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Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented
wave method
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Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
(Received 15 March 2012; published 27 April 2012)

We present an efficient implementation of a nonequilibrium Green’s function method for self-consistent
calculations of electron transport and forces in nanostructured materials. The electronic structure is described
at the level of density functional theory using the projector augmented wave method to describe the ionic
cores and an atomic orbital basis set for the valence electrons. External bias and gate voltages are treated in a
self-consistent manner and the Poisson equation with appropriate boundary conditions is solved in real space.
Contour integration of the Green’s function and parallelization over k points and real space makes the code highly
efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number
of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium
forces, and spin transport.
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I. INTRODUCTION

Electron transport across nanostructured interfaces is im-
portant in a range of different areas, including nanoelectronics,
organic photovoltaics, and electrochemistry. First-principles
modeling of electron transport at the nanoscale has so far
mostly been applied to molecular junctions consisting of
molecules contacted by metallic electrodes.1–5 However, more
recent applications also include graphene nanoribbons,6–8

semiconducting and metallic nanowires,9–11 and bulk tun-
neling junctions for magnetoresistance and electrochemical
applications.12,13 The rapid developments in these areas
toward atomic-scale control of interface structures, and the
continuing miniaturization of electronics components makes
the development of efficient and flexible computational tools
for the description of charge transport at the nanoscale an
important endeavor.

The vast majority of first-principles electron transport stud-
ies have been based on density functional theory (DFT) within
the local density (LDA) or generalized gradient approxima-
tions (GGA). This approach is in principle unjustified because
the eigenvalues of the effective Kohn-Sham Hamiltonian do
not represent the true quasiparticle energy levels. In particular,
for tunneling junctions the energy gap between the highest
occupied states and lowest unoccupied states is too small14,15

and this can lead to an overestimation of the conductance. More
accurate calculations, including self-interaction corrections16

and more recently the many-body GW approximation17–19

yield conductance values in better agreement with experi-
ments. On the other hand, the nonequilibrium Green’s function
(NEGF)-DFT approach often provides a satisfactory quali-
tative description5,20 and its computational simplicity makes
it a powerful tool for addressing nonequilibrium properties
of complex systems. It should be mentioned that the formal
problems associated with the use of DFT for transport are
overcome by time-dependent DFT (TDDFT) which allows for
an, in principle, exact description of the (longitudinal) current
due to an externally applied field.21 However, it has been
recently found that the standard TDDFT exchange-correlation
potentials do not yield any improvement over the NEGF-DFT
in terms of accuracy in predicting conductance.22

In addition to the electronic current, it is of interest to model
the forces acting on the atoms under nonequilibrium condi-
tions, i.e., under a finite bias voltage. Such forces ultimately de-
termine the stability of current-carrying molecular devices,23,24

but can also be exploited to deliberately control the motion of
single molecules by, e.g., injecting electrons into the molecular
orbitals using a scanning tunneling microscope (STM).

In this paper we describe the implementation of the
NEGF-DFT method in the grid-based projector augmented
wave (GPAW)25,26 electronic structure code. In GPAW the
electronic states can be described either on a real-space
grid or using an atomic orbital basis set. For the NEGF
calculations, the Green’s function is expanded in the atomic
orbital basis while the Poisson equation is solved in real space.
Contour integration and sparse matrix techniques, together
with parallelization over both k points and real space is
exploited for optimal efficiency. Although the basic elements
of our implementation are not new and have been described
in earlier papers,27–30 the possibility of applying a general
gate and/or finite bias voltage, the use of multiple leads,
and inclusion of nonequilibrium forces on the ions provides
a flexible and efficient computational platform for general
purpose modeling of charge transport at the nanoscale and
should be of interest to a large and growing community.

This paper is organized as follows. In Sec. II the transport
model and formalism are introduced. In Sec. III we describe
the numeric details including the complex contour integration
technique used to obtain the nonequilibrium electron density
from the Green’s function, the use of sparse matrix methods,
and the real-space solution of the Poisson equation. A number
of illustrative applications are presented in Sec. IV. In Sec. V
the computational details of these examples are listed, and
Sec. VI is reserved for a brief summary.

