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Abstract

The paper proposes a smart rotor configuration where Adaptive Trail-
ing Edge Flaps (ATEF) are employed for active alleviations of the aero-
dynamic loads on the blades of the NREL 5 MW reference turbine. The
flaps extend for 20 % of the blade length, and are controlled by a Linear
Quadratic (LQ) algorithm based on measurements of the blade root flap-
wise bending moment. The control algorithm includes frequency weight-
ing to discourage flap activity at frequencies higher than 0.5 Hz. The
linear model required by the LQ algorithm is obtained from subspace sys-
tem identification; periodic disturbance signals described by simple func-
tions of the blade azimuthal position are included in the identification
to avoid biases from the periodic load variations observed on a rotating
blade. The LQ controller uses the same periodic disturbance signals to
handle anticipation of the loads periodic component.

The effects of active flap control are assessed with aeroelastic simula-
tions of the turbine in normal operation conditions, as prescribed by the
IEC standard. The turbine lifetime fatigue damage equivalent loads pro-
vide a convenient summary of the results achieved with ATEF control: a
10 % reduction of the blade root flapwise bending moment is reported in
the simplest control configuration, whereas reductions of approximately
14 % are achieved by including periodic loads anticipation. The simula-
tions also highlight impacts on the fatigue damage loads in other parts of
the structure, in particular, an increase of the blade torsion moment, and
a reduction of the tower fore-aft loads.

1 Introduction

The continuously increasing size of modern utility-scaled wind turbines calls
for technical solutions able to reduce the loads the turbine has to withstand,
thus allowing for lower structural requirements, and savings in rotor weight and
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material usage. Several investigations have highlighted the potential of smart
rotor concepts [1]: wind turbine rotors that, through a combination of sensors,
control units, and actuators, actively alleviate the aerodynamic loads the rotor
is subject to.

Smart-rotors can employ traditional blade pitch actuators [2, 3], or active
aerodynamic devices, which can modify the aerodynamic forces locally along
the blade span. Active devices as Adaptive Trailing Edge Flaps (ATEF) with
a continuous deflection shape have favorable aerodynamic characteristics [4];
their potential was first assessed on 2D airfoil sections, with simulations [5, 6],
and wind tunnel experiments on non-rotating rigs [7, 8]. The application of
Adaptive Trailing Edge Flaps to alleviate loads on wind turbines rotors was
then investigated by means of aeroelastic simulations, and also by two rotating
experiments: the DUWIND group at Delft university tested a two bladed smart-
rotor in an open jet wind tunnel [9, 10], and Castaignet et al. [11] carried out a
full scale experiment on a 225 kW turbine with flaps on one of the three blades.

All the investigations confirmed that smart rotors with trailing edge flaps
have a potential for reducing the fatigue loads experienced by the turbine; nev-
ertheless, they reported rather widespread results, with load reductions figures
ranging from 5 to 47 percent, see the summary compiled by Barlas et al. [12].
Differences in the alleviation performances can originate from several sources:
the models used in the aeroelastic simulations, the conditions of the wind field
and its turbulence levels, the maximum deflection and extension of the flap ac-
tuators, and also the choices made in designing the flap control system, as the
assumptions on the available sensors and measurements, and the type of control
algorithm implemented.

Most of the studies opted for control algorithms based on classic PID meth-
ods, applied either to each blade independently [13, 14, 15, 16, 17], or to the
whole rotor through multi-blade coordinate transformation [18, 19]; other in-
vestigations have instead applied model based control algorithms, as Linear
Quadratic Regulators (LQR) [20], Model Predictive Control (MPC) [12, 21], or
H∞ control [9]. The flap control actions respond to the deformation state of the
rotor blades; in some cases, rotor sensors are assumed to provide direct mea-
surements of the blade deflection and deflection rate [15, 20, 22, 17], whereas
other controllers use measurements of the blade flapwise bending moment, ei-
ther at selected locations along the span [14, 16], or, more simply, at the blade
root [19, 12, 21, 10]. Some studies have also investigated flap control algorithms
where additional information on the in-flow condition along the blade are pro-
vided, for instance, by measurements performed with Pitot’s tubes mounted on
the blade leading edge [14, 12, 21].

The present work considers a setup where the flaps on each of the blades are
controlled based on measurements of the flapwise bending moment at the root
of the same blade. The setup has the advantage of relying on a simple sensor
arrangement, relatively easy to implement and maintain. Furthermore, the
controller aim is to alleviate fatigue loads at the blade root, taking measurements
at the same location guarantees that the control unit processes measurement
signals describing the same loads it has to alleviate. Measuring the flapwise
bending moment at the blade root though poses some challenges to the control
algorithm, as the effects of the flap deflection on the root moment are observed
with a delay, and display non-minimum phase behavior: the variation in the
measured signals has an initial transient of sign opposite to the load variation
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reached at the end of the transient. A model based Linear Quadratic (LQ)
regulator is chosen to better cope with the large delay and the non-minimum
phase response.

