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Abstract—In formal verification, cryptographic messages are
often represented by algebraic terms. This abstracts not only
from the intricate details of the real cryptography, but also
from the details of the non-cryptographic aspects: the actual
formatting and structuring of messages.

We introduce a new algebraic model to include these details
and define a small, simple language to precisely describe
message formats. We support fixed-length fields, variable-
length fields with offsets, tags, and encodings into smaller
alphabets like Base64, thereby covering both classical formats
as in TLS and modern XML-based formats.

We define two reasonable properties for a set of formats used
in a protocol suite. First, each format should be un-ambiguous:
any string can be parsed in at most one way. Second, the
formats should be pairwise disjoint: a string can be parsed as
at most one of the formats. We show how to easily establish
these properties for many practical formats.

By replacing the formats with free function symbols we
obtain an abstract model that is compatible with all existing
verification tools. We prove that the abstraction is sound for un-
ambiguous, disjoint formats: there is an attack in the concrete
message model if there is one in the abstract message model.
Finally we present highlights of a practical case study on TLS.

Keywords-Security protocols, formal verification, message
formats, soundness, compositional reasoning

I. INTRODUCTION

Formal verification approaches have proved to be success-
ful in verifying security properties of distributed systems that
exchange cryptographic messages: security protocols, web
services, or Crypto-APIs. Most approaches use a Dolev-Yao-
style model, representing cryptographic messages as terms
in a free term algebra (sometimes modulo some equations).
Here constant symbols represent “atomic” messages like
identifiers or (atomic) keys, and function symbols represent
cryptographic operators. One thus treats the cryptography
like black boxes, where the intruder can encrypt and decrypt
messages only when knowing the respective keys.

The reason for the success lies in the relative simplicity of
these abstract models, which allows for efficient automated
verification tools, compositional reasoning or refinement
approaches. Some computational soundness results exist;

they show that (under certain conditions) such an abstraction
of the cryptography is actually sound [1], [2].

We focus here on an aspect that has received much
less attention: the non-cryptographic operators. This is the
question of how messages are formatted and structured.
Abstract approaches usually use an operator cat(t1, t2) to
denote the concatenation of two messages t1 and t2. This
completely ignores how an actual implementation structures
this information, so that it is later possible to parse a given
string and extract a t1 and a t2 part.

An example where these details of message formats can
give rise to vulnerabilities are type-flaw attacks, where an
attacker exploits the similarity of two formats to make
a recipient accept a message in a different context (and
meaning) than the sender meant it. This is particularly
relevant when we use the same long-term keys for different
protocols that are deployed in parallel [3]. Another example
are injection attacks: if an intruder-chosen string is filled into
a message schema, this may break the (intended) structure
of the schema.

These vulnerabilities on the non-cryptographic level are
the low-hanging fruit as attacks seem much more common
and successful than attacks on the cryptography. Our aim is
however not to “find more attacks” (that are quite obvious
anyway when one is aware of the problem). Rather, we
give a general soundness result for a large class of message
formats: for these, the verification in abstract term models
is actually sound.

A. Contributions

We consider in this paper two paradigms for structuring
messages that cover many practically relevant protocols. The
first may be called the data-structure paradigm and is used
for instance in TLS: here we have a concatenation of fields
that can be either of fixed or of variable length. A variable-
length field starts with an offset that tells the length of
the rest of the field. This offset itself is of fixed length,
e.g. when using a two-byte offset, the field can be at most
65535 bytes long. The second paradigm we consider are
XML-style messages. Here we can easily structure messages



by tags marking the begin and end of elements. To avoid
collision of the actual data with the XML-symbols, one
uses encodings into smaller alphabets such as hexadecimal
encoding or Base64.

We first give a simple language to describe such message
formats with a fixed number of fields. We give a simple
sufficient condition for a format to be un-ambiguous (a
string cannot be parsed in two different ways). We give
a parser for un-ambiguous formats. We then give also a
checking procedure that implements a sufficient check for
two formats to be disjoint, i.e., no string can be parsed
as both formats. Requiring that formats are un-ambiguous
and pairwise disjoint are reasonable conditions: it must be
impossible to parse any string in more than one way, neither
within one format or as two different formats.