II. METHOD

The transport model is shown in Fig. 1. Following the
standard approach, the system is divided into left and right
electrodes and the central scattering region (see the detailed
description in the caption). The Hamiltonian of the system
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FIG. 1. (Color online) A scattering region including the nanos-
tructure of interest (e.g., a molecule) and part of the electrode
atoms is sandwiched between two semi-infinite electrodes. Periodic
boundary conditions are used in the x,y directions and open boundary
conditions in the z direction. The electron potential in the electrodes
is periodic and can be obtained from a ground-state DFT calculation
employing periodic boundary conditions in all directions. The Hartree
potential at the scattering region boundary, which is used as boundary
condition for the Poisson equation, is also obtained from the electrode
calculation. The whole system can be subject to an external bias or
gate voltage, and the electronic structure of the scattering region is
calculated self-consistently in the presence of such external fields.

is given by (all notation related to PAW methodology is
consistent with earlier GPAW papers25,26)

˜̂H = −1

2
∇2 + ṽeff +

∑
aij

∣∣p̃a
i

〉
�Ha

ij

〈
p̃a

i

∣∣, (1)

where a denote the atoms in the system and i,j label the PAW
projector functions of a given atom. Using a (nonorthogonal)
atomic orbital basis set, the Hamiltonian can be written in the
following generic form:⎛

⎜⎝
HLL HLC 0

HCL HCC HCR

0 HRC HRR,

⎞
⎟⎠ . (2)

The “on-site” Hamiltonian matrices of the electrodes, HLL

(left) and HRR (right), and the coupling matrices HLC and
HRC , can be obtained from a homogeneous bulk calculation.
If a bias voltage V is applied, the matrices corresponding to
the left and right electrodes should be shifted by eV relative to
each other, e.g., HLC → HLC + eV SLC and HLL → HLL +
eV SLL, where S denotes the overlap matrix. We assume that
there is no coupling between basis functions belonging to
different electrodes. This assumption can be always satisfied
by making the scattering region large enough.

The retarded Green’s function is written as

Gr (ε) = [
(ε)S − HCC − �r

L(ε) − �r
R(ε)

]−1
. (3)

The self-energies �r
L/R represent the coupling to the electrodes

and are obtained using the efficient decimation technique.31

The lesser Green’s function is written as32

G<(ε) = Gr (ε)�<(ε)Ga(ε) + (1 + Gr�r )G<
0 (1 + �aGa).

(4)

The latter term is nonzero for truly bound states and vanishes
for states acquiring any width.

The pseudodensity matrix (for the pseudowave in the PAW
framework) is the integral of G<,

D = 1

2πi

∫
C

[Gr (z) − Ga(z)]dz + i

2π

∫ Ef +eV/2

Ef −eV/2
G<(ε†)dε

− 2πθi
∑

i

Gr (εi). (5)

Here θ = kBT and C is a contour for the integral to be
discussed further in Sec. III.

The nonequilibrium electron density is obtained as

ñ(r) =
∑
νμ

Dνμ	ν(r)∗	μ(r) +
∑

a

ña
c , (6)

where 	ν is an atomic orbital basis function and ña
c is

the atomic pseudocore density. As is standard in the PAW
formalism a tilde indicates a smooth quantity as opposed to an
all-electron quantity. The smooth charge density is given by

ρ̃(r) = ñ(r) +
∑

a

∑
�m

Qa
�mĝa

�m(r), (7)

where Qa
�m are multipole moments and ĝa

�m(r) is a so-called
shape function. The last term is the contribution to the charge
density coming from the positively charged nuclei.

The effective potential is found as

ṽ = ṽcoul + ṽxc +
∑

a

v̄a, (8)

where the Coulomb potential satisfies the Poisson equa-
tion ∇2ṽcoul = −4πρ̃, while ṽxc and v̄a are the exchange-
correlation potential and zero potential, respectively. v̄a is a
parameter chosen to smoothen ṽ and which vanishes outside
the augmentation sphere of atom a.33

To obtain self-consistency we thus have the iteration pro-
cess D → ρ → Veff → H → D → · · ·. After convergence
the current can be calculated by

I (V ) = 1

π

∫ ∞

−∞
[fL(ε) − fR(ε)]Tr[�L(ε)Gr (ε)

×�R(ε)G(ε)†]dε, (9)

where �L/R(ε) = i(�r
L/R(ε) − �r

L/R(ε)†). For a derivation of
the current formula we refer the reader to Ref. 34 (orthogonal
basis) or Ref. 35 (nonorthogonal basis).

