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Summary (English)

Optimal integration of wind energy into power systems calls for high quality
wind power predictions. State-of-the-art forecasting systems typically provide
forecasts for every location individually, without taking into account information
coming from the neighbouring territories. It is however intuitively expected that
owing to the inertia in meteorological systems such local approach to power fore-
casting is sub-optimal. Indeed, errors in meteorological forecasts might translate
to fronts of imbalances, i.e. taking the form of a band of forecast errors propa-
gating across entire regions.

The present thesis deals with the proposal and evaluation ofnew mathematical
models and forecasting methods for short-term wind power forecasting, account-
ing for space-time dynamics based on geographically distributed information.
Di�erent forms of power predictions are considered, starting from traditional
point forecasts, then extending to marginal predictive densities and, �nally,
considering multivariate space-time trajectories.

Point predictions is the most classical approach to wind power forecasting, only
providing single-valued estimates of the expected future power generation. A
statistical model is introduced which improves the quality of state-of-the-art
prediction methods by accounting for the fact that forecasts errors made by such
locally-optimized forecasting methods propagate in spaceand in time under the
in�uence of prevailing weather conditions.

Subsequently, the extension from point to probabilistic forecasts is dealt with,
hence requiring to describe the uncertainty associated with the point predictions
previously generated. Both parametric and non-parametricapproaches to form-



ii

ing predictive densities are analysed, while ways to include space-time e�ects
into the corresponding models are presented and evaluated.

As a �nal step, emphasis is placed on generating space-time trajectories: this
calls for the prediction of joint multivariate predictive d ensities describing wind
power generation at a number of distributed locations and for a number of
successive lead times. A modelling approach taking advantage of the sparsity of
precision matrices is introduced for the description of theunderlying space-time
dependence structure. Accounting for the space-time dependencies is shown to
be crucial for generating high quality scenarios.

In addition to new improved approaches to wind power forecasting, a part of
this thesis is devoted to problems related to the assessmentof high-dimensional
(multivariate) probabilistic forecasts. Namely, the work focuses on the energy
score: it illustrates and discusses that this score may be di�cult to use owing
to its low sensitivity to changes in dependence structures and potentially high
uncertainty of the estimates.



Summary (Danish)

Optimal integration af vindenergi i energinet kræver vindenergiprognoser af høj
kvalitet. Avancerede prognosemodeller giver typisk prognoser for hver individuel
location uden at tage højde for informationen i de omkringliggende territorier.
Det er dog intuitivt forventet på grund af inertien i meteoro logiske systemer, at
sådan en lokal fremgangsmåde til energiprognosticering ersuboptimal. Netop
fejl i meteorologiske prognoser kan blive til fronter af ubalancer, dvs. forme et
bånd af prognosefejl der udbreder sig henover hele regioner.

Afhandlingen omhandler forslag og evaluering af nye matematiske modeller og
prognosemetoder til kortsigtet prognosticering af vindenergi ved at tage højde
for rum- og tidsdynamiske e�ekter, baseret på geogra�sk distribueret informa-
tion. Forskellige typer af energiprognoser betragtes, startende fra traditionel
punktprognosticering, så udvidet til marginalprognosticerings densitet, og slut-
teligt betragtes multivariat rumtidsbaner.

Punktprognosticering er den mest klassiske tilgang til vindenergi prognosticering
der kun leverer skalare estimater af den forventede fremtidige energiproduktion.
En statistisk model introduceres for at forbedre kvaliteten af avancerede progno-
semetoder ved at tage højde for det faktum at prognosefejl forårsaget af sådanne
lokalt optimeret prognosemetoder, udbreder sig i rum og tidunder ind�ydelse
af de fremherskende vejrforhold.

Efterfølgende er udvidelsen fra punkt- til probabilistiskprognosticering behand-
let, hvilket kræver en beskrivelse af usikkerheden knyttet til den foregående
punkprognosticering. Både parametriske og ikke-parametriske tilgange til dan-
nelsen af prognosedensiteter er analyseret, imens metodertil at inkludere rum-
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tidse�ekter i de tilsvarende modeller er præsenteret og evalueret.

Som et sidste skridt er vægten lagt på at generere rumtidsbaner; dette kræver
prognosen af fælles multivariat prognosedensiteter der beskriver vindenergipro-
duction for et antal distribuerede positioner og for et antal på hinanden følgende
gennemløbstider. En modellingstilgang der udnytter præcisionsmatricers tynd-
hed er introduceret for beskrivelsen af den underliggende rumtidsafhængigheds-
struktur. Redegørelse for rumtidsafhængighederne vises at være afgørende for
at generere højkvalitetsscenarier.

Foruden nye forbedrede metoder til vindenergiprognosticering er en del af den-
ne afhandling dedikeret til problemer relateret til evaluering af højdimensionelle
(multivariate) probabilistiske prognoser. Navnligt foku serer arbejdet sig på ener-
gimålet: det illustrerer og diskuterer at dette mål kan være vanskeligt at bruge
på grund af dets lave følsomhed overfor ændringer i afhængighedsstrukturer og
potentielt større usikkerhed for estimaterne.



Preface

This thesis was prepared at the department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial ful�l-
ment of the requirements for acquiring the Ph.D. degree in Engineering.

The thesis deals with di�erent aspects of modelling and forecasting of wind
power generation. The main focus is placed on improving the existing state-
of-the-art prediction methods by additional incorporatio n of the space-time dy-
namics into the models. Special attention is given to probabilistic wind power
forecasting. In addition, some theoretical aspects related to forecast veri�cation
are addressed.

The thesis consists of a summary report and a collection of 8 research papers
written during the study period.

Lyngby, 21-July-2013

Julija Tastu
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Chapter 1

Introduction

Renewable energy in general and wind energy in particular have been growing
rapidly in the last decade, becoming a more and more important component of
the global energy supply. A catalyst for such growth has beengrowing energy
demand, spiralling fossil fuel prices and an acute necessity to reduce carbon
dioxide emissions. From the current perspective all the factors which led to the
growth of wind energy in the last decades will continue advancing it in the future.
Global energy demand is expected to keep growing, even underthe declared
intentions to increase energy e�ciency (use energy wiser)[1]. Fossil fuel prices
are expected (under a relatively optimistic scenario) to stay at least as high
in the future [2]. Global warming continues calling for signi�cant reductions in
carbon dioxide emissions. In addition, the recent Fukushima disaster has lead to
a new wave of serious debate on the safety of nuclear energy, making it somewhat
undesirable in the forward-looking policies. All this makes wind energy a very
attractive alternative, which is expected to keep growing signi�cantly in the
years to come [3].

Already now wind energy meets 5.5% of the EU's electricity consumption. Den-
mark is the leader with about 30 % of national electricity demand coming from
wind. According to a new Danish energy agreement this numbershould raise
up to 50 % by 2020 [4] and up to 100% by 2035. In the long run Denmark has
set an ambitious plan to become independent of fossil fuels (not only in terms
of electricity) by 2050. This calls for signi�cant changes to the existing energy



4 Introduction

system.

Historically electricity was produced in large central plants located close to
the available resources, cities or industrial areas and then transported on to
the consumers through the transmission and distribution networks. This has
already changed, as thousands of wind turbines have been installed throughout
Denmark. Thus, power systems are moving from the traditional centralized
systems towards distributed power generation.

Electricity is a highly perishable commodity � it has to be us ed at the same
instant as it is produced and cannot be stored in the grid. Thus, the core
principle of power system management is to ensure the balance between power
generation and consumption at all grid points and at any time. In conventional
power systems this is achieved by letting the power supply follow the demand.
That is, the electricity users increase and decrease their consumption whenever
they need to do so. Central power stations are then dispatched to provide the
power to meet the demand.

In this respect, wind is di�erent from the conventional energy sources. Wind
energy cannot be scheduled at will � it is produced when the wind blows and
cannot be produced when it does not. Wind energy, thus, inherits the variable,
stochastic nature of wind. Due to that, wind power generation (like solar, wave,
tidal) is often referred to as stochastic.

When there is a relatively small penetration of wind energy into power systems,
the uncertainties in the corresponding power generation, instead of being mod-
elled and accounted for in any special manner, are simply treated as additional
uncertainties on the demand side. That is, the conventionalpower stations are
dispatched to cover for the additional variability. However, this calls for more re-
serves, which reduces the potential environmental and economic bene�ts o�ered
by wind power.

A number of ideas can be considered to mitigate the increaseduncertainty in
power systems stemming from large scale integration of windenergy:

1. A strong power grid. One way to balance the power supply and the de-
mand is to export/import power to/from an interconnected gr id [5], not
disregarding a possibility of that grid also being subject to the same power
balance issue. An ambitious and innovative proposal is given by the idea of
creating a supergrid. It is presented in [6] where G. Szisch claims that even
if only currently available technologies at their current prices are used, a
High Voltage Direct Current transmission grid across Europe, once in-
stalled, would guarantee a 100% renewable electricity supply with costs of
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such electricity lying not far above today's costs.

2. Energy storage. For the moment there are no cheap large batteries avail-
able for wind energy storage. However, electricity can be transformed
to other energy sources and stored correspondingly. Traditionally, this is
done via pumped storage or heat pumps. Research into other technolo-
gies (compressed air energy storage, �ow batteries, hydrogen,) is ongoing.
Information on the existing storage systems can be found in [7] and refer-
ences therein.

3. Reserves. Following [8], when wind power penetration is 10% of gross
consumption, the extra reserves needed are in the order of 2-8% of the
installed wind capacity. The total requirement depends on the grid par-
ticularities and quality of wind power forecasts. At higher penetration
levels more reserves are needed.

4. Demand-side managementcould make it possible to transfer energy con-
sumption to the times when renewable energy sources are plentiful. Elec-
tric vehicles, domestic micro Combined Heat and Power (CHP)units and
heat pumps could act as a vast electricity storage facility.

5. Wind power forecasting. Using forecasts as input to decision making
problems in power grid operations is not a new concept. In particular,
TSOs have a long history of using load forecasts in their decision making
[9, 10, 11, 12]. Thus, introduction of wind power forecasts has been rela-
tively smooth and well accepted. Already today wind power forecasts are
widely used by many electrical utilities and are acknowledged to reduce
operating costs [13, 8, 14].

Wind power forecasts do not provide the solution by themselves. However, being
used as a key input to various decision making processes related to power system
operations and participation in electricity markets, they comprise a necessary
and cost-e�ective element required for the optimal integration of wind power
into energy systems [15, 16]. Quality of the forecasts is very important [16]
and thus improving prediction systems' performance has been set as one of the
priorities in wind energy research needs for the period 2000-2020 [17].

1.1 Thesis Objective

The aim of this thesis is to contribute to advancing the frontier of wind power
forecasting by improving the quality of the existing state-of-the-art prediction
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systems. The principal approach for achieving this goal is to consider the spatio-
temporal characteristics of wind power forecast errors.

More speci�cally, the initial idea of the work stems from the fact that operational
state-of-the-art wind power prediction systems are optimized for each and every
location individually (let it be a single wind farm or an aggr egated portfolio of
wind farms), without properly accounting for the space-time interdependence
structure in the wind power generation �eld. That is, tradit ional inputs to pre-
diction models consist of on-site observations (wind powermeasurements, wind
speed and direction) and/or meteorological forecasts. Information coming from
the neighbouring territories is not adequately consideredas it is assumed that
the space-time dynamics are captured by the meteorologicalpredictions used
as input. However, given a wide geographical spread of wind farms and owing
to the inertia of meteorological systems, it is expected that the errors of such
locally optimized forecasts would exhibit a certain dependence pattern in space
and in time. This renders the state-of-the-art forecastingsystems suboptimal.

The purpose of this research is to analyse such underlying dependence patterns
and to account for them when deriving and examining new improved models
and methods for wind power forecasting. Wind power forecasts of di�erent types
are of interest: starting with classical point predictions, then moving towards
univariate probabilistic forecasts describing wind powergeneration at a single
location for a given lead time and, �nally, considering mult ivariate space-time
trajectories.

The �rst step in this work consists of a preliminary examinat ion of data to
illustrate that wind power forecast errors do indeed have spatio-temporal char-
acteristics. This is presented in Paper A. The results basedon a conditional
cross-correlation analysis show that forecast errors propagate in space and in
time under the in�uence of forecasted wind speed and direction.

Following the results presented in Paper A, further research aims at deriving
models which could capture the spatio-temporal dependencestructure in order
to improve the quality of the related wind power forecasts.

First, focus is on point forecasts which comprise a classical form of wind power
predictions given by a single-value estimate of the expected future power gener-
ation for each location and each look-ahead time. Paper B proposes a method-
ology for improving the quality of the state-of-the-art poi nt predictions by cap-
turing the residual interdependence structure observed between forecast errors
made by the locally optimized systems at a number of distributed locations.
Conditional Parametric Vector AutoRegressive (CP-VAR) models are consid-
ered in the study. This is a new type of model based on the extension of
ordinary Conditional Parametric (CP) models to a multivari ate framework. CP
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models comprise a class of linear models for which the coe�cients are replaced by
smooth functions of other variables. In our case the coe�cients are described
as non-parametric functions of wind direction, hence accounting for weather-
driven pattern of error propagation. Existing estimation t echniques (adaptive
recursive least squares) are extended to CP-VAR models, therefore accounting
for slow variations in process dynamics.

Owing to the complexity of the decision-making tasks related to integration
of wind energy into power systems, primary interest has recently moved from
classical point forecasts to probabilistic ones. For continuous stochastic variables
(such as wind power generation), probabilistic forecasts are optimally given in
the form of predictive densities. If focus is placed on a univariate stochastic
process only, �.e. if the interest is in describing wind power generation at a
single location for a particular lead time, then marginal predictive densities are
required. In a more general case, if aiming to describe wind power generation
at a number of locations over a period of time, then probabilistic forecasts are
optimally issued in the form of multivariate (joint) predic tive densities which
describe both the marginal densities and the dependence structure.

Further in this study focus is placed on marginal predictive densities for wind
power generation, hence requiring description of the uncertainty associated with
the point predictions previously generated. This problem is addressed in Pa-
pers C and D where both parametric and non-parametric approaches to shaping
the uncertainty are analysed, while ways to include space-time e�ects into the
corresponding models are presented and evaluated.

Subsequently, emphasis is placed on generating space-timetrajectories (also
referred to as scenarios), which calls for prediction of multivariate densities de-
scribing wind power generation at a number of distributed locations and for a
number of successive lead times. The main feature of scenarios, which distin-
guishes them from ordinary probabilistic forecasts, is given by the fact that,
in addition to appropriate probabilistic description of po wer generation at each
location and each look ahead time, the scenarios ought to respect spatial and
temporal dependencies in the power generation �eld. For instance, if the power
generation at a given time at a chosen location exceeds the expected value, then
it is very likely that the corresponding power measurementsat nearby sites
around the same time are also higher than expected. One of thegoals of the
thesis is to propose a methodology for issuing space-time trajectories for wind
power generation. The related task is to examine the structure of the under-
lying space-time dependence and to propose an adequate parametrization for
describing it. This task is addressed in Paper E.

An important aspect to mention is that all the presented models are developed
with their practical applicability in mind. Case studies ha ve been conducted
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considering real-life limitations and conditions, so that the performance of the
resulting models re�ects the performance that would be achieved in real world
operations. To ease the computational load and to account for slow changes in
the process dynamics which are hard to model deterministically (e.g., dirtiness
of the blades), priority has been on recursive and adaptive estimations schemes
(where possible).

In addition to new approaches to wind power forecasting, a part of the study
is devoted to problems related to evaluation of probabilistic forecasts of a very
high dimension. Namely, emphasis is on the Energy score, which is one of the
lead criterion for evaluating probabilistic forecasts of multivariate quantities.
The work documented in Paper H illustrates that this score may be di�cult to
use in practice owing to its low sensitivity to changes in dependence structure
and the potentially high uncertainty of the estimates.

1.2 Thesis Outline

The thesis is structured as follows. Part I introduces and summarizes the papers.
Within this part, Chapter 2 introduces di�erent aspects tha t constitute wind
power forecasting and brie�y presents di�erent research paths that have been
explored as of now. Chapter 3 comprises a summary of the main results obtained
in the papers. Finally, Chapter 4 concludes Part I.

Part II is a collection of publications including the follow ing papers:

Paper A is a journal article published in Wind Energy. It comprises a preliminary
examination of data illustrating that wind power forecast errors do indeed
have spatio-temporal characteristics.

Paper B is a peer-reviewed paper published in theProceedings of the European
Wind Energy Conference, EWEC, 2010. It deals with the spatio-temporal
correction of wind power point forecasts.

Paper C is a journal article accepted for publication inIEEE Transactions on Smart
Grid, Special Issue on Analytics for Energy Forecasting with Applications
to Smart Grid. The paper deals with univariate probabilistic forecasts of
wind power generation accounting for geographically dispersed informa-
tion.

Paper D is a technical report which deals with univariate probabilistic forecasts of
wind power generation. It can be viewed as a complement to Paper D,
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since it describes some alternative approaches and models which were con-
sidered, but not included in the journal article, as the quality of their
predictive performance was found to be not satisfactory enough.

Paper E is a technical report which deals with multivariate probabilistic forecasts,
�.e. with space-time trajectories of wind power generation.

Paper F is a note submitted to IEEE Transactions on Neural Networks and Learn-
ing Systemswhich illustrates a methodological error in the CWC score
which deems the score not valid for the assessment of prediction intervals.

Paper G is a discussion paper submitted toIEEE Transactions on Sustainable En-
ergy which provides an additional discussion on the CWC score.

Paper H is a technical report which deals with sensitivity analysis of the Energy
score.
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Chapter 2

State-of-the-art in wind power
forecasting

Before presenting the actual contribution of this thesis tothe �eld of wind power
forecasting, this chapter aims at giving a brief overview ofthe existing research
results in the �eld of wind power forecasting. The objective here is not to give
a thorough literature review on the subject, but rather to in troduce di�erent
aspects that constitute wind power forecasting and to illustrate di�erent research
paths that have been explored as of now. The chapter, thus, comprises a short
summary of the base knowledge the thesis has been built on. From this, the
methods and approaches presented in the work can be better understood.

Section 2.1 presents the basic concepts of wind power forecasting. The origins
of variability and predictability of wind power are discussed. The deterministic
power curve model describing a conversion of wind to electric power is presented.
The implications of the power curve shape on wind power variability are also
explained.

In Section 2.2 we introduce di�erent approaches to wind power forecasting and
motivate the choice of the state-of-the-art prediction system used as the foun-
dation and the principle benchmark for the methods and models developed in
this study.
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Section 2.3 discusses probabilistic wind power forecasts.Finally, the chapter
�nishes with Section 2.4 describing the important aspects of forecast veri�cation.

2.1 Basic concepts

A wind turbine converts the kinetic energy of the wind into electric energy.
The amount of power the turbine produces is directly dependent on the wind
speed. The pattern of this dependency is described by a characteristic curve,
also referred to as the wind turbine power curve. The shape ofthe power curve
also depends on the generator, on the power electronics installed, as well as
on the built-in control systems. The reader interested in the current status of
generators and power electronics used in wind turbines is referred to [15].

