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Metamaterial composite bandpass filter with an ultra-broadband rejection
bandwidth of up to 240 terahertz

Andrew C. Strikwerda,a) Maksim Zalkovskij, Dennis Lund Lorenzen, Alexander Krabbe,
Andrei V. Lavrinenko, and Peter Uhd Jepsen
DTU Fotonik—Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark

(Received 21 February 2014; accepted 28 April 2014; published online 12 May 2014)

We present a metamaterial, consisting of a cross structure and a metal mesh filter, that forms a

composite with greater functional bandwidth than any terahertz (THz) metamaterial to date.

Metamaterials traditionally have a narrow usable bandwidth that is much smaller than common

THz sources, such as photoconductive antennas and difference frequency generation. The

composite structure shown here expands the usable bandwidth to exceed that of current THz

sources. To highlight the applicability of this combination, we demonstrate a series of bandpass

filters with only a single pass band, with a central frequency (f0) that is scalable from 0.86–8.51

THz, that highly extinguishes other frequencies up to >240 THz. The performance of these filters

is demonstrated in experiment, using both air biased coherent detection and a Fourier transform

infrared spectrometer (FTIR), as well as in simulation. We present equations—and discuss their

scaling laws—which detail the f0 and full width at half max (Df) of the pass band, as well as the

required geometric dimensions for their fabrication using standard UV photolithography and easily

achievable fabrication linewidths. With these equations, the geometric parameters and Df for a

desired frequency can be quickly calculated. Using these bandpass filters as a proof of principle,

we believe that this metamaterial composite provides the key for ultra-broadband metamaterial

design. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875795]

Since their introduction nearly fifteen years ago,

metamaterials1–3 have provided a unique design paradigm.

The concept of individually tuning the permittivity and per-

meability—or index and impedance, if you prefer—excited

the community with a negative index of refraction,2,3 imaging

past the diffraction limit,4 and transformation optics.5 Those

lofty motivations have gradually devolved into more

traditional, but imminently practical, applications such as

dielectric sensing,6 polarization control,7,8 modulation,9

absorption,10 and detection.11,12 However, the initial motiva-

tion of designing the permittivity and permeability often limits

the study of metamaterials to a small bandwidth around their

design frequency. This bandwidth limitation is due to several

factors such as the resonant nature of most metamaterials, the

appearance of unwanted higher order modes, and the preva-

lence of the effective medium approximation where metama-

terials are only considered to have a “designed” permittivity

and permeability in the deep sub-wavelength regime.13 While

this behavior can be easily integrated with narrowband appli-

cations, the two most common methods of terahertz (THz)

generation, photoconductive antennas,14 and nonlinear gener-

ation in either crystals15 or air plasma,16 both yield broad

spectra that suggest there is an unfulfilled need for broadband

THz components.

Here, we reconcile the disconnect between traditional

broadband sources and narrowband metamaterial compo-

nents by demonstrating that a metamaterial composite can

have an ultra-broadband usable range. As a proof of principle

of this ultra-broadband concept, we have made a series of

bandpass filters that display the largest usable bandwidth of

any THz metamaterial device to date. The filters have a sin-

gle pass band, with a central frequency scalable between

0.86–8.51 THz, while severely attenuating all other fre-

quency components to >240 THz. These filters, which oper-

ate due to a trapped mode excitation, were originally

introduced to the THz regime by Paul et al., from 0–2.5

THz.17 We have customized their structure and expanded the

bandwidth by almost two orders of magnitude.

To clearly identify the two constituent components in

the metamaterial composite, a cross element, and a metal

mesh,18,19 we present an optical picture of a 2 � 2 array of

unit cells in Figure 1(a). The unit cell in the bottom right,

outlined in black, clearly identifies the cross component.

However, this unit cell choice suggests that the cross is

placed inside of its own, slightly larger, Babinet comple-

ment.20 If the unit cell is translated by (�1=2, 1=2) � P, to the

grey outlined unit cell, a different structure is suggested. In

this new unit cell, if the cross is ignored, it can be seen that

the Babinet complement is also a metal mesh filter.