The LQ control algorithm, described in section 3.2, adopts a state-space for-
mulation, where the states are estimated from the blade root flapwise bending
moment measurements with a Kalman observer [23]. Each blade is treated as
an independent Single Input Single Output (SISO) system, and the control and
the Kalman observer models are obtained by subspace system identification [24].
Frequency weighting of the control action is introduced to reduce the flap activ-
ity at high frequency, and thus limit actuator wear. The classic LQ formulation
is modified to handle periodic disturbance rejection [25]. An important contri-
bution to the load variation on a wind turbine blade has in fact a deterministic
periodic nature [26, 27]: constant or slow varying sources of disturbances (as
gravity, tower shadow, tilt, wind shear, yaw misalignment) produce on the ro-
tating blade load variations with marked periodic components, which depend
on the blade azimuthal position and occur at every rotor revolution. Knowledge
of the periodic, and hence predictable, disturbances is exploited in the control
algorithm, which anticipates, and try to compensate for, the load variations
caused by the periodic components. The periodic disturbances are described by
simple functions of the blade azimuthal position, and disturbance anticipation
does not require additional measurements other than the blade azimuthal posi-
tion, which again can be obtained with relatively simple and low-maintenance
sensors.

The investigation on the flap potential is carried out by means of aeroelastic
simulations performed with the code HAWC2 [28], which couples a multi-body
structural model with a Blade Element Momentum (BEM) aerodynamic model
including steady and dynamic effects of the flap deflection [29]. The load allevi-
ation potential is evaluated for wind conditions prescribed by the IEC standard
[30], with turbulence intensity for a class B turbine and a 3D turbulent field
generated according to Mann’s model [31]; the flap performances are evaluated
at mean wind speed above rated, ranging from 12 to 24 m/s. The follow-
ing section describes the simulation environment, the flap actuator setup, and
briefly introduces the models used by the aeroelastic code HAWC2. The LQ
control algorithm is presented in section 3, and section 4 reports the results
of the aeroservoelastic simulations and quantifies the load alleviation potential
achieved by the active flap control.

2 Simulation environment

2.1 Aeroelastic code HAWC2

All the simulations in the study are carried out using the aeroelastic code
HAWC2 [28], which features a structural model based on a multi-body finite
element formulation. The wind turbine structure is represented by a number
of bodies, each of them modeled as a sequence of Timoshenko beam elements,
which include beam shear and torsion properties. The torsion degree of freedom,
of particular importance given the significant aerodynamic torsional moment
generated by the flaps, is thus innately included in the structural model. The
turbine blades are then represented by a series of bodies, thus accounting for
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the non-linear and coupling effects introduced by large blade deflections.
The aerodynamic part of the code follows a Blade Element Momentum

(BEM) formulation: a 2D model is used to compute the integral aerodynamic
forces and pitching moments on each blade section, and is coupled with a ro-
tor induction model that includes Glauert and Prandtl corrections, as well as
a dynamic inflow model [32]. The ATEFlap model [29] is used to describe the
dynamics of lift, drag, and moment on 2D blade sections with flaps, and consists
essentially of a potential flow solution [33] coupled with a Beddoes-Leishmann
type of dynamic stall model [34]; the potential flow solution is based on a super-
position of Wagner-type indicial response functions, here the classic flat plate
response function is slightly modified to account for the thickness of the airfoil
[35].

2.2 Reference wind turbine and flap setup

The study considers a smart rotor setup where adaptive trailing edge flaps are
applied to the NREL 5-MW reference wind turbine [36], which has a rotor of 126
m diameter and a 3 bladed up-wind configuration typical of modern multi-MW
turbines, table 1. The turbine baseline controller operates the rotor at variable
speed below rated conditions, and limits the power above rated by collectively
pitching the blades to feather based on low-pass filtered measurements of the
shaft speed [36]. The baseline controller is left unchanged, and the active flap
load control is simply superimposed; in the investigated cases, the mutual inter-
ference between the flap load control and the pitch power limitation was found
to be very small.

The load alleviation achieved with active flap control greatly depends on
the extension and type of flap actuators. The adaptive trailing edge flaps in
this investigation, table 1, extend for 10% of the airfoil chord, and introduce a
smooth deflection shape in the airfoil camber-line that outlines a circular arc
[29]. The flaps are applied to the NACA 64 airfoil of 17% thickness found in
the outboard part of the turbine blades; the flap deflection is limited to ±10◦,
and the corresponding variations of the steady aerodynamic coefficients for the
airfoil section are computed with Computational Fluid Dynamics [29], figure 1.
The maximum steady lift coefficient variation ranges from -0.45 to +0.41, which
indicatively corresponds to the lift coefficient variation obtained with angle of
attack changes from −3.9◦ to +3.6◦; due to the smooth deformation shape only
a minor drag penalty is reported at small angles of attack, figure 1(b).

The flaps cover 20% of the blade spanwise length, from 47.7 m to 60.0 m
of the blade span; when deflected to their +10◦ limit they cause a variation in
the blade root flapwise bending moment (ΔMx.Bl.Rt) of approximately 1100
kNm (fig.3), which is roughly equivalent to the variation achieved by 1◦ change
of the whole blade pitch angle. In this study, flap sections located on the same
blade are all deflected according to the same control signal, which is based on
measurements of the blade azimuthal position, and the flapwise bending moment
at the root of the same blade.

2.3 Wind conditions

The aim of the aeroelastic simulations is to evaluate the load alleviation potential
achieved with the adaptive flaps in realistic operation conditions. The simula-
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Figure 1: Airfoil section steady aerodynamic coefficient variations achieved by the inves-
tigated Adaptive Trailing Edge Flaps. Blue lines indicate positive (downward) flap de-
flections, red lines negative (upwards) deflections; full lines corresponds to the maximum
deflections of ±10◦, dashed lines to ±5◦, and the dotted lines to ±2.5◦ and ±7.5◦.