Even though the turbine type a�ects the shape of the power curve, roughly all
power curves are very similar in principle, since they are governed by the same
law of physics. Figure 2.1 depicts the typical shape of a power curve.

The power curve can be split into four distinctive parts. For wind speeds
below the cut-in value the turbine does not produce any power. Power pro-
duction starts as the wind speed reaches the cut-in value. Further on, power
generation augments sharply and reaches the nominal turbine capacity at the
rated wind speed value. From the rated to the cut-o� wind speed, the power
production is fairly constant. For wind speeds higher than the cut-o� value, the
turbine stops for safety reasons and no power is produced. Some of new wind
turbines have a "smooth cut-o�" which means that the power does not drop
abruptly when the wind speed reaches the cut-o� value, but isinstead reduced
gradually.

The increase in power production for wind speeds between thecut-in and the
rated values can be explained by the physics of the energy conversion process.
It can be shown that the kinetic energy of a cylinder of air of radius R travelling
with a constant wind speed v corresponds to a total wind powerPtotal within
the rotor swept area of the wind turbine. This power can be expressed by:

Ptotal =
1
2

��R 2v3 (2.1)

Where � is the air density, R is the rotor radius and v is the wind speed. In
reality, however, it is impossible to extract all the energy from the moving air,
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Figure 2.1: An example of an idealized power curve describing wind power
generation by a single wind turbine as a function of wind speed

but rather only a fractions of it. The theoretical upper limi t for this fraction
is given by the Betz's limit, Cp = 16=27 (approximately 0.593). In practice the
performance ratio reaches 0.52 � 0.55 when measured at the hub of the turbine.
However, this is not taking into account the losses in the gear and the generator.
If such losses are deducted, then the resulting performanceratio is in the range
of 0.46-0.48 [15].

Since wind power generation is a function of wind speed, �uctuations in wind
speed translate to changes in wind power generation. Fluctuations in wind
speed are observed on di�erent time scales. In this work the main interest in
on short-term power forecasting, which means that the time scales of interest
are in the order of hours. Fluctuations in wind speed on thesetime scales (from
minutes to hours) fall into a part of spectrum which separate turbulent �ow
from the mean �ow [18]. The corresponding wind speed volatility is governed
by the atmospheric stability, time of the year, large cumulus clouds and rain
events [18]. The fact that wind speed volatility patterns are not constant in
time, but change depending on various meteorological conditions, emphasizes
the fact that wind speed time series are highly non-stationary. This naturally
translates to non-stationarity of wind power series.

The shape of the power curve has a very important impact on theway volatility
of wind translates to the wind power variations. Fluctuatio ns in wind speed
which occur close to the cut-in or the cut-o� values get dampened by the corre-
sponding �at parts of the power curve. However, in the steep part of the power
curve even a small change in wind speed leads to a large changein the power
production. This is why large �uctuations in power producti on are normally
observed when the power production is far from its natural generation bounds,
while close to these bounds, the power generation is rather steady.
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When looking at the power curve shown in Fig. 2.1, one could think that wind
power forecasting boils down to obtaining accurate wind speed forecasts and
transferring them to power generation through the manufacturer's speci�ed
curve. However, an additional challenge stems from the factthat the deter-
ministic relationship as shown in Fig. 2.1 di�ers from the empirical power curve
observed in practice. Partly this can be explained by the fact that the man-
ufacturer's power curve is obtained when testing a single turbine in idealized
conditions (obtained in a so called test tunnel): when the turbine is exposed
to constant smooth �ow of wind, with no obstacles, no turbulence, normal air
pressure, etc. In reality, the behaviour of the wind is more complex than a
constant �ow with no turbulence, the air density also varies depending on the
prevailing weather conditions � all this a�ects the empiric al power curve. An
even more important factor, however, is given by the fact that in practice wind
turbines are normally gathered into wind farms. Thus, such factors as shad-
owing e�ect and, terrain particularities become very important and a�ect the
resulting power generation. In addition, a single wind farm often aggregates
turbines of di�erent type, age, etc. All this leads to the fact that the empirical
power curve di�ers signi�cantly from its deterministic cou nterpart as discussed
in more details in [19].

2.2 Point forecasts

This section does not provide a detailed overview on the history or on the state-
of-the-art of wind power forecasting. Instead, the goal here is to explain which
of the existing forecasting approaches has been chosen as the main benchmark
and foundation for the models proposed in this thesis and why. A chronology
and evolution of the short-term wind power prediction can be found in [20],
while detailed reviews of the state-of-art in the �eld are given in [21, 13].

One way to classify wind power forecasting models is to look at the input they
use - namely, do they involve Numerical Weather Predictions(NWP) or not?
Typically, using NWP as input improves the quality of the resulting forecasts
when considering prediction horizons larger than 3-6 hoursahead. Since the
main goal of this thesis is to account for the space-time dynamics, then fore-
casting systems involving NWP have been considered as stronger benchmarks,
since they partly account for the space-time motion of meteorological phenom-
ena as captured by the NWP.

Methods for wind power forecasting involving NWP have been historically cat-
egorized into physical and statistical approaches. Today,however, the limit
between them has become less clear, as it is commonly agreed that optimally
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the two approaches should be combined.

Physical models consider numerical weather predictions and further rely on
dynamical models of the atmospheric �ows in order to obtain the corresponding
wind speed estimate for the considered location at the hub height. Further,
an idealized manufacturer's power curve is used to obtain the corresponding
estimate of the resulting wind power output. Finally, model output statistics
are employed to (partly) correct the residual model error.

Statistical models aim at �nding a relationship between power measure-
ments and some explanatory variables (both NWP and historical power mea-
surements). Usually, time series, regression or arti�cialintelligence techniques
are employed for the purpose.

Given the wealth of forecasting approaches, a natural question is which of the
techniques performs the best.

Comparison of the performance of the existing prediction systems is notan
easy task. The main obstacle is that, in order to compare the models, it is very
important that the data used for the model estimation and validation is exactly
the same. In practice this makes it almost impossible to carry out a quanti-
tative comparison between a large number of models and methods. However,
some rigorous benchmarking has been performed. Within the framework of the
European Anemos project, a number of prediction models havebeen used to is-
sue power predictions for a set of wind farms. The consideredwind farms have
been selected to cover a wide range of conditions with respect to climatology
and terrain particularities.

Most of the considered predictions systems are expert-quality operational fore-
casting tools used by the system operators in Spain, Germany, Denmark, Ireland
and Greece (at the time the study took place). Detailed results of the compar-
ative study are given in [22, 23].

In short, the results have shown that the performance of the models depends
on the terrain complexity and that none of the studied models has the best
performance for every horizon and for every test case.

A general picture indicates that the considered statistical approaches tend to
outperform the physical ones for short lead times (1-6 hour ahead).
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Based on those results, we have considered statistical forecasting approaches
(involving NWP) for forming the main benchmark in this work.

One of the statistical systems tested in the above-mentioned comparative study
is the Wind Power Prediction Tool (WPPT). The results of the s tudy have con-
�rmed that this system provides expert-level forecasts of wind power generation.
Based on these results and based on the fact that we have access to the WPPT
(provided by Enfor A/S), this system has been chosen as the main benchmark
in this work.

The WPPT is a statistical forecasting system originally developed at the
Department of Informatics and Mathematical Modelling (IMM ) at the Tech-
nical University of Denmark. The development started in 1994 with the �rst
operational implementation at ELSAM (now DONG Energy) in 19 94. For the
�rst description of the WPPT and the experiences at power dispatch centres
the reader is refereed to [24]. Currently the system is a product of Enfor A/S,
where it is being continuously updated.

Today the WPPT provides its users with a wide range of possibilities: e.g.,
generating wind power scenarios, estimating probabilities of cut-o�, adaptive
quantile estimation. However, here the interest is in traditional point forecasts
which are given by the estimates of the expected future powergeneration for
each location and each look-ahead time. Therefore, furtherin this work, when
referring to the WPPT, we refer to its point forecasting module.

The corresponding model provides a point forecast following a two-step proce-
dure.

In the �rst stage conditional parametric models are employed to model a statis-
tical power curve describing wind power generation as a function of forecasted
wind speed and wind direction. More information on it can be found in [25].

The second stage model (also referred to as dynamical model)uses the obtained
power curve estimate as input and provides a further statistical correction, based
on the recent power measurements and residual diurnal e�ects possibly not
captured by the NWPs. More information on the dynamical part of the WPPT
can be found in [26]

Following [27], the overall model writes as:

p̂cp
t + k j t = f̂ t (wt + k j t ; � t + k j t ; k)

p̂pp
t + k j t = ât (� t + k j t ; k)pt + b̂t (� t + k j t ; k)p̂cp

t + k j t +
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+ ĉc
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(2.2)

Where p̂cp
t + k j t denotes a power curve estimate of wind generation for timet + k

issued at time t, wt + k j t is wind speed forecast for timet + k available at time
t, � t + k j t is wind direction forecast for time t + k available at t, d24

t + k denotes the
hour of the day at time t + k, pt is the power observation at time t, p̂pp

t + k j t is

the �nal power prediction for time t + k issued at time t. Finally, f̂ t (:), ât (:),
b̂t (:), ĉc

t (:) and ĉs
t (:) are the estimates of the corresponding coe�cient functions

available at t.

Estimation of the model parameters can be carried out in the adaptive and
recursive way, both to ease the computational load and to account for the smooth
variations in the process dynamics. Detailed descriptionsof various versions of
the WPPT and the corresponding estimation routines can be found in [27].

Please note, that currently operational WPPT version might di�er from the one
given in Eq. 2.2. However, the principle has remained unchanged.

The WPPT is currently operational at a number of Danish actors in the wind
power generation �eld (Energinet.dk, DONG, Vattenfall) as well as at a number
of others outside Denmark (Nuon (Holland), AEMO (Australia ), Hydro Quebec
(Canada)).

2.3 Probabilistic forecasts

Point forecasts of wind power generation remain widely usedby Transmission
System Operators (TSOs) due to their interpretability [16], as for point fore-
casts, just one value is assumed to fully describe the futurepower generation.
However, such forecasts are never perfectly accurate as there is always an ele-
ment of the associated uncertainty [28].

Traditional point forecasts provide no information about t he uncertainty of the
predictions. Instead, it is suggested that the conditional expectation of the
future outcome contains all the necessary information necessary to make an
optimal decision. However, for a large class of decision-making problems the
optimal solution is directly linked to other process functional than the expec-
tation (e.g. it might be a speci�c quantile or some correlation measure). This
is discussed when considering wind power applications in [29], while some more
general theoretical derivations can be found in [30].
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This renders point forecasts, only addressing the expectedwind power genera-
tion, a suboptimal input to many decision-making applications, especially the
ones related to stochastic optimization or risk assessment. Motivated by the
above facts, primary interest is shifting from point to probabilistic wind power
forecasting [31].

Examples of the decision making application requiring probabilistic wind power
forecasts include wind power trading in the electricity market [32], economic
load dispatch and stochastic unit commitment [33, 34, 35], optimal operation of
storage [36], reserve quanti�cation [37] and assessment ofoperating costs [14].

The �rst results on probabilistic wind power forecasting were obtained in the
early work of Brown et al. [38]. In the study the authors considered a Gaussian
distribution for describing wind speed data. The theoretical power curve was
used to transform the Gaussian predictive intervals describing wind speed into
the corresponding predictive intervals for wind power generation. The almost
twenty years, scienti�c research mainly focused on point forecasting of wind
power generation, before the probabilistic wind power forecasts attracted a new
wave of attention.

In some way the two di�erent schools for wind power point forecasting (physi-
cal and statistical) have translated to two di�erent approa ches to probabilistic
forecasting.

Authors focusing on the physical approaches consider how uncertainty
in wind transforms to wind power uncertainty. Predictive densities for wind
speed are obtained either proposing some modelling approaches [39] or through
the ensemble forecasts [40, 41] issued by the considered NWPprovider. Proba-
bilistic wind forecasts are further transformed to wind power forecasts, normally
through a deterministic power curve [39, 40, 41].

The following di�culties are associated with the physical a pproach.

First, numerical weather predictions are obtained by solving a system of partial
di�erential equations describing dynamics of the atmosphere. Therefore, in their
essence, the numerical weather predictions are obtained from a deterministic
description of the system. The ensembles are obtained by considering di�erent
initial conditions and/or considering several di�erent mo dels for describing the
atmosphere, thus in essence such ensembles are a collectionof deterministic
forecasts obtained from deterministic models. Therefore,the stochastic nature
of the complex meteorological phenomenon is not fully accounted for. This can
be viewed as a major reason for the fact that ensemble forecasts do not provide
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a reliable description of the forecast uncertainty. Forecast reliability can be
improved to a certain extent if some statistical post processing is considered,
e.g. model output statistics.

Second, similar as ensemble forecast is only a suboptimal probabilistic descrip-
tion of wind speed, a deterministic power curve is also only asuboptimal way
to describe the dependency between wind speed and wind power. Ideally, a
stochastic power curve should be used [19]. Recently a modelfor describing a
stochastic power curve was presented in [42].

An alternative, following the statistical school, is to construct proba-
bilistic forecasts for wind power generation directly, without the intermediate
step of modelling the uncertainty of the wind. Advantages of this approach
are (i) no need to directly account for the complexity of the stochastic power
curve, (ii) owing to the geographical distribution of wind f arms, the correspond-
ing wind power data contains substantially more information than numerical
weather predictions or 3-hourly data coming from the few available meteorolog-
ical stations.

When interest in probabilistic forecasts re-appeared in the early 2000, there was
already a wide range of high quality forecasting techniquesavailable for issuing
point predictions. Thus, a statistical approach to probabilistic power forecasting
naturally took place through the probabilistic descriptio n of the point forecast
errors.

One way to probabilistically describe forecast errors is tolook at all the available
historical forecast errors and assume that the future prediction errors will follow
the same pattern. When described in such a way, the uncertainty description is
constant for any considered period and is not designed to discriminate between
periods of di�erent variability. Therefore, in the literat ure it is common to refer
to such an uncertainty estimate as �climatological� uncert ainty, as opposed to
the �meteorological� one.

In order to account for the fact that wind power forecast uncertainty is not
constant, but depends on some explanatory variables, classi�cation techniques
have been considered. For instance, in [43] the authors considered classi�cation
according to the expected level of power generation. Even though such classi�-
cation approaches are rather appealing, owing to their easyand rather intuitive
interpretability, they lack continuity in uncertainty des cription. To cover for
this, various smoothing techniques can be employed. In [44], a fuzzy-logic-
based approach has been used for that purpose, while in [45] and [46] quantile
regression techniques have been employed. In particular, [45] considered local
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regression, which uses kernels to smooth the data, while in [46] the authors
considered splines for this purpose. Both the adaptive resampling [44] and the
time-adaptive quantile regression [46] approaches have been compared in [47],
where it is shown that they yield similar results.

In parallel to the non-parametric approaches to probabilistic wind power fore-
casting, some e�orts have been made to propose a parametric description of the
error distributions. For example, in [48] P. Pinson considered Beta, Censored
Gaussian and generalized logit-Normal densities for describing wind power gen-
eration, and subsequently compared the performance of the resulting forecasts
using the test case with 10 min ahead power predictions.

Similarly, as in the case with wind power point predictions, probabilistic wind
power forecasting techniques are usually optimized with respect to local infor-
mation only. One of the objectives in this thesis is to introduce and evaluate a
methodology enabling optimal probabilistic wind power forecasts which account
for geographically dispersed information.

2.4 Scenarios

Recent methodologies for probabilistic wind power forecasting focus on pro-
viding information on prediction uncertainty for each site and each look-ahead
time individually. They inform neither on the inter-depend ence structure be-
tween forecast errors observed at di�erent locations, nor on the way these errors
propagate in time. However, for a number of applications such marginal predic-
tive densities are only a suboptimal input, as the joint distribution describing
wind power generation at a number of sites over a period of time might be of
interest.

Multivariate predictive densities are often communicated in the form of scenar-
ios (also referred to as trajectories or ensembles). This choice is motivated by
the fact, that multivariate predictive densities often do n ot have an easy analyt-
ical structure. Also, trajectories are normally preferred by the end-user, since
they are easy to use in the conventional deterministic optimization systems and
decision tools. From the forecasters point of view, scenarios can be obtained by
random draws from the associated predictive density.

Once again, the physical approach to generating such scenarios could take
its way through the translation of ensemble meteorologicalforecasts to wind
power scenarios. However, there are several di�culties related to this approach:
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First, meteorological ensembles often lack calibration and need to be statistically
post-processed in order to provide reliable forecasts at a given location [40].
Many post-processing techniques are local. That is, they are designed to target
each site and each look-ahead time of interest individually, thus not respecting
the interdependence structures.

Second, as already mentioned in this work, translation of wind to wind power
is optimally described by power curves which are stochastic, site-speci�c and of
a rather complex nature.

Third, the number of meteorological ensembles is normally in the range of 5-50
members. When interest is in power generation at many sites and over a large
number of prediction horizons, the dimension of the problembecomes high, and
having only 5-50 members might be not su�cient to represent the underlying
multivariate predictive density.

An appealing alternative is to estimate the joint predictive densities using
statistical methods. One of the techniques is given by a copula approach. It is
based on decoupling the problem of �nding the joint predictive distribution into
two independent steps of (i) estimating the marginal densities targeting each site
and each prediction horizon individually and (ii) modellin g the interdependence
structure between the marginals.

2.5 Forecast veri�cation

In [49] A. H. Murphy identi�es the following distinct types o f forecast goodness:

1. Consistency is given by the correspondence between forecasts and fore-
caster's best judgements.

2. Quality is given by the correspondence between forecasts and observa-
tions

3. Value is given by the bene�ts the users gain when using forecasts

Since (i) a forecaster's judgements are internal to the forecaster and are un-
available for explicit evaluation and (ii) forecast value depends on the particular
application at hand, in this work the main focus is on quality assessment.
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2.5.1 Evaluating point forecasts

Evaluation of point forecasts is probably the most intuitiv e when compared with
the assessment of probabilistic forecasts or space-time trajectories. The basic
quantity used for assessment of single-value forecasts is given by the forecast
error which is de�ned as:

" t + k j t = pt + k � p̂t + k j t (2.3)

where " t + k j t denotes an error made at timet + k by the corresponding forecast
issued at time t, pt + k is power measurement at timet + k and p̂t + k j t is power
forecast issued att for time t + k.

Following [50], in practical applications it is usually more convenient to introduce
the normalized prediction error � t + k j t :

� t + k j t =
" t + k j t

Pn
(2.4)

where Pn is the nominal capacity of the considered site. Normalizingerrors
permits one to compare the errors obtained at di�erent locations, independent
of their rated capacities. Since the goal of this thesis is totrack the propagation
of prediction errors in space and in time, normalization of the errors obtained
at di�erent locations has been performed.