The sample dimensions in the figure—except for e, which

was held constant at 1.5 lm—are all scaled by a single dimen-

sionless scaling parameter (r) according to the following

equations: L¼ 7.09 � r; W¼ 4.5 � r; P¼ 10.03 � r; where

all dimensions are in microns. The cross element will always

have a length and width of L �2 � e and W �2 � e, respec-

tively. The constant value of e provides an easily achievable

minimum linewidth for fabrication using UV photolithogra-

phy, and the samples are polarization insensitive due to their

four fold symmetry. We fabricated two different styles of

samples: single- and double-sided. Both styles have the exact

same metamaterial pattern, except that the double-sided

a)Author to whom correspondence should be addressed. Electronic mail:

astr@fotonik.dtu.dk.
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structure has the pattern on both sides of the 525 lm thick

high resistivity silicon (HR-Si) substrate as shown in Fig.

1(b). The dimensions, r values, central frequency (f0), and

full width at half max (Df) of the filters studied are presented

in Table I. For reference, these dimensions were originally

chosen so that the higher order modes of the cross geometry

would couple to lattice modes to eliminate unwanted trans-

mission modes, although this ended up being unnecessary as

discussed later.

To highlight the effect of the two constituent compo-

nents in the structure, we present the simulated21 transmis-

sion curves of the cross, metal mesh, and full composite

structure in Figure 2. The metal mesh is easily described as a

combination of inductive and capacitive meshes.22 A capaci-

tive mesh, which is simply a two dimensional array of metal-

lic squares, works as a low pass filter. The complementary

structure, called an inductive mesh, is a wire grid that func-

tions as a high pass filter. Their combination, a metal mesh

filter as shown here, has a pass band located at c/(nSi � P),

where c is the speed of light, nSi is the refractive index of the

silicon substrate, and P is the unit cell size.18 At higher fre-

quencies, the transmission through the mesh can be closely

modeled by taking the geometric ratio of metal area to unit

cell area multiplied by the Fresnel transmission coefficient

of silicon. In Figure 2, this ratio for each component is repre-

sented by the dotted horizontal line. When the cross element

is added to the metal mesh, both the pass band and the high

frequency content are substantially modified. The pass band

is red shifted, resulting in the previously mentioned trapped

mode excitation,17 and the high frequency content is reduced

significantly. It is worth noting that even though the high fre-

quency transmission of both the mesh filter and cross can be

closely modeled by their geometric ratios, the composite

structure shows an even greater extinction.

The dashed magenta line in Figure 2 is the simulated

transmission of a single metamaterial element where the per-

iodic boundary conditions have been replaced by perfectly

matched layers. This allows us to separate the behavior of a

single element from the behavior of the periodic lattice. The

single element transmission roughly follows the transmission

of the full structure with two major differences. First, the

transmission through the periodic lattice is larger than

through a single element, which can be explained through

the coherent superposition of multiple elements. This will

result in strongly focused scattering in the forward direction,

as opposed to the larger angular distribution of a single ele-

ment. The second difference between the curves is the

appearance of sharp modes on the transmission of the full

structure. These lines can all be attributed to lattice modes,

and are calculated using fj;k ¼ cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
=P where cn can be

the speed of light in either air or silicon and j and k are inte-

gers representing the mode order. The modes present in this

figure go up to f2,0 (29.85 THz) for the air side of the filter

and f6,3 (29.3 THz) for the silicon side. There are also local

maximums in the single element transmission near 10.2 THz

and 22.5 THz. An examination of the current patterns at the

gold-silicon interface suggests that these are higher order

FIG. 1. Optical pictures of fabricated samples. (a) A 2 � 2 picture of the

composite filter. The two different choices of unit cells, represented by the

black and grey outlines, help identify the cross and metal mesh, respectively.

The minimum linewidth (e) is held constant at 1.5 lm for every sample. L,

W, and P all scale with the dimensionless parameter, r, as described in the

text and Table I. The layer is entirely gold except for the small linewidth

defined by e, which is HR-Si. (b) A single-sided sample (right) and a

double-sided sample (left). The mirror clearly shows the double-sided sam-

ple’s second metallization layer on the backside of the HR-Si substrate. The

cross section of the single-sided sample is gold/HR-Si, while the double-

sided sample is gold/HR-Si/gold.

