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Summary (English)

Optimal integration of wind energy into power systems callsfor high quality

wind power predictions. State-of-the-art forecasting sysems typically provide

forecasts for every location individually, without taking into account information

coming from the neighbouring territories. It is however intuitively expected that

owing to the inertia in meteorological systems such local aproach to power fore-
casting is sub-optimal. Indeed, errors in meteorologicaldrecasts might translate
to fronts of imbalances, i.e. taking the form of a band of foreast errors propa-
gating across entire regions.

The present thesis deals with the proposal and evaluation ohew mathematical
models and forecasting methods for short-term wind power feecasting, account-
ing for space-time dynamics based on geographically distouted information.

Di erent forms of power predictions are considered, starthg from traditional

point forecasts, then extending to marginal predictive dersities and, nally,

considering multivariate space-time trajectories.

Point predictions is the most classical approach to wind pover forecasting, only
providing single-valued estimates of the expected future pwer generation. A
statistical model is introduced which improves the quality of state-of-the-art

prediction methods by accounting for the fact that forecast errors made by such
locally-optimized forecasting methods propagate in spacand in time under the

in uence of prevailing weather conditions.

Subsequently, the extension from point to probabilistic farecasts is dealt with,
hence requiring to describe the uncertainty associated wtt the point predictions
previously generated. Both parametric and non-parametricapproaches to form-



ing predictive densities are analysed, while ways to includ space-time e ects
into the corresponding models are presented and evaluated.

As a nal step, emphasis is placed on generating space-timerajectories: this
calls for the prediction of joint multivariate predictive d ensities describing wind
power generation at a number of distributed locations and fo a number of
successive lead times. A modelling approach taking advange of the sparsity of
precision matrices is introduced for the description of theunderlying space-time
dependence structure. Accounting for the space-time depeatencies is shown to
be crucial for generating high quality scenarios.

In addition to new improved approaches to wind power forecaing, a part of
this thesis is devoted to problems related to the assessmewtf high-dimensional
(multivariate) probabilistic forecasts. Namely, the work focuses on the energy
score: it illustrates and discusses that this score may be diult to use owing
to its low sensitivity to changes in dependence structures ad potentially high
uncertainty of the estimates.



Summary (Danish)

Optimal integration af vindenergi i energinet kreever vindenergiprognoser af hgj
kvalitet. Avancerede prognosemodeller giver typisk progwser for hver individuel
location uden at tage hgjde for informationen i de omkringlggende territorier.
Det er dog intuitivt forventet pa grund af inertien i meteoro logiske systemer, at
sadan en lokal fremgangsmade til energiprognosticering esuboptimal. Netop
fejl i meteorologiske prognoser kan blive til fronter af ubdancer, dvs. forme et
band af prognosefejl der udbreder sig henover hele regioner

Afhandlingen omhandler forslag og evaluering af nye matemiske modeller og
prognosemetoder til kortsigtet prognosticering af vinderergi ved at tage hgjde
for rum- og tidsdynamiske e ekter, baseret pa geogra sk digribueret informa-
tion. Forskellige typer af energiprognoser betragtes, stdende fra traditionel
punktprognosticering, sa udvidet til marginalprognosticerings densitet, og slut-
teligt betragtes multivariat rumtidsbaner.

Punktprognosticering er den mest klassiske tilgang til virdenergi prognosticering
der kun leverer skalare estimater af den forventede fremtigdje energiproduktion.
En statistisk model introduceres for at forbedre kvaliteten af avancerede progno-
semetoder ved at tage hgjde for det faktum at prognosefejl f@rsaget af sddanne
lokalt optimeret prognosemetoder, udbreder sig i rum og tidunder ind ydelse
af de fremherskende vejrforhold.

Efterfalgende er udvidelsen fra punkt- til probabilistiskprognosticering behand-
let, hvilket kraever en beskrivelse af usikkerheden knyttettil den foregdende
punkprognosticering. Bade parametriske og ikke-parameiske tilgange til dan-
nelsen af prognosedensiteter er analyseret, imens metodgr at inkludere rum-



tidse ekter i de tilsvarende modeller er praesenteret og evlueret.

Som et sidste skridt er veegten lagt pa at generere rumtidsbagr; dette kreever
prognosen af feelles multivariat prognosedensiteter der kekriver vindenergipro-
duction for et antal distribuerede positioner og for et antal pa hinanden falgende
gennemlgbstider. En modellingstilgang der udnytter praecsionsmatricers tynd-
hed er introduceret for beskrivelsen af den underliggendeumtidsafhaengigheds-
struktur. Redeggrelse for rumtidsafhaengighederne visest aieere afggrende for
at generere hgjkvalitetsscenarier.

Foruden nye forbedrede metoder til vindenergiprognosticeng er en del af den-
ne afhandling dedikeret til problemer relateret til evaluering af hgjdimensionelle
(multivariate) probabilistiske prognoser. Navnligt foku serer arbejdet sig pa ener-
gimalet: det illustrerer og diskuterer at dette mal kan veere vanskeligt at bruge

pa grund af dets lave falsomhed overfor eendringer i afheendigdsstrukturer og

potentielt starre usikkerhed for estimaterne.



Preface

This thesis was prepared at the department of Applied Matheratics and Com-
puter Science at the Technical University of Denmark (DTU) in partial ful I-
ment of the requirements for acquiring the Ph.D. degree in Egineering.

The thesis deals with di erent aspects of modelling and foreasting of wind
power generation. The main focus is placed on improving the xasting state-
of-the-art prediction methods by additional incorporatio n of the space-time dy-
namics into the models. Special attention is given to probabistic wind power

forecasting. In addition, some theoretical aspects relate to forecast veri cation

are addressed.

The thesis consists of a summary report and a collection of 8asearch papers
written during the study period.

Lyngby, 21-July-2013
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Chapter 1

Introduction

Renewable energy in general and wind energy in particular hae been growing
rapidly in the last decade, becoming a more and more importancomponent of
the global energy supply. A catalyst for such growth has beergrowing energy
demand, spiralling fossil fuel prices and an acute necesgyitto reduce carbon
dioxide emissions. From the current perspective all the fators which led to the
growth of wind energy in the last decades will continue advaging it in the future.
Global energy demand is expected to keep growing, even undehe declared
intentions to increase energy e ciency (use energy wiserfl]. Fossil fuel prices
are expected (under a relatively optimistic scenario) to sty at least as high
in the future [Z]. Global warming continues calling for sign cant reductions in
carbon dioxide emissions. In addition, the recent Fukushina disaster has lead to
a new wave of serious debate on the safety of nuclear energyaking it somewhat
undesirable in the forward-looking policies. All this makes wind energy a very
attractive alternative, which is expected to keep growing sgni cantly in the
years to come/[[3].

Already now wind energy meets 5.5% of the EU's electricity casumption. Den-
mark is the leader with about 30 % of national electricity demand coming from
wind. According to a new Danish energy agreement this numbeshould raise
up to 50 % by 2020[[4] and up to 100% by 2035. In the long run Denmét has
set an ambitious plan to become independent of fossil fuelsnbt only in terms
of electricity) by 2050. This calls for signi cant changes to the existing energy
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system.

Historically electricity was produced in large central plants located close to
the available resources, cities or industrial areas and the transported on to
the consumers through the transmission and distribution néworks. This has
already changed, as thousands of wind turbines have been itadled throughout
Denmark. Thus, power systems are moving from the traditiond centralized
systems towards distributed power generation.