In general, there exists a wealth of error measures which canbe employed to
evaluate the performance of point forecasts. Aiming at standardizing the pro-
cedure of point forecast veri�cation, in [50] H. Madsen at al. present a complete
protocol consisting of a set of criteria appropriate for the evaluation of wind
power prediction systems. Regarding the performance measures, the authors
argue that as a minimum set of error measures, the following should be used:

1. Bias, BIAS , which computes the mean of all errors over the validation
period:

BIAS (k) =

P N
t =1 � t + k

N
(2.5)

This criterion informs on whether the forecasting method tends to over-
predict or under-predict. If the BIAS = 0, this means that in the long run
positive and negative errors cancel each other out, so that the resulting
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predictions are unbiased. However, it does not give much information
about the forecast accuracy, since it does not inform on the amplitude of
the errors.

2. Mean absolute error,MAE is computed as the mean of absolute errors
over the validation period:

MAE (k) =

P N
t =1 j� t + k j

N
(2.6)

3. Root mean squared error,RMSE is computed based on squared errors
over the validation period:

RMSE (k) =

s
P N

t =1 (� t + k )2

N
(2.7)

Which of the scoring rules should be used as the lead criterion in practice?
In general, if it is not known what precise functional of the process (e.g. the
expectation, a certain quantile,...) is aimed to be described by the forecasts,
then one should follow the protocol in Ref. [50] and look at the number of
measures. However, if the target functional is known, thereis no need to use
several di�erent scores.

This point is discussed in [51]. Here the author develops a theory for the no-
tions of consistency and elicitability and argues that in order to make an e�ective
point forecast, the forecaster should be told a priori what functional is of inter-
est. Once such functional is known, the forecaster can use his best judgement to
make optimal point prediction. It is then important that the scoring function
is consistent with the given functional. By consistency it is implied that the
expected score should be optimized when the prediction corresponds to the re-
quested functional of the process. And a functional is elicitable if there actually
exists a score which is consistent for it.

In [51] the author recalls some classical results, such as those for the mean and
the median, and also derives some original results, such as,showing that scoring
functions which are consistent for the value-at-risk functional do not exist.

In the case of the mean functional, the consistent scoring functions are the
Bregman functions. On the basis of the work of Savage in [52],the author
recalls that up to a multiplicative constant, squared error is the unique Bregman
function of the prediction error form. This means that if the expectation is the
functional of interest, then the RMSE should be used.
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Similarly, if the functional of interest is given by a quanti le, then the consistent
scoring functions are generalized piecewise linear. This translates to the fact
that the MAE score should be used if the functional of interest is the median.

Since in this work, when talking about point forecasts, we refer to the estimates
of the expectation of the future power generation, theRMSE criterion is used
to evaluate predictions. For the sake of consistency, we also employ quadratic
loss functions in our point forecasting models.

In this work a point forecast aims at estimating the expectedpower generation
at a single location for a given lead time. Therefore, the evaluation is based
on measuring how consistent the forecasts are with the conditional mean of the
process (RMSE ) rather than looking at other types of quality measures (such
as MAE or BIAS ). That is, the focus is on "how well does the point forecast
represent the expected power generation" rather than on a more general question
"how well does the point forecast match observations".

2.5.2 Evaluating probabilistic forecasts

2.5.2.1 Di�erent quality aspects of probabilistic forecas ts

Generally speaking, prediction quality is related to the level of correspondence
between forecasts and observations. In the case of point forecasts, the mea-
sures for this correspondence are more intuitive than in thecase of probabilis-
tic forecasts. This is because assessment of probabilisticforecasts calls for a
distribution-orientated approach where one has to evaluate how consistent a
predictive density is with the corresponding distribution of observations.

In [49] Murphy envisages a distribution-based approach to forecast veri�cation.
Even though the author considers single-valued forecasts,he notices that both
forecasts and outcomes are random variables and that their sequences have a
joint distribution which contains full information on fore cast quality.

Comparing predictive and observed densities is the core of probabilistic fore-
casts. Thus, the �nding presented in the work of Murphy can be applied (with
possibly some minor formulation modi�cations) to the case of density forecast
assessment.

In [49] the author distinguishes between a number of di�erent aspects of forecasts
quality.
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Here we will brie�y introduce several of these aspects that are relevant for the
further discussion:

� Reliability (also referred to as calibration) is related to statistical con-
sistency between forecasts and observations. A probabilistic forecast is
well-calibrated if it coincides with a suitable conditional distribution of
observations. We follow the formal de�nition given in [53].

Let Ft be a predictive distribution of X at time t. The sequence (Ft )t =1 ;2;���

is probabilistically calibrated relative to the corresponding sequence of real
process generating distributions (Gt )t =1 ;2;��� if

1
T

TX

t =1

Gt � F � 1
t (p) ! p (2.8)

for all p 2 (0; 1).

That is, if a forecast places a probability p on the event X = x, then this
event must be observed with the probability p.

� Resolution relates to the ability of a forecasting system to issue situation-
dependent predictions. High resolution means that on average di�erent
forecasts are followed by di�erent observations.

� Sharpnessis a property of the forecasts only and does not inform on the
correspondence between forecasts and observations. That is, sharpness is
given by variability of forecasts when inferred from the marginal forecast
density. For example, in the case of wind power forecasting,a forecast
stating that wind power generation will be 0 with probabilit y equal to 1
is very sharp, even though it might not be consistent with the observed
power generation. In the case of perfectly calibrated forecasts, sharpness
and resolution are equivalent [49].

� Uncertainty is a property of observations only. It is related to variability
of observations when looking at the marginal density of observations and
thus it does not depend on forecasts at all.

2.5.2.2 Scoring probabilistic forecasts

Provided that there are many aspects of forecast quality, how should one com-
pare several competing forecasting approaches? One way could be to check one
or several measures of quality and compare the magnitudes. However, the prob-
lem is that, even if one forecast scores better in one or several quality aspects,
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this does not guarantee that it will perform better in all the aspects. Moreover,
it does not guarantee that this forecast is of greater value to all end-users [49].

A solution to this problem is to consider scoring rules whichwould address a
number of quality aspects simultaneously and summarize them into a single-
valued numerical score. Such a score then could be used to rank the competing
forecasts. The question is then which aspects to combine, and what weights to
assign to each of them? In order to answer this question �rst the ideal forecast
should be de�ned, since obviously scoring rules should be constructed in such a
way that the ideal forecast should be the one resulting in theoptimal score.

One could argue that the real value of forecasts is given by the bene�t they
bring to the end user and thus a measure of forecast value should be used when
ranking competing forecasting approaches. However in practice a forecaster is
often not aware of the loss functions used by the users. In addition, those loss
functions might also be very di�erent in practice: for some end users forecast
calibration might be of the highest importance, meanwhile others might call
for forecasts of high resolution in order to optimize pro�t. What should the
forecaster then target?

The answer is that the ultimate forecasting goal is to issue apredictive density
which coincides with the real process generating density. In this idealistic case
such predictive density will be preferred by all forecast users, independent of
their loss function [54]. The fact that the ideal forecast isgiven by the real data
generating density is directly related to the requirement for scoring rules to be
proper.

Propriety is an essential property of a scoring rule, ensuring that the optimal
score is achieved when the probabilistic forecasts coincide with the real process
generating density [55, 56]. The mathematical grounds of propriety ensure that
the forecaster is encouraged to be honest and issue predictions based on his
best judgement, as argued in [49]. An overview of the proper scores available
for veri�cation of probabilistic forecasts is given in [56].

Without going into the details on all the available scoring rules, we will focus
on the Continuous Ranked Probability Score (CRPS), which is the lead score
used in this thesis for evaluation of probabilistic forecast.
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2.5.2.3 Continuous ranked probability score

The scoring rule corresponding to the CRPS is de�ned as:

crps(P; x) =
Z 1

�1
(P(y) � 1(x � y))2dy (2.9)

whereP denotes predictive distribution, x denotes an observation and1 stands
for the Heavyside step function taking the value 1 if the condition inside the
brackets is ful�lled and 0 otherwise.

Following this de�nition, the crps is a negatively orientat ed score with the min-
imum value equal to 0.

One way to estimate the crps is by using numerical integration techniques.
Sometimes, however, the integral can be evaluated in a closed form by using the
following identity:

crps(P; x) = EP jX � xj �
1
2

EP jX � X 0j (2.10)

where X and X 0 are independent random draws fromP and EP (:) denotes the
expectation with respect to the probability distribution P.

For assessing a probabilistic forecast over a data set containing T observations
the average of thecrps values for each forecast/veri�cation pair is calculated
resulting in the overall CRP S value.

CRP S(P; x) =
1
T

TX

t =1

crps(Pt ; x t ) (2.11)

There are several features of theCRP S score which make it appealing in prac-
tical applications.

First and foremost, it is a proper score [56].

Second it is a distance sensitive score, meaning that a credit is given for assigning
high probabilities to the value near the one materializing.
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Third, the CRP S for point forecasts is equivalent to theMAE , thus the CRP S
provides a direct way to compare point and probabilistic forecasts.

Another particularity of the CRP S is that it is a robust score, compared to
the likelihood-based scores (such as the logarithmic score, for instance [56]).
The problem with the likelihood-based scores is that they are very sensitive to
outliers which might be a problem in practical applications. For example, the
logarithmic score is in�nite if the vanishing probability i s assigned to the value
which materializes.

Following [57], the CRP S can be decomposed into reliability, resolution and
uncertainty parts. Such decomposition can be used to obtaina better insight
on the behaviour and properties of the forecasting system.

In addition, in [58] the authors proposed threshold and quantile-weighted ver-
sions of theCRP S. The weighted version of theCRP S puts more weight on the
regions of interest (let it be the central part or the tails of the distribution) while
retaining the crucial property of the score being proper. Threshold and quantile
decompositions of theCRP S can also be used for evaluating the strengths and
de�ciencies of the forecasting system.

2.5.3 Evaluating scenarios

Essentially wind power generation scenarios (also referred to as space-time tra-
jectories or as ensemble forecasts in meteorology) can be viewed as random
draws from the joint multivariate predictive density descr ibing wind power gen-
eration at a number of sites over a period of time. In the literature there exists
rather few proposals regarding veri�cation of multivariat e probabilistic forecasts
and probably the most rigorous work on this subject is given by T. Gneiting et
al. in [59].

In principle veri�cation of multivariate predictive densi ties is similar to that of
univariate probabilistic forecasts discussed in the previous section. Most proper
scoring rules available for evaluation of univariate predictive densities have the
corresponding analogues available for assessment of multivariate forecasts.

For example, the CRP S extends to the Energy score with the related scoring
rule de�ned as:

es(P; x) = EP jjX � x jj �
1
2

Ep jjX � X 0jj (2.12)

where P denotes predictive distribution, x denotes an observation,X and X 0
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are independent random draws fromP and jj :jj denotes Euclidean distance.

Then the overall Energy score over T observations is obtained from

ES(P; x) =
1
T

TX

t =1

es(Pt ; x t ) (2.13)

The Energy score is shown to be proper [56].

If the proper scoring rule which we considered as the lead criterion when eval-
uating univariate predictive densities extends to the multivariate framework,
then what is the problem?

First, in case of the CRP S score there are decomposition techniques available
which can be used for better understanding of the bene�ts andpitfalls of the
considered forecasting system. There are no analogues of such decomposition
available for the Energy score. Thus, even if we get a single-value score evaluat-
ing the forecasts, it is not clear what makes one or another forecasting system
better. One way to overcome this issue could be by looking at the situation-
based performance as suggested by [60].

However, the most crucial issue comes with the estimation ofthe score. Evalu-
ation of the Energy score requires estimating expected values of the Euclidean
distance between forecasts and observations. Most often, closed-form expres-
sions for such expectation are unavailable and one needs to employ Monte Carlo
methods in order to estimate the score [59]. When dealing with problems of
a very high dimension, Monte Carlo techniques result in computational chal-
lenges. The problem of computational load translates to increased sampling
uncertainty which makes it more di�cult to conclude on the su periority of one
forecasting system over another.

There are alternatives to the Energy score. One of them is given by the loga-
rithmic score which is de�ned as

logs(P; x) = � ln p(x) (2.14)

where p denotes a predictive density andx denotes a value which materializes.

Allowing for some a�ne transformations the logarithmic sco re is the only local
proper score (see Theorem 2 in [61]). Locality means that thescore depends on
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the probabilistic forecast only through the value which the predictive density
attains at the observation [55]. An important advantage of using local scores
when dealing with multivariate predictive densities comeswith the related com-
putational bene�ts. When dealing with local scores, there is no need to draw
random samples from the predictive density in order to evaluate the score.

The downside of the logarithmic score is its sensitivity to outliers. The score
is in�nite if the forecast assigns a vanishing probability to an event which oc-
curs. In practice, when working with the real data, such sensitivity might be a
problem.

Due to its sensitivity to outliers, the logarithmic score can not be used for
evaluating scenarios in the same way as the Energy score. That is, the loga-
rithmic score requires knowing the underlying predictive density. Suppose, that
a forecast is given in the form ofm equiprobable scenarios with the scenario-
generation density being unknown. If we are to consider onlythe raw ensembles
without dressing them with a continuous support having density, this is essen-
tially equivalent to assuming an empirical predictive density which assigns equal
probabilities of 1=m to each of the m available ensembles. Then, if an actual
observation falls in between any two of the ensemble membersrather than on
one of them exactly, the logarithmic score will be in�nite. T hat is, implemen-
tation of the logarithmic score in practice calls for the predictive density which
would assign a non-zero probability to every possible outcome. Therefore, this
score cannot be used for veri�cation of ensembles directly,unless some statistical
post-processing is done.



Chapter 3

Thesis Contribution

This chapter comprises a short overview of the thesis contribution. The chapter
starts with Section 3.1 describing a methodology proposed for the space-time
correction of wind power point predictions. Further in Section 3.2 probabilistic
forecasts are addressed. Section 3.3 gives an overview of the proposal for gener-
ating space-time trajectories. The chapter �nishes with Section 3.4 presenting
some remarks on the conditional discrimination ability of the Energy score.

3.1 Point forecasts

This section deals with space-time correction of point forecasts, mainly summa-
rizing the works presented in Papers A and B.

The �rst part of this section gives a brief overview of wind forecasting models
with o�-site information as input. The overview is restrict ed to the approaches
which were available at the time this work was initiated in order to illustrate
the foundation used for building the initial proposals in th is dissertation.
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3.1.1 Prediction models with o�-site data input

At the time this thesis was initiated, there existed severalresearch works look-
ing at spatio-temporal propagation of information when considering wind data.
These works mainly dealt with cases where wind behaviour between the consid-
ered locations is easy to model, owing to the terrain topology or meteorological
particularities of the area.

For instance, in [62] Damousis et al. have looked at the area around the Gulf of
Thessaloniki which is a�ected by strong prevailing thermal winds. The authors
showed that accounting for the up-wind information improves the quality of the
resulting wind speed and wind power predictions up to 2 hoursahead.

Another example has been given in the work of Larson et al. in [63]. Here
the authors have considered a potential wind farm located atthe exit to the
Columbia River Gorge, while meteorological observations were available at the
entrance of the same Gorge. The results showed that the inclusion of the up-
wind information in addition to the numerical weather predi ctions improves the
accuracy of the resulting wind speed forecasts.

Considering the same test case of the Columbia River Gorge, Gneiting et al. in
[64] have proposed a regime-switching approach which accounts for two dom-
inant direction, thus discriminating between situations when wind enters the
Gorge from two di�erent sides. The results showed improvements in wind speed
predictions up to 2 hours ahead.

In [65], the authors have proposed a generalization of the regime-switching model
described in [64] by including wind direction as a circular covariate in the models.

The results of all the works mentioned above show signi�cantimprovements
over the considered benchmark approaches (e.g. persistence) when testing the
models on smooth terrains with known physics of the prevailing wind behaviour.
However, if these methods are to be applied to other types of case studies,
for which wind behaviour is more complex and where no channelling e�ect is
present, one should not expect similar improvements.

Another important aspect is that all the studies mentioned above have focused
primarily on wind speed forecasting. However, since the main interest in this
work is in wind power forecasting, it is bene�cial to focus on wind power data
directly, without the intermediate step of considering wind speed. The direct
approach is preferable for a number of reasons: (i) owing to their wide geograph-
ical spread, wind farms potentially contain more information than numerical
weather predictions with their relatively coarse spatial and temporal resolutions
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or few meteorological stations, (ii) it avoids modelling anempirical power curve
which is known to be of a complex nature as discussed in Section 2.

Consequently, the interest in this thesis is in proposing more advanced models
tailored to wind power directly and not restricted to any par ticular, a priori
known meteorological pattern.

3.1.2 Space-time correction of wind power point predic-
tions

The �rst step towards developing such models has been made bythe preliminary
examination of data aiming to verify whether wind power forecast errors made
by a locally optimized system do indeed show any residual cross-correlation in
space and in time.

For this purpose 7 months of hourly data coming from 5 groups of wind farms
located in Western Denmark have been considered. Wind powerforecasts for
each of the groups have been made by the WPPT system. Conditional cross-
correlation analysis has shown that the resulting forecasterrors propagate in
space and in time under the in�uence of meteorological conditions (mainly wind
direction). The details are given in Paper A. However, it is important to stress
that in this study only the power curve model of the WPPT has been considered
(see eq. (2.2)). This resulted in autocorrelated forecast errors. Due to the
residual autocorrelation, the magnitude of the dependencies presented in the
paper is signi�cantly higher than the one which could be observed if the full
WPPT model was used. Owing to that, even though the general �ndings on
the pattern of error propagation presented in the paper hold, the magnitude of
the illustrated improvements is higher than the one which could be expected in
the operational setup. Paper A is the only study where the WPPT power curve
model has been considered - all the following research papers are based on the
full version of the WPPT.

The work documented in Paper A has been recently elegantly and more rigor-
ously generalized by Girard and Allard in [66] as they could base their work
on a much longer data set when considering hundreds of locations spread over
Western Denmark. Generally, the preliminary results in Paper A are in line
with the �ndings uncovered in [66].

In order to account for the spatio-temporal patterns a Conditional Parametric
(CP) Vector AutoRegressive (VAR) model has been proposed inPaper B. In
general, CP models comprise a class of models with a linear structure, but for
which the coe�cients are replaced by smooth functions of other variables. In this
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case, in order to account for the directional error propagation, the coe�cients
have been modelled as functions of forecasted wind direction.

The model coe�cients have been estimated adaptively in the spirit of [67] in
order to account for the long-term variations in the processdynamics.

3.1.3 Result using aggregated data

The model has been validated on 15 groups of wind farms spreadthroughout
the territory of Western Denmark (see Fig. 3.1). One-hour-ahead predictions
have been considered in this test case.

The grouping smooths out local variations and places focus on a more global
phenomenon. The accuracy of the CP-VAR-corrected forecasts has been com-
pared to that of the original WPPT forecasts based on the RMSEcriterion. The
reduction in the RMSE (denoted as � RMSE) is given as a percentage decrease
in the RMSE relative to the RMSE of the WPPT forecasts for eachgroup. The
results are presented in Fig. 3.1.

