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We present a general-purpose meta-generalized gradient approximation (MGGA) exchange-
correlation functional generated within the Bayesian error estimation functional framework
[J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov,
T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012)]. The functional is designed to
give reasonably accurate density functional theory (DFT) predictions of a broad range of properties
in materials physics and chemistry, while exhibiting a high degree of transferability. Particularly, it
improves upon solid cohesive energies and lattice constants over the BEEF-vdW functional without
compromising high performance on adsorption and reaction energies. We thus expect it to be partic-
ularly well-suited for studies in surface science and catalysis. An ensemble of functionals for error
estimation in DFT is an intrinsic feature of exchange-correlation models designed this way, and we
show how the Bayesian ensemble may provide a systematic analysis of the reliability of DFT based
simulations. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870397]

I. INTRODUCTION

Electronic structure theory offers key insights into the
properties of materials, chemical reactions, and biomolecules.
Kohn-Sham density functional theory1, 2 (KS-DFT) has
proven a powerful framework for electronic structure studies,3

particularly due to a favorable tradeoff between the com-
putational speed and accuracy that can be obtained within
this theory. Density functional methods have over the past
decade reached a level of maturity where they can be ap-
plied not just in detailed theoretical studies of a given ma-
terial, but be used to search for novel materials for techno-
logically relevant applications in materials science4–10 and
chemical engineering.11–16 Such studies often take a screen-
ing approach where massive amounts of DFT calculations are
performed using efficient semi-local approximations for the
KS exchange-correlation (XC) energy and potential. These
include generalized gradient approximations (GGAs) and re-
cent meta-GGA (MGGA) functionals.17, 18

The reliability of semi-local density functional approxi-
mations (DFAs) is, however, unfortunately not universal. No
such single functional appears to offer sovereign accuracy
with zero bias in prediction of materials properties across the
board of condensed matter and chemistry.19–22 The GGA and
MGGA exchange-correlation model spaces are flexible but
incomplete and cannot accommodate an approximation that
represents the exact XC functional in all aspects of practical
importance. The result is an exchange-correlation model com-
promise on accuracy between different chemical and materi-

a)Electronic mail: jewe@slac.stanford.edu

als properties. However, semi-local DFT remains a favorite
workhorse method within many research areas, so useful XC
model compromises are warranted. Semi-empirical optimiza-
tion lends itself well as a method for finding reasonably accu-
rate compromises, but will never completely eliminate DFT
errors. Even so, recent developments23, 24 clearly indicate that
advanced machine learning methods have great potential for
generating accurate density functionals. The BEEF class of
functionals combines machine learning with a Bayesian point
of view to generalize the fitting procedure for XC function-
als, thereby allowing for estimation of the errors on calculated
quantities. The traditional assumption underlying functional
fitting is that a “best-fit” exchange-correlation model fitted to
a suitable set of systems might be transferable, meaning that
it hopefully calculates the properties well for systems not in-
cluded in the training data. The generalization of this concept,
which underlies BEEF-type functionals, is, that if one defines
an “optimal” ensemble of exchange-correlation models, such
that the ensemble on average reproduces errors on the training
data, then the errors predicted by a well-constructed ensemble
could be transferable. The ensemble can then be used to esti-
mate computational uncertainties on calculations for systems
not included in the fitted data set.

We have in Ref. 25 established a semi-empirical frame-
work for developing model-compromise optimized density
functionals with error ensembles as a practical implementa-
tion of the ideas proposed in Refs. 26 and 27. That study led
to the first practically useful Bayesian error estimation func-
tional, the BEEF-vdW, containing a somewhat expensive non-
local correlation term. This BEEF framework uses machine
learning tools to find the optimal compromise between model

0021-9606/2014/140(14)/144107/10/$30.00 © 2014 AIP Publishing LLC140, 144107-1
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complexity and model accuracy for a fitted general-purpose
DFA in a highly flexible exchange-correlation model space. It
furthermore uses ideas from Bayesian statistics26 to construct
an ensemble of XC functionals directly from the cost function
that was minimized to find the optimally accurate and trans-
ferable exchange-correlation functional. This subsequently
allows for fast and systematic error estimates on simulated
quantities, as the ensemble is applied non-selfconsistently on
the electron density that results from utilizing the optimally
fitted functional. A number of surface science and catalysis
studies28–31 have successfully applied the BEEF-vdW func-
tional, and have demonstrated significant improvements over
traditionally used GGAs32 for similar studies.

We here take the BEEF development an important step
forward by considering a meta-GGA exchange model space
and refine the approach to XC model selection. This semi-
local functional allows studies of larger and more complex
systems than the BEEF-vdW, since the non-local correlation
term has been eliminated. We shall show that the endured
loss of accuracy, even for hydrogen-bonded systems, is rather
limited. This work thus establishes the currently most versa-
tile error estimation functional, particularly useful for systems
that are not dominated by long-range dispersion interactions.
We first illustrate the model compromise of semi-local DFT.
A refined BEEF model selection procedure for addressing the
model compromise is then introduced and applied to MGGA
exchange, and the resulting density functional (mBEEF) is
subsequently benchmarked. Finally, we illustrate the BEE ap-
proach to error estimation for a materials property in DFT by
analyzing the adsorption-site preference of CO adsorption on
late transition metal surfaces.