Reference Wind Turbine Flap Setup
Rat. Power 5 MW Chordwise ext. 10%
Num.Blades 3 Deflect.limits ±10◦

Rotor Diam. 126 m Max. ΔCl −0.45 ∼ +0.41
Blade length 61.5 m Spanwise length 12.3 m (20% blade length)
Rat. Rot.Sp. 1.267 rad/s Spanwise loc. from 47.7 m to 60.0 m span
Hub height 90 m Max.ΔMx.Bl.Rt approx. ±1100 kNm

Table 1: Main characteristics of the NREL reference wind turbine [36], and the adaptive
trailing edge flaps setup considered in the investigation.
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tions are thus carried out in wind conditions prescribed by the IEC standard
design load case 1.1 [30], which corresponds to normal wind turbine operation.
The wind field is characterized by a normal terrain shear, described by the power
law relation with exponent 0.2; the effects of tower shadow are accounted for,
and Mann’s turbulence model [31] is applied to generate a 3D turbulent field
for a class B turbine, with turbulence intensity ranging from 17 % at 12 m/s to
14 % at 24 m/s.

Bergami and Gaunaa [27] report that wind turbine operations below rated
wind speed are responsible for only minor contribution to the blade flapwise
lifetime fatigue damage; furthermore, active alleviation of the rotor loads below
rated power would reduce the turbine energy capture. Therefore, in this case,
the flap load alleviation control is only applied to operation above rated wind
speed, and aeroelastic simulations are performed for mean wind speeds from 12
to 24 m/s. A total of 1 hr turbulent wind field is simulated at each mean wind
speed (6 seeds of 10 minutes), and identical turbulent fields are used to compare
the different control configurations. The mean wind speed distribution, used to
evaluate lifetime equivalent loads on the turbine structure, follows a Rayleigh
probability density function, with average wind speed of 8.5 m/s (class II turbine
in the IEC standard [30]).

3 Control design

The active flap control presented here relies on a model based control algorithm
that requires a linear time invariant model of the system to be controlled. The
control model should be as simple as possible, and, at the same time, sufficiently
complex to capture the relevant dynamics of the system, and to outline, with
an accuracy adequate to the control scope, the relation between the measured
output y, the control input u, and the disturbances acting on the system. In
this case, the measured output y consists of the blade root flapwise bending
moment (Mx.Bl.Rt), the control signal u determines the flap deflection angle,
and the disturbances are split into a stochastic component e, and a periodic
(measurable) component d. The control model is described by a state-space
system in discrete time, where the system states at time step i are collected by
the vector xi. The discrete time state-space system is cast in innovation form
[23], thus reading:

{
xi+1 = Axi +Bui +Gdi +Kei,
yi = Cxi + ei.

(1)

Each of the three rotor blades, with its flap actuators and bending moment
sensor, is described by a separate Single Input Single Output (SISO) system,
eq. (1), which is assumed independent from the others; although based on a
rather crude assumption, the approximation is a convenient practice to simplify
the blade load control problem.

3.1 System Identification

A model for the system to control could be retrieved from the same first principle
models that are used in the aeroelastic simulation code. Such models though
would return a rather complex description, characterized by non-linearities and a
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large number of states, and would require further processing in order to obtain
a model suitable for our control purposes. Instead, a model of the system
dynamics of interest is obtained by applying system identification techniques
to ‘measurements’ of the system response, which are collected from simulations
performed with the aeroelastic code HAWC2.

System identification on a rotating blade is complicated by the strong in-
fluence of periodic disturbances, which violate the assumption of measurements
noise of stochastic nature. The periodic component would produce a bias in the
identified system, as the identification process would try to explain the periodic
variations observed in the measurements by altering the system dynamics. Van
der Veen et al. [37] propose an elegant solution by including in the identification
process additional input signals, which are generated by periodic signals with
the same period as the blade rotation.

The additional periodic input signals are formulated as an external periodic
disturbance term, d in eq. (1); the periodic disturbance signals are simple
functions that only depend on the blade azimuthal position, and are hence
easy to measure, and predict. Two types of periodic disturbance signals are
considered in the study:

• d Sin-Cos : following the classic approach [37, 9, 10], a two components
signal is built by taking the sine and the cosine of the blade azimuthal
position, blue lines in the top plot of figure 4.

• d Wsp: a single component periodic signal is retrieved from a simple
model of the free wind speed variations observed in the blade rotating
frame. The wind speed variation only account for terrain shear and tower
shadow effects, the latter causing the marked indentation of the signal
around 0◦ azimuth, red line in the top plot of figure 4.

The identification is performed on set of ‘measurements’ of the blade root
flapwise bending moment that are retrieved from aeroelastic simulations of the
turbine in normal operation while the flap actuators excite the blade following
a Pseudo Random Binary Signal (PRBS) that spans the maximum available
deflection range of ±10◦. The identification is carried out with the subspace
method described by Ljung [24], which supports the narrow-banded additional
input signals given by the periodic disturbance terms, and returns a system
description in state-space innovation form, eq. (1), hence providing a direct
estimation of the Kalman gain matrix K, eq. (13).