TABLE I. The physical dimensions of the fabricated samples, their simu-

lated central frequency (f0), and full width half max for single- (Df1) and

double-sided (Df2) styles. r is dimensionless, L, W, and P are in microns,

and all frequencies are in THz.

r L W P f0 Df1 Df2

1.0 7.1 4.5 10.0 8.51 5.76 2.94

1.125 8.0 5.1 11.3 7.24 4.77 2.57

1.25 8.9 5.6 12.5 6.25 4.10 2.30

1.5 10.6 6.8 15.0 4.89 3.19 1.93

1.75 12.4 7.9 17.6 3.97 2.51 1.58

2.0 14.2 9.0 20.1 3.33 2.02 1.30

2.5 17.7 11.3 25.1 2.53 1.58 0.97

3.125 22.2 14.1 31.3 1.91 1.19 0.72

3.75 26.6 16.9 37.6 1.54 0.95 0.56

6.25 44.3 28.1 62.7 0.86 0.49 0.29

FIG. 2. The simulated transmission spectrum of a double-sided metamaterial

and metal mesh filter composite. The dimensions correspond to the r¼ 2

structure in Table I. The red line is the transmission of the cross element

without the metal mesh, the blue line is the metal mesh filter without the

cross, the black line is the full metamaterial composite, and the dashed ma-

genta line is a single element instead of a full periodic array. The dotted

lines represent the geometric ratio of metallization area divided by unit cell

area times the Fresnel transmission coefficient of the HR-Si wafer.

191103-2 Strikwerda et al. Appl. Phys. Lett. 104, 191103 (2014)
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modes of the cross element (n¼ 3 and n¼ 5, respectively),

but their highly oscillatory current distribution likely

explains their weak coupling to the incident plane wave, as

well as the absence of any other transmission bands.

To verify these simulated results, the fabricated samples

were measured with THz-time domain spectroscopy using a

two-color air plasma for generation23 and air biased coherent

detection.24 This system does have a non-traditional Bessel-

Gauss beam profile,25 but this beam profile is simply a super-

position of Gaussian beams and is subsequently irrelevant to

the filter performance. The optical pulse length used to gen-

erate the air plasma and THz beam was 35 fs, yielding an

anticipated bandwidth of �1/35 fs¼ 28.6 THz which is

approximately that achieved in our reference measurements.

Further details of the experimental system can be found else-

where.26 The samples were also measured in a Fourier trans-

form infrared spectrometer (FTIR) to examine their high

frequency extinction up to 240 THz (1.25 lm/0.99 eV).

An aggregate comparison between simulation and

experiment for all samples is shown in Figure 3. The two

plots compare f0 and Df versus r for both the single- and

double-sided samples. Fits to the data were conducted using

a power law and the simulated values in Table I. The result-

ing equations are f0¼ 8.22 � r�1.42þ 0.28; Df1¼ 5.51

�r�1.56þ 0.22; and Df2¼ 3.16 � r�1.05–0.21, where Df1 is

for the single-sided sample and Df2 is for the double-sided.

For fit details, see Ref. 27. Note that both the single- and

double-sided samples share the same resonance frequency,

because, due to the relative thickness of the HR-Si substrate,

there is no coupling between these two layers and they can

be treated independently at the band pass frequencies.28 The

double-sided structures show a reduced Df due to transmis-

sion through two filters, demonstrating that multiple filters

can be stacked to achieve an even narrower bandwidth, as

required. It is our hope that these design equations can be

used to quickly fabricate bandpass filters for any frequency

in this range. Simply calculate r for the desired f0, use the

geometric equations to determine L, W, and P, and then cal-

culate Df1 and Df2 for the subsequent filters. Since L, W, and

P are linear with r, they also have a nonlinear relationship

with frequency and the same scaling behavior as r. They

decrease monotonically from L¼ 0.20 � k0, W¼ 0.13 � k0,

and P¼ 0.28 � k0 for r¼ 1 to L¼ 0.13 � k0, W¼ 0.08 �
k0, and P¼ 0.18 � k0 for r¼ 6.25, where k0 is the free space

wavelength at f0.