II. EXCHANGE-CORRELATION MODEL COMPROMISE

The Perdew-Burke-Ernzerhof (PBE)33 approximation
from 1996 has become a default GGA in many branches of
the computational materials science research area. However,
the hundreds of GGA functionals reported in literature since
then clearly indicate that no GGA can be considered truly
universal. The PBEsol34 modification of PBE, for example,
predicts bulk lattice constants remarkably well but severely
overestimates molecular bond energies, while the RPBE32 re-
vision of the PBE functional describes covalent chemistry
well at the expense of overestimated lattice constants and
underestimated cohesive energies.25, 34, 35 This is the topogra-
phy of the XC model compromise in GGA DFT. Inclusion of
non-local exact exchange has become a popular approach to
obtaining significantly improved model compromises. Such
hybrid functionals may also offer better agreement of KS one-
electron transition energies with experimental band gaps.36, 37

However, even with screening of the long-range part of the ex-
act exchange potential, the computational cost is significantly
increased from that of GGA, particularly for extended sys-
tems such as those relevant to surface chemistry.

Meta-GGA density functionals38–44 augment the GGA
model space of electron density and its first-order gradient
by including also the second-order density gradient38 or the
orbital kinetic energy density (KED) of the occupied KS
eigenstates.39 Importantly, an electronic structure with van-

FIG. 1. Bivariate analyses of DFT prediction errors on chemical and mate-
rials properties. (a) Root-mean-squared errors on the CE27a chemisorption
energies against those on the SE30 surface energies. (b) Mean-signed errors
on the BM32 solid bulk moduli against those on the RE42 molecular reaction
energies. Straight lines are fits through the GGA (blue), meta-GGA (green),
and vdW-DF type (red) data. The meta-GGA points are closest to origo in
both panels, indicating improved possibilities for exchange-correlation model
compromises in the meta-GGA model space as compared to varying the ex-
change approximation in the GGA and vdW-DF ones.

ishing electron density gradient is in MGGA not necessarily
modeled as a uniform electron gas (UEG). The UEG limit on
exchange for small density gradients does in general not ap-
pear to be compatible with semi-local DFAs fully optimized
for prediction of molecular bond energies.25, 27, 45 Special-
purpose GGAs may be designed by modification of known
GGA forms, as in the cases of PBEsol and RPBE. The main
purpose of applying MGGA exchange in the BEEF frame-
work is, however, the prospect of better XC model compro-
mises than with GGAs at a very modest increase in computa-
tional cost.42

We illustrate this point in Fig. 1, where a broad selec-
tion of mostly GGAs, MGGAs, and vdW-DF46 type func-
tionals are applied in calculations of four different quantities;
chemisorption energies of small molecules on close-packed
transition metal facets, surface energies of various facets,
solid bulk moduli, and gas-phase reaction energies. These
properties are represented by the CE27a, SE30, BM32, and
RE42 data sets, respectively, all discussed in more detail later.
The tested GGAs are PBEsol, PBE, and RPBE, while the liter-
ature MGGAs are TPSS,41 revTPSS,42 oTPSS,47 MS0,44 and
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MS2.48 Note that three of the van der Waals functionals, vdW-
DF, optPBE-vdW,49 and C09-vdW,50 are equivalent except
for the choice of PBE-like exchange. Figure 1(a) shows root-
mean-squared errors (RMSEs) on the CE27a chemisorption
energies against those on SE30 surface energies. The points
within each class of XC model space fall approximately on
straight lines, illustrating the trade-off one is forced to make
between accurate adsorbate–surface bond strengths and sur-
face stabilities. However, the MGGA model space offers the
most attractive compromises; the green line in Fig. 1(a) is sig-
nificantly closer to the origo. This is supported by Fig. 1(b),
in which mean-signed errors (MSEs) on predicted BM32 bulk
moduli are plotted against those on RE42 molecular reaction
energies. The relations between mean errors are again ap-
proximately linear and the MGGA points fall closest to origo,
though not all on the same straight line.

The bivariate prediction error analysis in Fig. 1 confirms
the conjectures from earlier studies51, 52 that the exchange-
correlation model compromise of typical XC models lead di-
rectly to a trade-off between the systematic errors on vari-
ous chemical and materials properties. Simple but efficient
approaches to optimizing density functionals with respect to
this trade-off are therefore core components of BEEF-class
functional developments.