Electricity is a highly perishable commodity it has to be used at the same
instant as it is produced and cannot be stored in the grid. Thuws, the core
principle of power system management is to ensure the balaecbetween power
generation and consumption at all grid points and at any time. In conventional

power systems this is achieved by letting the power supply filow the demand.

That is, the electricity users increase and decrease theiransumption whenever
they need to do so. Central power stations are then dispatche to provide the

power to meet the demand.

In this respect, wind is di erent from the conventional energy sources. Wind
energy cannot be scheduled at will it is produced when the wind blows and
cannot be produced when it does not. Wind energy, thus, inhdts the variable,
stochastic nature of wind. Due to that, wind power generatian (like solar, wave,
tidal) is often referred to as stochastic.

When there is a relatively small penetration of wind energy nto power systems,
the uncertainties in the corresponding power generation,nstead of being mod-
elled and accounted for in any special manner, are simply trated as additional
uncertainties on the demand side. That is, the conventionalpower stations are
dispatched to cover for the additional variability. However, this calls for more re-
serves, which reduces the potential environmental and ecamic bene ts o ered

by wind power.

A number of ideas can be considered to mitigate the increasedncertainty in
power systems stemming from large scale integration of wingénergy:

1. A strong power grid One way to balance the power supply and the de-
mand is to export/import power to/from an interconnected gr id [5], not
disregarding a possibility of that grid also being subject © the same power
balance issue. An ambitious and innovative proposal is give by the idea of
creating asupergrid. It is presented in [6] where G. Szisch claims that even
if only currently available technologies at their current prices are used, a
High Voltage Direct Current transmission grid across Europe, once in-
stalled, would guarantee a 100% renewable electricity sugp with costs of



1.1 Thesis Objective 5

such electricity lying not far above today's costs.

2. Energy storage For the moment there are no cheap large batteries avail-
able for wind energy storage. However, electricity can be @nsformed
to other energy sources and stored correspondingly. Tradionally, this is
done via pumped storage or heat pumps. Research into other thnolo-
gies (compressed air energy storage, ow batteries, hydrag,) is ongoing.
Information on the existing storage systems can be found inq] and refer-
ences therein.

3. Reserves Following [8], when wind power penetration is 10% of gross
consumption, the extra reserves needed are in the order of % of the
installed wind capacity. The total requirement depends on the grid par-
ticularities and quality of wind power forecasts. At higher penetration
levels more reserves are needed.

4. Demand-side managementould make it possible to transfer energy con-
sumption to the times when renewable energy sources are pleful. Elec-
tric vehicles, domestic micro Combined Heat and Power (CHP)units and
heat pumps could act as a vast electricity storage facility.

5. Wind power forecasting Using forecasts as input to decision making
problems in power grid operations is not a new concept. In paticular,
TSOs have a long history of using load forecasts in their desion making
[9, [10,[11,T2]. Thus, introduction of wind power forecasts bs been rela-
tively smooth and well accepted. Already today wind power faecasts are
widely used by many electrical utilities and are acknowledgd to reduce
operating costs [13/°8["14].

Wind power forecasts do not provide the solution by themseles. However, being
used as a key input to various decision making processes réda to power system
operations and participation in electricity markets, they comprise a necessary
and cost-e ective element required for the optimal integration of wind power
into energy systems [[I5/16]. Quality of the forecasts is vgrimportant [L6]
and thus improving prediction systems' performance has beae set as one of the
priorities in wind energy research needs for the period 206@020 [17].

1.1 Thesis Objective

The aim of this thesis is to contribute to advancing the frontier of wind power
forecasting by improving the quality of the existing state-of-the-art prediction
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systems. The principal approach for achieving this goal is® consider the spatio-
temporal characteristics of wind power forecast errors.

More speci cally, the initial idea of the work stems from the fact that operational
state-of-the-art wind power prediction systems are optimied for each and every
location individually (let it be a single wind farm or an aggregated portfolio of
wind farms), without properly accounting for the space-time interdependence
structure in the wind power generation eld. That is, tradit ional inputs to pre-
diction models consist of on-site observations (wind powemeasurements, wind
speed and direction) and/or meteorological forecasts. Irdrmation coming from
the neighbouring territories is not adequately consideredas it is assumed that
the space-time dynamics are captured by the meteorologicgbredictions used
as input. However, given a wide geographical spread of windafms and owing
to the inertia of meteorological systems, it is expected th& the errors of such
locally optimized forecasts would exhibit a certain depenénce pattern in space
and in time. This renders the state-of-the-art forecastingsystems suboptimal.

The purpose of this research is to analyse such underlying gendence patterns
and to account for them when deriving and examining new improeed models
and methods for wind power forecasting. Wind power forecast of di erent types

are of interest: starting with classical point predictions, then moving towards
univariate probabilistic forecasts describing wind powergeneration at a single
location for a given lead time and, nally, considering multivariate space-time
trajectories.

The rst step in this work consists of a preliminary examination of data to
illustrate that wind power forecast errors do indeed have sptio-temporal char-
acteristics. This is presented in PapelA. The results basedn a conditional
cross-correlation analysis show that forecast errors praggate in space and in
time under the in uence of forecasted wind speed and directin.

Following the results presented in PaperA, further researb aims at deriving
models which could capture the spatio-temporal dependencstructure in order
to improve the quality of the related wind power forecasts.

First, focus is on point forecasts which comprise a classi¢dorm of wind power
predictions given by a single-value estimate of the expectkfuture power gener-
ation for each location and each look-ahead time. PapdrB pneoses a method-
ology for improving the quality of the state-of-the-art poi nt predictions by cap-
turing the residual interdependence structure observed biveen forecast errors
made by the locally optimized systems at a number of distribued locations.
Conditional Parametric Vector AutoRegressive (CP-VAR) models are consid-
ered in the study. This is a new type of model based on the extesion of
ordinary Conditional Parametric (CP) models to a multivari ate framework. CP
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models comprise a class of linear models for which the coe @nts are replaced by
smooth functions of other variables. In our case the coe cients are described
as non-parametric functions of wind direction, hence accouting for weather-
driven pattern of error propagation. EXxisting estimation t echniques (adaptive
recursive least squares) are extended to CP-VAR models, threfore accounting
for slow variations in process dynamics.

Owing to the complexity of the decision-making tasks relatel to integration
of wind energy into power systems, primary interest has recatly moved from
classical point forecasts to probabilistic ones. For contiuous stochastic variables
(such as wind power generation), probabilistic forecasts e optimally given in
the form of predictive densities. If focus is placed on a uniariate stochastic
process only, .e. if the interest is in describing wind powe generation at a
single location for a particular lead time, then marginal predictive densities are
required. In a more general case, if aiming to describe wind gwer generation
at a number of locations over a period of time, then probabilstic forecasts are
optimally issued in the form of multivariate (joint) predic tive densities which
describe both the marginal densities and the dependence sicture.

Further in this study focus is placed on marginal predictive densities for wind

power generation, hence requiring description of the unceainty associated with

the point predictions previously generated. This problem B addressed in Pa-
pers[@ andDd where both parametric and non-parametric approahes to shaping
the uncertainty are analysed, while ways to include spaceitme e ects into the

corresponding models are presented and evaluated.

