Comparative Genomic and Metabolomic Analysis of Twelve Strains of Pseudoalteromonas luteoviolacea

Månsson, Maria; Vynne, Nikolaj Grønnegaard; Klitgaard, Andreas; Melchiorsen, Jette; Dorrestein, Pieter C.; Gram, Lone

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may not freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Comparative Genomic and Metabolomic Analysis of Twelve Strains of *Pseudoalteromonas luteoviolacea*

Maria Månsson\(^1\), Nikolaj G. Vynne\(^1\), Andreas Klitgaard\(^1\), Jette Melchior\(^1\), Pieter C. Dorrestein\(^2\), and Lone Gram\(^1\)

\(^1\)Department of Systems Biology, Technical University of Denmark; \(^2\)Skaggs School of Pharmacy and Pharmaceutical Sciences, Departments of Pharmacology, Chemistry and Biochemistry, University of California San Diego

With the availability of full genome sequences, it has become apparent that the biosynthetic potential of many microorganisms is much larger than hitherto thought. Mining for new chemical diversity can be done ‘upstream’, directly at the genome level, or ‘downstream’, at the metabolite level. Here, we describe the biosynthetic capabilities of a marine bacterial species, *Pseudoalteromonas luteoviolacea*—a prolific producer of secondary metabolites.

Full genome sequences are now available for routine analysis, and in parallel, mass spectrometers are pushing the limits for sensitivity and accuracy, generating high quality metabolite data at a high speed. Thus, the challenge is no longer to generate the data that describes secondary metabolite production in microorganisms, but to manually extract important elements of complex data sets and create a meaningful link between the observed chemistry, detected bioactivity, and predicted pathways. The bacterium, *Pseudoalteromonas luteoviolacea* is a prolific producer of secondary metabolites.\(^1\) The genomes of 12 strains of *P. luteoviolacea* were sequenced and compared with regards to the presence of secondary metabolite clusters.

The average genome size of all 12 strains were ~6 Mb with 9-17% of the genome allocated to secondary metabolism, corresponding to 6-20 PKS/NRPS clusters predicted by antiSMASH. Overall, the accessory or variable genes made up more than 65% of the total pan-genome (Fig. 1). However, looking only at predicted biosynthetic genes they add up to almost 90% of the pan-genome, underlining the bio-synthetic heterogeneity of the species.

Matching our observations from the genome to the potential compounds produced by the encoding proteins, we used unbiased feature detection with recursive analysis on our LC-MS data from all the strains (Fig. 2).

Here, the great diversity within the species was confirmed, as only about 12% of the features were found in all strains (excluding features from media blank). Also, 15% of all features were only found in a single strain (unique features).

The number of predicted biosynthetic clusters and detected molecular features by far exceed the number of compounds known from this species. In order access those and at the same time gain information on the structural relationships, we have used molecular networking\(^2,3\) on LC-MS/MS data (Fig. 3).

Conclusions:
By using a combined genomic and metabolomic approach to mine the chemical diversity within a single species, it is possible to quickly identify strains that hold novel chemistry and link the compounds to their biosynthetic pathway.

Funding: Danish Council for Independent Research in Technology and Production Sciences with Sapere Aude grant # 11-102622 ‘Ecology-Driven Drug Discovery: A Novel Approach for Enhancing Chemical Diversity from Marine Bacteria’ and DFG grant # 2101-07-0012 ‘Discovery of Bioactive Marine Bacteria and Natural Products and Their Use to Promote Human Health and Safety’. Apignat Thought Leader Award for LC-QTOF data and software.

Acknowledgements: Laura Sanchez, Jeremie Watrous, and Don Nguyen are greatly acknowledged for training in molecular networking.