A linear system description with four states was found adequate for the con-
trol purposes of this study. The frequency response from flap deflection to blade
root flapwise bending moment of the identified four state linear model (blue line
in the Bode plots of fig. 2) is compared to the response outlined with spectral
estimation (black full line), and to the frequency response obtained from a series
of aeroelastic simulations where the flap deflection follows a single-frequency si-
nusoidal signal and all the sources of periodic disturbances have been ideally
removed from the simulation (gray circles in fig. 2). The identified model de-
scribes fairly well the response for frequencies up to the second blade flapwise
mode (at approximately 1.7 Hz), with a small discrepancy in the low frequency
range. Both the simulated response and the spectral estimation show a small
indentation slightly above 0.3 Hz, not captured by the identified model; the in-
dentation corresponds to the first natural frequency of the tower, which absorbs
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part of the energy from the flap actuation. The presence of tower dynamics in
the blade response to the flap deflection indicates that the assumption of each
blade being independent from the rest of the structure is not entirely correct;
nevertheless, its effects are only of secondary importance for the control aim of
the study. The Bode plots also report the frequency response obtained with a
spectral estimate where the additional periodic disturbance inputs are not taken
into account (dashed line Spa npt in fig. 2); the estimate in this case would dis-
play a clear bias close to the 1P rotational frequency of 0.2 Hz. The effects
of neglecting the blade torsional degree of freedom are assessed by simulating
the frequency response from flap action with a turbine model where the blades
are stiff in torsion (gray line with diamonds in fig. 2); the results indicate an
overestimation of the response magnitude ranging between 2 and 3.5 dB. A cor-
rect representation of the blade torsion degree of freedom is hence important in
aeroelastic simulation evaluating the effects of active flap control, as neglecting
it would yield to an overestimation of the flap effects, which, in this particular
case, ranges between 20 and 45 %.
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Figure 2: Bode plot, frequency response from flap action to blade root flapwise bending mo-
ment Mx.Bl.Rt. The response from the identified system (blue line) is compared to a
spectral estimate (full black line), and to the response from a series of sinusoidal flap
action simulations in ideal conditions (gray circles). The response for spectral estimate
without periodic term correction (dashed black line), and for simulations with blades stiff
in torsion (gray diamonds) are given for comparison.

The identified models are verified in the time domain by comparing the
response to a step flap deflection against the step response simulated with
HAWC2, figure 3; again, ideal conditions are enforced in the HAWC2 simu-
lations by removing the sources of periodic disturbances (gravity, wind shear,
tower shadow, rotor misalignment). The identified linear model reproduces the
main characteristics of the simulated step response: the non-minimum phase
transient, the raising time, and the total variation achieved in the root flapwise
bending moment. The simulated response presents a low frequency oscillation
that is not captured by the identified model, and probably corresponds to the
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offset observed in the low frequency range of the Bode plots.
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Figure 3: Step response to a positive flap deflection: the increase in lift further deflects
the blade to leeward (negative flapwise bending moment). Comparison of the response
predicted by the identified system (blue line), and the response from aeroelastic simulations
with removed periodic effects (gray line).

The identified systems also describe the influence that periodic disturbances
have on the blade flapwise moment. The bending moment variations predicted
by the identified linear systems in response to the periodic disturbance signals
d Sin-Cos and d Wsp are compared against the bending moment variation
observed in HAWC2 simulations of the turbine operating in a non-turbulent
wind field, lower plot in figure 4. Both identified models capture the bending
moment variation related to terrain shear effects, and correctly estimate the
amplitude and phase of the load variation. The linear system with the d Wsp
disturbance signal also captures the effects of the tower passage, and correctly
reproduces the phase lag observed in the sytem dynamics, as the the blade
flapwise bending moment variation is felt with a phase delay of approximately
20◦ after the tower passage. Note that the flapwise bending moment variation
from periodic components (approx. ±2000 kNm) is already larger than the
variation achieved by the flap actuators (approx. ±1100 kNm). The flaps will
thus often operate close to their deflection limits; future work might investigate
whether a model predictive control algorithm, which takes into account the flap
deflection constraints, would deliver better load alleviation performances than
the chosen Linear Quadratic controller.

Finally, the identified linear model is tested by reproducing the response
to gaussian random activity of the flap actuator on the rotating blades, and
comparing the time series against the one simulated with the complete aeroe-
lastic turbine model in HAWC2, figure 5. With low wind turbulence intensity
(2%), the identified model is able to reproduce the simulated output with a
good approximation. The agreement between the linear models predictions and
the aeroelastic simulation results is quantified in terms of variance-accounted-for
(VAF) [37, 10]. The linear model with the d Sin-Cos periodic disturbance signal
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accounts for 94.3% of the variance observed in the simulated output; whereas,
the model with the d Wsp disturbance signal reaches higher VAF (95.4 %), and
better captures the sharp bending moment variations caused by the blade tower
passage.

The dynamics of the bending moment response from flap deflection maintain
similar characteristics at different operating wind speed, as long as the rotor
speed keeps close to its rated value. On the contrary, the system response to the
periodic disturbance signals depends on the wind speed, as the amplitude of the
periodic load variation increases with the mean wind speed. In this investigation,
the problem is tackled by simply retrieving a linear model description for each
of the operating mean wind speed that will be considered in the load alleviation
simulations. Future works might consider solutions more suitable to ‘real-life’
applications, as control algorithms including linear parameter variation or on-
line system identification.