Subsequently, emphasis is placed on generating space-timeajectories (also
referred to as scenarios), which calls for prediction of muivariate densities de-
scribing wind power generation at a number of distributed locations and for a
number of successive lead times. The main feature of scenas, which distin-
guishes them from ordinary probabilistic forecasts, is gien by the fact that,

in addition to appropriate probabilistic description of po wer generation at each
location and each look ahead time, the scenarios ought to regct spatial and
temporal dependencies in the power generation eld. For infance, if the power
generation at a given time at a chosen location exceeds the pected value, then
it is very likely that the corresponding power measurementsat nearby sites
around the same time are also higher than expected. One of thgoals of the
thesis is to propose a methodology for issuing space-time djectories for wind
power generation. The related task is to examine the structue of the under-
lying space-time dependence and to propose an adequate panatrization for

describing it. This task is addressed in PapelE.

An important aspect to mention is that all the presented models are developed
with their practical applicability in mind. Case studies have been conducted
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considering real-life limitations and conditions, so that the performance of the
resulting models re ects the performance that would be achéved in real world
operations. To ease the computational load and to account foslow changes in
the process dynamics which are hard to model deterministicly (e.g., dirtiness
of the blades), priority has been on recursive and adaptive €imations schemes
(where possible).

In addition to new approaches to wind power forecasting, a pd of the study
is devoted to problems related to evaluation of probabilisic forecasts of a very
high dimension. Namely, emphasis is on the Energy score, wtti is one of the
lead criterion for evaluating probabilistic forecasts of nultivariate quantities.
The work documented in PaperH illustrates that this score may be di cult to
use in practice owing to its low sensitivity to changes in degndence structure
and the potentially high uncertainty of the estimates.

1.2 Thesis Outline

The thesis is structured as follows. Par{] introduces and smmarizes the papers.
Within this part, Chapter Zntroduces di erent aspects tha t constitute wind
power forecasting and brie y presents di erent research pahs that have been
explored as of now. ChaptefB comprises a summary of the mairesults obtained
in the papers. Finally, Chapter @ concludes Part].

Part [[is a collection of publications including the follow ing papers:

Paper[Al is a journal article published in Wind Energy. It comprises a preliminary
examination of data illustrating that wind power forecast errors do indeed
have spatio-temporal characteristics.

Paper[B is a peer-reviewed paper published in theProceedings of the European
Wind Energy Conference, EWEC, 2010. It deals with the spatio-temporal
correction of wind power point forecasts.

Paper[Q is ajournal article accepted for publication inIEEE Transactions on Smart
Grid, Special Issue on Analytics for Energy Forecasting wih Applications
to Smart Grid. The paper deals with univariate probabilistic forecasts d
wind power generation accounting for geographically dispesed informa-
tion.

Paper[D is a technical report which deals with univariate probabilistic forecasts of
wind power generation. It can be viewed as a complement to Pagr D
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since it describes some alternative approaches and modelsigh were con-
sidered, but not included in the journal article, as the quality of their
predictive performance was found to be not satisfactory enogh.

Paper[H is a technical report which deals with multivariate probabilistic forecasts,
.e. with space-time trajectories of wind power generation

Paper([H is a note submitted to IEEE Transactions on Neural Networks and Learn-
ing Systemswhich illustrates a methodological error in the CWC score
which deems the score not valid for the assessment of predioh intervals.

Paper[G is a discussion paper submitted tdEEE Transactions on Sustainable En-
ergy which provides an additional discussion on the CWC score.

Paper[H is a technical report which deals with sensitivity analysis of the Energy
score.
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Chapter 2

State-of-the-art in wind power
forecasting

Before presenting the actual contribution of this thesis tothe eld of wind power

forecasting, this chapter aims at giving a brief overview ofthe existing research
results in the eld of wind power forecasting. The objective here is not to give
a thorough literature review on the subject, but rather to introduce di erent

aspects that constitute wind power forecasting and to illugrate di erent research

paths that have been explored as of now. The chapter, thus, coprises a short
summary of the base knowledge the thesis has been built on. &m this, the

methods and approaches presented in the work can be better aierstood.

Section[Z.] presents the basic concepts of wind power foresting. The origins

of variability and predictability of wind power are discussed. The deterministic

power curve model describing a conversion of wind to electecipower is presented.
The implications of the power curve shape on wind power varidility are also

explained.

In Section[Z:2 we introduce di erent approaches to wind powe forecasting and
motivate the choice of the state-of-the-art prediction sysgem used as the foun-
dation and the principle benchmark for the methods and mode$ developed in
this study.
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Section[Z3 discusses probabilistic wind power forecastsFinally, the chapter
nishes with Section [Z.4 describing the important aspects dforecast veri cation.

2.1 Basic concepts

A wind turbine converts the kinetic energy of the wind into electric energy.
The amount of power the turbine produces is directly dependat on the wind

speed. The pattern of this dependency is described by a chacteristic curve,

also referred to as the wind turbine power curve. The shape dathe power curve
also depends on the generator, on the power electronics iradted, as well as
on the built-in control systems. The reader interested in the current status of
generators and power electronics used in wind turbines is ferred to [15].

Even though the turbine type a ects the shape of the power cuwe, roughly all
power curves are very similar in principle, since they are geerned by the same
law of physics. Figure[Z2.1 depicts the typical shape of a powecurve.

The power curve can be split into four distinctive parts. For wind speeds
below the cut-in value the turbine does not produce any power Power pro-
duction starts as the wind speed reaches the cut-in value. FRuher on, power
generation augments sharply and reaches the nominal turbie capacity at the
rated wind speed value. From the rated to the cut-o wind speed, the power
production is fairly constant. For wind speeds higher than the cut-o value, the
turbine stops for safety reasons and no power is produced. 8w of new wind
turbines have a "smooth cut-o" which means that the power does not drop
abruptly when the wind speed reaches the cut-o value, but isinstead reduced
gradually.

The increase in power production for wind speeds between theut-in and the
rated values can be explained by the physics of the energy cearsion process.
It can be shown that the kinetic energy of a cylinder of air of radius R travelling
with a constant wind speedv corresponds to a total wind powerPyoy  Within
the rotor swept area of the wind turbine. This power can be expessed by:

Protal = R 23 (2.2)

NI

Where is the air density, R is the rotor radius and v is the wind speed. In
reality, however, it is impossible to extract all the energy from the moving air,
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Figure 2.1: An example of an idealized power curve describing wind power
generation by a single wind turbine as a function of wind sped

but rather only a fractions of it. The theoretical upper limi t for this fraction

is given by the Betz's limit, C, = 16=27 (approximately 0.593). In practice the
performance ratio reaches 0.52 0.55 when measured at the buof the turbine.
However, this is not taking into account the losses in the geaand the generator.
If such losses are deducted, then the resulting performanacatio is in the range
of 0.46-0.48[[15].

Since wind power generation is a function of wind speed, uasations in wind
speed translate to changes in wind power generation. Fluctations in wind
speed are observed on di erent time scales. In this work the rain interest in
on short-term power forecasting, which means that the time sales of interest
are in the order of hours. Fluctuations in wind speed on thesdime scales (from
minutes to hours) fall into a part of spectrum which separate turbulent ow
from the mean ow [I8]. The corresponding wind speed volatity is governed
by the atmospheric stability, time of the year, large cumulus clouds and rain
events [18]. The fact that wind speed volatility patterns are not constant in
time, but change depending on various meteorological contions, emphasizes
the fact that wind speed time series are highly non-stationay. This naturally
translates to non-stationarity of wind power series.