The nonequilibrium force is obtained from the derivative of
the total energy with respect to atomic positions. In the PAW
framework, the total energy is written

E = Ẽ +
∑

a

(Ea − Ẽa), (10)

with

Ẽ =
∑
νμ

ρνμ〈	μ| − 1

2
∇2|	ν〉 + 1

2

∫
ρ̃(r)ρ̃(r)′

|r − r′| drdr′

+
∑

a

∫
ñ(r)v̄a(r)dr + Exc[ñ].
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The force can be obtained as

Fa = − ∂E

∂Ra
, (11)

where

∂E

∂Ra
=

∑
νμ

∂E

∂ρνμ

∂ρνμ

∂Ra
+

∑
νμ

∂E

∂Tνμ

∂Tνμ

∂Ra

+
∑
L

∫
δE

δg̃a
L(r)

dg̃a
L(r)

dRa
dr

+
∫

δE

δñ(r)

∂ñ(r)

∂Ra
dr +

∫
δE

δv̄a(r)

dv̄a(r)

dRa
dr

+
∑
bij

∂E

∂Db
ij

∂Db
ij

∂Ra
. (12)

We note that the expression given above does not include
the recently discussed Berry phase contributions to the
nonequilibrium force.24

III. NUMERICAL DETAILS

A. Contour integration technique

The contour for the Green’s function integral in Eq. (5) is
shown in Fig. 2. The retarded and lesser Green’s functions are
integrated along the path AB (see Fig. 2) in the upper half
plane and the path EF closely above the real axis in the bias
window.29,36

For the retarded Green’s function we use Gaussian quadra-
ture by which a precision corresponding to a 2N − 1 order
polynomial can be obtained by N points. We use an adaptive
method to find the energy points necessary to obtain a sufficient
precision:37 For a given region [c − h,c + h], the integral Q of

FIG. 2. (Color online) The contour used for the Green’s function
integral in the complex energy plane. The coordinates of the
indicated points are as follows: A (Emin,0), where Emin is less
than all the eigenenergies of the system, which is usually taken as
μL − 100eV since we only calculate the valence electrons states; B
(μL + mkBT ,�), where m satisfies e−m ≈ 0 (a typical value of m

is 10), kB is the Boltzmann constant, T is the electron temperature,
� is normally between εn and εn+1, where εi = (2i − 1)π (with i a
positive integer) is a pole of the Fermi-Dirac distribution function,
thus the singulars below � should be counted when summing up the
residues; C (μL − mkBT ,�); D (μR + mkBT ,�); E (μL − mkBT ,η),
η is infinitesimal to avoid the inversion divergence; F (μR + mkBT ,η).

a function f can be estimated with the Gauss-Lobatto formula,

Q = h

6

[
f (c − h) + 5f

(
c − 1√

5
h

)
+ 5f

(
c + 1√

5
h

)

+ f (c + h)

]
, (13)

and furthermore a Kronrod formula can be used to estimate
the precision of the integral38

Q′ = h

1470

[
(77f (c − h) + 432f

(
c −

√
2

3
h

)

+ 625f

(
c − 1√

5
h

)
+ 672f (c)

+ 625f

(
c + 1√

5
h

)
+ 432f

(
c +

√
2

3
h

)

+ 77f (c + h)

]
. (14)

The difference between Q and Q′ can be taken as the
precision of the integral.