Metamaterials are well-known to be scale invariant, yet

our scaling equations are clearly not linear with sample size.

This scale invariance is broken by the constant value of e,
which results in increased coupling in the trapped mode exci-

tation with increasing r and causes a red shift in f0. As a vis-

ual aid, Figure 3(a) has a line that is f0 of the r¼ 1 filter

scaled linearly with r. The deviation of the results from this

line demonstrates the aforementioned red shift vs r.

We can model this increased coupling by assuming that

the capacitance of the metamaterial composite is dominated

by the capacitive coupling between the cross element and the

metal mesh filter. We begin by describing the filter as a reso-

nant element, where f0 � 1=
ffiffiffiffiffiffi
LC
p

and L and C are the total in-

ductance and capacitance of the metamaterial, respectively.

Next, we assume that the capacitive coupling between the

cross element and the metal mesh filter can be approximated

as a parallel plate capacitor with capacitance C � area/dis-

tance, and this contribution dominates the total capacitance of

the structure. Making this substitution for C, we see that

f0 � N
ffiffi
e
p

, where e is the distance between the cross element

and the metal filter, and every other dependency has been

lumped into the unknown variable N. The scale invariance of

Maxwell’s equations tell us that if we assume e ¼ 1:5� r,

then every dimension would scale linearly and the resonance

frequency would match the linear approximation plotted in

Figure 3(a). This means that f0 � N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5� r
p

� r�1, and

therefore, N � r�3=2. If we instead hold e constant, as we do

in our metamaterial samples, we have f0 � N
ffiffi
e
p
� N

� r�3=2. This yields an exponent of �1.5, which agrees

closely with our fitted value of �1.42.

The scaling of Df1 can be described in a similar manner.

If we assume that the majority of the energy stored in the fil-

ter is in the electric field of the previously mentioned

“capacitor,” we can use Q � 1=f0RC for a capacitive ele-

ment. Again using our substitutions for f0 and C, we have

Q � 1=f0C � 1=
ffiffiffiffi
C
p
�

ffiffi
e
p

which is constant. Since we also

know that Q � f0=Df , a constant Q implies that f0 and Df
scale identically, and, therefore, Df1 � r�3=2, which is again

close to the fitted value of �1.56. While this simple argu-

ment ignores any changes due to fringing fields, surface ca-

pacitance,29 and inductance, the agreement with the fitted

scaling equations suggests that this simple capacitive cou-

pling argument captures the essence of the physics at play.

We have also examined Df for transmission through up

to six filters and have, for the sake of design convenience,

FIG. 3. (a) The aggregate agreement between f0 in simulation and experi-

ment. Not all data are visible because of the virtual overlap between simula-

tion and experiment. E1/E2 refer to experimental values for single- and

double-sided samples and S refers to simulation. To highlight the effect of

the constant e in all structures, the solid black line (L) represents a linear

scaling of f0 vs r, where f0 is for the r¼ 1 simulation. (b) Comparison of the

single- and double-sided Df for experimental (E) and simulated (S) results.

Note that the lines shown are visual aids connecting adjacent data points and

not fits. The simulated data points for both figures are presented in Table I,

and a power law fit is given in the text.
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included the fitted equation for Df2 listed previously.

However, we hasten to add that we do not attach any physi-

cal significance to the scaling behavior of this equation. This

is because the changes in capacitive coupling strength due to

constant e result in changes to the transmitted lineshape

between the various r samples. When squared, cubed, etc.,

these different lineshapes all display reduced Df, but not in a

consistently meaningful way. As an example of this line-

shape difference, an asymmetry can be seen in the r¼ 1 pass

band in Figure 4(a) which is due to a slight decoupling of the

trapped mode excitation.

In Fig. 4, we demonstrate the broadband agreement

between the experimental and simulated results. For clarity,

only a subset of the samples is shown in this figure. In the

inset of Fig. 4(a), we present the FTIR spectra for the

r¼ 3.75 sample, which goes from 10.4–240 THz. The rela-

tively featureless transmission displayed is representative of

all the samples. In particular, it is worth pointing out that the

single-sided sample (blue) is slowly approaching the refer-

ence (black) with increasing frequency from �29 dB at 30

THz to �23 dB at 160 THz when the signal approaches the

noise floor. Our simple geometric extinction argument,

which generated the vertical dashed lines in Fig. 2, predicts a

high frequency extinction of �22.5 dB. More generally, this

simple calculation matches the data within a few dB for all

samples.