The shape of the power curve has a very important impact on thewvay volatility
of wind translates to the wind power variations. Fluctuations in wind speed
which occur close to the cut-in or the cut-o values get dampened by the corre-
sponding at parts of the power curve. However, in the steep @rt of the power
curve even a small change in wind speed leads to a large changethe power
production. This is why large uctuations in power producti on are normally
observed when the power production is far from its natural gaeration bounds,
while close to these bounds, the power generation is ratherteady.
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When looking at the power curve shown in Fig.[LZ1, one could tink that wind
power forecasting boils down to obtaining accurate wind sped forecasts and
transferring them to power generation through the manufacurer's specied
curve. However, an additional challenge stems from the facthat the deter-
ministic relationship as shown in Fig.[Z1 di ers from the empirical power curve
observed in practice. Partly this can be explained by the fat that the man-
ufacturer's power curve is obtained when testing a single tubine in idealized
conditions (obtained in a so called test tunnel): when the tubine is exposed
to constant smooth ow of wind, with no obstacles, no turbulence, normal air
pressure, etc. In reality, the behaviour of the wind is more omplex than a
constant ow with no turbulence, the air density also varies depending on the
prevailing weather conditions all this a ects the empiric al power curve. An
even more important factor, however, is given by the fact tha in practice wind
turbines are normally gathered into wind farms. Thus, such fictors as shad-
owing e ect and, terrain particularities become very important and a ect the
resulting power generation. In addition, a single wind farm often aggregates
turbines of di erent type, age, etc. All this leads to the fact that the empirical
power curve di ers signi cantly from its deterministic cou nterpart as discussed
in more details in [19].

2.2 Point forecasts

This section does not provide a detailed overview on the higiry or on the state-
of-the-art of wind power forecasting. Instead, the goal hee is to explain which
of the existing forecasting approaches has been chosen astmain benchmark
and foundation for the models proposed in this thesis and why A chronology
and evolution of the short-term wind power prediction can be found in [20],
while detailed reviews of the state-of-art in the eld are given in [21,[13].

One way to classify wind power forecasting models is to looktahe input they
use - namely, do they involve Numerical Weather Predictions(NWP) or not?
Typically, using NWP as input improves the quality of the resulting forecasts
when considering prediction horizons larger than 3-6 hoursahead. Since the
main goal of this thesis is to account for the space-time dynmics, then fore-
casting systems involving NWP have been considered as strger benchmarks,
since they partly account for the space-time motion of meteeological phenom-
ena as captured by the NWP.

Methods for wind power forecasting involving NWP have been fstorically cat-
egorized into physical and statistical approaches. Todayhowever, the limit
between them has become less clear, as it is commonly agreduht optimally
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the two approaches should be combined.

Physical models  consider numerical weather predictions and further rely on
dynamical models of the atmospheric ows in order to obtain the corresponding
wind speed estimate for the considered location at the hub hght. Further,
an idealized manufacturer's power curve is used to obtain te corresponding
estimate of the resulting wind power output. Finally, model output statistics
are employed to (partly) correct the residual model error.

Statistical models aim at nding a relationship between power measure-
ments and some explanatory variables (both NWP and histori@al power mea-
surements). Usually, time series, regression or arti cialintelligence techniques
are employed for the purpose.

Given the wealth of forecasting approaches, a natural quesn is which of the
techniques performs the best.

Comparison  of the performance of the existing prediction systems is nofn

easy task. The main obstacle is that, in order to compare the rodels, it is very
important that the data used for the model estimation and validation is exactly

the same. In practice this makes it almost impossible to cary out a quanti-

tative comparison between a large number of models and methis. However,
some rigorous benchmarking has been performed. Within therdmework of the
European Anemos project, a number of prediction models haveeen used to is-
sue power predictions for a set of wind farms. The consideredind farms have
been selected to cover a wide range of conditions with respeto climatology

and terrain particularities.

Most of the considered predictions systems are expert-quéy operational fore-
casting tools used by the system operators in Spain, Germanpenmark, Ireland
and Greece (at the time the study took place). Detailed resuls of the compar-
ative study are given in [22,[23].

In short, the results have shown that the performance of the nodels depends
on the terrain complexity and that none of the studied models has the best
performance for every horizon and for every test case.

A general picture indicates that the considered statisticd approaches tend to
outperform the physical ones for short lead times (1-6 hour head).
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Based on those results, we have considered statistical farasting approaches
(involving NWP) for forming the main benchmark in this work.

One of the statistical systems tested in the above-mentiong comparative study
is the Wind Power Prediction Tool (WPPT). The results of the s tudy have con-
rmed that this system provides expert-level forecasts of wnd power generation.
Based on these results and based on the fact that we have acset® the WPPT
(provided by Enfor A/S), this system has been chosen as the mia benchmark
in this work.

The WPPT is a statistical forecasting system originally developed #athe
Department of Informatics and Mathematical Modelling (IMM ) at the Tech-
nical University of Denmark. The development started in 199 with the rst

operational implementation at ELSAM (now DONG Energy) in 19 94. For the
rst description of the WPPT and the experiences at power dispatch centres
the reader is refereed to[[24]. Currently the system is a prodct of Enfor A/S,

where it is being continuously updated.

Today the WPPT provides its users with a wide range of possildities: e.g.,
generating wind power scenarios, estimating probabilitis of cut-o, adaptive
guantile estimation. However, here the interest is in traditional point forecasts
which are given by the estimates of the expected future powegeneration for
each location and each look-ahead time. Therefore, furthein this work, when
referring to the WPPT, we refer to its point forecasting module.

The corresponding model provides a point forecast followig a two-step proce-
dure.

In the rst stage conditional parametric models are employad to model a statis-
tical power curve describing wind power generation as a furteon of forecasted
wind speed and wind direction. More information on it can be bund in [25].

The second stage model (also referred to as dynamical modeaises the obtained
power curve estimate as input and provides a further statistcal correction, based
on the recent power measurements and residual diurnal e ed possibly not
captured by the NWPs. More information on the dynamical part of the WPPT
can be found in [26]

Following [27], the overall model writes as:

fok,-t = fi(Wer kit ks K)

et = (ko K)pe + B( e kit K)BEY 1 +
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Where p?ff kit denotes a power curve estimate of wind generation for time + k
issued at time t, w;. ;¢ is wind speed forecast for timet + k available at time
t, t+kjt IS wind direction forecast for time t + k available at t, dtsz denotes the

hour of the day at time t + k, p; is the power observation at time t, p{’fkjt is

the nal power prediction for time t + k issued at timet. Finally, f’}(:), A (),
ﬁ(:), €7(:) and € (:) are the estimates of the corresponding coe cient functions
available at t.

Estimation of the model parameters can be carried out in the aaptive and
recursive way, both to ease the computational load and to acount for the smooth
variations in the process dynamics. Detailed descriptionf various versions of
the WPPT and the corresponding estimation routines can be fand in [27].

Please note, that currently operational WPPT version might di er from the one
given in Eq.[Z2. However, the principle has remained unchaged.

The WPPT is currently operational at a number of Danish actors in the wind
power generation eld (Energinet.dk, DONG, Vattenfall) as well as at a number
of others outside Denmark (Nuon (Holland), AEMO (Australia ), Hydro Quebec
(Canada)).

2.3 Probabilistic forecasts

Point forecasts of wind power generation remain widely usedy Transmission
System Operators (TSOs) due to their interpretability [L6], as for point fore-
casts, just one value is assumed to fully describe the futur@ower generation.
However, such forecasts are never perfectly accurate as tteeis always an ele-
ment of the associated uncertainty [28].