The adaptive procedure to get the integral of the Green’s
function in a region [c − h,c + h] is as follows: (1) Calculate
Q and Q′, then compare the difference � with the tolerance
δ. (2) If � is smaller than δ, the integral is converged and
Q is used as integral result. If not, divide the region [c −
h,c + h] into three subregions [c − h,c − 1√

5
h],[c − 1√

5
h,c +

1√
5
h],[c + 1√

5
h,c + h] and redo step (1) for each subregion

until the integral is converged in the whole region.
For the lesser Green’s function inside the bias window,

we use the simple composite trapezoidal rule to obtain the
integral. However, numerical errors can easily occur close to
the real axis where the Green’s function has singularities. For
this reason we apply the double-contour method introduced in
Ref. 29: First, the integral of the retarded Green’s function is
calculated along the path CD (Fig. 2) above the bias window,
which is the spectrum for all the electronic states in the bias
window S, then both electron spectrum G< and hole spectrum
G> are integrated along the path EF, and we have S = De +
Dh according to the definition of the Green’s function, where
electron density De and hole density Dh are obtained from
the integral of G< and G>, respectively. The numeric error,
�S = S − De − Dh is normally a nonzero quantity due to the
integral insufficiency. As a correction, the error is distributed
to De and Dh by the matrix element weight.

B. Sparse matrix handling

Because the matrix inversion cost scales as N3, where N

is the dimension of the matrix, the matrix inversion turns out
to be the main computational cost for large systems. Hence
a sparse matrix method is implemented to obtain the Green’s
function.

We define a quenching layer as a slab whose left side has no
overlap with the right side due to the finite cutoff in the range
of the atomic orbitals. Hence an overlap or Hamiltonian matrix
can be split into several blocks, with each block representing
the on-site values of a quenching layer or the coupling between
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two adjacent quenching layers. Note that quenching layers here
are different from the principal layers used in the transport
framework, where the latter is supposed to be repeatable as
well.

Physical quantities such as density or transmission are
often determined by fairly few blocks of a matrix. To see
this consider the simple example of a two-probe system. In
this case, the scattering region is divided into five quenching
layers. Figure 3 shows the sparse matrix structure of the overlap
or the Hamiltonian matrix. The blocks outside the scatter-
ing region are from electrode calculations and are always
fixed.

First we discuss how to obtain the real-space pseudodensity
which can be obtained by a projection of the pseudodensity
matrix as in Eq. (6). We see that if the states 	ν(r) and 	μ(r)
have no overlap, the contribution from the pseudodensity
matrix is zero, i.e., the white blocks in Fig. 3(a) do not affect
the density. So when we calculate the density matrix from the
integral of the Green’s function, only the blue and green blocks
in the Green’s function matrix [Fig. 3(a)] are necessary. There
are really two different parts, because two types of Green’s
functions are involved when calculating the density matrix:
the equilibrium part and the nonequilibrium part. We need
the blue and green blocks of the retarded Green’s function
for the former and of the Keldysh Green’s function for the
latter. Through Eq. (4) and the finite extent of the self-energy
matrix, which is only nonzero in the principle layers close to
the electrodes, we see that the blue and green blocks in Fig. 3
in the Keldysh Green’s function matrix can be obtained from
only the red blocks of the retarded Green’s function [Fig. 3(c)].
So when we do the matrix inversion to calculate the retarded
Green’s function by Eq. (3), the red blocks in Fig. 3(a) are
necessary for energy points on the path EF in Fig. 2, and the
blue and green blocks in Fig. 3(c) are necessary for energy
points on the other path segments in Fig. 2.

We can also see that the red and orange blocks in Fig. 3(b)
are needed to calculate the density of states (DOS) by
DOS(ε) = − 1

π
Im[Tr(G(ε+)S] and the pink blocks in Fig. 3(b)

are needed to calculate the transmission function T (ε) =
Tr[�L(ε)G(ε+)�R(ε)G(ε+)†].

The formulas below provide a quick solution for the
necessary blocks. Here we just consider this particular matrix
(shown in Fig. 3) as an example to show how the method
works. A general formalism, which works for arbitrary number
of electrodes and arbitrary number of principal layers in each
electrode, is introduced in Ref. 39.