III. EXCHANGE MODEL SPACE

The spin-unpolarized meta-GGA exchange energy we
write as the usual41 integral over the uniform electron gas ex-
change energy density εUEG

x scaled with a semi-local MGGA
exchange enhancement factor Fx,

Ex =
∫

nεUEG
x (n) Fx(n,∇n, τ ) d r, (1)

where n = n(r) is the local electron density, ∇n the den-
sity gradient, and the semi-local kinetic energy density
τ = 1

2

∑
i,σ |∇�i,σ |2 is summed over spins σ and state la-

bels i of the KS eigenstates � i, σ . Atomic units are used
throughout. The exchange enhancement factor we further-
more express in terms of dimensionless electronic structure
parameters; the reduced density gradient s = |∇n|/(2kFn),
where kF = (3π2n)

1
3 , and the reduced kinetic energy den-

sity α = (τ − τW)/τUEG, where τW = |∇n|2/8n and τUEG

= (3/10)(3π2)
2
3 n

5
3 .

The MGGA exchange enhancement factor we therefore
write Fx(n, ∇n, τ ) = Fx(s, α), and expand it in products P of
Legendre polynomials B depending on s and α through trans-
formed quantities ts and tα:

ts(s) = 2s2

q + s2
− 1, (2)

tα(α) = (1 − α2)3

1 + α3 + α6
, (3)

Pmn = Bm(ts)Bn(tα), (4)

Fx(s, α) =
M∑

m=0

N∑
n=0

amnPmn. (5)

For the mBEEF fit we chose values of M = N = 7, giving Z
= (M + 1) × (N + 1) = 64 exchange basis functions with ex-
pansion coefficients amn, which more than exhaust the present
exchange model space. Both ts and tα are confined to [−1,
+1]. With q = κ/μ = 0.804/(10/81) = 6.5124, transforma-
tion ts is a Padé approximant to the PBEsol Fx(s), while tα is
inspired by the MS0 exchange.44

Denoting by Emn
x the exchange energy corresponding to

Pmn, the full exchange-correlation energy is written

Exc =
M,N∑
m,n

amnE
mn
x + EPBEsol

c

= xaT + EPBEsol
c , (6)

where x is the vector of exchange basis function energy con-
tributions for the system in question and the vector a contains
the exchange model expansion coefficients in Eq. (5). The
training data in x were obtained from PBEsol ground-state
electron densities and single-particle eigenstates.

IV. TRAINING DATA SETS

Five significantly different sets of target chemical and
materials properties are used in exchange model training.
Most of the sets were also applied in Ref. 25, but are here
updated or slightly modified.

The G3/99 molecular formation energies53 and the re-
lated RE42 reaction energies25 represent gas-phase chem-
istry. Both data sets are normalized in model training such
as to approximately bring all data within each set on an equal
footing, see Ref. 54 for details. Surface chemistry we repre-
sent by the CE27a chemisorption energies of simple adsor-
bates on late transition metal surfaces adapted from previ-
ous work.25, 55 Solid bulk energetics is represented by cohe-
sive energies in the Sol54Ec set, and bulk structures by the
derivatives of cohesive energies with respect to crystal volume
around equilibrium.82 Note that solid Pb is excluded from
both data sets in model training, see Ref. 55. Experimental
lattice constants are from the Sol58LC set.55

Density functional calculations are performed using
GPAW,56, 57 an open-source DFT code implementing the pro-
jector augmented-wave method,58 and the open-source ASE59

package. GPAW can represent the Kohn-Sham equations on
a real-space uniform grid as well as in a plane-wave expan-
sion. Structural relaxations follow the prescriptions in Ref. 25
and use grid-point spacings of 0.15–0.16 Å. Chemisorption
energies are calculated using a (10 × 10 × 1) Monkhorst-
Pack60 k-point mesh. Bulk calculations are done in plane-
wave mode using a 1000 eV plane-wave energy cutoff and a
(16 × 16 × 16) k-point mesh. Lattice constants and bulk mod-
uli are computed by fitting the SJEOS equation of state61 to 9
electronic total energies sampled at lattice constants spanning
±1% around the apparent equilibrium one.

V. EXCHANGE MODEL SELECTION

We seek a general-purpose density functional for sur-
face chemistry studies with built-in error estimates. With the
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flexible exchange model space defined in Eq. (5), maximiz-
ing not only performance on the training data sets but also
transferability to unseen data is essential. To this end we use
ideas from machine learning62, 63 and extend on developments
in Refs. 25 and 27. We formulate the optimization problem in
terms of a regularized cost function to be minimized for the
optimum (mBEEF) exchange coefficient vector â0. We also
generate a Bayesian error estimation ensemble in terms of
model fluctuations around â0. Several aspects of model se-
lection are most conveniently introduced in terms of fitting a
single set of data.