The choice of constant e has an impact on both the high

and low frequency behavior. While not shown here, the

simulated peak transmission through a double-sided 0.23

THz filter (r¼ 20) is only 0.4 (�8 dB). This decrease is

understandable, given that e is almost three orders of magni-

tude smaller than the central wavelength (1.3 mm) at that fre-

quency and the filter begins to behave as a continuous gold

film. While this transmission decrease can be offset with a

larger e, this increases the bandwidth of the pass band and

noticeably reduces the transmission extinction at high fre-

quencies. This reduced extinction can be seen in the various

r samples in Figure 4(b). As r decreases, the ratio of bare

substrate to unit cell increases (which, due to our scaled sam-

ples, mimics increasing e), and these samples, subsequently,

have vastly increased transmission at 30 THz.

To create a filter with a frequency higher than 8.51 THz,

a smaller value of e is required. For the r¼ 1 (8.51 THz) fil-

ter, the geometry is completely limited by e and cannot be

shrunk any further (for r¼ 1, W¼ 3 � e). This could be

counteracted with a smaller value of e using other fabrication

methods, e.g., deep-UV photolithography or electron beam

lithography with smaller achievable linewidths, but again,

the design presented here was chosen for low cost, ease of

fabrication, and widespread applicability.

Last, it is worth identifying the limits on the extinction

range. The FTIR has shown high extinction up to 240 THz,

but that is merely the limit of the measurement. The first

practical limitation is the band gap of the HR-Si substrate at

271 THz (1.11 lm/1.12 eV). While the band gap would con-

tinue to extinguish any transmitted spectrum, the photoexci-

tation of the substrate would also extinguish the desired pass

band, defeating the purpose of the device. With a suitable

substrate choice, such as a high band gap semiconductor or

air,30 this limit could be pushed to even higher frequencies.

On the low frequency side of the spectrum, the extinction is

limited solely by the skin depth of the gold film.

In conclusion, we have shown that a metamaterial com-

posite can have an ultra-broadband usable bandwidth that is

suitable for virtually any THz source. We have constructed a

series of bandpass filters that clearly demonstrate this con-

cept, provided simple equations that can be used to construct

filters at any frequency from 0.86–8.51 THz without need for

FIG. 4. (a) Several spectra from experimental ABCD and FTIR (inset) measurements and (b) simulation. For the sake of clarity, only a subset of the structures

is displayed. There is one major difference between these figures. The simulated spectra are normalized and, therefore, represent the frequency dependent

transfer function. The experimental spectra are not normalized, and therefore, the reference spectrum used to measure them (shown in black) is also included.

This is because the dynamic range of the experimental measurement is limited by the difference between the reference signal and the noise floor.31 For exam-

ple, the reference is ��30 dB at 20 THz, while the noise floor is �50 dB. This 20 dB dynamic range is insufficient to capture the full extinction of the filters at

this frequency, as demonstrated in (b). Also note that we include only one of several reference scans taken throughout the measurements—the peak transmis-

sion for each sample was 80%–90% relative to its own reference. The highlighted grey window in the experimental spectrum identifies a phonon absorption32

in a HR-Si wafer that is intrinsic to the THz beam path. (inset of (a)) FTIR measurements of r¼ 3.75 single- (blue) and double-sided (green) samples and the

reference spectrum (black), demonstrating that the extinction continues up to 240 THz (1.25 lm/0.99 eV).
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simulation or design, and described the nature of the scaling

laws in the equations. These filters may be fabricated on

both sides of the HR-Si substrate for further bandwidth

reduction, and multiple filters may be used to narrow the

transmitted spectrum even further as required. It is our hope

that this work will bring an easy to fabricate, functional THz

component to the laboratory, and expand the reach of meta-

material based THz components towards broadband func-

tional components.
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