First, the central block N in Fig. 3(b) of the retarded Green’s
function can be solved through the equations

QL
2 = L−1

22 , QL
1 = (

L11 − L12Q
L
2 L21

)−1
, (15)

QR
2 = R−1

22 , QR
1 = (

R11 − R12Q
R
2 R21

)−1
, (16)

N =
(

M −
∑

J=L,R

J12Q
J
2 J21

)−1

, (17)

where Lij and Rij are the blocks shown in Fig. 3(a) repre-
senting the matrix εS − HCC − �r

L(ε) − �r
R(ε). Then, for the

remaining blocks of the retarded Green’s function matrix, we

have to iterate the formulas

GL
i,i = QL

i

(
I − Li,i−1G

L
i−1,i

)
,

GL
i,i = (

I − Gi,i−1L
L
i−1,i

)
QL

i ,
(18)

GL
i,j = −QiLi,i−1G

L
i−1,j ,

GL
j,i = −GL

j,i−1Li−1,iQ
L
i (j < i),

where GL
i,j is the block from the central part to electrode L

and GL
0,0 is N in Eq. (18), the blocks from the central part to

electrode R have a similar solution. For all the required blocks,
a quick solution can be obtained using a combination of the
recursive formulas (18). If we denote the number of quenching
layers by n, the computational cost is roughly given by n times
the cost of an inversion operation plus 4n times the cost of
matrix multiplication.39

C. Fixed boundary conditions

The electronic potential of the metal electrodes will usually
be very efficiently screened so that after only a few atomic
layers into the electrodes we can assume that the potential is
equal to the equilibrium potential plus a possible constant
bias potential, which is normally eV/2 for the cathode
and − eV/2 for the anode (V stands for the bias voltage).
We shall apply open boundary conditions (in contrast to, say,
periodic ones) where the bias is applied by fixing the potential
values at the boundaries before solving the Poisson equation.40

This procedure also allows for a net charge in the scattering
region, in which case the perturbation of the electron potential
into the electrodes will of course be somewhat more long
ranged.

The Poisson equation ∇2ṽcoul = −4πρ̃ is solved in recip-
rocal space in the x and y directions while it is solved in real
space in the z coordinate, i.e., in the the transport direction.
Mathematically we have(

d2

dz2
− �G2

)
ṽcoul(z, �G) = −4πρ̃(z, �G), (19)

where �G is the vectors of the two-dimensional (2D) real grids
used for the Fourier transformation.

Equation (19) is solved by the sparse matrix linear equation
subroutine provided by the LAPACK package. An advantage
of this Poisson equation solution is the good parallelization
behavior. The 2D Fourier transformations are independent for
the different real-space slices, and the linear equations (19)
can be solved independently for different �G vectors.

IV. RESULTS

A. Quantum capacitor

We consider a simple capacitor system consisting of two
semi-infinite Na electrodes separated by a vacuum gap (see
the upper part of Fig. 4). When a bias voltage is applied to
the system, electrons accumulate or deplete on the Na(100)
surfaces. According to the classic parallel plate capacitor
model, the surface charge should be

Qcl = ε0V A/d, (20)
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FIG. 3. (Color online) Schematic of the matrix blocks. (a) The Hamiltonian or overlap matrix: The blue and green blocks represent the on-site
and coupling submatrices for the different quenching layers, respectively. (b) The Green’s function matrix when evaluating the density, DOS,
or transmission: The red and orange blocks represent the submatrices needed to calculate the density matrix or DOS, and pink blocks are for the
transmission coefficient. (c) The red blocks in the retarded Green’s function matrix are necessary when calculating the Keldysh Green’s function.

where ε0, A, d are the vacuum permittivity, area cross section
of the unit cell, and the gap distance, respectively. We integrate
the induced charge density in real space and obtain the net
charge accumulation Q = 0.45e, which is close to the result
of classic theory Qcl = 0.55e. One difference is that, in the
quantum theory, the charge decays from the surface into the
bulk in an oscillatory fashion (Friedel oscillations), instead of
being localized exactly on the surface as assumed in the classic
model. We also note that at a distance of about four layers from
the surface the values for both the potential and the charge are
very close to their bulk values. Hence this calculation confirms
the screening approximation, namely, that a few layers away
from the surface or scattering region the potential has reached
its bulk value. Finally, we note that the relatively high bias

FIG. 4. (Color online) Upper panel: Capacitor model with the
electrodes made of bcc sodium with the voltage drop along the (100)
direction. The vacuum distance between the two electrodes is 8 Å,
and the size of the unit cell in the transverse directions is 12.7 Å ×
12.7 Å. The rectangle represents the scattering region. Lower panel:
The nonequilibrium part of the electron density (solid blue) and the
induced effective potential (dashed red) under a bias voltage of 5 V,
with the zero-bias values as the reference. The calculated values are
averaged over the transverse plane.

voltage of ≈5 V is possible in the present case where no
current is flowing. On the other hand, the nonequilibrium states
determining the current flow become increasingly difficult to
calculate accurately for larger bias values due to the insufficient
integral of the Keldysh Green’s function in the bias window.
As a consequence, electron transport calculations are typically
possible or reliable up to bias voltages of around 2–3 V,
depending on the transparency of the junction.