A. Cost function and BEE ensemble

We parametrize an exchange model on a single training
set by minimizing a cost function C consisting of a squared-
error loss function L and a regularizer R,

C(a; ω) = L(a) + R(a; ω)

= qT q + ω2bT b, (7)

which depends parametrically on the regularization strength
ω ≥ 0. The residual vector of training errors is q = Xa − y,
where matrix X contains all exchange basis function con-
tributions and y is a vector of targets. The vector b is a
suitable affine mapping of a, which we shall define later in
Eq. (15). The minimal cost solution a0 for a given choice of
ω is easily found, see Ref. 25. In the language of Bayesian
statistics, minimizing C over a given ω is equivalent to max-
imizing the posterior probability for the model parameters
given a prior expectation.62, 63 The regularizer in Eq. (7) im-
poses the prior expectation for a0 as a penalty term of vari-
able strength. The effect is parameter shrinkage, a standard
machine learning method for dealing with ill-posed regres-
sion problems and avoiding over-fitting by controlling the
model complexity.62, 63 Any ordinary least-squares (OLS) re-
gression solution in a sufficiently large model space will con-
tain a number of poorly determined parameters—parameters
that vary wildly for small perturbations of the training data—
a clear indication of over-fitting. Singular value decomposi-
tion of regularized cost functions of the form (7) shows how
the regularizer adds curvature to such weak modes in L and
essentially freezes them out of the fit.27, 63 Regularization is
therefore used to tune the model complexity in order to en-
hance model generalization. It is then natural to introduce the
notion of an effective number of model parameters θ ,62, 63

θ (ω) =
∑
m

νm

νm + ω2
, (8)

where νm are the eigenvalues of XT X . Note that θ (0) = Z
recovers the OLS solution while θ (∞) = 0. We may think
of θ as the number of cost function eigenmodes that are not
significantly affected by regularization.27, 62

The cost function is quadratic in a and can therefore
around its minimum C0 = C(a0; ω0) be expressed in terms
of the Hessian matrix H = ∂2C/∂aT ∂a and model perturba-
tions δa = a − a0:

C(a) = C0 + 1

2
δaT Hδa. (9)

As in previous work25–27, 64 we define a probability distribu-
tion P for fluctuations δa around a0. From P we draw en-
sembles of perturbed density functionals used for estimating
errors on DFT predictions. That the cost function can be as-
sumed to represent the probability of a model given the data
is intrinsically a Bayesian idea with no analog in frequen-
tist statistics. We require the mean expectation value of pre-
dictions by ensemble models a′ = a0 + δa to reproduce the
mean prediction error of a0:∑

j

〈(δqj )2〉k =
∑

j

(�qj )2, (10)

where 〈. . . 〉k indicates the average over k � 1 ensemble mod-
els. The sums are over j training data while δqj and �qj

are prediction errors by a′ and a0, respectively. Following
Refs. 27 and 64 the probability P is written

P ∝ exp(−C/T ), (11a)

T = 2C0/θ, (11b)

where the ensemble temperature T scales the model fluctu-
ations such that Eq. (10) is satisfied. The temperature is in
Eq. (11b) expressed in terms of the minimized cost and θ , the
effective number of model parameters.

In practical applications of Bayesian error estimation we
sample the distribution P . An ensemble matrix � is generated
by scaling the inverse Hessian with the ensemble temperature:

� = T H−1. (12)

Ensemble perturbations δak are then computed as

δak = V · D · uk, (13)

where matrix V contains the eigenvectors of �, matrix D
is diagonal and contains the square root of the correspond-
ing eigenvalues, and uk is a random vector with normal dis-
tributed components of zero mean and a spread of 1. The
Bayesian error estimate on any DFT prediction from total-
energy differences, σBEE, is then simply related to the variance
of k � 1 non-self-consistent predictions pk by δak:

σBEE =
√

Var( p) = 〈 pT p〉 1
2 , (14)

where p is a vector of ensemble predictions and the last equal-
ity is strictly true for k → ∞, where 〈 p〉2 = 0.

B. Tikhonov regularization

Smooth exchange enhancement factors are aesthetically
pleasing and computationally convenient. Indeed, it was ob-
served in Ref. 27 that smoothness of the enhancement factor
is of key importance to obtaining a exchange functional that is
transferable to systems not included in the training data. As in
Ref. 25 we apply a Tikhonov regularizer R in the cost function
Eq. (7) to impose our preference for smooth parametrizations
of the MGGA Fx(s, α). This was in Ref. 25 achieved by defin-
ing R such that the cost function penalty on a GGA exchange
model space was proportional to the integral of the squared
second derivative of the exchange basis over its domain. Such
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regularizers shrink model coefficients in a “smooth” space b
defined by the Tikhonov matrix �,

b = �(a − ap), (15)

where the prior vector ap is an origo in model space. The
prior is thus the resulting fitted model at infinite regulariza-
tion strength, where all model deviations away from ap are
quenched by the regularizer. We here generalize the exchange
regularizer of Ref. 25 to the MGGA exchange model space.
The Tikhonov matrix we therefore define from the overlaps of
a scaled Laplacian ∇̃2 acting on the exchange basis functions
P(ts, tα),

∇̃2 = ∂2

∂t2
s

+ λ
∂2

∂t2
α

,

�2
mnkl =

∫ 1

−1

∫ 1

−1
dts dtα∇̃2Pmn∇̃2Pkl,

(16)

where λ scales the regularization penalty between polyno-
mials in ts and tα . We choose λ = 102, which in numerical
tests seems to give a reasonable trade-off between smooth-
ness along s and α. The elements of �2 grow as the poly-
nomial order of the basis increases, and model regularization
therefore preferentially shrinks the more oscillatory compo-
nents in Fx(s, α). The prior vector ap in Eq. (15) is chosen
such that infinite regularization strength yields Fx(s, 1) = 1
for all s and half the MS0 exchange along the Fx(0, α) model
space direction.