Traditional point forecasts provide no information about t he uncertainty of the
predictions. Instead, it is suggested that the conditional expectation of the
future outcome contains all the necessary information necssary to make an
optimal decision. However, for a large class of decision-nking problems the
optimal solution is directly linked to other process functional than the expec-
tation (e.g. it might be a speci ¢ quantile or some correlation measure). This
is discussed when considering wind power applications in'8, while some more
general theoretical derivations can be found in[[30].
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This renders point forecasts, only addressing the expectedind power genera-
tion, a suboptimal input to many decision-making applications, especially the
ones related to stochastic optimization or risk assessment Motivated by the

above facts, primary interest is shifting from point to probabilistic wind power

forecasting [31].

Examples of the decision making application requiring prolabilistic wind power
forecasts include wind power trading in the electricity market [32], economic
load dispatch and stochastic unit commitment [33,[34[35], ptimal operation of
storage [36], reserve quanti cation [37] and assessment @fperating costs [14].

The rst results on probabilistic wind power forecasting were obtained in the

early work of Brown et al. [38]. In the study the authors consiered a Gaussian
distribution for describing wind speed data. The theoretical power curve was
used to transform the Gaussian predictive intervals desching wind speed into
the corresponding predictive intervals for wind power geneation. The almost

twenty years, scienti ¢ research mainly focused on point feecasting of wind

power generation, before the probabilistic wind power foreasts attracted a new
wave of attention.

In some way the two di erent schools for wind power point forecasting (physi-
cal and statistical) have translated to two di erent approa ches to probabilistic
forecasting.

Authors focusing on the physical approaches consider how uncertainty
in wind transforms to wind power uncertainty. Predictive densities for wind
speed are obtained either proposing some modelling approlaes [39] or through
the ensemble forecasts [4(), 41] issued by the considered NWiPovider. Proba-
bilistic wind forecasts are further transformed to wind power forecasts, normally
through a deterministic power curve [39,[40/41].

The following di culties are associated with the physical a pproach.

First, numerical weather predictions are obtained by solvihg a system of partial
di erential equations describing dynamics of the atmosphee. Therefore, in their
essence, the numerical weather predictions are obtaineddm a deterministic
description of the system. The ensembles are obtained by caeidering di erent

initial conditions and/or considering several di erent mo dels for describing the
atmosphere, thus in essence such ensembles are a collectiohdeterministic
forecasts obtained from deterministic models. Thereforethe stochastic nature
of the complex meteorological phenomenon is not fully accated for. This can
be viewed as a major reason for the fact that ensemble forecsdo not provide
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a reliable description of the forecast uncertainty. Forecat reliability can be
improved to a certain extent if some statistical post procesing is considered,
e.g. model output statistics.

Second, similar as ensemble forecast is only a suboptimal pioabilistic descrip-
tion of wind speed, a deterministic power curve is also only asuboptimal way
to describe the dependency between wind speed and wind powerdeally, a
stochastic power curve should be used19]. Recently a modédr describing a
stochastic power curve was presented i [42].

An alternative, following the statistical school, is to construct proba-
bilistic forecasts for wind power generation directly, without the intermediate
step of modelling the uncertainty of the wind. Advantages of this approach
are (i) no need to directly account for the complexity of the gochastic power
curve, (ii) owing to the geographical distribution of wind f arms, the correspond-
ing wind power data contains substantially more information than numerical
weather predictions or 3-hourly data coming from the few avédlable meteorolog-
ical stations.

When interest in probabilistic forecasts re-appeared in thke early 2000, there was
already a wide range of high quality forecasting techniquesvailable for issuing

point predictions. Thus, a statistical approach to probabilistic power forecasting

naturally took place through the probabilistic descriptio n of the point forecast

errors.

One way to probabilistically describe forecast errors is tdook at all the available
historical forecast errors and assume that the future predition errors will follow
the same pattern. When described in such a way, the uncertaity description is
constant for any considered period and is not designed to digiminate between
periods of di erent variability. Therefore, in the literat ure it is common to refer
to such an uncertainty estimate as climatological uncertainty, as opposed to
the meteorological one.

In order to account for the fact that wind power forecast uncetainty is not
constant, but depends on some explanatory variables, clagsation techniques
have been considered. For instance, i [43] the authors coitkered classi cation
according to the expected level of power generation. Even thugh such classi -
cation approaches are rather appealing, owing to their easand rather intuitive
interpretability, they lack continuity in uncertainty des cription. To cover for
this, various smoothing techniques can be employed. In[[44]a fuzzy-logic-
based approach has been used for that purpose, while in‘[45hd [46] quantile
regression techniques have been employed. In particulard$] considered local
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regression, which uses kernels to smooth the data, while irid6] the authors
considered splines for this purpose. Both the adaptive resapling [44] and the
time-adaptive quantile regression [[46] approaches have ke compared in [47],
where it is shown that they yield similar results.

In parallel to the non-parametric approaches to probabiligic wind power fore-
casting, some e orts have been made to propose a parametricegcription of the
error distributions. For example, in [48] P. Pinson consideed Beta, Censored
Gaussian and generalized logit-Normal densities for desitting wind power gen-
eration, and subsequently compared the performance of theesulting forecasts
using the test case with 10 min ahead power predictions.

Similarly, as in the case with wind power point predictions, probabilistic wind
power forecasting techniques are usually optimized with repect to local infor-
mation only. One of the objectives in this thesis is to introduce and evaluate a
methodology enabling optimal probabilistic wind power forecasts which account
for geographically dispersed information.

2.4 Scenarios

Recent methodologies for probabilistic wind power forecaing focus on pro-

viding information on prediction uncertainty for each site and each look-ahead
time individually. They inform neither on the inter-depend ence structure be-
tween forecast errors observed at di erent locations, nor @ the way these errors
propagate in time. However, for a number of applications suk marginal predic-

tive densities are only a suboptimal input, as the joint distribution describing

wind power generation at a number of sites over a period of tire might be of
interest.

Multivariate predictive densities are often communicated in the form of scenar-
ios (also referred to as trajectories or ensembles). This dice is motivated by
the fact, that multivariate predictive densities often do n ot have an easy analyt-
ical structure. Also, trajectories are normally preferred by the end-user, since
they are easy to use in the conventional deterministic optinization systems and
decision tools. From the forecasters point of view, scenans can be obtained by
random draws from the associated predictive density.

Once again, the physical approach to generating such scenarios could take
its way through the translation of ensemble meteorologicalforecasts to wind
power scenarios. However, there are several di culties redted to this approach:
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First, meteorological ensembles often lack calibration ad need to be statistically
post-processed in order to provide reliable forecasts at aigen location [40].
Many post-processing techniques are local. That is, they a designed to target
each site and each look-ahead time of interest individuallythus not respecting
the interdependence structures.

Second, as already mentioned in this work, translation of wnd to wind power
is optimally described by power curves which are stochasticsite-speci ¢ and of
a rather complex nature.

Third, the number of meteorological ensembles is normallyn the range of 5-50
members. When interest is in power generation at many sites rad over a large
number of prediction horizons, the dimension of the problembecomes high, and
having only 5-50 members might be not su cient to represent the underlying
multivariate predictive density.

An appealing alternative is to estimate the joint predictive densities using
statistical methods. One of the techniques is given by a copa approach. It is
based on decoupling the problem of nding the joint predictive distribution into
two independent steps of (i) estimating the marginal densites targeting each site
and each prediction horizon individually and (ii) modellin g the interdependence
structure between the marginals.

2.5 Forecast veri cation
In [49] A. H. Murphy identi es the following distinct types o f forecast goodness:
1. Consistency is given by the correspondence between forecasts and fore-

caster's best judgements.

