Development of characterization factors for metals in coastal seawater

Hauschild, Michael Zwicky; Dong, Yan; Rosenbaum, Ralph K.

Publication date: 2014

Citation (APA):
**Title:** Development of characterization factors for metals in coastal seawater

**Author:** Michael Z. Hauschild, Yan Dong, Ralph K. Rosenbaum

**Affiliation:** Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

**Email:** mzha@dtu.dk

**Session:** Advancements in life cycle impact assessment and footprint method development

**Track:** Life cycle analysis and sustainability

**Short Abstract:** Metal ecotoxicity Characterization Factors (CFs) in coastal seawater were not developed in USEtox for Life Cycle Impact Assessment (LCIA), due to lack of appropriate ecotoxicity data and inadequate consideration of metal bioavailability in seawater. Taking into account the speciation behavior of metals in seawater and using effect data exclusively for marine organisms, two sets of spatially differentiated CFs were developed for the metals Cd, Co, Cu(II), Ni, Pb and Zn in coastal seawater. One set of CFs (CF\textsubscript{sw-sw}) addresses the direct metal emission to coastal seawater while the other set (CF\textsubscript{fw-sw}) represents the ecotoxicity potential of metals in coastal seawater caused by metal emission to freshwater followed by transport to the seawater compartment, taking into account the fate of metal in freshwater and in the estuary.

CF is the product of three factors: Fate Factor (FF), Bioavailability Factor (BF), and Effect Factor (EF). The multimedia fate model of USEtox was used to calculate the FF. WHAM 7.0 was used to model metal speciation underlying the BF. Free Ion Activity Model (FIAM) was used to model EF. The results showed that for a given metal, FF in seawater was higher than in freshwater, due to longer residence time of the water in the coastal seawater than in freshwater. The difference between FF in seawater and freshwater was smaller since the difference in water residence time was partially neutralized by metal removal in estuaries. Metal BF\textsubscript{s} in seawater were similar or slightly higher than in freshwater due to the lower DOC and SPM concentration in seawater. For most metals, EF\textsubscript{s} were lower in seawater than freshwater, due to lower sensitivity of seawater biota to metals. As a general observation, CF\textsubscript{fw-sw} was lower than CF\textsubscript{sw-sw} due to metal removal in freshwater and estuary, but the difference was modest for most metals. For Pb, seawater CF were up to 1-4 orders of magnitude higher than freshwater CF. But for the other metals, seawater CF\textsubscript{s} were similar to freshwater CF\textsubscript{s}, indicating that the higher FF and BF in seawater were largely counterweighed by the lower EF for these metals. The variation of CF\textsubscript{s} in different coastal seawaters were up to ca. 2-3 orders of magnitude for one metal, indicating the importance of using spatial differentiated CF\textsubscript{s}. Compared with USES-LCA default CF\textsubscript{sw-sw}, the new CF\textsubscript{sw-sw} were at least 3 orders of magnitude lower for all metals except Pb, of which USES-LCA CF\textsubscript{sw-sw} fall within the range of this study. This implied that for some metals, ecotoxicity CF\textsubscript{s} in coastal seawater might be overestimated in previous LCIA methods.

**Keywords:** LCIA, ecotoxicity, marine, metal