C. Exchange model compromise

The XC model compromises illustrated in Fig. 1 indicate
the existence of significant constraints on the performance
of semi-local general-purpose density functional approxima-
tions: A gain in accuracy on one chemical or materials prop-
erty is typically associated with a loss of accuracy on a dif-
ferent property. Simultaneously minimizing the prediction er-
rors on several different properties in a transferable manner is
therefore a multi-objective (or Pareto) optimization problem.
In such Pareto-optimizations, where one cannot a priori infer
a strict measure of the relative importance of the individual
objectives, there is still one set of solutions that are superior
to all other. This is the Pareto set of non-dominated solutions,
or the set for which one cannot improve one quality without
making another quality worse. Among the Pareto-optimal set
of solutions one still has a choice in what importance is given
to the different qualities. In Ref. 25 a simple but effective ap-
proach to this type of problem was developed in the context
of density functional fitting, based on minimizing the prod-
uct of cost functions for the individual training sets includ-
ing their individual regularizations. The logic underlying this
choice is to find a solution among all the Pareto-optimal so-
lutions where the relative improvement of one property leads
to a similar relative deterioration of the other properties. The
product of cost functions achieves exactly this, if the cost rep-
resents the qualities to be optimized. Here we refine that ap-
proach by considering a fully regularized cost function for
all training data. This corresponds to considering the squared
residuals a better measure of quality than the individually

minimized (and regularized) cost functions. It is our impres-
sion that this improvement offers slightly better fits, and it has
the added benefit that the Bayesian interpretation of the statis-
tics is significantly more straightforward, since the functional
results from one fit to all data rather than separate fits to each
chemical or materials property.

The new starting point for dealing with the exchange
model compromise can then be stated as an objective func-
tion �:

�(a; ω) = �iLi(a) × eR(a;ω), (17)

where Li is the squared-residual loss function for data set i and
the exponential a functional form for the prior expectation for
the model parameters. Since minimizing � is equivalent to
minimizing ln {�} we define the following regularized cost
function K for the exchange model compromise:

K(a; ω) = ln{�} =
∑

i

ln{Li(a)} + R(a; ω). (18)

The minimizing argument vector a0(ω), minimizing the
objective function K given ω, is a vector that fulfills the zero-
gradient condition

∂K

∂a
= 0 =

∑
i

∂ ln Li

∂a
+ ∂R

∂a
=

∑
i

1

Li

∂Li

∂a
+ ∂R

∂a
. (19)

If K had been quadratic and positive definite, the existence of
only a single solution vector a0(ω) would have been certain.
This, however, does not appear to be a significant problem, at
least not with the data sets we have fitted in the present study.
Since the loss function, Li(a), and the regularizer, R(a; ω),
are both quadratic in a, the zero-gradient condition above
is very close to representing a traditional least-squares min-
imization problem, and we solve it by iterative least-squares
minimization by casting it on the form of Eq. (7):

K̃(a; ω, a∗) = L̃(a; a∗) + R(a; ω)

=
∑

i

Li(a)

Li(a∗)
+ R(a; ω)

= q̃T q̃ + ω2bT b, (20)

with least-squares solution ã. This solution is then inserted
for a∗ iteratively, and convergence is reached in very few
steps, when ã = a∗. In that case, the model-compromise cost
Eq. (20) reduces to K̃ = ND + ω2bT b, with ND the number
of training data sets.

The concept of an effective number of model parame-
ters, as defined in Eq. (8), applies equally well to K̃ , as does
the definition of the Bayesian ensemble matrix in Eq. (12).
Only the model complexity θ̂ , corresponding to the globally
optimum exchange model â0, remains to be determined. This
model should constitute a suitable trade-off between model
bias and variance such that it generalizes well to properties
outside the training sets.63 We here apply a clustered leave-
one-out cross validation estimator of the generalization error,
�2:

�2(ω) = 1

ND

ND∑
i=1

Li(ãi(ω)), (21)
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where training set i has been excluded from K̃ when deter-
mining ãi .

In summary, we thus determine the optimal simultaneous
fit to all training data in the protocol, â0, by identifying the
regularization strength ω̂0 that minimizes the generalization
error �2. The corresponding exchange model complexity is
θ̂ , and Bayesian error estimates on materials property predic-
tions by â0 are obtained following Eqs. (11b)–(14).