Figure 3.1: Predictive performance (improvements) given by the CP-VAR
model in terms of a percentage reduction in the RMSE (�RMSE)
of the forecast errors. (Produced usinghttp://maps.google.
dk/ )

http://maps.google.dk/
http://maps.google.dk/
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Note that larger improvements (17-18%) correspond to the eastern part of the
region. This is in line with the fact that in Denmark the preva iling wind direction
is westerly. Due to this the easterly located groups are usually situated "down-
wind" and can bene�t well from the information extracted fro m the "up-wind"
territories.

An interesting point to mention is that for Group 9 the observ ed improvement
in the RMSE (4.08%) is not as large as for the surrounding zones. This could
be in�uenced by the fact that while other groups are formed from wind farms
spread over larger territories, Group 9 covers a smaller area. This leads to more
signi�cant local variations, while making the improvement o�ered by the spatio-
temporal model smaller. Another very likely explanation is that Group 9, in
contrast to the rest of the zones, is situated o� the mainland. Therefore it is
very probable that the dynamics of Group 9 are di�erent from t he rest of the
considered region.

3.1.4 Result using a single wind farm

The methodology presented in Paper B can be also applied to problems having a
di�erent setup. That is, instead of focusing on several locations simultaneously,
one can target a single location, while using a (small) number of neighbour-
ing territories as explanatory variables. Essentially, the estimation techniques
remain the same as for the vector approach. More details can be found in
Paper C.

In order to test the proposed methodology on a di�erent test case, we have
considered 20 wind farms located in Denmark. The respectivelocations of the
considered wind farms are shown in Fig. 3.2.

Instead of targeting several locations simultaneously, focus has been on improv-
ing the quality of forecasts for the Nysted wind farm, while the surrounding
sites have be used as explanatory variables.

There were two main reasons behind choosing to target Nysted. Firstly, with a
rated capacity 165 MW, the Nysted wind farm accounts for about 36% of the
installed capacity owned by the company operating it. Secondly, Nysted has
an appealing location with many wind farms located "upwind" with respect to
prevalence of westerly winds over Denmark.

Targeting an o�shore wind farm is a challenging task due to the presence of large
wind power �uctuations caused by local meteorological e�ects which are hard to
model and predict [68, 69]. Such high volatility can rarely be observed onshore
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Figure 3.2: Map of the wind farms included in the analysis. The Nysted wind
farm is marked as number 10 and with a square. Wind farms
with triangles are used as "sensor" locations, thus improving the
predictability of wind power generation at Nysted. The sizeof the
points is proportional to the rated capacity of the wind farm s, on
a logarithmic scale.

where similar capacities would be spread over a much wider area, smoothing
out the e�ects of the weather instabilities [70].

Another motivation for testing the methodology on this new t est case comes
with a higher temporal resolution (15 min) of the data, which could potentially
also in�uence the magnitude of the improvements.

Finally, prediction horizons from 15 min to 8 hours ahead have been considered,
thus revealing how far in the future the improvements stemming from the space-
time correction reach, when looking at a small territory like Denmark.

The results depicted in Fig. 3.3 show that the peak in the improvements is
observed for the lead times around 1 hours ahead. The magnitude of this im-
provement (� 5%) is in line with the result observed for Group 9 in Fig. 3.1.
The fact that the biggest improvements correspond to 1 hour ahead predictions
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Figure 3.3: Evaluation of the point forecasts for the Nysted wind farm in terms
of the relative improvements in the RMSE as a function of the
considered prediction horizon.

is in line with the geographical layout of the considered wind farms and with the
speed of motion of meteorological phenomenon over Denmark.Namely, it can
be seen from Fig. 3.1 that almost all the reference cites are located within 50
km from Nysted. According to [66], the average speed of the error propagation
over Denmark is 30-50 km/hour depending on the wind direction. This explains
why the peak in improvements is observed for the lead time of 1-2 hours ahead.

Summarizing, wind power forecast errors tend to propagate following wind di-
rection, and hence it is possible to improve predictability over a region if con-
sidering information from the neighbouring ("upwind" situ ated) sites. The im-
provements are likely to be larger if considering spatiallylarger areas (reduction
of local variations), preferably of similar dynamics (on-shore, o�-shore,...)

3.2 Probabilistic forecasts

This Section summarizes the results presented in Papers C and D. The papers
deal with the extension from point to probabilistic forecasts (marginal univariate
predictive densities), hence requiring description of theuncertainty associated
with the point predictions previously generated.
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Paper C gives a detailed description of the proposed methodology and the corre-
sponding results. Paper D comprises additional information on the alternative
approaches and models which have been considered.

The goal of the study has been to analyse the existing methodologies for pre-
dicting marginal densities of wind power generation and to propose ways to
include space-time e�ects into the corresponding models. Since, there are cur-
rently no studies available in the literature which rigorously compare parametric
and non-parametric approaches to wind power forecasting, both techniques have
been considered, analysed and compared.

The proposed methodology is tailored to situations where probabilistic forecasts
are to be issued for a single target location, while considering information coming
from a (possibly small) number of neighbouring sites as explanatory variables.
We consider a discrete formulation of the problem as opposedto a full space-time
covariance model (as in [71]), which would call for a larger amount of reference
sites spread throughout the considered territory.

In essence, our aim is to propose a way to optimally summarizethe snapshot of
forecast errors observed at timet in order to issue a predictive density describing
future wind power generation at the target location at time t + h.

3.2.1 Considering parametric predictive densities

The parametric approach is based on the assumption that the shape of the
conditional predictive densities is known and can be described by one of the
known distribution functions.

In the literature Beta, generalized-Logit Normal and Censored Normal densities
have been proposed as the basis for describing wind power generation. These
distribution functions have also been considered in this thesis, however, since
the best results have been obtained using Censored Normal distribution (see
Paper D), this is the one analysed in Paper C.

Censored Normal predictive densities can be fully characterized by their location
and scale parameters. These parameters can be approximatedby the conditional
mean and the conditional variance of power generation, respectively.

Estimating the conditional expectation of wind power generation is equivalent
to point forecasting. Thus, our approach to estimating the location parameter
is based on the methodology presented in Paper B. That is, we employ a Condi-
tional Parametric model which considers point forecasts for the target location
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issued by the state-of-the-art system, and corrects these by accounting for the
forecast errors previously recorded at the neighbouring locations. The resulting
point forecasts are then used as the estimates of the location parameter.

The scale parameter is approximated by the conditional variance of wind power
generation. Thus, estimating this parameter calls for modelling wind power
volatility. The volatility is not constant in time, owing to evolving wind dynam-
ics and owing to the power curve which ampli�es or dampens wind �uctuations
in a non-linear manner.

We tried to account for the former aspect by employing regime-switching models,
however this did not improve the accuracy of the resulting probabilistic forecasts.
The corresponding models are only brie�y presented in PaperD.

The e�ects of the power curve can be accommodated by letting the model pa-
rameters vary with the level of expected power generation, thus conditioning
wind power volatility on the slope of the power curve. For this purpose a Con-
ditional Parametric ARCH (CP-ARCH) model has been proposed, as well as
its CP-ARCH-X extension involving o�site information. The se models are de-
scribed in more detail in Paper C.

3.2.2 Considering non-parametric predictive densities

Non-parametric predictive densities have been built usingtime-adaptive quantile
regression. The procedure follows two main steps. First, wind power point
predictions are used to determine the mean of the corresponding predictive
distributions. Second, the uncertainty around the mean is shaped by building
a number of quantile models. Each of the considered quantiles is modelled as
a non-linear function of the expected power generation, thus accounting for
the power curve e�ect. The o�site information can be incorporated in to the
quantile models as an additional covariate, even though this has shown not to
improve the quality of the resulting forecasts.

3.2.3 Results

The empirical results are obtained on the test case of a portfolio of wind farms
in Denmark. The respective locations of the wind farms are shown in Fig. 3.2.
The Nysted wind farm has been chosen as the target wind farm owing to its
large rated capacity and then appealing location, with manywind farms located
�upwind� in view of the prevailing westerly winds over Denma rk.
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The results have shown that the best performing parametric predictive densities
are obtained when the location parameter is estimated usingthe CP model
accounting for the directional propagation of the forecasterrors, while the scale
parameter is described by the CP-ARCH model accounting for the power curve
e�ect.

The best performing non-parametric predictive densities are obtained when the
mean is estimated using the CP model, thus accounting for thespace-time ef-
fects, while the uncertainty around the mean (described by the quantile models)
accounts for the non-linear power curve e�ect.

In both cases the improvements in forecast quality are achieved by the space-
time correction of the conditional mean of the predictive densities. Additional
inclusion of the spatio-temporal e�ects into the uncertainty modelling step has
been shown to be super�uous, as it does not further improve the quality of the
predictions.

Adaptive quantile regression with initial WPPT point forec asts as input is
considered as the base benchmark. The best performing parametric and non-
parametric densities are compared to the benchmark approach and the relative
improvements in the CRPS (skill scores) are evaluated. The results are shown
in Fig. 3.4.

The results show that accounting for the spatio-temporal e�ects improves the
quality as measured by the CRPS of the resulting probabilistic forecasts for a
range of lead times up to 5-8 hours ahead. For larger lead times, none of the
proposed models outperformed the benchmark given by the locally optimized
forecasts. This is in line with the scales of motion of weather systems over the
region [66].

The performance of the parametric and non-parametric approaches has been
compared, uncovering that they both perform similarly for lead times up to 5
hours ahead and with an advantage for non-parametric predictive densities for
further lead times.
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Figure 3.4: Evaluation of the density forecasts in terms of the relative im-
provements of the CRPS (skill scores). Point labels show the
corresponding CRPS values [% of the nominal capacity] for the
benchmark model.

3.3 Space-time trajectories

Paper E addresses a problem of generating space-time trajectories of wind power
generation. This section gives a brief overview of the proposed methodology and
highlights the main results.

The task of the study presented in E is to issue multivariate predictive densities
describing wind power generation at a number of locations over a period of time.
Tackling such a high dimensional problem directly is a very di�cult task.

For instance, consider the spatial aspect of the problem. Power curves describing
wind power generation are site-speci�c as they depend not only on the wind
characteristics, but also on the way the turbines are positioned within a wind
farm, local terrain particularities, etc. The fact that win d power dynamics are
site-speci�c makes it more complicated to issue high quality forecasts for a large
number of locations simultaneously, because the local particularities (if to be
respected) keep the dimension of the problem high.

A similar situation occurs when considering the temporal aspect of the problem.
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A common practice is to issue direct power forecasts for eachof the prediction
horizons individually rather than addressing their joint d istribution. This is
motivated by the fact that direct forecasts are more robust to model misspeci-
�cation.

In this study we have considered a copula approach for issuing multivariate
predictive densities. An important feature of copula is that it can be used to
model an interdependence structure between stochastic variables independently
of their marginal distribution functions. That is, multiva riate predictive densi-
ties can be obtained in two-steps. First, the existing state-of-the-art forecasting
tools are used to issue probabilistic forecasts for each location and each look-
ahead time individually. Then, a copula is introduced in order to obtain the
corresponding joint multivariate predictive densities.

A Gaussian copula has been considered in this study, suggesting that the under-
lying interdependence structure can be represented by the covariance structure.
The main contribution of the work is given by the proposed parametrization
of the covariance structure. That is, instead of tackling the covariance matrix
directly, focus has been on its inverse (precision matrix).As opposed to the co-
variance matrix which informs on the global dependency pattern, the elements
of the precision matrix represent conditional dependencies. The two matrices
compare in a similar way as auto-correlation functions compare to the partial
auto-correlations. We have shown that the precision matrixis very sparse, which
results in several bene�ts.

First, working with sparse matrices results in computational bene�ts due to
faster factorization algorithms.

Second, the precision matrix represents conditional dependences between vari-
ables as opposed to the global relations given by the covariance matrix. A zero
element in the precision matrix implies that the corresponding variables are
conditionally independent, given the rest. This can be usedto determine the
model structure.

The empirical results in this study have been obtained on thetest case of 15
groups of wind farms spread throughout the territory of Western Denmark (see
Fig. 3.5).

The structure of the sample precision matrix has shown that the information
observed at time t at zone A depends only on local information at A at times
t +1 and t � 1 and on the information at four neighbouring zones of A : Northern
(N), Eastern (E), Southern (S) and Western (W) neighbours at times t � 1, t,
t + 1 (see Fig. 3.6).
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Figure 3.5: Geographical locations of the 15 zones of wind farms considered
in the study

Figure 3.6: Neighbourhood speci�cation of a single zone. The focus zoneis
denoted by A while N, E, S and W correspond to its Northern,
Easterly, Southern and Western neighbours, respectively.

Conditional cross-correlations between the variables have been shown to be
direction-dependent. That is, they are stronger in the West-East direction which
is in line with the prevailing westerly winds over the territ ory as well as with the
fact that in general, distances between the groups are closer in that direction.

Conditional precisions are also not-constant, but change with the prediction
horizons.

The proposed modelling approach accounts for both the direction-dependent
conditional correlations and for the horizon-dependent conditional precisions.
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The results of the study have been obtained while evaluatingpredictive perfor-
mance of the generated multivariate predictive densities.One year of data has
been available for model validation. The results have shownthe superiority of
the proposed approach over the considered benchmarks in terms of the overall
quality.

3.4 Forecast veri�cation

This section gives a summary of the main results obtained in Papers F, G and
H dealing with some methodological aspects of forecast veri�cation.

As has been discussed in Section 2.5, in order to evaluate probabilistic forecasts
one needs to employ proper scores. Propriety is seen as a basic property of a
score, ensuring that forecasts coinciding with a real process generating density
are given the best score value. When evaluation is done basedon proper scores,
the forecaster is encouraged to issue predictions based on his best judgement
and aim at capturing the real process generating density rather than trying to
hedge the score.

It appears that such a crucial requirement as scores being proper is not always
respected. In Papers F and G emphasis has been on the recent proposal of the
Coverage Width-based Criterion (CWC) as a score for evaluating prediction in-
tervals. The papers have shown that the score is not proper and that there exist
simple hedging strategies which can be used to obtain the optimal score value
without providing any adequate description of the process. As a consequence
the CWC score is not a valid score for evaluating predictive intervals and it
is impossible to conclude on the superiority of one forecasting approach over
another based on this criterion. Paper G provides a complementary discussion
and examples on this issue.

Propriety, thus, can be viewed as a requirement for a score inorder to be valid.
It is, however, not su�cient for it to be informative. That is , by requiring scores
to be proper, we essentially ask them to associate the optimal value with the
real process generating density. This requirement in itself does not guarantee
that such scores are able to discriminate between forecastsof di�erent quality.
For example, consider a score which always assigns a constant value to any kind
of predictive density. This score is proper. However, in practice it is not useful
as it is not able to rank the competing approaches.

In practice one wishes to have scores which are not only proper, but which
are also able to distinguish between forecasts of di�erent quality. Following
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this, Paper H refers to the notion of discrimination. A score is said to have
a high discrimination ability if di�erences in predictive d ensities translate to
signi�cant di�erences in the corresponding score values. In contrast, a score is
said to have no discrimination ability if the same score values are assigned to
various predictive densities.

Furthermore focus is on the discrimination ability of the Energy score (as de-
�ned in Eq. (2.13)). The Energy score is widely used in practice for evaluating
probabilistic forecasts of multivariate quantities. This score is proper, thus in
theory it can be used to assess predictive densities. However, certain concerns
have been raised when trying to implement the score to evaluate the space-time
trajectories generated in Paper E. The di�culties faced are explained in the
following.

First, Energy score estimation calls for Monte Carlo techniques. This is compu-
tationally very expensive. More precisely, the cost of inference with a covariance
matrix (if not restricted to any particular structure) is cu bic in the dimension.
This means that sampling from a multivariate Gaussian distribution and esti-
mating the associated Energy score is hampered by thebig n problem.

For example, in the particular case presented in Paper E the dimension of the
problem was 645, and 8760 time steps were considered in a validation period (a
year of hourly data) and for each time step 10 scenarios (which is very small
given the dimension of 645) were generated in order to evaluate the score. Given
this setup, it took more than 12 hours to estimate the score.

The problem, however, is not only the time it takes to estimate the score, but
also in the uncertainty of the estimates stemming from the fact that rather few
samples can be drawn at every time step in order to make it computationally
feasible to process the whole data set.

Second, when estimating Energy scores for various predictive densities, it has
been noticed that the score is not sensitive to the changes inthe dependence
structure. More speci�cally, Paper E has considered a multivariate Gaussian
case with the marginal densities being known a priori. Therefore, the competing
approaches have di�ered only in terms of the correlation structures.

Even though the data analysis has shown the variables to be highly correlated
(with cross-correlation values reaching 0.8), the Energy score obtained under
the assumption of independence has been very close to the oneobtained when
capturing the dependence structure: 1.5048 versus 1.4866,respectively. The
di�erence is very small, even though it is still con�rmed as statistically signi�cant
using Diebold-Mariano test statistics [72].
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Such tiny di�erences in the Energy score are not exceptional. Similar results
have been reported in a number of recent works focusing on multivariate prob-
abilistic forecasts and the predictive modelling of interdependence structures,
e.g. [59, 73, 74].

Owing to such small di�erences in Energy scores, Paper H has taken a closer
look at the Energy score with the main focus being placed on its ability to
discriminate between di�erent interdependence structures.

The paper presents an analytical upper bound on the ability of the Energy
score to discriminate between di�erent correlation structures when considering
multivariate Gaussian processes. This bound is derived based on the following
scenario.

Suppose, that a real process generating density,G, is a multivariate Gaussian
with some mean and a covariance structure
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(3.1)

This means that a single observation,Yt = [ Y1t Y2t � � � Ynt ] equals [Y1 Y1 � � � Y1]
with Y1 � N (0; � 2). That is, since the process is perfectly correlated, then if we
know at least one element fromYt , then we know all the rest explicitly, since
Yi;t = Yj;t , 8 i; j = 1 ; 2; � � � ; n

Suppose, a predictive densityF follows a naive approach which, instead of trying
to describe the correlation structure, assumes that the elements are completely
independent. That is, the corresponding predictive density, F , is a n-variate
Gaussian with a well-speci�ed mean and a covariance structure
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That is, F suggests that information about one element in the observation vector
Yt does not give any information about any other element inYt .

We denoteEG and EF the Energy scores given by the forecasts issued based on
the real process generating densityG and on the naive approachF , respectively.
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The upper bound � E is the given by:

� E =
EF � EG

EG
(3.3)

That is, � E describes how much the Energy score changes if instead of the
perfectly correlated process generating density, one issues forecasts based onF ,
while totally neglecting a very strong interdependence structure between the
variables.

Results in Paper H have shown that � E is independent of� 2 and only depends
on the process dimensionn. Fig. 3.7 depicts how � E changes with the process
dimension.
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Figure 3.7: Upper bound on discrimination ability (i.e., � E ) of the En-
ergy score for a multivariate Gaussian process with well-predicted
means and variances, as a function of the dimensionn.