3.2 Linear Quadratic regulator with disturbance rejection

Given the dynamic system described by the discrete time affine linear time
invariant model in eq. (1), the objective of the Linear Quadratic regulator is to
return a control signal u that minimizes the cost function

J =
N∑
i=0

zTi W zi, (2)
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Figure 5: System identification validation time series, blade root flapwise bending moment
response to deflection of flap following a GRS series. Comparison of the response pre-
dicted from the identified linear models with aeroelastic simulation.

where the augmented error vector z includes both the controlled output y and
the control action u:

zi =

[
ŷi
ui

]
=

[
C
0

]
xi +

[
0
I

]
ui = Czxi +Dzui. (3)

The objective of the controller is thus to limit the variation of the output signal
y, and, at the same time, limit the control action u. The weight on the control
action is adjusted by the tuning parameter ρu, which is included in the cost
function weight matrix W :

W =

[
1 0
0 ρ2u

]
. (4)

The cost function can be rewritten as

J =
N∑
i=0

[
xT
i uT

i

] [Q N

N
T R

] [
xi

ui

]
, where (5)

Q = Cz
TWCz, R = Dz

TWDz, N = Cz
TWDz;

which is the standard formulation of a Linear Quadratic (LQ) problem with
cross coupling terms.

The LQ problem is solved taking into account the disturbance signal d, here
given by simple functions of the blade azimuthal position (see fig. 4). The
periodic disturbance signals d thus serve a double scope: first they avoid biases
from periodic variations during the system identification step; then, the relation
between the same signals and the output is exploited by the LQ controller,
which is thus able to anticipate future load variations caused by the periodic
disturbance components.

11



Lewis et al.[25] indicate a stationary solution (for N → ∞) to the LQ prob-
lem, where the control signal ui is given by a sum of a feedback on the system
states xi, on the current disturbance di, and on a signal vi+1 that includes future
disturbances:

ui = − (Lxi +Uvi+1 +MGdi) , where: (6)

L =
(
R+BTSB

)−1 (
BTSA+ N

T
)
, U =

(
R+BTSB

)−1

BT , M =
(
R+BTSB

)−1

BTS,

(7)

a closed-loop description of the system is thus available. The matrix S in the
control action terms is the solution to the algebraic Riccati equation:

S = ATSA+Q−
(
ATSB + N

)(
R +BTSB

)−1 (
BTSA+ N

T
)
. (8)

The signal vi is given by the adjoint of the closed loop system with a backwards
recursion on the (predicted) future disturbance signals:

vi = (A−BL)
T
(vi+1 + SGdi) , (9)

with terminal condition vN = 0, where, in practice, N is a finite number suffi-
ciently large as to avoid any transient effect.

3.2.1 Frequency weighting

Frequency weighting is introduced in the LQ cost function, eq. (2), in order to
penalize output variations or flap actions in certain frequency ranges. The error
signal z is given by filtered versions of the output yf and the control action uf ,
which are obtained through linear state-space descriptions chosen as to increase
the response gain in the frequency range to penalize:

u :

{
xu
i+1 = Auxu

i +Buui

uf
i = Cuxu

i +Duui
and ŷ :

{
xy
i+1 = Ayxy

i +By ŷ

yfi = Cyxy
i +Dyŷ

(10)

The state vector of the system is extended xext to include the filter states
xu and xy, the extended error signal z is computed as

zi =

[
yfi
uf
i

]
=

[
DyC Cy 0
0 0 Cu

]⎡
⎣xi

xy
i

xu
i

⎤
⎦+

[
0

Du

]
ui = Cext

z xext
i +Dext

z ui, (11)

and the state equation, eq. (1), is reformulated in terms of extended state
vectors and extended matrices:

xext
i+1 =

⎡
⎣xi+1

xy
i+1

xu
i+1

⎤
⎦ =

⎡
⎣ A 0 0
ByC Ay 0
0 0 Au

⎤
⎦
⎡
⎣xi

xy
i

xu
i

⎤
⎦+

⎡
⎣ B

0
Bu

⎤
⎦ ui+

⎡
⎣G0
0

⎤
⎦ di = Aextxext

i +Bextui+Gextdi.

(12)
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The frequency weighting is included in the controller by using the extended
matrices in the equations for the cost function matrices eq. (5), the algebraic
Riccati equation (8), and the LQ gain matrices eq. (7).

In this investigation, frequency weighting is only applied to the control signal
u, and penalizes control actions with frequencies above 0.5 Hz. The frequency
weighting reduces flap activity and flap deflection speed, thus potentially in-
creasing the life-time of the flap actuators; the effects on the fatigue load al-
leviation reduction are minor, as the largest contribution to the blade fatigue
damage originates at lower frequencies [19, 27].

3.2.2 State estimation

The control action is based on a feedback from the system states x. The states
though, are not measured directly, in their place the control uses estimated
states x̂, which are retrieved with a Kalman filter estimator [23] from measure-
ments of the blade root flapwise bending moment yi:

x̂i+1 = Ax̂i +Bui +Gdi +K (yi −Cx̂i) . (13)

The linear model descriptions used by the Kalman filter estimator, as well as the
Kalman gain matrix K, are also retrieved from the innovation state-space de-
scription returned by the subspace system identification, eq. (1), thus avoiding
the need of further tuning the Kalman observer.

4 Aeroelastic simulation results

The LQ regulator is implemented in the simulation tool, and the blade load
alleviation performances of the smart rotor set-up are assessed with a series of
aeroelastic simulations during normal production, above rated wind speed, and
with the turbulent wind field prescribed by the IEC standard [30] for a class B
turbine.