2. Quality is given by the correspondence between forecasts and obsarv
tions

3. Value is given by the bene ts the users gain when using forecasts
Since (i) a forecaster's judgements are internal to the foreaster and are un-

available for explicit evaluation and (ii) forecast value depends on the particular
application at hand, in this work the main focus is on quality assessment.
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2.5.1 Evaluating point forecasts

Evaluation of point forecasts is probably the most intuitive when compared with
the assessment of probabilistic forecasts or space-timedjectories. The basic
quantity used for assessment of single-value forecasts isvgn by the forecast
error which is de ned as:

“tekjt = Prek Brekjt (2.3)

where ", j; denotes an error made at timet + k by the corresponding forecast
issued at time t, pi+ is power measurement at timet + k and ;. ;. is power
forecast issued att for time t + k.

Following [50], in practical applications it is usually more convenient to introduce
the normalized prediction error ¢ yj;:

T
= 2.4
t+ Kkjt Pn ( )

where P, is the nominal capacity of the considered site. Normalizingerrors
permits one to compare the errors obtained at di erent locations, independent
of their rated capacities. Since the goal of this thesis is tdrack the propagation
of prediction errors in space and in time, normalization of the errors obtained
at di erent locations has been performed.

In general, there exists a wealth of error measures which cabe employed to
evaluate the performance of point forecasts. Aiming at stadardizing the pro-
cedure of point forecast veri cation, in [50] H. Madsen at al present a complete
protocol consisting of a set of criteria appropriate for the evaluation of wind
power prediction systems. Regarding the performance meases, the authors
argue that as a minimum set of error measures, the followingtsould be used:

1. Bias, BIAS , which computes the mean of all errors over the validation
period:

P N
BIAS (k) = %tk (2.5)
This criterion informs on whether the forecasting method tends to over-
predict or under-predict. If the BIAS = 0, this means that in the long run
positive and negative errors cancel each other out, so thathe resulting
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predictions are unbiased. However, it does not give much imfrmation
about the forecast accuracy, since it does not inform on the mplitude of
the errors.

2. Mean absolute error, MAE is computed as the mean of absolute errors
over the validation period:

P

etk
MAE (k) = % (2.6)

3. Root mean squared error,RMSE is computed based on squared errors
over the validation period:

S
- E——

N
t=1 ( t+ k)2

RMSE (k) = N

2.7)

Which of the scoring rules should be used as the lead criterioin practice?
In general, if it is not known what precise functional of the process (e.g. the
expectation, a certain quantile,...) is aimed to be descriled by the forecasts,
then one should follow the protocol in Ref. [50] and look at tle number of
measures. However, if the target functional is known, thereis no need to use
several di erent scores.

This point is discussed in [51]. Here the author develops a #ory for the no-
tions of consistency and elicitability and argues that in order to make an e ective
point forecast, the forecaster should be told a priori what finctional is of inter-

est. Once such functional is known, the forecaster can use $ibest judgement to
make optimal point prediction. It is then important that the scoring function
is consistent with the given functional. By consistency it is implied that the

expected score should be optimized when the prediction coesponds to the re-
quested functional of the process. And a functional is elicable if there actually

exists a score which is consistent for it.

In [51] the author recalls some classical results, such as tise for the mean and
the median, and also derives some original results, such ashowing that scoring
functions which are consistent for the value-at-risk funcional do not exist.

In the case of the mean functional, the consistent scoring factions are the
Bregman functions. On the basis of the work of Savage in([52]the author
recalls that up to a multiplicative constant, squared error is the unique Bregman
function of the prediction error form. This means that if the expectation is the
functional of interest, then the RMSE should be used.
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Similarly, if the functional of interest is given by a quantile, then the consistent
scoring functions are generalized piecewise linear. Thisrdnslates to the fact
that the MAE score should be used if the functional of interest is the medin.

Since in this work, when talking about point forecasts, we réer to the estimates
of the expectation of the future power generation, theRM SE criterion is used
to evaluate predictions. For the sake of consistency, we atsemploy quadratic
loss functions in our point forecasting models.

In this work a point forecast aims at estimating the expectedpower generation
at a single location for a given lead time. Therefore, the eviuation is based

on measuring how consistent the forecasts are with the contional mean of the

process RMSE ) rather than looking at other types of quality measures (sud

asMAE or BIAS ). That is, the focus is on "how well does the point forecast
represent the expected power generation” rather than on a me general question
"how well does the point forecast match observations”.

2.5.2 Evaluating probabilistic forecasts
2.5.2.1 Dierent quality aspects of probabilistic forecas ts

Generally speaking, prediction quality is related to the level of correspondence
between forecasts and observations. In the case of point fecasts, the mea-
sures for this correspondence are more intuitive than in thecase of probabilis-
tic forecasts. This is because assessment of probabilistiorecasts calls for a
distribution-orientated approach where one has to evaluaé how consistent a
predictive density is with the corresponding distribution of observations.

In [49] Murphy envisages a distribution-based approach to drecast veri cation.
Even though the author considers single-valued forecastd)e notices that both
forecasts and outcomes are random variables and that theirexjuences have a
joint distribution which contains full information on fore cast quality.

Comparing predictive and observed densities is the core ofrpbabilistic fore-
casts. Thus, the nding presented in the work of Murphy can be applied (with
possibly some minor formulation modi cations) to the case d density forecast
assessment.

In [49] the author distinguishes between a number of di erert aspects of forecasts
quality.
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Here we will brie y introduce several of these aspects that ae relevant for the
further discussion:

Reliability (also referred to as calibration) is related to statistical con-
sistency between forecasts and observations. A probabilis forecast is
well-calibrated if it coincides with a suitable conditional distribution of
observations. We follow the formal de nition given in [53].

Let F; be a predictive distribution of X attime t. The sequencef:)i=1 2.
is probabilistically calibrated relative to the corresponding sequence of real
process generating distributions Gi)i=1:2: if

1 X L
T G F (P! p (2.8)
t=1

forall p2 (0;1).

That is, if a forecast places a probability p on the event X = x, then this
event must be observed with the probability p.

Resolution relates to the ability of a forecasting system to issue sitution-
dependent predictions. High resolution means that on averge di erent
forecasts are followed by di erent observations.

Sharpnessis a property of the forecasts only and does not inform on the
correspondence between forecasts and observations. Tha, isharpness is
given by variability of forecasts when inferred from the marminal forecast

density. For example, in the case of wind power forecastinga forecast
stating that wind power generation will be 0 with probabilit y equal to 1

is very sharp, even though it might not be consistent with the observed
power generation. In the case of perfectly calibrated foreasts, sharpness
and resolution are equivalent [49].

Uncertainty is a property of observations only. It is related to variability
of observations when looking at the marginal density of obsevations and
thus it does not depend on forecasts at all.

2.5.2.2 Scoring probabilistic forecasts

Provided that there are many aspects of forecast quality, hav should one com-
pare several competing forecasting approaches? One way ddbe to check one
or several measures of quality and compare the magnitudes. divever, the prob-
lem is that, even if one forecast scores better in one or sevarquality aspects,
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this does not guarantee that it will perform better in all the aspects. Moreover,
it does not guarantee that this forecast is of greater value ¢ all end-users[[49].