One can see that at the limit, the upper bound on � E reaches 0:14, which
means that in high dimensions, even if the real process generating density is
perfectly correlated, issuing forecasts which completelyignore this interdepen-
dence structure, would only result in the penalty reaching at most 14% of the
score. This maximum is only achieved in this particular caseof the real process
generating density being perfectly correlated which is seldom (if ever at all) met
in practice.
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In addition Paper H has presented some simulation results which show that if
the actual cross-correlation between variables is lower than 0.8, the change in
the Energy scores does not exceed 3% (simulations are based on n = 2). This
is very low and explains why in practice such minor di�erences in the Energy
score values are reported in various scienti�c works which focus on modelling
interdependence structures.

As a conclusion, the Energy score may be di�cult to use in practice owing to
its relatively low sensitivity to changes in dependence structures and potentially
high uncertainty of the estimates.



Chapter 4

Conclusions and Perspectives

4.1 Conclusions

Optimal integration of wind energy into power systems calls for high quality
wind power forecasts. When initializing this research, operational wind power
prediction systems were issuing forecasts for each location individually, with-
out adequately accounting for the information coming from the neighbouring
territories. However, it is intuitively expected that fore cast errors made by the
locally optimized approaches exhibit residual cross-correlations in space and in
time owing to the inertia in meteorological systems.

In this dissertation we have shown that this intuitive dependence is indeed
present, i.e. that errors made by the locally optimized prediction systems prop-
agate in space and in time under the in�uence of meteorological conditions
(mainly wind direction). Following this, new methods and models for captur-
ing the residual space-time dependencies between the forecast errors have been
proposed. The implementations of these models have shown that accounting
for spatio-temporal e�ects improves the quality of the resulting wind power
forecasts. Improvements have been observed when considering various types of
power predictions: point forecasts, marginal predictive densities and space-time
scenarios.
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First, point forecasts and marginal predictive densities have been considered.
The results obtained on the test case of Western Denmark haveshown that the
improvements in forecast quality are observed for a range oflead times up to
5-8 hours ahead. The peak improvements have been observed when consider-
ing one hour ahead predictions. This is in line with the geographical layout of
the considered locations as well as with the speed of motion of weather fronts
over the given territory [66]. The magnitude of the improvements depends on
the positions of the �target� location and the available �se nsor� sites with re-
spect to each other, given the prevailing wind direction. More speci�cally, the
improvements are higher when considering target locationswhich are situated
�down-wind� with respect to the prevailing wind direction a nd, thus, can bene�t
from the information extracted from the �up-wind� territor ies. Also, the im-
provements are likely to be larger if considering aggregated territories, since data
aggregation smoothens out local e�ects and places focus on amore global phe-
nomenon. Furthermore, the results indicate that the improvements are larger
if both the "target" and the corresponding "sensor" locations are of a similar
dynamics (onshore, o�shore).

It has also been shown that the obtained forecast improvements come from
correcting the conditional expectation of future power generation (i.e. point
forecast correction) which then leads to improvements in the probabilistic fore-
casts. Additional space-time correction when estimating higher order moments
of the marginal predictive densities has been shown to be redundant.

Predictive performance of parametric and non-parametric probabilistic densities
have been compared, uncovering that they both perform similar in terms of
overall quality for lead times up to 5 hours ahead, and with anadvantage for
non-parametric predictive densities for further lead times. However, even though
in terms of the overall quality the densities perform similarly, their conditional
performance is shown to be di�erent. Owing to the di�erences in conditional
performance, forecasts made by the two approaches may have di�erent values
to the end-user depending on the particular application at hand.

An important part of the study has been devoted to developingnew methods
and models for generating space-time trajectories of wind power generation.
Essentially such trajectories are given by random draws from multivariate pre-
dictive densities describing wind power generation at a number of locations over
a period of time. Owing to the process complexity, estimating such joint density
directly is a di�cult task. Thus, we have proposed to employ a copula approach,
which decouples the problem into two independent steps given by (i) modelling
marginal predictive densities describing wind power generation at each site and
each prediction horizon individually and by (ii) modelling the interdependence
structure.
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In this dissertation we have argued that a Gaussian copula isa reasonable choice
for the given problem and that the best way to parametrize the dependence
structure is by considering the precision matrix, i.e. the inverse of the covariance
matrix.

It has been illustrated that the process precision matrix is very sparse. This
has opened doors to the �eld of Gaussian Markov Random Fieldswith access to
computationally e�cient algorithms available for inferen ce with sparse matrices
as well as to a new way to interpret the dependence structure.That is, instead
of revealing the global dependencies between the variables, a precision matrix
represents the related conditional dependencies. In this study we have found
these conditional dependencies are somewhat easier to model and to explain
intuitively. Moreover, the proposed parametrization allows for more �exibility as
one can easily obtain non-separable in space and in time dependence structures
following a more complex pattern than the conventional exponential decay in
time (and/or space).

Additionally, the study has revealed that the precision matrix is given by non-
constant conditional precisions and conditional cross-correlations. This has put
us beyond conventional approaches based on homogeneous stationary Gaussian
�elds. Data analysis has shown that the conditional precisions increase linearly
with the prediction horizon, while the conditional cross-correlations depend on
the direction. That is, when considering a test case of 15 groups of wind farms
spread throughout Western Denmark, conditional dependencies between any
two locations have been shown to be stronger in a West-East direction. This is in
line with prevailing westerly winds over the territory as well as with the fact that
in the given setup the distances between groups in that direction are generally
shorter. The results have shown that the space-time trajectories generated using
the proposed methodology outperform the benchmark approaches in terms of
the overall quality.

Finally, the last part of the thesis has considered some methodological aspects re-
lated to veri�cation of probabilistic forecasts of a very hi gh dimension. Namely,
focus has been on the Energy score which is a score commonly used for veri�ca-
tion of probabilistic forecasts of multivariate quantitie s. We have shown (using
both simulation results and some analytical derivations) that in the case of a
multivariate Gaussian density, the Energy score has a rather weak ability to
discriminate between di�erent correlation patterns, prov ided that the marginal
densities are well-speci�ed. Such lack of sensitivity, coupled with the sampling
uncertainty, means that it is di�cult to use this score in pra ctice when compar-
ing between rival approaches which only di�er from each other in terms of the
dependence structure.

This is an important result, since the described Gaussian setup is not only met
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when working with multivariate quantities which originall y can be assumed as
Normally distributed. The setup is also met when employing aGaussian copula
approach, and this is a very common choice for describing dependency between
variables, independently of their marginal distributions. Thus, it is met in a
wide range of practical applications.

4.2 Perspectives

The study raised a number of new questions and gave ideas for future work.
In this section we do not aim to develop a general discussion on how we see or
would like to see wind power forecasting in the (far) future. Rather, we follow
a rather pragmatic aim to explain how we see the next steps in improving or
extending the methodology presented in this thesis.

As far as point forecast corrections is concerned, the methodology proposed in
this thesis is rather general as it does not require the presence of any speci�c
meteorological or topographical patterns (e.g. strong channelling e�ects, strong
thermal winds, etc). However, one assumption made by the model is that at
a given time step a unique prevailing wind direction is su�ci ent to represent
the weather regime over the whole territory. When moving to more complex
case studies (larger areas potentially with various local wind climatologies) it
could be bene�cial to look at model extensions which could account for several
dominant wind directions. In this case varying coe�cient mo dels or clustering
techniques could be employed.

Furthermore, the results indicate that data aggregation is an important factor
which helps capturing the underlying space-time dynamics.This calls for more
studies on optimal aggregation techniques.

Another possibility for improving the methodology is to consider numerical
weather predictions issued by di�erent meteorological services and/or satellite
images as additional explanatory variables. This data could give a better insight
into the appearing fronts of imbalances between weather forecasts and observa-
tions and could help to better capture the patterns of the error propagation.

When considering marginal predictive densities, a possible improvement of the
proposed methodology could be achieved by proposing betterways to quantify
the uncertainty. In this work we assumed that changes in power variability
can be best explained by the level of the expected power generation. However,
other factors can in�uence the pattern of �uctuations: rain events, atmospheric
stability, convective clouds, etc. One possibility is to consider radar or satellite
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images in order to get new input to better explain power �uctuations.

Also, the results have shown that the proposed parametric and the non-parametric
approaches provide forecasts of a similar overall quality.However, it has been
shown, that the conditional performance of the resulting densities di�ers. Thus,
it could be interesting to see how those densities compare when used as in-
put to decision making problems involving wind power integration into energy
systems. An interesting task could be to explore possibilities to combine the
two approaches. That is, we could propose a regime-switching approach which
could optimally choose which of the density types should be used to give the
best description of power generation for the following timemoment. One could
also consider combining forecasts based on some meteorological conditions in
the spirit of [75].

A lot of new ideas arise when considering space-time trajectories of wind power
generation. The fact that we have found ourselves in the framework of Gaussian
Markov Random Fields provides a lot of exciting opportunities. An interesting
extension to the proposed methodology is to condition the precision matrix on
meteorological conditions. This could be done by considering a regime switching
approach.

Also, an interesting challenge is to move from the lattice setup considered in
this study to a fully continuous approach. Based on the work of Lingren et al.
[76] there is a link between stochastic partial di�erential equations and certain
types of precision matrices. Thus, by understanding how theelements of the
precision matrix depend on the distance between the zones and on the prevailing
meteorological conditions, one can get a process description via stochastic partial
di�erential equations.

In a broader context, there is a potential to generalize space-time trajectories
by adding another dimension to the problem. That is, one could consider not
only wind power forecasting, but, for instance, address wind and solar power
simultaneously.

The interest in advancing forecasting methodologies further and further in-
evitably calls for more diverse and better ways to evaluate probabilistic forecasts
of multivariate quantities. This calls for a lot of future re search. One possibility
could be to investigate whether it is possible to derive Mahalanobis distance
based scores. Mahalanobis distance takes covariance structure into account and
thus it is more sensitive to changes in correlation patternsthan Euclidean dis-
tance (which is the core of the Energy score). However, it should be stressed
that derivation of new scores is not a trivial task as one needs to ensure that the
proposed scoring rules are proper. Thus, it is not certain that the idea of looking
into Mahalanobis distance would lead to any new proper and useful evaluation
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criterion.
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Spatio-temporal analysis and modeling of
short-term wind power forecast errors

Julija Tastu 1, Pinson1, Ewelina Kotwa, Henrik Madsen1, Henrik Aa. Nielsen 2

Abstract

Forecasts of wind power production are increasingly being used in
various management tasks. So far, such forecasts and related un-
certainty information have usually been generated individually for a
given site of interest (either a wind farm or a group of wind farms),
without properly accounting for the spatio-temporal dependencies
observed in the wind generation �eld. However, it is intuiti vely ex-
pected that, owing to the inertia of meteorological forecasting sys-
tems, a forecast error made at a given point in space and time will
be related to forecast errors at other points in space in the follow-
ing period. The existence of such underlying correlation patterns is
demonstrated and analysed in this paper, considering the case-study
of western Denmark. The e�ects of prevailing wind speed and direc-
tion on autocorrelation and cross-correlation patterns are thoroughly
described. For a �at terrain region of small size like western Den-
mark, signi�cant correlation between the various zones is observed
for time delays up to �ve hours. Wind direction is shown to play
a crucial role, while the e�ect of wind speed is more complex.Non
linear models permitting capture of the interdependence structure of
wind power forecast errors are proposed, and their ability to mimic
this structure is discussed. The best performing model is shown to
explain 54% of the variations of the forecast errors observed for the
individual forecasts used today. Even though focus is on one-hour-
ahead forecast errors and on western Denmark only, the methodology
proposed may be similarly tested on the cases of further look-ahead
times, larger areas, or more complex topographies. Such generaliza-
tion may not be straightforward. While the results presented here
comprise a �rst step only, the revealed error propagation principles
may be seen as a basis for future related work.

1DTU Informatics, Technical University of Denmark, Richard Petersens Plads, bld. 305,
DK-2800 Kgs. Lyngby, Denmark

2Forecasting and Optimization for the Energy Sector A/S, Hør sholm, Denmark
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A.1 Introduction

The optimal integration of wind energy into power systems requires high-quality
wind power forecasts, preferably accompanied with reliable estimates of the fore-
cast uncertainty. So far, state-of-the-art prediction systems typically provide
forecasts for a single wind turbine, for a wind farm, or over aregion with signif-
icant installed wind power capacities [1, 2]. Even if forecasting methodologies
are developed for di�erent spatial resolutions, see e.g. Siebert [3], the spatio-
temporal interdependence structure in the wind generation�eld 3 is seldom con-
sidered, since it is assumed to be fully captured by meteorological predictions
used as input. Recently however, some research works have concentrated on
wind speed prediction using spatio-temporal correlation with application to
wind power prediction (for short look-ahead times, typically up to two-hours
ahead), thus showing potential interest in accounting for these aspects [4, 5, 6].
These works mainly deal with cases where wind behavior between sites is easier
to model, owing to terrain topology, or wind climatology. For instance, Larson
& Westrick [4] consider the test case of a potential site for awind farm located
at the exit to the Columbia River Gorge, while meteorological observations are
available from the entrance of this same Gorge. Another example relates to the
work of Damousiset al. [5], for which information is available upstream of the
location considered in the Thessaloniki area, and with quite steady prevailing
thermal winds. In a more general setup, Gneitinget al. [6] have recently pro-
posed several regime-switching models which account for two dominant wind
directions while predicting wind speed up to two-hours ahead, with an interest-
ing extension to probabilistic forecasting. The results ofall the works mentioned
above show signi�cant improvements compared to benchmark prediction meth-
ods e.g. persistence. But, if these methods were to be applied to other types
of case-studies, for which wind behavior is more complex andwhere no chan-
neling e�ect is present, or for larger areas, one should thennot expect similar
performance of the models in terms of forecast quality. Moreadvanced models
may be needed for such cases, as discussed by Hering & Genton [7] for instance,
potentially requiring signi�cant expertise for identi�ca tion of their structure or
estimation of their parameters.

In operational conditions, state-of-the-art forecasting methods of wind power
generation are commonly optimized with a focus on the wind farm (or aggre-
gation of wind farms) of interest. So far, they do not account for potential
information from neighboring sites, for example other wind farms or meteoro-
logical stations. Having a broader view of the forecasting problem, one could
account for the possibility that, even though forecasting systems are optimized
for local conditions, the inertia in meteorological systems might have the e�ect

3by wind generation �eld is meant here a complete description of the wind power generation
characteristics over a domain of interest.
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that a wind power forecast error at a certain point in space and time could
propagate to other locations during the following period. Therefore, in view of
the signi�cant installed capacities of wind power installed all over Europe today
(see current status and expected developments atwww.ewea.org), analysis and
understanding of the spatio-temporal characteristics of wind power forecast er-
rors are of major importance. Indeed, errors in meteorological forecasts might
translate to fronts of imbalances, i.e. taking the form of a band of forecast errors
propagating across entire regions. Studies on the spatio-temporal characteristics
of wind �elds have already been deemed as highly informativefor judging the
adequacy of available generation and potential reserves inthe UK for instance
[8]. Regarding wind power forecasting errors, a relevant analysis of the spatial
smoothing e�ect (thus related to the analysis of the correlation of forecast er-
rors at the spatial level only) has been performed by Fockenet al. [9] for the
speci�c case of Germany. However, such an analysis does not provide infor-
mation on how spatial patterns in forecast errors (or of smaller/larger forecast
uncertainty) may evolve in space and time. Potential bene�ts of spatio-temporal
analysis and associated modeling of forecast errors include global corrections of
wind power forecasts, associated increased knowledge on the interdependence
structure of forecast uncertainty, and correspondingly improved decision-making
from the provided forecasts. This may concern both wind power producers with
a geographically spread portfolio, and Transmission System Operators (TSOs)
managing a grid with signi�cant wind penetration. Better un derstanding of
spatio-temporal dependencies may also be bene�cial at the planning stage, for
the optimal dispatch of wind farms in order to improve the predictability of
wind generation at the regional level.

One of the main goals of this paper is to make a �rst step in analyzing spatio-
temporal propagation of the wind power forecast errors. Therefore the �rst
objective is to demonstrate that such a spatio-temporal interdependence struc-
ture of wind power prediction errors exists. Another objective is to show how
some explanatory variables, more precisely wind speed and wind direction, may
a�ect the nature and strength of this interdependence structure, in view of the
geographical layout of the wind farms. A complementary objective is to propose
models that have the ability to capture such e�ects. The casestudy considered
relates to the western Denmark area, for which both hourly measurements of
wind power and corresponding forecasts are available over aperiod of several
months in 2004. Forecasts of wind speed and direction used asinput to the
wind power prediction method used in the analysis. A detailed description of
this case study and available data is given in a �rst part of the paper. Subse-
quently, classical time-series analysis tools are employed in order to highlight
the spatio-temporal characteristics of the wind power forecast errors. Based on
the results of this analysis, a set of models and methods is proposed with the
aim of capturing the revealed nonlinear behavior of forecast errors. Three types
of statistical models are considered. Firstly a linear model based on observed

www.ewea.org
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forecast errors for various groups of wind farms is presented. It is followed by a
regime-switching approach permitting to switch between di�erent linear models,
depending upon the forecasted wind direction. Finally, thee�ect of wind speed
forecasts is accounted for by generalizing the models considered, then taking
the form of conditional parametric models. Some possible directions for future
research are presented and discussed in a �nal part of the paper.

A.2 Case Study and Available Data

Owing to its already signi�cant share of wind generation in the electricity mix as
well as very ambitious objectives in the medium term, focus is given to the test
case of Denmark. This country has set the goal of having 50% ofthe electricity
demand met by wind energy in 2025 [10], which will clearly result in challenges
related to the management of the grid. More precisely, the case study of this
paper relates to the western Denmark area, including the Jutland peninsula and
Funen island, which is connected to the UCTE (Union for the Co-ordination of
Transmission of Electricity) system and has around 70% of the entire wind
power capacity installed in Denmark. Another reason for thechoice of this test
case is that operational developments and application of wind power forecasting
systems started around 1994 in Denmark [11], and it is thus common practice
today to have forecasts of wind power production at di�erent spatial resolutions
and at a state-of-the-art level of accuracy. One more reasonfor choosing this
area for the analysis is due to the orographical particularity of the territory.
Denmark has a very smooth and �at terrain, while there is in general only one
prevailing weather front dominating in the whole territory at any given moment.
As a consequence, our analysis of spatio-temporal dependencies in forecast errors
does not require for any particular orographic or vegetation particularities to
be taken into account. Note that orographic e�ects at the very local scale are
smoothed by the grouping process.