Three flap control configurations are investigated, and the resulting loads
are compared to the reference case of no active flap control. In the first control
configuration (denoted as d 00 ), the LQ regulator has no information about the
periodic disturbances: it does not anticipate the periodic load variation, and
it only acts based on the measurement feedback. The d Sin-Cos configuration
handles periodic disturbance anticipation based on the harmonic sine and cosine
disturbance signals; the d Wsp configuration anticipates instead the periodic
load variation based on the disturbance signal of the simplified free wind speed
variation. All the control configurations are tuned by acting on the control
weight, ρu in eq. (4), so to reach a compromise between blade flapwise fatigue
damage alleviation, and flap activity.

An extract of the simulated time series of the blade root flapwise bending
moment, and of the corresponding flap actions is displayed in figure 6; the load
series with active flap control have the same mean value as the reference one, but
the load variations are decreased and some peaks smoothed out, thus indicating
correct operation of the active flap control in all the three configurations. The
time series of the flap actions remark how the load variation achieved by the flap
actuators is far less than the load variations caused by the disturbances, often
pushing the flap actuators to their deflection limits of ±10◦. Future work should
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thus investigate the benefit of a control algorithm, e.g. model predictive control,
that accounts for the flap deflection constraints, and it should determine whether
higher load alleviations could be achieved with a more powerful actuator setup.
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Figure 6: Extract of time series simulation at mean wind speed of 16 m/s. Blade root
flapwise bending moment (top), and flap activity (bottom). The reference case of no
active flap control is reported with the light gray line, the active flap configurations with
green, blue, and red lines.

The loads on the rotating blade obtained from one hour simulation with
mean wind speed 16 m/s are plotted versus the blade azimuthal position, figures
7 and 8. The mean load at each azimuthal position is indicative of the periodic
component of the load variation (lines with markers); whereas, the dashed lines
displaying the standard deviation range represent the influence of the stochastic
load component, which is mainly generated by the atmospheric turbulence. The
active flap control reduces both the periodic variations of the flapwise bending
moment (fig. 7), and the stochastic component of the loads. The reduction of
the stochastic component is similar for the three control configurations, as it
mainly depends on the feedback mechanism of the LQ control. On the contrary,
the alleviation of the periodic load variation is more marked in the d Sin-Cos
and d Wsp configurations, which handle periodic disturbance anticipation; the
loads from d Wsp simulations also displays a slightly smoother variation around
the tower passage (notch at 20◦ azimuth), although the positive effects of the
more accurate periodic disturbance description (cfr fig. 4) are partly limited by
the flap actuators reaching their deflection limits.

The reduction of the blade flapwise bending moment comes at the price of
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Figure 7: Blade root flapwise bending moment versus blade azimuthal position. Results for
1 hr simulation at mean wind speed of 16 m/s. For each azimuthal position the means
of the simulated loads (lines with markers) indicate the periodic component of the load
variation, the standard deviations (dashed lines) are instead proportional to the stochastic
load variation. Active flap control reduces both component of the flapwise load variation.

increased variations of the blade torsion moment (fig. 8), which are caused
by the aerodynamic pitching moment introduced by the flaps. Usually, the
blade torsion loads are not a driving parameter in rotor design, nevertheless
the substantial increase that might be generated by active aerodynamic devices
should be taken into account in future smart rotor designs. Active flap control
slightly increases the range of load variations also on the blade edgewise bending
moment, but gravity loads are by far still dominating in this direction.
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Figure 8: Blade root torsion moment versus blade azimuthal position. Results for 1 hr simu-
lation at mean wind speed of 16 m/s. As before, the plot displays the periodic component
of the loads (mean), and the stochastic one (standard deviation). Active flap control
produces an increase in the torsion load variations.

The effects of the active load control are verified for the whole range of mean
wind speeds above rated conditions, from 12 to 24 m/s. For each mean wind
speed and each control configuration simulations are carried out for a total of
one hour turbulent wind (divided into six ten minutes turbulence seeds), as pre-
scribed by the normal turbulence model in the IEC standard [30]. Statistics on
the simulated loads confirm the observations of the azimuthal load analysis: the
mean flapwise bending moment is unchanged (fig. 9), whereas the maximum
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load variations (distance between the upper and lower dashed lines) are reduced
by approximately 13 %. The standard deviation of the flapwise load displays
significant variations among the turbulence seeds, but still shows a marked re-
duction in the cases with active flap control; on average, the standard deviation
with the d 00 active control configuration is 15.5 % lower than in the not con-
trolled case, and higher reduction are achieved with the d Sin-Cos configuration
(22 %) and the d Wsp one (24 %). As already observed, active flap control has
also an effect on other loads on the structure: the standard deviation of the
blade torsion moment is increased, whereas a reduction of the load variation is
observed at the tower bottom flange, where the standard deviation in the fore-
aft bending moment is 7 % lower than in the reference case. Minor reductions
in standard deviation are also observed on the shaft yaw and tilting moments,
and on the tower top yaw moment.
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Figure 9: Load statistics: blade root flapwise bending moment mean and load ranges (top),
and loads standard deviation (bottom). Each of the mark in the standard deviation plot
corresponds to a single 10 minutes time simulation. Active flap control reduces the load
range, and the standard deviation.