VI. RESULTS

A. mBEEF density functional and BEE ensemble

Figure 2 shows a range of meta-GGA exchange enhance-
ment factors obtained by minimizing Eq. (20) for increasing
model complexities, i.e., for decreasing ω. The enhancement
factors are neatly smooth along s (top panel) and α (bottom
panel) for small θ , but develop increasingly non-smooth fea-
tures when the exchange models are allowed to become more

FIG. 2. Model-compromise optimized mBEEF type exchange enhancement
factors for increasing number of effective parameters θ ∈ [0, 20]. Blue lines
indicate θ < 10 and red lines θ > 10. Solid black lines illustrate the chosen
mBEEF Fx(s, α), dashed black lines the prior model. (a) Projections along s
for α = 1. Note that α = 1 for a uniform electron gas, and that for this value
of the reduced KED the MGGA Fx(s, α) is equivalent to a GGA exchange
enhancement factor. (b) Projections along α for s = 0. All but the most con-
strained mBEEF type exchange functionals have a curved feature between
the single-electron limit (α = 0) and the UEG region (α ≈ 1).

FIG. 3. Bayesian ensemble of exchange models (yellow) around the mBEEF
(solid black). Standard GGA and MGGA exchange functionals are illustrated
by colored lines along with the prior model. (a) Projections along s for α = 1.
(b) Projections along α for s = 0. The ensemble is rather constrained around
the UEG limit (s, α) = (0, 1) in both panels, but spreads out significantly in
other regions of exchange model space.

complex, particularly for θ > 12. The optimum trade-off be-
tween performance and transferability, as determined by min-
imizing �2, we find at θ̂ = 8.8. This model we henceforth de-
note mBEEF exchange. It is indicated by solid black lines in
Fig. 2. Note that the full mBEEF exchange-correlation func-
tional uses PBEsol correlation, see Eq. (6), and that mBEEF
exchange does not conform to the formal UEG limit. This
appears to be a quite general feature of semi-local DFAs op-
timized for chemistry.25, 27, 45 Consequently, the mBEEF en-
hancement of local exchange for a UEG-like electronic struc-
ture is Fx(0, 1) = 1.037, while for rapidly varying densities
Fx(∞, 1) = 1.145. The latter is a significantly lower exchange
enhancement in the large gradient/small density regime than
for most semi-local functionals.

The mBEEF error estimation exchange ensemble is il-
lustrated in Fig. 3. Note how constrained the ensemble is
around (s, α) = (0, 1), and that it clearly straddles the UEG
limit in this point. The ensemble models spread out signifi-
cantly for (s, α) > (2, 2), indicating that the functional form
of the mBEEF Fx(s, α) is less constrained in this region of
the MGGA electronic-structure parameter space. We reported
similar findings in Ref. 25 for the large-s regime of the BEEF-
vdW ensemble. The fact that the ensemble is very broad for
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FIG. 4. Benchmark of mBEEF against popular or recent GGA (blue) and MGGA (green) density functionals in terms of mean absolute errors (MAEs) on
predicting the chemical and materials properties represented by the 5 data sets applied in mBEEF training. BEEF-vdW is also included (red). The first panel
ranks the tested density functionals according to the geometric mean of the MAEs, see Eq. (22). All data were obtained from self-consistent DFT calculations.

large reduced density gradients suggests that the decay of the
mBEEF Fx(s, 1) towards 1.145 for s → ∞ is not imposed
by the training data sets. Rather, the training data offer very
little electronic-structure information for (s, α) > (2, 2), and
the exchange model in this region therefore becomes strongly
dominated by the prior model ap.

The mBEEF exchange expansion vector and error esti-
mation ensemble matrix are available online65 for easy imple-
mentation into DFT codes already implementing meta-GGA
functionals.

B. Benchmark

Figure 4 illustrates a broad benchmark of some popular
or recent GGA and MGGA density functionals in addition
to mBEEF and BEEF-vdW. The first panel summarizes the
benchmark by ranking the density functionals in terms of the
geometric mean (GM) of mean absolute errors on the N = 5
training data sets applied in the mBEEF fitting,

GM-MAE = (
�N

i MAE i

)1/N
, (22)

relative to that of mBEEF. The remaining panels in the fig-
ure illustrate the actual MAEs for all considered functionals
on each training set. The mBEEF exchange model compro-
mise appears quite reasonable, as one would expect, since the
functional was trained on this data: The MAE is among the
three lowest for all five properties and presents a consider-
able improvement over the BEEF-vdW in predicting the lat-
tice constants and cohesive energies of bulk solids, while not
compromising the good description of the adsorbate–surface
bond strengths in CE27a, which is almost on the level of the
RPBE functional. In total, mBEEF simultaneously achieve
very acceptable predictions within the five classes of chemical
and materials properties. The relative GM-MAEs in the first
panel of Fig. 4 have values of 1.3 or more for all other tested
functionals. Note also the clustering of the density function-
als into GGAs and MGGAs+BEEF-vdW when ranked ac-
cording to this measure of overall performance. This is a di-
rect consequence of improved possibilities for the XC model
compromise.