The data selected for this work comes from 22 wind farms of di�erent nom-
inal capacities (details can be found in [3]), and spread throughout the area
considered. For all these wind farms, measurements of wind power produc-
tion with an hourly resolution are available, along with win d power forecasts
provided by the Wind Power Prediction Tool (WPPT). WPPT is a s tate-of-
the-art forecasting system. Methods included in this forecasting system are
described in [12, 13] (and references therein), while application results may be
found in e.g. [14]. For the present case, it provides forecasts of wind power
generation for each of the wind farms with a temporal resolution of one hour
up to a 48-hour lead time. Forecasts are generated every hour. The inputs for
WPPT are historical power measurements at the level of the wind farm con-
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Figure A.1: Geographical locations of the 22 wind farms and selected groups
of wind farms.

sidered, along with meteorological forecasts of wind speedand direction. An
initial so-called power curve model permits the nonlinear conversion of wind
speed and direction forecasts to power. In a second stage, a dynamical model
permits recalibration of the power curve model output to correct for poten-
tial diurnal cycles not captured by the meteorological forecasts and to adapt
to local conditions by accounting for the local dynamics of the wind farm con-
sidered. Adaptive estimation of the model parameters permits accommoda-
tion of long-term variations in the wind generation processcharacteristics be-
cause of e.g. seasonality, or ageing of the turbines. In the present case, the
meteorological forecasts used as input are provided by the HIRLAM model



64 Paper A

of the Danish Meteorological Institute (see http://www.dmi.dk/eng/index/
research_and_development/dmi-hirlam-2009.htm ). The forecasts are avail-
able over a 40� 42-nodes grid (horizontal resolution is 3 km) covering Denmark
and surroundings, including a large part of the North Sea. Toprovide weather
forecasts for each wind farm, data available at the HIRLAM nodes is respectively
sub-sampled and interpolated (performed at DMI). Meteorological forecasts are
delivered every six hours with an hourly temporal resolution up to 48 hours
ahead. Wind forecasts are available at di�erent vertical levels. Only wind fore-
casts at 10 meters a.g.l. (above ground level) have been considered here, though,
due to the fact that WPPT also uses this particular level as input. The period
for which both measurements and predictions have been made available for this
study is from the fall of 2003 until July 2004. Since a new version of WPPT
was installed in the fall of 2003, some time is needed for the model parameters
to settle. Therefore, it was decided to disregard data originating from the last
few months of 2003. The �nal dataset includes data from the �rst seven months
of 2004.

Forecast errors are de�ned as the di�erence between power predictions and
corresponding measurements, subsequently normalized by the installed wind
power, following the framework described in [15]. Only one-hour ahead forecast
errors are considered. The random variable corresponding to the forecast error
at time t is denoted byx t .

It has been chosen to study and model errors for groups of windfarms in-
stead of concentrating on errors for each separate wind farm. This approach is
preferred since spatial smoothing reduces the dependency on the local behavior
and permits to focus on more on global phenomena a�ecting thespatio-temporal
movements of forecast errors. In the �rst step consisting ofgrouping the data,
both the geographical layout of the wind farms and the extensive study per-
formed by Siebert [3] have been accounted for. Based on clustering analysis,
[3] proposed to form 3 groups of wind farms. We chose to further split data
from 3 groups into 5 in order to have more �exibility while accounting for dif-
ferent error propagation directions. This splitting has been performed mainly
considering the geographical layout of the wind farms. An additional correla-
tion analysis was performed. It did not play a crucial role in our decision, as
it was di�cult to interpret. Since the core objective of the p resent paper is to
check whether spatio-temporal error propagation can be modeled and used for
forecast improvement, not much e�ort has been made to optimize the grouping
of wind farms. Possibly the grouping technique could be the focus of further
work, and result in additional improvement of forecast performance. The ob-
tained groups of wind farms, along with the location of various wind farms, are
depicted in Figure A.1. In the following, particular attent ion will be given to
Group number 5 (corresponding to Funen island), as a large part of weather
fronts propagation over Denmark come from the North Sea (mainly from W-

http://www.dmi.dk/eng/index/research_and_development/dmi-hirlam-2009.htm
http://www.dmi.dk/eng/index/research_and_development/dmi-hirlam-2009.htm
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NW, see Figure A.2 demonstrating wind-rose plots for the forecasted wind at
di�erent groups). It is then expected that the most signi�ca nt spatio-temporal
characteristics of forecast errors will be observed if forecast errors at Group 5
are considered as the response variable to errors observed in the other groups
of the Jutland peninsula.
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Figure A.2: Wind-rose plots showing the occurrences of forecasted wind
speeds (m/s) and directions for each group.

The group errors have been calculated as an average of the errors within the
groups. In parallel, since the aim is to study the e�ects of wind speed and direc-
tion on the spatio-temporal characteristics of forecast errors, a procedure was
de�ned for obtaining representative wind speed and direction forecasts for each
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of the groups of wind farms considered. Here, instead of employing a vectorial
approach that would involve adding wind vectors, and then deriving average
wind speed and direction from the norm and orientation of resulting vector, a
more geometrical approach was used. The representative wind speed is given as
the average of various wind speed values for the wind farms ofthe group. In par-
allel, wind direction at each of the farms de�nes the orientation of a set of unit
vectors. The resultant vector then represents the wind direction for the group of
wind farms. Note that these wind speed and direction data areforecasts, more
precisely one-hour ahead forecasts, since focus is one-hour ahead forecast errors
of wind power. To insist on this aspect, the notationsût and �̂ t will be used for
wind speed and direction forecasts, respectively. Since meteorological forecasts
are updated every six hours only, these one hour forecasts are obtained by using
the last relevant available meteorological forecast series.

A.3 Highlighting some Spatio-temporal Charac-
teristics of Wind Power Forecast Errors

An analysis of the available data is performed in order to reveal some of the
spatio-temporal characteristics of wind power forecast errors. Such an analysis
is crucial for understanding the underlying processes and for proposing a set
of relevant models that would permit capture and reproduction of the various
process characteristics. More precisely, the analysis performed aims at answering
the following two questions:

� Is there a signi�cant linear dependency within and between the groups,
possibly with some time lag?

� Can the forecast variables, wind direction and wind speed, be used to
contribute to revealing a stronger dependency?

The interest in answering the �rst of these two questions lies in the fact that, if
linear dependency within and between groups (possibly withsome time lag) is
observed, it will then be straightforward to build linear mo dels to capture such
an e�ect. In parallel, a possible (nonlinear) relationship with some explanatory
variables such as wind speed and direction forecasts could also be integrated in
the proposed models with various approaches. It may appear as more relevant
to study the dependency on the measured wind speed and direction, but since
in real-world application such information will obviously not be available for the
few following hours, forecasted values are preferred.
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In the statistical literature there exists a set of standard tools that can be em-
ployed for analysing these types of linear dependencies in datasets (for more
details see e.g. [16, 17]). In further works, nonlinear dependencies could be con-
sidered as well, with methods described in [18] for instance. For the questions
raised in this paper the set of necessary tools includes Auto-Correlation Function
(ACF) and Cross-Correlation Function (CCF). Each of these functions describes
di�erent types of dependencies and will be brie�y introduced below. The anal-
ysis is structured as follows: (i) �rstly the dependencies within each group of
wind farms are examined; (ii) secondly the dependencies between groups are
characterized;(iii) �nally, the e�ects of wind speed and wind direction forecasts
on both types of dependencies are studied.

A.3.1 Dependency within the groups

This section investigates the e�ects that previous values of time-series of forecast
errors (for each group) have on the current state of the group. The time-series of
forecast errors for the group of wind farmsj is denoted by f x j;t g where t is the
time index. The following analysis is based on the ACF of the time-series of fore-
cast errors. An assumption for its use concerns the stationarity of the process
considered, which in general terms translates to the idea that process charac-
teristics do not change with time. For more information on (strictly) stationary
stochastic processes see [17]. However conclusions on signi�cant dependencies
at various time lags can be formulated even though wind powerforecast errors
are not strictly stationary.

The ACF in lag k for the group of wind farms j , denoted by � j (k), is given by

� j (k) = � [x j;t ; x j;t � k ] =
E [(x j;t � � j )(x j;t � k � � j )]

� 2
j

(A.1)

where � j is the mean of the time seriesf x j;t g and � j is its standard deviation.
The ACF gives the correlation between the two lagged time-series f x j;t g and
f x j;t � k g. Therefore � j takes values in [� 1; 1]: 1 indicates a perfect positive
linear dependency, -1 a perfect negative linear dependency, while 0 stands for
no linear dependency at all. It is obvious that for k = 0 we have � j (0) = 1 ; 8j .

As focus is mainly given to Group 5, Figure A.3 illustrates the ACF of the cor-
responding time-series of forecast errors. Qualitativelysimilar results have been
found for the other groups, and are not discussed here. Figure A.3 gives the
value of � 5(k) as a function of k, along with 95% con�dence intervals under the
assumption of independence for a Gaussian process. Please note, that the data
actually is not absolutely Gaussian, even though it has someof its properties.
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Therefore the 95% intervals shown are preliminary and used only for highlight-
ing data characteristics, but can not be fully trusted for building models. In a
hypothesis testing framework, one may then reject the hypothesis of indepen-
dencef x5;t g and f x5;t � k g if the value of � 5(k) lies outside of this interval. In
practice, if the value of � for a given lag k is clearly outside this interval, one
often concludes on a signi�cant autocorrelation for that lag.

Figure A.3: ACF for Group 5, including a 95% con�dence interval under the
assumption of independence (dotted line). Values outside of this
interval can be considered as signi�cant correlation.

From Figure A.3, it can be seen that the ACF is a rapidly dampened exponential
function, with a dominant autocorrelation in lag 1. The peri odic waves for
further lags are di�cult to interpret. Non-negligible ACF v alues indicate that
a �tted wind power prediction model (WPPT in this case) was no t an ideal
one, since the errors are not totally random. The better the �tted model is, the
smaller the ACF values that would be observed. They would be 0for all lags
(starting from the lag 1) with an ideal prediction tool. Here , from looking at the
ACF results, it is clear, that there is still room to improve p rediction accuracy.
In a general manner thef x5;t g time-series can be appropriately modeled with
an Auto Regressive Moving Average (ARMA) model. This would translate
to saying that there are two layers of dynamics in this time-series of forecast
errors: a long-term inertia de�ning the MA part, and short-t erm dynamics
making the AR part. It may be concluded from the Figure that th ere clearly
are dependencies between forecast errors at di�erent lags within a group of wind
farms. However, some external signals (i.e. forecast errors for other groups of
wind farms) may be related to such dependencies and this might better explain
the observed behavior. This calls for further analysis.
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A.3.2 Spatio-temporal dependencies between the groups

Once the autocorrelation pattern of forecast errors within the groups has been
discussed, one can then proceed with the investigation of cross-dependencies
between the groups. Information about potential cross-dependencies at certain
time lags would be of great importance, since this provides crucial information
for model structure identi�cation. Demonstration of the ex istence of such a pat-
tern would also translate to showing that there is spatio-temporal propagation
of forecast errors between the groups.

For the case of cross-dependencies (possibly with some time-lag) between the
time-series of forecast errors for the various groups of wind farms, the standard
tool to consider is the CCF. The CCF between the time-series of forecast errors
for Groups i and j , denoted by � ij (k), is given by

� ij (k) = � [x i;t ; x j;t � k ] =
E [(x i;t � � i )(x j;t � k � � j )]

� i � j
(A.2)

where� i and � j are the mean of the time-seriesf x i;t g and f x j;t � k g, respectively,
while � i and � j are their corresponding standard deviations.

As previously described, particular focus is given to Group5, since its geograph-
ical location and the meteorological characteristics of western Denmark make it
the most interesting group to study. Group 5 is located downwind of the other
groups when the wind direction is from W-NW (which is dominant for that part
of Denmark). Table A.1 summarizes the CCF evaluation (with respect to all
other groups, and for lags between 0 and 5 hours) as well as theACF evaluation
performed above.

The cross-correlation values at lag 0 are signi�cantly di�erent from 0 for all
groups, and this indicates that wind power forecasting errors for Group 5 have
a tendency to be positively correlated with all the other groups. Furthermore,
this correlation is typically higher for groups with a closer geographical location.
Depending on the lag considered, the same group of wind farmsdoes not always
exhibit the highest correlation. For a time lag of one hour Group 4 shows the
highest correlation, while for a time lag of two hours, Group 1 has the highest
(as highlighted by the bold numbers in the Table). The forecast errors in the
two other groups also have some correlation with forecast errors in Group 5 for
the various time lags, though of minor magnitude. It is intui tively expected
that this is due to the geographical layout of the various groups of wind farms
and meteorological particularities of the area (prevailing W-NW wind), Groups
1 and 4 being the most strongly related to Group 5 (see Figure A.1).

Owing to the dominance of Groups 1 and 4 in the observed cross-correlation
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Table A.1: Cross- and auto-correlation for Group 5.

lag
Group 0 1 2 3 4 5

cross- 1 0.175 0.282 0.307 0.217 0.119 0.070
correlation 2 0.191 0.187 0.169 0.163 0.138 0.079

3 0.1578 0.148 0.114 0.081 0.074 0.060
4 0.2893 0.320 0.260 0.139 0.050 0.018

auto-correlation 5 1.000 0.527 0.059 0.040 0.019 -0.016

patterns, it was decided to further study their dependency on Group 5. Since a
visual inspection of the CCF may be more informative, the corresponding CCFs
are depicted in Figure A.4. The large cross-correlation values for the small lags
denote the dependency on the lagged forecast error values for Groups 1 and 4 on
the current forecast error at Group 5. More precisely, one retrieves the fact that
for Groups 5 and 1 the highest cross-correlation is observedin lag 2, whereas
for Groups 5 and 4 this peak is at lag 1. The reason is most likely due to the
geographical layout, especially the distance between the groups. A closer look
at Figure A.4 reveals periodic oscillations in the CCF for both groups for lags
larger than 6-7 hours. In line with our comment about dependencies within a
group, such oscillations indicate some long-term dynamicsin the forecast error
process.

A.3.3 Dependency on wind direction

The following analysis consists of assessing how wind direction forecasts can
further characterise the spatio-temporal dependencies highlighted above. As it is
known that wind direction clearly a�ects spatio-temporal d ependencies in wind
power production, similar e�ects are intuitively expected for the propagation
of forecast errors. Group 5 is chosen here again as the group of focus, while
the forecast errors from the other groups play the role of explanatory variables.
Note that similar results could be obtained from considering forecast errors in
any other group as the response, potentially explained by forecast errors in the
remaining ones. They would not be as signi�cant as for Group 5, as this group
is ideally situated downwind from most of the other groups.

In order to examine whether wind direction has any e�ect on the observed
spatio-temporal dependencies between forecast errors forthe various groups,
the available dataset of forecast errors is divided according to the forecast wind
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Figure A.4: CCF for the Groups 5 and 1 (top) and Groups 5 and 4 (bottom).
Dotted lines show 95% con�dence intervals under the assumption
of independence. Values outside of such intervals can be consid-
ered as signi�cant correlation.

direction in Group 5. The division is performed by constructing four intervals for
potential wind directions: (0-90], (90-180], (180-270] and (270-360]. Therefore
each interval corresponds to a speci�c sector, i.e. (0-90] the sector between North
and East, (90-180] that between East and South, etc. For eachof these sectors,
a correlation analysis is performed between forecast errors at Group 5 and those
of the other groups. This then translates to performing somekind of regime-
based analysis of the spatio-temporal dependencies, the regime being de�ned by



72 Paper A

wind direction only. Owing to the fact that the correlation s tructure of forecast
errors is studied conditional on the wind direction, such correlation is referred
to as directional correlation in the following. As it is shown in the previous
section, that the strongest correlation structures are between Groups 5 and 1,
and between Groups 5 and 4, only corresponding results are given here. The
cross-correlation values for lags ranging between 0 and 5 hours are given in
Tables A.2 and A.3.

Table A.2: Directional correlation for Groups 5 and 1, for lags ranging from 0
to 5 hours.

lag regime
(0-90] (90-180] (180-270] (270-360]

0 0.0457 0.1472 0.2240 0.1580
1 0.0499 0.2856 0.3597 0.2361
2 0.0672 0.3103 0.4213 0.2219
3 0.0358 0.1810 0.3218 0.1542
4 -0.0166 0.0985 0.2193 0.0519
5 0.0115 0.1130 0.1347 -0.0099

Table A.3: Directional correlation for Groups 5 and 4, for lags ranging from 0
to 5 hours.

lag regime
(0-90] (90-180] (180-270] (270-360]

0 0.1390 0.3200 0.2615 0.3460
1 0.2212 0.2691 0.2570 0.4514
2 0.1788 0.2049 0.2075 0.3762
3 0.1288 0.1555 0.0978 0.1831
4 0.1014 0.0965 0.0158 0.0485
5 0.0252 0.0735 0.0102 -0.0157

Recall that the analysis of the spatio-temporal dependencies in Table A.1 re-
vealed that there was a maximum correlation at lag 1 between forecast errors for
Groups 5 and 4, and at lag 2 between forecast errors for Groups5 and 1. This
can be seen again in Tables A.2 and A.3. Focusing on the correlation pattern
between Groups 5 and 1, reveals that the correlation at lag 2 is at its maximum
when the forecast wind direction is in the (180-270] sector (between South and
West). Even for the other lags, the maximum correlation value between forecast
errors for Groups 5 and 1 is attained in this wind direction regime. It then seems
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that the wind power forecast errors have a tendency to propagate following the
wind direction. Note that there is also signi�cant correlat ion at various lags for
the two adjacent sectors, i.e. for wind directions originating from the sectors
(90-180] and (270-360], although these are of lower magnitude. This is in line
with the idea that errors in wind power forecasts are directly linked to errors in
weather forecasts. In case the input meteorological forecasts are wrong, they are
likely to be wrong over a part of the region considered, if notthe whole region,
thus leading to a non-negligible correlation of wind power forecasts among the
groups. For the case of Groups 5 and 1 (Table A.2) note that thevalues in
column 2 are very similar to the ones of column 4. This could beexplained by
the fact that, for North-West and South-East wind, both Grou p 5 and Group
1 meet the weather condition at approximately the same time. None of these
two groups is clearly up-wind in these two sectors. Correlation values are �nally
much lower for the remaining sector (wind directions in (0-90]) and this for all
lags. In parallel, for the case of the correlation pattern offorecast errors for
Groups 5 and 4, it is clear that in general correlation valuesare higher than for
the case of Groups 5 and 1. This may certainly be explained by the fact that
Groups 5 and 4 are geographically closer than Groups 5 and 1. Then, similar
to the above, it seems that forecast errors tend to propagatefollowing the wind
direction, since the maximum correlation between Groups 5 and 4 (for a lag of
one hour) is observed for wind sector (270-360], which is consistent with the
geographical layout of the groups of wind farms. For this wind sector, Group
4 is located upwind of Group 5. The fact that the lag for which the maximum
correlation is reached is shorter for Group 4 than Group 1 con�rms the impor-
tance of distance between groups. In conclusion, it appearsthat the impact
of wind direction on forecast errors is quite straightforward: they seem to be
transported by the wind and thus propagate along the prevailing wind direction.