B. Nonequilibrium forces

The calculation of nonequilibrium forces is in
principle a delicate problem involving nonconservative
components.23,24,41 For highly conducting molecular bridges
an instability may occur which involves the Berry phase of the
wave function. The description of such phenomena is beyond
the scope of the usual NEGF + DFT framework, but in simpler
cases, in particular, in cases with no or little current flow, the
force expressions (11) and (12) still apply.

As an example, we show here a nonequilibrium force
calculation for a Au/N2/Au junction, where we can see the
tendency toward molecular dissociation under a bias voltage.
The structure (see the upper part of Fig. 5) is relaxed under
zero bias until the maximum force is below 0.01 eV/Å. When
a positive bias is applied, electrons are redistributed over the
molecule due to the electric field. Consequently, the two nitro-
gen atoms start to repel each other due to increased Coulomb
repulsion which weakens the bond. The actual quantity of
charge transfer to the molecule, which is about 0.01e for 1-V
bias voltage on this system, shifts up the molecular energy
spectrum, i.e., the energy levels follow the chemical potential
of the left electrode (see the middle panel of Fig. 5). The force is
mainly occurring only between the two nitrogen atoms, while
there is no force induced between the electrode atoms and the
N2 molecule. Equivalently, a negative bias voltage shifts down
the levels and pull electrons out of the N2 molecule, and leads
to an attractive force between the two nitrogen atoms.

C. Electrostatic gate control

One way of controlling the current flow through a
nanoscale conductor is by electrostatic gating. This has been
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FIG. 5. (Color online) The bias voltage effect on a nitrogen
molecule between two gold electrodes. Upper panel: The atomic
structure of the system. The arrows represent the directions of
the atomic forces generated by the bias voltage. Middle panel:
PDOS (partial density of states) of the nitrogen molecule at 0- and
1-V bias voltage. The Fermi level is located at zero and the red
dashed lines show the location of the bias window in the 1-V case.
Lower panel: The magnitude of the nonequilibrium atomic forces as
a function of bias voltage.

demonstrated experimentally for graphene, where a metal-
insulator transition was induced by gating,42,43 and for single-
molecule junctions where the individual electronic levels were
moved in energy relative to the Fermi level of the source/drain
electrodes.44,45 At the single molecule scale, the gate-molecule
coupling is to a large extent determined by the device geometry
with the screening effect playing an important role.46 For
numerical simulations, the typical method of applying a gate
is to add an external potential vg(r) to the effective potential
of the system:

ṽ(r) = ṽ0(r) + vg(r). (21)

We now consider the prototypical Au/benzene-1,4-
dithiolate/Au (Au-BDT-Au) junction (see the upper panel of
Fig. 6) subject to three different gate potentials, vg(z) (see
the middle panel of Fig. 6). We note that the structure of the
Au/BDT junction is presently being debated.47–49 However,
for our purpose the simple model makes the sense.

In the lower part of Fig. 6 we plot the resulting effective
gate potential �v(z) = ṽsc(z) − ṽ0

sc(z), where the subscript
sc denotes self-consistency, and the superscript 0 denotes
zero gate voltage. Due to the screening in the metal, the
effective gate potentials only affect the molecule region, and
the narrower gate potential is seen to be less influenced by
the self-consistency because it does not induce considerable
charge transfer at the metal surfaces—a charge transfer that

FIG. 6. (Color online) Effect of electrostatic gating of a benzene-
1,4-dithiolate molecule between two gold fcc(111) electrodes. Upper
panel: The atomic structure of the system. Middle panel: The applied
external potential. Lower panel: The effective additional potential
after self-consistency.

otherwise tends to reduce the gate effect on the molecule.
We note that the gate efficiency factor, α = �v(z)/vg(z),
for these three potentials are about 0.8, 0.6, and 0.4 in the
molecular region, with the larger efficiency obtained for the
more localized gate potential. The value of 0.4 obtained for the
most delocalized potential is fairly close to an experimental
study45 of the Au-BDT-Au system where an efficiency factor
of 0.25 was reported.