The total activity required by the active load control to the flap actuators
is measured as the total angular distance traveled by the flap, either with up-
ward or downward deflections; the angular distance is then normalized by the
total operation time, thus returning an average deflection speed, figure 10. The
d Wsp control configuration, which achieves higher reductions of the flapwise
loads standard deviation, also demands higher flap activity; the d 00 configu-
ration, instead, in spite of lower alleviation performances, requires higher flap
activity than the d Sin-Cos configuration. The reduction of flap activity as the
mean wind speed increases, in spite of increased loads variations, is probably
explained by the flap reaching more often the actuator deflection limits. The
maximum deflection rate of the flap actuator is not constrained in the simula-
tions. Nevertheless, with the frequency weighting penalizing high frequency flap
activity, 99 % of the flap activity observed in the simulations requires deflec-
tion rates below 90 deg/s; the introduction of deflection rate constraints close
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or above this limit is thus expected to have no significant effects on the smart
rotor load alleviation potential.
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Figure 10: Flap activity for the three control configurations. Total flap traveled distance
normalized by the simulation time, for each of the investigated mean wind speeds.

The power spectral density of the blade flapwise moment, figure 11, shows
that most of the load alleviation occur for frequencies close to 1P, the rotor
revolution frequency (0.2 Hz). A small increase in the spectral energy content
is instead observed around 1 Hz. The increase is limited by the frequency
weighting, but the introduced penalization appear not sufficient to keep the
power spectrum below the baseline value in this frequency range; attempts to
further increase the frequency penalization resulted in lower flap activity, but
also lower blade load alleviation. The power spectrum of the flap activity (fig.
12) is dominated by the 1P rotational frequency and its harmonics; the frequency
content of the flap activity decreases significantly above 1 Hz, both as an effect
of the frequency weighting, and also for the lower energy content in the loads
addressed by the flap control.

The performance of the smart rotor is finally quantified in terms of reduction
of fatigue damage equivalent loads (DEL). The equivalent loads are computed
under Palmgren-Miner linear damage assumption [38], and aWöhler curve expo-
nent of 10 is used for the loads on the blades, and 4 for the rest of the structure.
The damage equivalent loads are here referred to 25 years of operation, and 10
millions equivalent cycles; the mean wind speed occurrence is weighted accord-
ing to a Rayleigh distribution with 8.5 m/s average wind speed, as prescribed
by the IEC standard [30] for a class II turbine.

The active flap control succeeds in all the investigated configurations in re-
ducing the fatigue damage of the blade root flapwise bending moment, figure
13. The d 00 configuration, acting exclusively on the feedback from bending
moment measurements, has the poorest performance, with alleviations ranging
from 7.5 to 12.6 % at low wind speed, and a total lifetime fatigue equivalent
damage load by 10.2 % lower than the reference case without active flap con-
trol. The control configurations with periodic disturbances anticipation achieve
higher reductions: the d Sin-Cos control alleviates the lifetime fatigue damage
by 13.8 %, and the d Wsp configuration reaches a lifetime reduction of 14.5%,
albeit with higher flap activity. Looking at each of the 10 minutes turbulence
series individually, markers in figure 13, a large spread in the load alleviation
potential is reported among the different simulation series, ranging from 9 % to
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Figure 11: Power spectral density of the blade root flapwise bending moment; the plot refers
to simulations with mean wind speed of 16 m/s, similar figures are obtained for the
other investigated wind speed. The load reduction from the active flap control is mainly
concentrated in the frequency range around 1P, the rotor revolution frequency of 0.2 Hz.
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Figure 12: Power spectral density of the flap activity. For the three control configurations
most of the flap activity is concentrated around the rotational frequency 1P (0.2 Hz) and
its harmonics.

19 %. Experiment or simulation in turbulent wind conditions should thus con-
sider time series of sufficient length to ensure statistically relevant conclusions
on the load alleviation potential; in the investigated case, at least 40 minutes of
simulation are required to reach alleviation estimations within one point percent
of the result obtained by turbulent wind simulation of 60 minutes, which is the
minimum requirement specified by the IEC standard [30].

The active flap control also affects the fatigue damage of components not
included in the control objectives. The lifetime damage equivalent load on the
blade root torsion moment is increased by about 10 %; the blade edgewise
bending moment and the shaft torsion DEL are also increased by about 6%.
On the other hand, a reduction in the fatigue damage is observed at the tower
bottom flange, in the fore-aft direction, figure 14: the d 00 configuration reduces
the tower lifetime damage by 6.5 %, and smaller figures are obtained with d Wsp
(5.6 %), and d Sin-Cos (3 %). In spite of a reduction in the standard deviation,
the tower side-to-side loads and the bending moment on the shaft do not report
relevant changes in the lifetime fatigue damages.

To verify the performance of the active flap control in operation conditions
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Figure 13: Fatigue Damage Equivalent Loads (DEL) at the blade root flapwise bending mo-
ment. The DEL refer to a 25 yr lifetime and 10 millions equivalent cycles, the figures at
each mean wind speed are weighted by the occurrence of the mean wind speed according
to a Rayleigh distribution for a class II turbine. The dots report the spreading of fatigue
damage reduction recorded in each of the 10 minutes simulation series.

slightly different from the control design ones, a series of simulation is performed
with a yaw misalignment error. The blade flapwise damage equivalent loads are
computed for one hour simulation with mean wind speed of 16 m/s and yaw
misalignment of ±8◦, figure 15; the same flap control configurations as in the
normal production cases are used, without any re-tuning nor modifications of
the periodic disturbance signals. The fatigue damage equivalent load is higher
than in the aligned case for positive yaw misalignment, i.e. the right hand
side part of the rotor (looking downwind) is displaced to leeward; the fatigue
reduction from the active flap control is also slightly higher than in the alligned
rotor case: 12.2 % for d 00, 15.5 % for d Sin-Cos, and 15.7 % for d Wsp. On
the contrary, for the negative yaw misalignment, the fatigue damage is slightly
lower, and so is the reduction from the active flap control, with figures ranging
from 11.2 % to 14.2 %, figure 15. As in the aligned case, the flap control reduces
the loads at the tower bottom flange in the fore-aft direction, while it increases
the blade torsion and edgewise bending fatigue damages. The tower and shaft
yaw fatigue damage loads, in both cases higher than in the aligned case, are
nearly left unchanged by the active flap control, but the maximum loads are
instead reduced by approximately 14 % when the flap load control is active.