A.3.4 Dependency on wind speed

Since wind appears to be a driving force for the propagation of wind power
forecast errors, another potential explanatory variable to be examined is the
wind speed forecast. Indeed, as the distance between groupsof wind farms
seems to play a signi�cant role, wind speed should also make the propagation
of forecast errors slower or faster. This holds even though the speed of the
error propagation is not necessarily the same than the forecasted wind speed, as
the speed/direction of atmospheric features might be di�erent with the surface
wind speed/direction. In order to study the potential e�ect of wind speed,
our strategy is to divide the dataset depending on wind speed, and to analyze
the correlation pattern of forecast errors (as a function of the lag). This is
done for each wind sector individually, as the impact of wind speed may be
more signi�cant for the wind sector that exhibits the clearest interdependence
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of forecast errors. The propagation of forecast errors may then be seen as a
�nite impulse response conditioned by wind speed. As an example, focus is
given here to the correlation pattern between Groups 5 and 1,and for wind
sector (180-270], for which Group 1 is located directly upwind of Group 5. The
dataset is divided into �ve smaller datasets depending on the (forecasted) wind
speed in Group 5. The �ve wind speed intervals considered are(in m/s): 1 -
[0,4), 2 - [4,6), 3 - [6,8), 4 - [8,10), 5 - [10,25). The CCF is then calculated for
each of these wind speed intervals, and for lags between one and seven hours.
Figure A.5 then illustrates how the correlation pattern var ies depending on the
wind speed. Note that this analysis has some restrictions, as the number of
observations is not the same among the intervals. Each of them contains 200-
400 data points, which makes the results signi�cant, but not straightforward to
compare, since the level of signi�cance for the estimates di�ers from interval to
interval. However, it may still allow us to observe some general features that
would be explained by the wind speed level.

Figure A.5: Cross-correlation between forecast errors for Groups 5 and1 and
for the wind sector (180,270]. Cross correlation is given for dif-
ferent wind speed levels, and as a function of the lag.

Note from Figure A.5 that there is a general trend such that the average cor-
relation of forecast errors between Groups 5 and 1 (and for the wind sector
considered) increases as the wind speed gets larger. Indeedfor low wind speeds,
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forecast errors may be mainly due to local phenomena, and thus do not propa-
gate at all to the neighboring groups of wind farms. For higher wind speeds, one
retrieves the �nite impulse behavior mentioned earlier, with wind speed directly
in�uencing the magnitude of the correlation between forecast errors, as well as
the lag for which this correlation is maximum. This particul ar lag is of 1-2
hours. Note that the high correlation for lags up to 5 hours in the case of high
wind speeds (i.e. here between 10 and 25m=s) may be due to very large and
long-lasting discrepancies e.g. phase shifts between forecasts and measurements.
Such phase shifts correspond to timing (or phase) errors in the forecasts and di-
rectly translate to clusters of errors of signi�cant magnit ude with the same sign,
thus increasing their observed autocorrelation. This phenomenon is more com-
mon for higher levels of wind speed, in relation to meteorological fronts crossing
the area, and to signi�cant ramping in wind power generation. In a general the
e�ect of wind speed on the propagation of wind power forecasterrors appears to
be more di�cult to perceive than that of wind direction and is clearly nonlinear
(Figure A.5). If the dependence was linear, the shape of the CCF for di�erent
wind speed intervals would be the same with a possible shift in the dominant
lag or potential linear deformation of the CCF. This nonlinear e�ect can also
be seen for other wind sectors and other groups (though not shown and com-
mented on here), even though this e�ect is also conditioned by the geographical
layout of the groups of wind farms, mainly their respective positioning and the
distance between them.

A.4 Proposal of Relevant Models

In the above analysis, it has been demonstrated that wind power forecast errors
indeed have some spatio-temporal characteristics at the level of western Den-
mark, and that this propagation of forecast errors is also a�ected by wind speed
and direction. Our objective in this section is then to propose a set of relevant
models that may be used to capture and reproduce the observedbehavior of
forecast errors. Remember that focus is here is on one-hour ahead forecast er-
rors here but that an analogous methodology could be appliedfor the modeling
of forecast errors related to further look-ahead times. Since the most signi�cant
correlation patterns observed over the whole data analysisare those obtained
when concentrating on forecast errors at Group 5, it is decided to concentrate
on this case. The overall methodology and set of models are thus introduced
for this speci�c case, though they could be similarly derived if considering other
groups of wind farms. The one-hour ahead forecast errors at Group 5 are seen
as the response variable and denoted byyt (instead of x5;t ), while the explana-
tory variables, which consist of the one-step ahead forecast errors in Groups 1
to 4, are denoted byx1;t ; : : : ; x4;t , t being the time index. The notation for the
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errors in Group 5 is here changed in order to make it easier to see the di�erence
between response and explanatory variables.

Three types of models appear to be relevant for modeling the observed spatio-
temporal characteristics of the wind power forecast errors. Firstly since there
is some signi�cant linear correlation between forecast errors at di�erent time
lags and for di�erent groups, a straightforward starting po int is to use Auto-
Regressive models with eXogenous input (referred to ARX models in the fol-
lowing). Such models also comprise a natural benchmark against which more
complex models should be evaluated. Indeed, for capturing the e�ect of wind
direction on the spatio-temporal characteristics of forecast errors, it is proposed
in a second stage to use a regime-switching approach. Such a regime-switching
approach will permit switching between di�erent ARX models , depending on
the forecast wind direction. Finally, the more complex e�ect of wind speed on
these spatio-temporal characteristics is accounted for byupgrading ARX models
to conditional parametric models in each wind direction regime, thus making
the coe�cients of the model a nonparametric function of wind speed. In all
cases, it is assumed that the time-series considered have stationary properties.
This assumption may be relaxed in the future, and model coe�cients may be
adaptively estimated in an estimation framework including exponential forget-
ting.

A.4.1 Linear models

As the most simple linear model to be employed for the modeling of one-hour
ahead forecast errors, one may think of a simple AutoRegressive (AR) model.
However, since our aim here is to consider the spatio-temporal e�ects highlighted
above, it appeared more relevant to also account for some explanatory variables,
namely the one-hour ahead forecast errors observed in the other groups and for
di�erent points in time in the past. This then led to the build ing of an ARX
model. For more information related to the theory behind the building of ARX
models, we refer to [17, 16, 19]. The general structure of an ARX model is given
by

yt = � 0 +
pX

l =1

� l yt � l +
nX

i =1

k iX

j =1

� i;j x i;t � j + � t (A.3)

where the response variableyt is linearly explained by its p previous values in
the auto-regressive part, and byn external input variables, each up to lag ki

(i = 1 ; : : : ; n). � t is a purely random variable with zero mean and �nite variance,
which represents the noise that cannot be explained by the model.

The estimation of ARX model parameters can be straightforward performed
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with Least Squares (LS) estimation methods. Again, extensive details and dis-
cussion on this topic can be found in [17, 16, 19]. The procedure employed
for selecting the input explanatory variables and their lags is detailed in [20].
Finally, the model structure obtained is the following

yt = � 0 +
7X

l =1

� l yt � l +
3X

i =1

� 1;i x1;t � i +
2X

j =1

� 4;j x4;t � j + � t (A.4)

meaning that the current one-hour ahead forecast error in Group 5 can be
explained by a linear combination of its last 7 values, in addition to last 3
forecast errors made for Group 1 and the last 2 forecast errors made for Group
4. This is consistent with the results from the analysis of the spatio-temporal
characteristics of forecast errors performed in the previous section. Note that
number of lags used in the model is di�erent from the number suggested by
Figures A.3 and A.4. Information from those �gures is only used as a �rst
step towards understanding and highlighting data characteristics. Final model
structure is decided on the basis of Akaike's Information Criterion (AIC) and
optimization of determination coe�cients (see [20] for exact details) in order to
achieve the best possible performance of the model.

A.4.2 Regime-switching models based on wind direction

Here we recall the idea of what we de�ned above as directionalcorrelation,
which was used in the data analysis performed above. The mainpurpose of
de�ning such directional correlation is to analyze and model the e�ect of wind
direction on the spatio-temporal dependencies of forecasterrors. We claim that
if the wind direction is compatible with the direction of the vector having its
beginning in a given group of wind farms and ending in anothergroup of wind
farms, then the dependency between errors for these two groups (possibly with
some lag) should be higher than in case of di�erent directions.

Regime-switching models extend the idea of linear models byhaving a set of
linear models, each of them being active in a certain regime.The switch between
regimes can be governed by previous values of the response variable, external
signals or unobservable stochastic processes. Here, focusis on the second type
of regime-switching models as the regime switches will be governed by the wind
direction forecast in Group 5. Regimes are de�ned by threshold values for the
wind direction variable �̂ t . These thresholds correspond to the upper bounds of
the intervals in which the given `sub-model' is active. The corresponding models
employed may then be referred to as Threshold AutoRegressive with eXternal
input (TARX) models. This type of regime-switching model has initially been
introduced in [21], and extensively described in [22]. For the speci�c case of the
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wind power application, basic concepts of regime-switching modeling may be
found in [23].

The potential range of values for the wind direction variable �̂ t is I = (0 ; 360].
De�ne intervals R1 [ : : : [ Rk = I such that Ri \ Rj = ; ; i 6= j . Each interval is
given by Ri = ( r i � 1; r i ]. The values r0; :::; r k are the so-called threshold values
which de�ne switches between regimes. The threshold valuesare in general to
be estimated from the data. However here, we consider the case when the values
are known in advance, since they have been derived from an analysis of the data
similar to that performed above. The motivation for such an assumption is
that we analyze the case for which the regimes are governed bywind direction.
From physical knowledge and intuition about the process characteristics, the
choice of regimes may be fairly straightforward. The general form of the models
examined further is

yt = � (st )
0 +

X

l 2 L ( s t )
y

� (st )
l yt � l +

4X

i =1

X

j 2 L ( s t )
x i

� (st )
i;j x i;t � j + � t (A.5)

where

st =

8
>>><

>>>:

1; if �̂ t 2 R1

2; if �̂ t 2 R2
...
k; if �̂ t 2 Rk

(A.6)

In the above, �̂ t serves as the external signal which determines regime switching,
t being the time index. In parallel, yt is the response variable i.e. the one-hour
ahead forecast errors at Group 5, thex i;t � j are the forecast errors for Groupi
and at lag j , and f � t g is zero mean white noise.L (st )

y and L (st )
x i are sets of non-

negative integers de�ning the auto-regressive and input lags (for Group i ) of the
model. The superscript (st ) indicates that these sets of integers may be di�erent
for each of the regimes, i.e. along for di�erent model structures depending on
wind direction. The � (st )

j;i coe�cients are the linear coe�cients to be estimated
in each regimest . Since the thresholds are known, the estimation problem for
TARX models is solved by �tting di�erent linear models to the data in each
of the regimes. The estimation method to be employed is described in detail
in [23].

For the test considered in the present paper, after analysisof the data in order
to split it into various wind direction regimes, and then in each regime in order
to identify the structure of the linear models (for more details, see [20]), the
following general structure of the TARX model was obtained. First of all, the
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regimes are de�ned as follows:

st =

8
>><

>>:

1; if �̂ t 2 (0; 90] (North-East sector)
2; if �̂ t 2 (90; 180] (East-South sector)
3; if �̂ t 2 (180; 270] (South-West sector)
4; if �̂ t 2 (270; 360] (West-North sector)

(A.7)

Originally, the choice for these regimes was dictated by easiness of interpret-
ing the e�ect of wind direction forecasts which in this case is compatible with
geographical cardinal directions. In fact, other divisions of the range of wind
direction values were studied, and the improvement in model�t was considered
insigni�cant or none. In a second stage, focus is on the linear models to be �tted
in each of the regimes. The optimal number of lags is selectedseparately for
each of the regimes. Table A.4 describes the structure of theresulting TARX
model. While building the models, AIC was used to decide on the �nal number
of lags used. The choice of the variables seems to be reasonable if the position
of the groups of wind farms is taken into account (see Figure A.1). For example,
the sector (270,360] corresponds to situations with the wind direction forecast
from the North-West sector and in this case the e�ect on Groups 1 and 4 is
seen to be most signi�cant. Also, the maximum lags taken for Groups 1 and
4 conform with the directional distance from Group 5 in this regime. By the
directional distance in this case we consider a projection of the distance between
the corresponding groups on the axis following the middle wind direction of the
current regime (e.g. equal to 315 for regime 4).

Table A.4: Threshold model structure: number of lags in the autoregressive
part of the model, and selected lags for each of the other groups.

st AR Group 1 Group 2 Group 3 Group 4
1 10 - - 4th 1st
2 5 1st - - 1st
3 6 1st, 2nd, 4th - - 1st
4 6 1st and 3rd - - 1st

A.4.3 Conditional parametric models with regime-switchin g

It is now aimed at upgrading the previous regime-switching model by integrating
the complex nonlinear e�ect of wind speed on the spatio-temporal characteristics
of forecast errors. The underlying idea is that the time delay for the propagation
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of errors is directly linked to wind speed. For the purpose ofaccounting for such
an in�uence, it is proposed here to transform the linear models in each of the
regimes of the TARX model described above by conditional parametric models.
Conditional parametric models comprise a class of models with a linear struc-
ture (like an ARX model), but for which the linear coe�cients are replaced by
smooth functions of other variables. For an extensive description of conditional
parametric models, we refer to [24, 25].

More speci�cally, it is chosen to employ conditional parametric ARX models in
each of the regimes in order to obtain a conditional parametric regime-switching
approach. A conditional parametric ARX model with the model coe�cient
being smooth functions of wind speed, and with regime switches based on wind
direction, can be written as

yt = � (st )
0 (~ut ) +

X

l 2 L ( s t )
y

� (st )
l (~ut )yt � l +

4X

i =1

X

j 2 L ( s t )
x i

� (st )
i;j (~ut )x i;t � j + � t (A.8)

where the regime switches with respect to wind direction forecast are governed
by (A.6). f � t g is a white noise sequence, i.e. a sequence of independent and
identically distributed random variables with zero mean and �nite variance.
In addition, as in the case for the simpler TARX models introduced above,
L (st )

y and L (st )
x i de�ne the model structure (i.e. the lags to be considered), with

the superscript (st ) indicating that these sets of integers may be di�erent for
each of the regimes. Note that for simpli�cation and for direct comparison
with the results that will be obtained with TARX models, the s tructure of
the conditional parametric regime-switching model is de�ned similarly to the
TARX model described above, that is, by (A.7) for the regime switches, and
by Table A.4 for the model structure. In the following, conditional parametric
models with regime-switching will be abbreviated as CP-TARX models.

Then, in contrast to the TARX models, the � (st )
j;i coe�cients are smooth func-

tions of a representative wind speed ~ut (discussed below). Since the thresholds
on wind direction are known, the estimation problem simpli� es to the indepen-
dent estimation of a conditional parametric model in each ofthe regimes. For
this purpose, the LFLM (Local Fitting of Linear Model) softw are developed at
the Technical University of Denmark [26] is employed. For anextensive descrip-
tion of the estimation methods involved, we refer to [13]. Coe�cient functions
have been locally approximated with �rst-order polynomial s, for a number of
150 �tting points uniformly spread over the range of potenti al wind speed values.
Tricube kernels have been chosen, with a nearest-neighbor bandwidth covering
the 40% wind speed data closest to each �tting point, allowing smooth local
estimates of the coe�cient functions.

The variable ~ut in equation (A.8) is a �ltered wind speed at time t, which is
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representative of the wind �eld potentially a�ecting forec ast errors at the group
of wind farms considered. Firstly, it was decided to take wind speed in Group
5 (û5;t ) at time t as the representative wind speed ~ut . Of course, in this case
the information about wind speeds in other groups was lost and not accounted
for by the model. It was therefore decided that ~ut should be a summary of
wind speed information at all the groups included in the model, based on a
�lter employing weighted linear regression. The weights were selected according
to the corresponding coe�cients of a linear regression ofyt on the errors from
the other groups included in the model. For instance, assumethat we want to
explain yt using x1;t � 2 and x2;t . Then, in order to obtain the representative
wind speed, the linear model ~ut = aû1;t � 2 + bû2;t is employed, whereû1;t � 2 and
û2;t denote wind speeds in Group 1 at timet � 2 and in Group 2 at time t,
respectively. The coe�cients a and b in this model are the weight coe�cients
estimated for the modelyt = ax1;t � 2 + bx2;t . Such representation of a forecasted
wind speed showed a better model performance in terms ofR2, therefore was
chosen for the further analysis. Note that �ltered wind speed values certainly
are di�erent from the forecasted wind speeds. The values forthe �ltered wind
speed range between 0 and 5 m/s.

A.5 Application Results

The objective of this section is to illustrate and analyze the ability of the var-
ious models presented above to capture the spatio-temporalcharacteristics of
wind power forecast errors, as well as the e�ects of both windspeed and di-
rection on those characteristics. The modeled errors are subtracted from the
original forecasts issued by WPPT in order to get the forecasts adjusted after
consideration of spatio-temporal dependencies. The accuracy of these adjusted
forecasts is compared to that of original WPPT forecasts based on two di�erent
criteria. Here, models are �tted on the dataset considered,which has a limited
size (seven months). Ideally, one year or more of data would be preferred. In
addition, since regime-switching uses di�erent models foreach regime, this fur-
ther reduces the amount of data used for estimation of model parameters. In
order to optimally use this limited dataset, the approach employed is �rstly to
�t the various models to the whole dataset (seven months fromthe year 2004),
with the aim of evaluating their ability to capture the e�ect s highlighted in the
previous section. In a second stage, a cross-validation exercise allows us to com-
ment on the generalization ability of the models, i.e. on their potential ability
to reproduce observed and modeled e�ects if trained and usedon di�erent data.
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A.5.1 Model �tting

Comparison is made between the linear ARX model of equation (A.4), the
regime-switching TARX model of equation (A.5), and the regime-switching con-
ditional parametric CP-TARX model of equation (A.8). The st ructure of the last
two models is detailed in Table A.4. Remember that the linearARX model only
accounts for autoregressive e�ects and linear e�ects from neighboring groups of
wind farms, while the TARX model additionally accounts for t he dependency
on wind direction and the CP-TARX model aims at capturing the dependency
on both wind speed and direction.

For evaluation of the �t of the various models, two criteria a re employed. On the
one hand, the coe�cient of determination R2 tells how much of the variations
in the wind power forecast errors at Group 5 are explained by the models. Its
value is between 0 and 1, 1 being a perfect power of explanation. It may then
conveniently be expressed in percentage units. On the otherhand, it is chosen
to employ the Root Mean Square Error (RMSE) criterion. The RMSE is a
quadratic error measure, thus giving more weight to large residuals and being
in line with idea of LS �tting of the models. It is given here as a percentage of
the installed capacity of Group 5. For more details on evaluation of statistical
model �tting, we refer to [27, 19], and also to [15] for the speci�c case of the
wind power application. Table A.5 gathers the corresponding results. Note that
RMSE values have been calculated for the same data set on which the model
parameters have been estimated, thus informing about the quality of the �t of
the models in a LS sense. It may therefore be that the higher ability of some of
the models to better explain the errors come from some form ofover�tting. This
will be discussed in more details and accounted for in the following subsection,
when performing a cross-validation exercise.