In the following we illustrate how the gate voltage can
be used to tune the conductance of a molecular junction.
It has recently been shown that the transport through the
molecule anthraquinone is strongly suppressed due to destruc-
tive quantum interference occurring close to the Fermi level
when the molecule is connected to metallic electrodes.50,51 The
quantum interference leads to a dip in the transmission function
inside the energy gap between the highest occupied (HOMO)
and lowest unoccupied (LUMO) molecular orbitals. Hence
a large on-off ratio is expected when shifting the molecular
energy levels by an external gate voltage. The upper panel of
Fig. 7 shows the molecule connected to two gold fcc(111)
surfaces through Au-S bonds. The effective potential with
the gate voltage −2 V is shown in the middle panel. We
see that the potential of the central part of the anthraquinone
molecule is shifted less than the potential for the outer parts
of the molecule. This is due to the fact that different parts
of the molecule polarize differently as a consequence of the
detailed electronic structure. The HOMO is, for example,
mainly localized at the connecting wires. The lower panel
of Fig. 7 shows the change of transmission coefficient when
a gate voltage of −2 V is applied. Due to the characteristic
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FIG. 7. (Color online) Gate tuning the conductance of a molecular
transistor. Upper panel: The Au-anthraquinone-Au structure. Middle
panel: The gate effect on the potential. Lower panel: The transmission
coefficient at 0 and −2 V gate voltages.

interference dip in the transmission a large on-off ratio of about
a factor of 1000 is achieved. Note that the relatively poor gate
efficiency of around 0.1 is due to Fermi-level pinning of the
HOMO.

D. Spin transport

In this section, we investigate the nonequilibrium-driven
magnetic transition in the spin transport in a zigzag graphene
nanoribbon (ZGNR) which is proposed in Ref. 52 based on
tight-binding calculations. The ZGNR’s edge is spin polarized
and it has an antiferromagnetic spin configuration if its number
of atomic layers is even.53 A gap of about 1 eV is opened
between the different spin states and makes the ZGNR a
semiconductor. It was noticed by Denis et al. that the ZGNR’s
magnetic ordering is killed when the external bias voltage
exceeds the size of the gap.52 Here we reproduce this result
for the graphene/ZGNR/graphene system shown in the upper
panel of Fig. 8, where a ZGNR (nn = 8) is sandwiched
between two semi-infinite graphene flakes. Under zero bias
the PDOS of the central C atom along the ZGNR edge shows
two peaks above and below the Fermi level, corresponding to
the different spin directions (the middle panel in Fig. 8). The
distance between the two peaks is about 1.6 eV, and equals the
band gap. When this bias voltage reaches 1.0 V, the current
starts to increase (see Fig. 9). At bias voltage 2.0 V the edge
magnetic moment disappears very abruptly, and the current
starts to increase even faster.

Interestingly, in the tight-binding calculations presented in
Ref. 52, both the magnetic moment and the current show a very
abrupt feature at the bias threshold, while in our calculation,
the current increases rather smoothly. This can be explained by
the nonequilibrium potential in the ab initio calculation leads

FIG. 8. (Color online) Spin transport in a zigzag graphene
nanoribbon (ZGNR) bridge connecting to two semi-infinite
graphene flakes. Upper panel: The atomic structure of the
graphene/ZGNR/graphene system. Middle panel: The PDOS of a
C atom at the ribbon’s zigzag edge under zero bias; the red and blue
solid lines represent the spin-up and spin-down PDOS of the C atom
at the center of the zigzag edge (marked with X), the red and blue
dashed lines represent the spin-up and spin-down PDOS of the C
atom next to the previous one at the zigzag edge (marked with Y),
and the green dashed line is the Fermi level. Lower panel: The PDOS
of a C atom at the ribbon’s zigzag edge under bias voltage V = 2.4 V.

to a rehybridization and broadening of the spectral peaks (see
the lower panel of Fig. 8). We also note that in our calculation
the disappearance of the magnetic moment is due to the two

FIG. 9. (Color online) Calculated current (blue squares) and edge
magnetic moment per C atom (red circles) as a function of bias voltage
for the ZGNR structure shown in Fig. 8.
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FIG. 10. (Color online) Left: The C60-6-terminal structure and
real-space DOS at the Fermi level. Right: The averaged effective
potential projected onto a plane cutting through the C60 molecule.

