In-situ burning of crude oil in the Arctic
Understanding and predicting the environmental impact

van Gelderen, Laurens; Fritt-Rasmussen, Janne; Kallinikos, Dimitrios; Rangwala, Ali S.; Jomaas, Grunde

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
In-situ burning of crude oil in the Arctic

Understanding and predicting the environmental impact

Laurens van Gelderen1, Janne Frits-Rasmussen1, Dimitrios Kallinkos2, Ali S. Rangwala3, Grundt Jonass1
1Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
2Danish Centre for Environment and Energy, Aarhus University, Denmark
3Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, US

Background

Oil spills are the main threat to the Arctic environment and with the expected increase of e.g. naval and oil drilling activities, accidents become increasingly more likely. Due to the special conditions featured in the Arctic, in-situ burning is in many situations the most effective cleaning method. The technique has shown high burning efficiencies of over 90% and is easily deployable in icy waters.1 However, few studies have been undertaken on the influence of ice on the ignition and burning behavior of oils and the resulting impact on the Arctic environment. In this Ph.D. study the focus lies on determining and minimizing the environmental impact in-situ burning can have, based on a mechanistic understanding of the burning process.

Mechanistic studies

Boilover

Boilovers are well-known phenomena in laboratory setups, but are not seen during in-situ burnings on sea.2 Due to the ocean current, the water below the oil would be refreshed too quickly to heat up. Determine boilover possibilities for:
- Sea currents
- Still waters

Burn efficiency

Optimization in terms of:
- Oil composition
- Layer thickness
- Spill diameter
- Ambient conditions

Window of opportunity

In-situ burning can only be used within a certain time frame after an oil spill, known as the window of opportunity. This is determined by:
- Oil evaporation
- Weathering3

Smoke and soot

One of the biggest concerns related to the environmental impact of in-situ burning is the large amount of black smoke that is formed during the process. The black color is caused by soot originating from incomplete combustion of the oil. Smoke formation can be reduced via:
- Mechanistic optimization
- Chemical additives (e.g. ferrocene)4

Residue

After the in-situ burning of a crude oil a residue will be left behind. Depending on the burn efficiency, the residue can vary from a thin liquid layer to a thick solid-like layer. Under certain conditions, the density of the residue can increase upon cooling even to the point where it becomes heavier than water and sinks.5 This phenomenon creates a potential time constraint for the cleaning of the residue. Hence more knowledge about the sinking of residues is required and a quick and effective cleaning method should be developed. Thus the main topics regarding the residue are:
- Window of opportunity for cleaning
- More efficient cleaning methods

Environmental impact

Toxicity

The toxicity of the combustion products from in-situ burning is a very important aspect of this technique. Especially the relative toxic impact (Δtox), compared to an unhandled oil spill or other response methods, determines whether or not in-situ burning is a favorable response method. The main toxicity areas concern the:
- Sub surface
- Surface
- Sea bottom
- Airborne
- Long-term studies
- Dilution
- Chemical enhancers

Smoke formation during in-situ burning which can be reduced by chemical additives

Sociopolitical aspects

While in-situ burning has been successfully applied during a number of oil spills over the past decades and the technique is seen as the best response method for oil spills by many scientists, it is not commonly seen on political agendas.2 In general, in-situ burning seems to have a bad reputation amongst decision-makers and the public. Environmental uncertainties will have to be solved before acceptance can be gained, such as:
- Toxicity of combustion products
- Smoke formation
- Cleaning of the residue

The goal

To develop a simple, applicable procedure for in-situ burning of crude oil under Arctic conditions.

This goal is to be reached in three distinctive steps:
- Understand the mechanisms of in-situ burning under Arctic conditions
- Understand and be able to predict the environmental impact on the Arctic
- Adapt to the demands and concerns of decision-makers and the public

References