C. Transferability

We shall now assess the mBEEF transferability by con-
sidering quantities outside the training data. Table I com-
pares error statistics on the MB08-165 decomposition ener-
gies of artificial molecules, the BM32 bulk moduli, the SE30
surface energies, and 26 of the 27 binding energies of neu-
tral and charged water clusters in the WATER27 benchmark
set. The mBEEF functional appears to generalize reasonably
well to prediction of properties not explicitly included in the
training sets used to generate it. The decomposition ener-
gies and bulk moduli are on average predicted with only a
limited systematic bias. The surface energies are on aver-
age underestimated. For this property mBEEF performs bet-
ter than PBE and is nearly on par with MS0, but does not
attain the accuracy of the TPSS-class functionals and MS2.
As observed in Fig. 1, this may be due to mBEEF’s focus
on performing well for chemisorption energies. Interestingly,
the water cluster binding energies are surprisingly well cap-
tured by mBEEF even though systems with significant non-
covalent interactions were not included in the training data.
Contrary to the two TPSS-type MGGAs, PBE, MS0, and
MS2 also appear to describe this sort of hydrogen bonding
well. Similar findings were reported in Refs. 44, 48, and 66.
This suggests that the high accuracy of mBEEF for hydro-
gen bonding may to some extent be due to the use of a MS0-
based form of the α-dependence in the exchange model space.
We therefore concur with the hypothesis of Perdew et al.66

that future high-performance van der Waals (vdW) density
functionals might benefit greatly from optimized MS-based
exchange.

We note in passing that mBEEF also correctly predicts
the sequence of relative stabilities of the 4 isomers of the
water hexamer included in the WATER26 set. Moreover,
the MAE over the 4 isomers is less than 1 kcal/mol. Most
semi-local DFAs agree much worse with benchmark quantum
chemical calculations on these systems. According to litera-
ture, it usually takes highly specialized exchange-correlation
functionals optimized for hydrogen bonding67 or dedicated
vdW functionals49 to get the energetic ordering of water hex-
amers right. MS0 and MS2 correctly predict the ordering
when the benchmark (B3LYP) structures are used, but fail
upon structural relaxation, which destabilizes the “prism” iso-
mer by 1.3 and 1.4 kcal/mol, respectively. This is not the case
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TABLE I. Error statistics for different density functionals in predicting various chemical and materials properties not included in mBEEF training. Computed
statistics are mean error (ME) or mean relative error (MRE) and their absolute counterparts.

LSDA PBEsol PBE RPBE revTPSS oTPSS MS0 MS2 mBEEF BEEF-vdW
MB08-165 decomposition energies of artificial moleculesa (kcal/mol)

ME 15.4 7.6 1.4 − 4.9 − 7.3 − 2.3 − 11.0 − 9.3 0.1 − 2.0
MAE 19.9 12.7 9.0 11.3 13.2 6.8 18.4 14.6 8.1 12.2

BM32 bulk modulib (%)

MRE 5.7 − 3.0 − 10.7 − 17.9 − 3.2 − 7.3 − 0.8 0.7 − 0.7 − 12.8
MARE 7.9 5.1 10.9 17.9 6.8 8.6 5.5 4.6 7.1 14.7

SE30 surface energiesc (%)

MRE − 7 − 13 − 26 − 35 − 6 − 11 − 18 − 12 − 22 − 21
MARE 14 17 26 35 12 15 20 17 23 23

WATER26 binding energies of neutral and charged water clustersd (%)

MRE 47.5 17.3 2.7 − 18.8 − 7.8 − 13.2 − 2.5 − 5.8 2.3 − 12.5
MARE 47.5 17.3 3.6 18.9 7.8 13.6 2.7 5.8 2.7 12.5

aQuantum chemical benchmark from Ref. 71.
bThirty-two experimental bulk moduli from Refs. 36, and 72, all corrected for thermal contributions and zero-point phonon effects.
cThirty experimental surface energies from Ref. 73.
dQuantum chemical benchmark from Ref. 74. This set was in Ref. 47 named WATER27, but we exclude here the last benchmark data point since it is a conformational energy
difference rather than a binding energy.

with mBEEF, where relaxation leads to near-isoenergetics for
the “prism” and “cage” isomers.