5 Conclusion

Simulations of a smart rotor with adaptive trailing edge flaps are carried out
with the aeroelastic code HAWC2, which features an aerodynamic model de-
scribing both attached and stalled flow dynamics, and a multibody structural
model that accounts also for the blade torsion degree of freedom. Blade torsion
is particularly relevant for aeroelastic simulations of a rotor with flaps, as the
flap deflection introduces a significant aerodynamic pitching moment; therefore,
by omitting the blade torsion compliance, the flap ability to alleviate the loads
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Figure 14: Fatigue Damage Equivalent Loads (DEL) at the tower bottom flange in fore-aft
direction. The DEL at each mean wind speed account for the time each mean speed
is expected to occur (higher wind speeds are less likely, hence they yield lower fatigue
damage).

on the blade would be overestimated. The adaptive trailing edge flaps are ap-
plied to the NREL 5 MW reference turbine rotor [36]; they cover 20 % of the
blade span, and are controlled by a linear quadratic (LQ) algorithm based on
a simple sensor arrangement: the flap on each of the blades is controlled based
on the root flapwise bending moment and azimuthal position of the same blade.
The effects of the active flap control are quantified in terms of load statistics,
spectra, and fatigue damage equivalent loads, reproducing the simulation con-
ditions prescribed by the IEC standard [30] for a class IIb turbine.

Active flap control allows to reduce the maximum load range on the blade
root flapwise bending moment by approximately 13 %, and the standard devia-
tion of the bending moment is 15-24 % lower than in the reference case without
active control. The adaptive flap controllers alleviate loads mainly in the low
frequency range of the spectrum (0.1-0.5 Hz), and especially around the 1P
rotational frequency (0.2 Hz). As the loads in the low frequency range are re-
sponsible for the largest contribution to the blade root flapwise fatigue damage
[19, 27], it is beneficial to discourage the activity of the flap actuators at higher
frequencies by introducing a frequency-dependent weighting in the LQ control
algorithm. The frequency weighting penalizes control activity at frequencies
above 0.5 Hz, thus limiting the total flap movement and the maximum deflec-
tion rate, hence effectively reducing the wear of hypothetical flap actuators.

Ultimately, the effects of the adaptive trailing edge flap control are quanti-
fied in terms of lifetime fatigue damage equivalent load reduction. The control
configuration based on only measurements feedback (d 00 ) lowers the lifetime
fatigue equivalent damage on the blade root flapwise bending moment by about
10 %, a result in line with previous investigations that considered similar se-
tups [12, 17]. Periodic load anticipation, which is based on the blade azimuthal
position and handled by the LQ algorithm as a prediction on periodic distur-
bance signals, allows to reach higher lifetime damage alleviation: 13.8 % with
the d Sin-Cos configuration, and 14.5 % with d Wsp. The increase in load
alleviation potential by nearly 4 % achieved by including periodic load antici-
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Figure 15: Fatigue Damage Equivalent Loads (DEL) at the blade root flapwise bending mo-
ment for the rotor in yawed conditions for operation at a single mean wind speed (16
m/s); positive yaw angles imply that the right hand side of the rotor (looking downwind)
is displaced to leeward. The dashed black line correspond to the DEL reported for the
aligned rotor in the reference case of no flap control.

pation is comparable to the increase previous investigations have attained using
additional in-flow sensors [12, 14], with the advantage that the periodic load an-
ticipation approach does not require a sensor setup as complicate and delicate as
demanded for in-flow measurements. As an effect of active load alleviation with
adaptive trailing edge flaps, a significant increase of the blade torsion fatigue
damage equivalent load is reported (nearly 10 %); the increase of the torsional
loads, and, to a lesser extent, of loads on other components, should be hence
taken into account in the design of smart rotor structures. Positive reduction
of damage equivalent loads are instead reported for the tower bottom flange
fore-aft bending moment (by approx. 5%); the load alleviation on the blade
flapwise moment and on the tower bottom flange are also confirmed in yawed
inflow conditions.

To conclude with a consideration on possible future work, according to the
results reported in this study and in the literature, the load alleviation poten-
tial achieved by the smart rotor appears to be mainly limited by the strength
of the aerodynamic actuators employed on the rotor. In fact, the variation
of blade root flapwise bending moment obtained by the current flap setup is
simply too small to compensate to an higher degree for the load variations ob-
served on the blade during normal operation. Future work should thus consider,
first, whether a control algorithm that handles flap deflection constraints, as for
instance model predictive control [21, 12], could improve the load alleviation
performances. Secondly, future investigations might focus on whether fatigue
loads could be further reduced by fitting the smart rotor with a more powerful
actuator setup, either by augmenting the blades surface covered by adaptive
flaps, or by complementing the flap efforts with individual blade pitch actions.
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