €/kW and 84 €/kW, which is lower than the threshold values of 300 €/kW of the INNWIND.EU project. A nacelle structure with a front-mounted generator is presented for further investigation of the integration of such a superconducting generator into offshore turbines with power ratings considerably larger than 10 MW.

Motivation:

The INNWIND.EU project is investigating the feasibility of superconducting direct drive generators for offshore turbines ranging up to 20 MW [1]. A king-pin nacelle design is proposed as template for comparing different generators in terms of cost and cost of energy. Features of the drive train are outlined below:

Nacelle

- Static King-Pin and two main bearings supporting hub
- $P = 10$ MW, $T = 10.6$ MNm @ 9.65 rpm

Generator

- Superconducting field coils and conventional armature winding of Cu
- Air-coreed armature windings and magnetic steel shielding
- Non-magnetic support of rotor coils
- Static superconducting field coils and rotating armature with slip ring
- Static cryostat and cryogenic cooling system
- Full rated power electronics
- $D = 5.8$ m & $L = 3.1$ m to match the hub
- 32 poles & $f = 2.6$ Hz
- $B_g = 1.5$ T, $A_g = 100$ kA/m & $F_d = 75$ kN/m2

Rotor field coils

- MgB$_2$ superconducting tape (3.0 mm x 0.7 mm) @ 4 → 1 €/m [2]
- $T_c = 39$ K & minimum bending diameter = 0.15 m
- Race track coil as stack of 10 double pancake coils (D = 0.3 m)

Conclusions

A 10 MW superconducting direct drive wind turbine generator based on MgB$_2$ wire has been analyzed in terms of properties, amount of wire needed and expected cost of the active materials. The diameter is 5.8 m and the active length is 3.1 m. A king-pin nacelle concept with the superconducting generator mounted in front of the rotor blades has been proposed, because it is believed to be one of the only ways to support a rotor approaching 250 m for a 20 MW turbine. Finally a cost of capacity analysis of the generator shows that the contribution from the active materials is 226 €/kW, which is lower than the INNWIND threshold of 300 €/kW. Cost reductions imposed by a decreasing wire price indicate that the expenses of the cryogenic cooling systems can be accommodated. This will be further investigated in the INNWIND project and compared with conventional drive trains.

References

1. Innwind.EU project web page: www.innwind.eu