We further highlight the interesting finding above
that mBEEF performs surprisingly well for non-covalently
bonded systems by considering the S22 quantum chemi-
cal benchmark set68, 69 for non-covalently bonded complexes.
This data set exhibits hydrogen bonding as well as van der
Waals dispersion. Figure 5 shows error statistics for several
GGA, MGGA, and vdW-DF type density functionals in re-
producing the S22 binding energies. Semi-local DFAs do not
contain the physics needed to reliably capture long-ranged
dispersion interactions. It is therefore no surprise that the
largest prediction errors in Fig. 5 are found for GGAs and
MGGAs, while vdW functionals with explicitly non-local
correlation are better suited for this. Though mBEEF is a
semi-local functional and is not explicitly designed to cap-

FIG. 5. Comparison of mean absolute density functional prediction errors for
the S22 non-covalent benchmark set. Data are adapted from Ref. 25 except
for mBEEF, MS0, and MS2.

ture dispersion interactions, its performance on S22 is good.
Notably, mBEEF for example seems to on average outper-
form the significantly more expensive vdW-DF functional.
We would expect even better performance on the S22 bench-
mark if a suitable non-local correlation term46, 70 was added
to the mBEEF model space.

D. Bayesian error estimates: The CO puzzle

Finally, let us consider an example of applying the BEE
approach to error estimation in DFT. We choose a prototyp-
ical surface chemical problem: Predicting the site preference
of molecular CO adsorption on close-packed surfaces of late
transition metals. Most semi-local density functionals fail to
correctly predict the most stable adsorption site over several
such metals. This “CO puzzle” is a standing issue in compu-
tational surface chemistry, and a large number of studies have
been devoted to elucidating its origin and its possible solu-
tions, see, for example, Refs. 75–81.

Figure 6 shows calculated adsorption energy differences
�E between the experimentally most stable CO adsorption
site and less stable sites among the hollow and atop sites on
close-packed facets of Rh, Pd, Pt, Cu, Co, and Ru, such that
�E < 0 eV corresponds to a correct theoretical prediction
of the most stable of the two sites. Predictions made using a
range of DFAs are indicated with different colors in the fig-
ure. The experimentally observed preference at low temper-
ature and coverage is for the 1-fold coordinated atop site on
all of the considered surfaces except Pd(111), on which the
3-fold coordinated fcc site is found to be energetically most
favorable.

Bayesian error estimates σBEE are shown for mBEEF and
BEEF-vdW calculations. Most GGAs and MGGAs correctly
predict �E < 0 eV on Rh(111), Pd(111), and Ru(0001), while
on Pt(111), Cu(111), and Co(0001) the theoretical predictions
are scattered around or just above �E = 0 eV. The mBEEF
σBEE values provide very reasonable estimates of the spread of
predictions by different GGA or MGGA density functionals.
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FIG. 6. Site preference �E for CO adsorption on (111) surfaces of Rh, Pd,
Pt, and Cu and (0001) surfaces of Co and Ru at 0.25 monolayer coverage.
Error bars on mBEEF and BEEF-vdW predictions indicate Bayesian error
estimates.

In particular, the BEEs indicate that calculated adsorption site
preferences for CO on Pt(111) and Co(0001) should not be
considered indisputable, but may well change depending on
the choice of exchange-correlation functional. In some sense
Fig. 6 shows that such sensitivities of scientific conclusions
are also found if we meticulously compute each �E using a
wide range of different DFAs. However, Bayesian error esti-
mation ensembles provide a quantitative and computationally
inexpensive approach to such analysis.

VII. CONCLUSIONS

Broadly applicable semi-local density functionals must
somehow be designed with the exchange-correlation model
compromise in mind. The XC model selection procedure in
the Bayesian error estimation functional framework effec-
tively addresses this multi-objective optimization problem.
We here used it to develop the mBEEF exchange-correlation
functional, and argue that this can be considered a very rea-
sonable general-purpose meta-GGA density functional. It de-
livers highly accurate predictions of a wide range of different
properties in materials physics and chemistry, and we expect
mBEEF to be particularly well suited for computational stud-
ies in surface science, including catalysis. A Bayesian ensem-
ble for error estimation in DFT is an intrinsic feature of the
BEEF-class of density functionals. The ensemble is defined
in terms of XC model fluctuations, and we have illustrated
the application of error estimation by considering a prototyp-
ical surface chemical problem. The mBEEF ensemble error
estimates correctly indicate that one cannot conclusively de-
termine the site-preference of CO adsorption on a number
of late transition metal surfaces. A DFT user may tradition-
ally try to get some idea about the sensitivity of calculated
quantities on the choice of density functional approximation
by tediously applying various established functionals to the
same problem. The BEE provides a more structured approach
to such analysis via systematic but computationally inexpen-
sive computations of non-self-consistent XC energy perturba-

tions. We expect this approach to quantitative error estima-
tion of correlated errors to become a useful and very gen-
eral tool for validating scientific conclusions based on DFT
in computational materials science and chemistry. Finally, we
find that the mBEEF functional captures the strength of hy-
drogen bonding and medium-range van der Waals bonding
surprisingly well, even though it is a semi-local approxima-
tion and was not explicitly designed for this. This suggests
that mBEEF may be a very appropriate starting point for a
meta-GGA exchange-correlation functional explicitly includ-
ing non-local van der Waals correlation to accurately account
for long-range dispersion interactions.
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