A solution to this problem is to consider scoring rules whichwould address a
number of quality aspects simultaneously and summarize then into a single-
valued numerical score. Such a score then could be used to fathe competing
forecasts. The question is then which aspects to combine, a@nwhat weights to
assign to each of them? In order to answer this question rst he ideal forecast
should be de ned, since obviously scoring rules should be ostructed in such a
way that the ideal forecast should be the one resulting in theoptimal score.

One could argue that the real value of forecasts is given by tb benet they

bring to the end user and thus a measure of forecast value shtiibe used when
ranking competing forecasting approaches. However in prdice a forecaster is
often not aware of the loss functions used by the users. In adtion, those loss
functions might also be very di erent in practice: for some end users forecast
calibration might be of the highest importance, meanwhile dhers might call

for forecasts of high resolution in order to optimize prot. What should the

forecaster then target?

The answer is that the ultimate forecasting goal is to issue gredictive density
which coincides with the real process generating density. nl this idealistic case
such predictive density will be preferred by all forecast uers, independent of
their loss function [54]. The fact that the ideal forecast isgiven by the real data
generating density is directly related to the requirement for scoring rules to be
proper.

Propriety is an essential property of a scoring rule, ensurig that the optimal
score is achieved when the probabilistic forecasts coinaidwith the real process
generating density [55,56]. The mathematical grounds of popriety ensure that
the forecaster is encouraged to be honest and issue prediotis based on his
best judgement, as argued in[[49]. An overview of the properres available
for veri cation of probabilistic forecasts is given in [56].

Without going into the details on all the available scoring rules, we will focus
on the Continuous Ranked Probability Score (CRPS), which isthe lead score
used in this thesis for evaluation of probabilistic forecas
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2.5.2.3 Continuous ranked probability score

The scoring rule corresponding to the CRPS is de ned as:

Zl
crps(P; x) = ) (P(y) 1(x y)dy (2.9)

where P denotes predictive distribution, x denotes an observation andl stands
for the Heavyside step function taking the value 1 if the condtion inside the
brackets is ful lled and 0 otherwise.

Following this de nition, the crps is a negatively orientat ed score with the min-
imum value equal to 0.

One way to estimate the crps is by using numerical integration techniques.
Sometimes, however, the integral can be evaluated in a cloddorm by using the
following identity:

crps(P;x) = EpjX  X; %Epjx X9 (2.10)

where X and X °are independent random draws fromP and Ep (:) denotes the
expectation with respect to the probability distribution P.

For assessing a probabilistic forecast over a data set cont@ing T observations
the average of thecrps values for each forecast/veri cation pair is calculated
resulting in the overall CRP S value.

1 X
CRPS(P;x) = T crps(Py; Xt) (2.12)
t=1

There are several features of theCRP S score which make it appealing in prac-
tical applications.

First and foremost, it is a proper score [56].

Second it is a distance sensitive score, meaning that a creds given for assigning
high probabilities to the value near the one materializing.
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Third, the CRP S for point forecasts is equivalent to theMAE , thus the CRP S
provides a direct way to compare point and probabilistic forecasts.

Another particularity of the CRPS is that it is a robust score, compared to
the likelihood-based scores (such as the logarithmic scordor instance [56]).
The problem with the likelihood-based scores is that they ae very sensitive to
outliers which might be a problem in practical applications. For example, the
logarithmic score is in nite if the vanishing probability i s assigned to the value
which materializes.

Following [57], the CRP S can be decomposed into reliability, resolution and
uncertainty parts. Such decomposition can be used to obtaima better insight
on the behaviour and properties of the forecasting system.

In addition, in [58] the authors proposed threshold and quatile-weighted ver-
sions of theCRP S. The weighted version of theCRP S puts more weight on the
regions of interest (let it be the central part or the tails of the distribution) while
retaining the crucial property of the score being proper. Threshold and quantile
decompositions of theCRP S can also be used for evaluating the strengths and
de ciencies of the forecasting system.

2.5.3 Evaluating scenarios

Essentially wind power generation scenarios (also referteto as space-time tra-
jectories or as ensemble forecasts in meteorology) can beewed as random
draws from the joint multivariate predictive density describing wind power gen-
eration at a number of sites over a period of time. In the literature there exists
rather few proposals regarding veri cation of multivariat e probabilistic forecasts
and probably the most rigorous work on this subject is given ly T. Gneiting et
al. in [59].

In principle veri cation of multivariate predictive densi ties is similar to that of
univariate probabilistic forecasts discussed in the prewdus section. Most proper
scoring rules available for evaluation of univariate predctive densities have the
corresponding analogues available for assessment of mutiriate forecasts.

For example, the CRP S extends to the Energy score with the related scoring
rule de ned as:

es(Pix) = EpjiX xjj SEpjiX X9 (2.12)

where P denotes predictive distribution, x denotes an observation X and X°
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are independent random draws fromP and jj:jj denotes Euclidean distance.

Then the overall Energy score over T observations is obtaing from

1 X
ES(P;x) = T es(Py; Xt) (2.13)
t=1

The Energy score is shown to be propei [56].

If the proper scoring rule which we considered as the lead derion when eval-
uating univariate predictive densities extends to the multivariate framework,
then what is the problem?

First, in case of the CRP S score there are decomposition techniques available
which can be used for better understanding of the bene ts andpitfalls of the
considered forecasting system. There are no analogues ofcbudecomposition
available for the Energy score. Thus, even if we get a singlealue score evaluat-
ing the forecasts, it is not clear what makes one or another fieecasting system
better. One way to overcome this issue could be by looking athe situation-
based performance as suggested by [60].

However, the most crucial issue comes with the estimation othe score. Evalu-
ation of the Energy score requires estimating expected vaks of the Euclidean
distance between forecasts and observations. Most often ased-form expres-
sions for such expectation are unavailable and one needs tonploy Monte Carlo

methods in order to estimate the score[[59]. When dealing wit problems of
a very high dimension, Monte Carlo techniques result in comptational chal-

lenges. The problem of computational load translates to inceased sampling
uncertainty which makes it more di cult to conclude on the su periority of one

forecasting system over another.

There are alternatives to the Energy score. One of them is gien by the loga-
rithmic score which is de ned as

logs(P;x) = Inp(x) (2.14)

where p denotes a predictive density andx denotes a value which materializes.

Allowing for some a ne transformations the logarithmic score is the only local
proper score (see Theorem 2 in[61]). Locality means that thecore depends on
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the probabilistic forecast only through the value which the predictive density

attains at the observation [55]. An important advantage of using local scores
when dealing with multivariate predictive densities comeswith the related com-

putational bene ts. When dealing with local scores, there s no need to draw
random samples from the predictive density in order to evalate the score.

The downside of the logarithmic score is its sensitivity to aitliers. The score
is in nite if the forecast assigns a vanishing probability to an event which oc-
curs. In practice, when working with the real data, such sengivity might be a
problem.

Due to its sensitivity to outliers, the logarithmic score can not be used for
evaluating scenarios in the same way as the Energy score. Thés, the loga-
rithmic score requires knowing the underlying predictive density. Suppose, that
a forecast is given in the form ofm equiprobable scenarios with the scenario-
generation density being unknown. If we are to consider onlyhe raw ensembles
without dressing them with a continuous support having densty, this is essen-
tially equivalent to assuming an empirical predictive densty which assigns equal
probabilities of 1=m to each of the m available ensembles. Then, if an actual
observation falls in between any two of the ensemble membensather than on
one of them exactly, the logarithmic score will be in nite. T hat is, implemen-
tation of the logarithmic score in practice calls for the predictive density which
would assign a non-zero probability to every possible outcme. Therefore, this
score cannot be used for veri cation of ensembles directlyunless some statistical
post-processing is done.