The linear ARX model already has a certain ability to explain variations in
wind power forecast errors at Group 5, since it has anR2 of 47.8%. However in
a general manner, this ability is increased by accounting for the e�ects of wind
speed and direction. Indeed, TARX and CP-TARX exhibit higher values for
the coe�cient of determination, reaching 49.9% and 54.2%, respectively. The
overall RMSE values for these two models are also lower than for the linear ARX
model, with a non-negligible advantage for the more complexCP-TARX model.
For comparison, the RMSE for one-hour ahead forecasts for this group of wind
farms is 11.67% of nominal capacity before application of the various models
studied here. Note that the fairly high level of original prediction error may be
explained by the fact the nominal capacity for Group 5 is small. Such reduction
in the RMSE criterion means that whatever the type of model chosen, the most
reduction in forecast errors actually comes from the initial idea of accounting for
spatio-temporal e�ects, while going for complex models, including wind speed
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Table A.5: Evaluation of the �tting of the various models over the whole
dataset.This evaluation is based on the coe�cient of determination
R2 and on the error criterion RMSE. The regime is determined by
the wind direction forecast.

Regime ARX model TARX model CP-TARX model
R2 [%] RMSE [%] R2 [%] RMSE [%] R2 [%] RMSE [%]

1 - - 38.4 7.5 48.5 5.3

2 - - 46.1 4.4 48.3 4.3

3 - - 49.3 6.8 55.6 6.4

4 - - 54.9 5.6 57.7 5.4

Overall 47.8 5.8 49.9 5.7 54.2 5.4

and direction, mainly allows for better performance in certain meteorological
conditions. Indeed, going into more detail, one notices di�erences in the values
of evaluation criteria among the various regimes. These di�erences may be due
to the more or less appropriate structures of the (sub)models in each regime,
or due to di�erent amounts of data used for model �tting, as well as di�erent
inherent predictability levels in various meteorological conditions. Since wind
primarily blows from western directions over this region, a large share of the
data available corresponds to regimes 3 and 4. Di�erences among regimes are of
higher magnitude for the TARX model, with the CP-TARX model a lways having
higher R2 values as well as lower RMSE. The most signi�cant improvements are
observed for regimes 1 and 3, corresponding to the North-East and South-West
direction, and for which the model structure is quite di�ere nt. In the former case,
the model mainly has an autoregressive pattern, while for the latter case the
model has a lighter autoregressive pattern and relies more on past forecast errors
at Group 1. This con�rms a general interest of having the model coe�cients as
a function of wind speed.

After verifying that model residuals are not correlated, a bootstrapping tech-
nique (following the framework introduced in [28] and more speci�cally the
functions described in [26]) is applied to check the level ofuncertainty associ-
ated with the estimates of model coe�cients. As an example, the results for
regime 3 are shown in Figure A.6. Results for other regimes are qualitatively
similar, and not discussed here. They are extensively commented on in [20]. A
�rst interesting point with Figure A.6 is the noticeable evo lution of the model
coe�cients as a function of the wind speed level. One sees forinstance that
as the wind speed level increases, there is a general trend that the autoregres-
sive coe�cients get closer to zero, while the coe�cients values for the di�erent
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Figure A.6: Coe�cients of the CP-TARX model (see equation (A.8)) �tted
in regime 3, along with 95% con�dence intervals based on 200
bootstrap replicates.

lags in forecast errors at Groups 1 and 4 globally increase. This observation
is mainly based on the results from the area where the bootstrap con�dence
intervals are narrow enough to make it possible to conclude on the behavior of
coe�cients, i.e. where the wind speed level is between 1 and 3m/s. In the areas
corresponding to very low or high wind speed levels, due to the lack of data, the
con�dence intervals are broad, prohibiting determination of coe�cient behavior.
This translates to saying that the higher the wind speed, thelarger the e�ect
of upstream information (from Groups 1 and 4 in regime 3, see map in Fig-
ure A.1) and the less signi�cant is the autoregressive pattern. Such a behavior
may actually be fairly intuitive: as a wind front is stronger and moves faster, it
possibly could transport forecast errors and dominate overlocal e�ects, which
in contrast may be the main source of forecast errors for calmperiods (thus
corresponding to low wind speeds). In parallel, the impact of the distribution
of representative wind speed values on the uncertainty of model coe�cients is
visible: as �ltered wind speed values are more concentratedbetween 1 and 4
m.s� 1 the 95% bootstrap con�dence intervals are fairly tight, whi le they get
wider for representative wind speed values outside of this range. This uncer-
tainty in the value of the model coe�cients directly relates to an insu�cient
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amount of data available for those intervals. As may be noticed from the Fig-
ure, coe�cient functions actually prolong for representat ive wind speed values
below zero. This is due to the estimation method employed, and does not mean
that representative wind speed values below zero may be encountered.

A.5.2 Cross-Validation and generalization ability

In the model-�tting exercise carried out above, both R2 and RMSE measures
have been calculated for the same data for which the model parameters have
been estimated. Therefore, the higher ability of some of themodels to better
explain the variations of prediction errors may come from a numerical artifact,
namely the so-called over-�tting. As a consequence, in order to verify if the
models would perform similarly if applied to new (unseen) data, a cross vali-
dation procedure is employed. The idea of cross-validationis to use a subset
of data for estimation of the model parameters, while the other subset is em-
ployed for model evaluation. More precisely, 3-fold cross validation is applied
(as described in [19, 16]). The data in each regime is dividedinto three equal
subsets. Two of the constructed subsets are used for parameter estimation and
the third subset is used for checking the model performance.By repeating the
procedure three times, one obtains three di�erent estimations of the model pa-
rameters, with corresponding evaluation on independent subsets. The results
are presented in Table A.6, with a focus on regimes 3 and 4 only, since these are
deemed as more interesting in the above analysis, owing to the higher amount
of data available, and better performance of the �tted models. Also, empha-
sis is on the TARX and CP-TARX models, since the e�ect of wind speed on
the spatio-temporal characteristics of forecast errors ismore complex, and the
way conditional parametric models permit (or not) to captur e them should be
veri�ed.

Table A.6: 3-fold cross validation results for both TARX and CP-TARX mo d-
els in regimes 3 and 4.

Model (regime no) subset1 subset2 subset3

R2 [%] RMSE [%] R2 [%] RMSE [%] R2 [%] RMSE [%]

CP-TARX (regime 3) 47.8 5.89 40.4 7.78 49.2 8.03

TARX (regime 3) 48.1 5.93 47.8 7.20 47.5 7.96

CP-TARX (regime 4) 52.5 5.58 51.6 5.81 57.0 6.89

TARX (regime 4) 53.4 5.43 52.9 5.56 55.3 6.60

Cross validation results show that TARX models seem to have better generaliza-
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tion ability than the more complex CP-TARX models. R2 values for the three
subsets for TARX models are fairly stable and at an almost similar level as for
�tting performed on the whole dataset in the previous section (see Table A.5).
RMSE values exhibit higher di�erences though. In parallel, the cross validation
exercise for CP-TARX models yields more signi�cant di�erences in both RMSE
and R2 from one evaluation subset to the other, with a signi�cant decrease in
R2 if compared to the model-�tting results of Table A.5. And, in a general
manner forecast accuracy for the TARX models is slightly better than that of
the CP-TARX models, while this was not the case for using the whole data
set above. Such results may be interpreted as a higher generalization ability of
TARX models in comparison to the CP-TARX models. However, it is impor-
tant to note the limited amount of data used in the present study. As already
mentioned, the available data covers a period of seven months only. The number
of observations in regimes 3 and 4 for this period is 1536 and 1640, respectively.
When it comes to the cross validation exercise, each of the constructed subsets
includes data from 2.33 months period only, making the number of observations
available for the estimation step drop to around 1000 (which is 2 subsets or
4.66 months) for the speci�ed regime. Taking into account that each set also
has to be divided according to wind direction and that di�ere nt wind speed
levels have to be considered, it is likely that this seven-month period is actually
not su�cient to draw �nal conclusions on the ability of CP-TA RX models to
capture the spatio-temporal characteristics of forecast errors accounting for the
e�ects of wind speed and direction. Results obtained for theTARX models
may appear as more trustworthy as they are based on more data for each wind
regime considered (since no division according a wind speedis needed), but this
may not be still the case if extending this study to longer periods.

Considering only the data in regimes 3 and 4, the RMSE averaged between
the cross-validation subsets is 6.71% and 6.49% for the CP-TARX and TARX
models, respectively. For comparison, the RMSE estimated on the same data
subset before applying any of the studied spatio-temporal models is 8.99%. This
evidences that both of the presented models can signi�cantly reduce forecasting
errors of the state-of-the-art prediction tool.

A.6 Conclusions and Perspectives

The present paper can be seen as the �rst step towards understanding and
capturing the complex nature of spatio-temporal propagation of wind power
forecast errors. The test case of the western Denmark area isof particular rele-
vance, in view of the signi�cant installed wind power capacities spread over this
region, and of the resulting management challenges for the TSO or for power
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producers with a geographically spread wind portfolio. A thorough analysis of
the available forecast and measurement data has permitted formulation of a set
of important conclusions. Such conclusions go along the line of our main objec-
tive, which is to show that there clearly exists some spatio-temporal patterns
in the characteristics of wind power prediction errors. First of all, there exists
in general a signi�cant cross-correlation between forecast errors for neighboring
areas with lags of a few hours. For the present case study, lags with signi�cant
dependency are up to �ve hours, while the lags with most e�ect are the one
and two-hour lags. This cross-correlation pattern is clearly conditioned by the
prevailing weather situation, mainly characterized by wind speed and direction.
Wind direction is shown to play a crucial role, while the e�ect of wind speed is
more complex. Prevailing wind speed a�ects the dependency in the following
way: the higher the wind speed the stronger the dependency onmore remote
places; while in case of lower wind speeds, more in�uence comes from a local
origin (thus exhibiting an autoregressive pattern).

In terms of modeling, this means that the dependency on wind direction may
be easily accounted for by state-of-the-art regime-switching approaches, while
dependency on wind speed should be captured by more complex models. This
has been performed here by embedding conditional parametric models in the
regime-switching approach. The superiority of such a proposal for capturing the
complex e�ect of wind speed has not been demonstrated, possibly because of
the limited size of the available dataset (only data from a seven-month period
was available). The best spatio-temporal model proposed has been shown to
explain up to 54% of one-hour ahead wind power forecast errors in terms of R2.
When applied to new, "unseen" data, the regime-switching model has shown the
ability to reduce the forecast errors from the initial 8.99% to 6.49% in terms of
the RMSE criterion.

Note that owing to the choice of such a short look-ahead (1 hour ahead), fore-
cast errors may be due to large ramps in wind power generation, which are
di�cult to predict when a strong weight is given to the past fe w power mea-
surements (as is done by a state-of-the-art model like WPPT for forecasts up to
ca. six-hours ahead). The various potential origins of the forecast errors do not
alter the interest of the proposed approach, since they involve statistically char-
acterizing spatio-temporal patterns in forecast errors, and subsequently taking
advantage of this knowledge for forecast correction. The proposed analysis and
methodology could also be extended to the case of errors for further look-ahead
times (up to several hours ahead) if working on the same terrain as Denmark.
In order to make models valid for data coming from a larger region or from a
region with a more complex terrain than Denmark, some adjustments would
have to be done in the modeling approach due to the fact that itis not always
possible to use one prevailing wind speed or direction as a representative of the
situation in the whole region. The methodology presented inthis paper could
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be evaluated for such more complicated cases. Possibly if working with a larger
region and small time-lags, the region could be divided intosub-regions and
each sub-region could be analyzed separately. If considering further look-ahead
times (more than several hours ahead), then data from a larger region should be
considered along with a thorough examination of the weatherforecasts, in order
to evaluate how weather fronts normally move along the region and which parts
of the entire region may a�ect each other at the time scales considered. Such a
generalization of the proposed methodology might not be straightforward. We
believe, however, that the principles introduced for highlighting spatio-temporal
characteristics of forecast errors, model building and estimation, can be seen as
generic in future related work.

For a small area like western Denmark, which is the �rst to be touched by
fronts coming from North-West, the use of online measurements from the United
Kingdom, or from measurement devices in the North Sea, mightlead to highly
signi�cant improvements on a longer time horizon. In parallel, considering the
number of turbines spread over western Denmark, it appears crucial to propose a
modeling approach that would allow for dynamic evolution ofthe overall wind in-
stallations. Indeed new wind farms should be easily accounted for in the model,
without having to re-estimate all coe�cients and/or change the structure of the
existing models. A potential solution could be to employ a lattice approach,
for which a data assimilation step would permit accommodation of all online
measurements before modeling the spatio-temporal dynamical process. Then,
in order to make the general approach more generic, and potentially applicable
to larger regions (potentially with various local wind clim atologies), method-
ology adjustments should account for the fact that it may not be possible to
consider a unique prevailing wind speed and direction as being representative of
the weather regime over the whole area. For such more complicated cases it may
be needed to switch from conditional parametric models to varying-coe�cient
models.
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Multivariate Conditional Parametric models for
a spatio-temporal analysis of short-term wind

power forecast errors

Julija Tastu 1, Pinson1, Henrik Madsen1

Abstract

Optimal integration of wind energy into power systems requires high
quality wind power forecasts, preferably accompanied by reliable es-
timates of the forecast uncertainty. So far, state-of-the-art wind
power prediction systems generate forecasts for each site of inter-
est individually, without properly accounting for informa tion from
the neighbouring territories. However, due to the inertia in mete-
orological systems, there exists a spatio-temporal inter-dependence
between the sites, i.e. the errors in wind power forecasts propagate
in space and time under the in�uence of meteorological conditions.
In this work multivariate (vector) conditional parametric models are
proposed to capture this phenomenon. It is shown that the adjusted
wind power point forecasts result in a reduction in prediction errors.
An uncertainty level associated with the new, adjusted forecasts is
evaluated by providing a probabilistic density function based on a
truncated multivariate normal distribution. The models ar e vali-
dated on the test case of western Denmark by considering one-hour-
ahead wind power predictions. However the proposed methodology
could be similarly tested on the basis of other areas with spatially
sparse data and on the basis of cases with further look-aheadtimes.

B.1 Introduction

In operational conditions, state-of-the-art forecasting methods of wind power
generation are commonly optimized with focus on the wind farm (or aggre-
gation of wind farms) of interest. So far, they do not account for potential
information from neighbouring sites, for example other wind farms or meteo-

1DTU Informatics, Technical University of Denmark, Richard Petersens Plads, bld. 305,
DK-2800 Kgs. Lyngby, Denmark
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rological stations. With a broader view of the forecasting problem, one could
account for the possibility that, even though forecasting systems are optimized
for local conditions, the inertia in meteorological systems might have the e�ect
that a wind power forecast error at a certain point in space and time could
propagate to other locations during the following period. Therefore, in view of
the signi�cant installed capacities of wind power installed all over Europe today
(see current status and expected developments atwww.ewea.org), analysis and
understanding of the spatio-temporal characteristics of wind power forecast er-
rors are of major importance. Indeed, errors in meteorological forecasts might
translate to fronts of imbalances, taking the form of a band of forecast errors
propagating across entire regions. Studies on the spatio-temporal characteris-
tics of wind �elds have already been deemed as highly informative for judging
the adequacy of available generation and potential reserves in the UK for in-
stance [1]. Regarding wind power forecasting errors, a relevant analysis of the
spatial smoothing e�ect (related to the analysis of the correlation of forecast
errors at the spatial level only) has been performed by Focken et al. [2] for the
speci�c case of Germany. However, such an analysis does not provide infor-
mation on how spatial patterns in forecast errors (or of smaller/larger forecast
uncertainty) may evolve in space and time. Potential bene�ts of spatio-temporal
analysis and associated modelling of forecast errors include global corrections
of wind power forecasts, associated increased knowledge ofthe interdependence
structure of forecast uncertainty, and correspondingly improved decision-making
from the forecasts available. This may concern both wind power producers with
a geographically spread portfolio, and Transmission System Operators (TSOs)
managing a grid with signi�cant wind penetration. Better un derstanding of
spatio-temporal dependencies may also be bene�cial at the planning stage, for
the optimal dispatch of wind farms in order to improve the predictability of
wind generation at regional level.

The �rst step towards checking the existence and possibility of capturing spatio-
temporal patterns in wind power forecast errors has been done in previous work
by Tastu et al. [3]. It was demonstrated that wind power forecast errors do in-
deed have some spatio-temporal characteristics at the level of western Denmark,
and that the propagation of the forecast errors is also a�ected by forecasted
wind speed and direction. To capture the dependence on the wind direction,
a regime-switching approach was suggested, i.e. the data was divided into four
intervals according to the wind direction and in each regimea linear model was
constructed. As a result, a di�erence in the model structure and performance
observed in each interval showed clearly that forecasted wind direction plays an
important role in propagation of wind power forecast errors. None of the models
proposed in [3] is a ready-to-use-tool, but rather a demonstration of the exis-
tence of such spatio-temporal patterns. The main objectiveof this paper is to
improve and extend the methodology described in [3] by presenting a ready-to-
use-tool for correcting wind power forecasts based on spatio-temporal e�ects and

www.ewea.org
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to evaluate the uncertainty level associated with the adjusted predictions. The
proposed improvements concern both changes in the point forecasting approach
and a general extension of the methodology from point to probabilistic fore-
casting. The latter is in line with recent publications showing that a transition
from point to full probability forecasting can be very bene� cial for an optimal
decision-making process (see [4] and [5] among others). As far as changes in
point forecasts are concerned, the following steps are taken:

� Instead of an abrupt division of data into intervals (regime-switching
method) a smoother approach is proposed. It permits tracking the changes
in coe�cients within the whole range of possible values, not only within
the limited number of intervals.

� As the previous work was mainly a preliminary data analysis and an ex-
amination of whether spatio-temporal models could be bene�cial, it only
concentrated on making predictions for one chosen group. Inthis work a
multivariate approach is applied in order to model an entire region at the
same time.

� The estimation method has been changed from o�ine to online when co-
e�cients are being estimated recursively. Such an approachalso allows
for an exponential forgetting of old observations, which leads to the model
being adaptive with respect to the long-term variations in the process
characteristics.

In order to track uncertainty level associated with new, adjusted point fore-
casts, a parametric approach is employed: predictive densities are modelled as
truncated multivariate normal distributions (following t he idea of Gneiting et
al. [6]).

B.2 Case study and Available Data

Owing to its already signi�cant share of wind generation in the electricity mix
as well as very ambitious objectives in the medium term, focus is given to the
test case of Denmark. Denmark has set the goal to meet 50% of electricity
demand with wind energy in 2025 [7], and this will clearly result in challenges
related to the management of the grid. More precisely, the case study of this
paper relates to western Denmark, including the Jutland peninsula and the
island of Funen, which is connected to the UCTE (Union for the Co-ordination
of Transmission of Electricity) system and stands for around 70% of the entire
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