Stoner peaks moving into the bias window being half occupied,
which is different from the complete band collapse in Ref. 52;
this is because our ZGNR is not long enough. We can see from
the lower panel of Fig. 8 that the gap shrinks more for the C
atom further from the contact.

E. Multiterminal transport

The expression for the Green’s function of the scattering
region Eq. (3) can be straightforwardly extended to a multiter-
minal situation

Gr (ε) =
[
εS − HCC −

∑
J

�r
J (ε)

]−1

, (22)

where J is the index of the terminals. In contrast to the situation
for a two-probe calculation, a zero boundary condition is
applied for the effective potential for a multiterminal system,
and buffer atoms are used to represent semi-infinite leads.
This approach to multiterminal transport has been previously
investigated in Ref. 54. It should be noted that the self-energy
of a lead has to be “rotated” by an orthogonal transformation
when the lead is not along either the x, y, or z axes.

As an example, we consider a C60 molecule connected
to six linear carbon atomic chains. Figure 10 (left) shows
the projected DOS in real space evaluated at the Fermi level.
The coverage suggests that the scattering states are itinerant
in the whole system and the contact between the carbon chain
and the C60 moelcule is transparent. Figure 10 (right) shows
a 2D averaged potential in a plane cutting through the C60

molecule.
A matrix indicating the transmission at the Fermi level

between the different leads is shown in Fig. 11. The matrix

FIG. 11. (Color online) The transmission function evaluated at
the Fermi energy between the six leads. The element (i,j ) refers to
the transmission from lead i to lead j ; the diagonal element is the
reflection coefficient.

index notation represents the lead number as shown in Fig. 10
(left). In particular, the diagonal corresponds to backscattering,
i.e., it gives the reflection probability. We can see that electrons
are more easily transmitted between leads opposing each
other, whereas the transmission decreases if the electron has
to turn an angle during the scattering process. This intuitive
phenomenon can be explained by the quantum interference of
the different partial waves. For the straightforward scattering,
the quantum phases are the same for all the paths passing
through the C60 molecule, and the electron therefore attains
the greatest transmission probability.51

V. COMPUTATIONAL DETAILS

For completeness we list the key input parameters and CPU
timings for the examples presented in this paper in Table I.

VI. SUMMARY

We have described the implementation of the NFGF + DFT
transport method in the GPAW code and illustrated its perfor-
mance through application to a number of different molecular
junctions. The electronic structure is described within the PAW
methodology which provides all-electron accuracy at a com-
putational cost corresponding to pseudopotential calculations.
The Green’s functions are represented in a basis set consist-
ing of atomiclike orbitals while the Poisson equation with
appropriate boundary conditions is solved in real space. The

TABLE I. Key parameters and CPU timings for the examples considered in this article.

System k sampling Functional Basis Lead k sampling Processor number Wall time (h)

Capacitor (4,4) LDA SZ (4,4,15) 4 0.5
Au/N2/Au (2,2) PBE DZP (SZP) (2,2,15) 32 3
Gate (BDT) (2,2) PBE DZP (SZP) (2,2,15) 32 6
Gate (anthraquinon) (2,2) PBE DZP (SZP) (2,2,15) 32 8
Graphene/ZGNR/graphene (2,1) PBE SZP (2,2,7) 32 6
C60 (1,1) LDA SZ (1,1,15) 32 2
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code is parallelized over k points and real-space domains and
sparse matrix techniques are applied for maximal efficiency.
The flexibility of the method was illustrated through examples
demonstrating electron transport under finite bias voltage,
effect of electrostatic gating, spin transport, nonequilibrium
forces, and multiterminal leads.
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