Chapter 3

Thesis Contribution

This chapter comprises a short overview of the thesis conthution. The chapter

starts with Section [31] describing a methodology proposedoir the space-time
correction of wind power point predictions. Further in Section [3.2 probabilistic

forecasts are addressed. Sectidn_3.3 gives an overview oetproposal for gener-
ating space-time trajectories. The chapter nishes with Sestion B4 presenting
some remarks on the conditional discrimination ability of the Energy score.

3.1 Point forecasts

This section deals with space-time correction of point foreasts, mainly summa-
rizing the works presented in Papers A and[B.

The rst part of this section gives a brief overview of wind forecasting models
with o -site information as input. The overview is restrict ed to the approaches
which were available at the time this work was initiated in order to illustrate
the foundation used for building the initial proposals in this dissertation.
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3.1.1 Prediction models with o -site data input

At the time this thesis was initiated, there existed severalresearch works look-
ing at spatio-temporal propagation of information when corsidering wind data.

These works mainly dealt with cases where wind behaviour beteen the consid-
ered locations is easy to model, owing to the terrain topolog or meteorological
particularities of the area.

For instance, in [62] Damousis et al. have looked at the arearaund the Gulf of
Thessaloniki which is a ected by strong prevailing thermal winds. The authors
showed that accounting for the up-wind information improves the quality of the
resulting wind speed and wind power predictions up to 2 hoursahead.

Another example has been given in the work of Larson et al. in[g3]. Here
the authors have considered a potential wind farm located atthe exit to the
Columbia River Gorge, while meteorological observations wre available at the
entrance of the same Gorge. The results showed that the inckion of the up-
wind information in addition to the numerical weather predi ctions improves the
accuracy of the resulting wind speed forecasts.

Considering the same test case of the Columbia River Gorge, fieiting et al. in
[64] have proposed a regime-switching approach which accots for two dom-
inant direction, thus discriminating between situations when wind enters the
Gorge from two di erent sides. The results showed improvemats in wind speed
predictions up to 2 hours ahead.

In [65], the authors have proposed a generalization of the gime-switching model
described in [64] by including wind direction as a circular ovariate in the models.

The results of all the works mentioned above show signi cantimprovements
over the considered benchmark approaches (e.g. persisteg)cwhen testing the
models on smooth terrains with known physics of the prevailng wind behaviour.
However, if these methods are to be applied to other types ofase studies,
for which wind behaviour is more complex and where no channghg e ect is

present, one should not expect similar improvements.

Another important aspect is that all the studies mentioned above have focused
primarily on wind speed forecasting. However, since the mai interest in this
work is in wind power forecasting, it is bene cial to focus onwind power data
directly, without the intermediate step of considering wind speed. The direct
approach is preferable for a number of reasons: (i) owing toheir wide geograph-
ical spread, wind farms potentially contain more information than numerical
weather predictions with their relatively coarse spatial and temporal resolutions
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or few meteorological stations, (ii) it avoids modelling anempirical power curve
which is known to be of a complex nature as discussed in Sectid.

Consequently, the interest in this thesis is in proposing moe advanced models
tailored to wind power directly and not restricted to any par ticular, a priori
known meteorological pattern.

3.1.2 Space-time correction of wind power point predic-
tions

The rst step towards developing such models has been made bie preliminary

examination of data aiming to verify whether wind power forecast errors made
by a locally optimized system do indeed show any residual cs-correlation in
space and in time.

For this purpose 7 months of hourly data coming from 5 groups éwind farms
located in Western Denmark have been considered. Wind poweforecasts for
each of the groups have been made by the WPPT system. Conditimal cross-
correlation analysis has shown that the resulting forecasterrors propagate in
space and in time under the in uence of meteorological condions (mainly wind
direction). The details are given in Paper[A. However, it is important to stress
that in this study only the power curve model of the WPPT has been considered
(see eq. [[ZR)). This resulted in autocorrelated forecast reors. Due to the
residual autocorrelation, the magnitude of the dependenas presented in the
paper is signi cantly higher than the one which could be obseved if the full
WPPT model was used. Owing to that, even though the general rdings on
the pattern of error propagation presented in the paper hold the magnitude of
the illustrated improvements is higher than the one which caild be expected in
the operational setup. PapefA is the only study where the WPPT power curve
model has been considered - all the following research papeare based on the
full version of the WPPT.

The work documented in Paper[A has been recently elegantly ath more rigor-

ously generalized by Girard and Allard in [68] as they could lase their work
on a much longer data set when considering hundreds of locaths spread over
Western Denmark. Generally, the preliminary results in Paper [A] are in line

with the ndings uncovered in [66].

In order to account for the spatio-temporal patterns a Condtional Parametric
(CP) Vector AutoRegressive (VAR) model has been proposed inPaper[Bl. In
general, CP models comprise a class of models with a linearrscture, but for
which the coe cients are replaced by smooth functions of other variables. In this
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case, in order to account for the directional error propagaion, the coe cients
have been modelled as functions of forecasted wind directio

The model coe cients have been estimated adaptively in the irit of [67] in
order to account for the long-term variations in the processdynamics.

3.1.3 Result using aggregated data

The model has been validated on 15 groups of wind farms spreatthroughout
the territory of Western Denmark (see Fig.[31). One-hour-adead predictions
have been considered in this test case.

The grouping smooths out local variations and places focusra more global
phenomenon. The accuracy of the CP-VAR-corrected forecasthas been com-
pared to that of the original WPPT forecasts based on the RMSEcriterion. The
reduction in the RMSE (denoted as RMSE) is given as a percentage decrease
in the RMSE relative to the RMSE of the WPPT forecasts for eachgroup. The
results are presented in Fig[31L.

Figure 3.1: Predictive performance (improvements) given by the CP-VAR
model in terms of a percentage reduction in the RMSE ( RMSE)
of the forecast errors. (Produced usinghttp://maps.google.
dk/)
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Note that larger improvements (17-18%) correspond to the estern part of the
region. Thisis in line with the fact that in Denmark the preva iling wind direction
is westerly. Due to this the easterly located groups are usudy situated "down-
wind" and can benet well from the information extracted fro m the "up-wind"
territories.

An interesting point to mention is that for Group 9 the observed improvement
in the RMSE (4.08%) is not as large as for the surrounding zor® This could
be in uenced by the fact that while other groups are formed from wind farms
spread over larger territories, Group 9 covers a smaller a@ This leads to more
signi cant local variations, while making the improvement o ered by the spatio-

temporal model smaller. Another very likely explanation is that Group 9, in

contrast to the rest of the zones, is situated o the mainland. Therefore it is
very probable that the dynamics of Group 9 are di erent from t he rest of the
considered region.

3.1.4 Result using a single wind farm

The methodology presented in Papelf B can be also applied to mblems having a
di erent setup. That is, instead of focusing on several locéions simultaneously,
one can target a single location, while using a (small) humbie of neighbour-
ing territories as explanatory variables. Essentially, the estimation techniques
remain the same as for the vector approach. More details can é found in
Paper[Q.

In order to test the proposed methodology on a dierent test case, we have
considered 20 wind farms located in Denmark. The respectivéocations of the
considered wind farms are shown in Fig=312.

Instead of targeting several locations simultaneously, fous has been on improv-
ing the quality of forecasts for the Nysted wind farm, while the surrounding
sites have be used as explanatory variables.

There were two main reasons behind choosing to target NystedFirstly, with a
rate