Based on this, we define an algebra that models pre-
cisely the behavior of the non-cryptographic operators, but
abstracts from the cryptographic ones since our focus is not
a computational soundness result. For this algebra we use
a novel way of modeling. We first define a class of crypto-
graphic algebras with byte-strings as the universe and where
operators are interpreted as functions on these byte strings,
modeling exactly the real world implementations. The be-
havior of the non-cryptographic operators like concatenation
is fixed in the obvious way, while the implementation of
the cryptographic operators is arbitrary. We then abstract
from the real-world cryptography by defining a congruence
relation t1 ≈ t2 that holds for two terms t1 and t2 if they are
equal in all cryptographic algebras. In this way we get an
≈ relation that combines the details of message structuring
while abstracting from the cryptography by selecting those
equations that hold regardless of the implementation of the
cryptography.

The resulting algebra D, the term algebra modulo ≈, is
too complex to work with automated verification, especially
due to its inherent semantic nature. The main result is now:

• if we consider a system where all participants except
the intruder use only formats for structuring messages
(i.e., instead of working with low-level operators like
concatenation),

• if all the used formats are un-ambiguous and pairwise
disjoint, and

• if the system has an attack (when interpreting terms in
algebra D)

• then there is also an attack in a free algebra model (that
does not know the low-level operators).

This conclusion means it is sound to use any of the common
verification tools like ProVerif [4] or AVANTSSAR [5].

Finally, we also illustrate with a case study on the TLS
protocol, how our approach can be practically used on
complex, real-world examples.

B. Structure of the Paper

In Section II we define the class of crypto algebras. In
Section III we define formats, how to parse them and the
sufficient check for disjointness. In Section IV we define
our concrete algebra D and prove that the sub-algebra D′
without low-level operators behaves like a free algebra. In
Section V we define a Dolev-Yao style model based on D as
well as constraint systems over this model. In Section VI we
give the main soundness result. In Section VII we discuss a
problem of lexical analysis. In Section VIII we present the
highlights of the TLS case study. Finally, in Section IX we
discuss related work and conclude.

II. TOWARDS A NEW TERM MODEL

In this section we define a class of “crypto algebras”
that interpret function symbols as real cryptographic and
non-cryptographic operations on strings. This is the basis
for the novel term model of Section IV that abstracts
the cryptographic operators, but keeps all the details of
non-cryptographic aspects. For this model we then prove
our abstraction result. All algebras are based on the same
signature that we define first.

A. Signature

We fix a signature Σ. It contains a countable set Σ0 =
{c1, c2, . . .} ⊆ Σ of constants. We distinguish two kinds of
constants: a finite set of literals L and a countably infinite
set of uninterpreted constants U. The literals are strings
like XML-tags (that will later literally represent that string),
while uninterpreted constants like n7 may represent a fresh
nonce and have no fixed interpretation as a string. The
literals include the constant ε that denotes the string of length
0. We will later assume that the intruder initially knows all
literals.

Next, the signature contains black-box operations on
messages.
• scrypt(k,m, r) for symmetric encryption of clear-text
m with symmetric key k, and randomization value r.
Usually, we will omit r in the notation since it is
simply a randomly chosen value by whoever performs
the encryption to avoid deterministic encryption.

• crypt(k,m, r) similarly is asymmetric encryption
where k is a public key.

• sign(k,m, r) similarly is asymmetric encryption where
k is a private key.

• For public/private key pairs, we assume that they are
always created from some seed value s by the functions
pub(s) and priv(s).

• h(m) for the cryptographic hash of a message m.
• mac(k,m) for a key-ed hash of m using symmetric

key k.
• cat(m1,m2) for concatenation of messages m1 and
m2. As we will define below, cat(·, ·) is associative
and we may thus simply write m1 · m2 · . . . · mk



for cat(m1, cat(m2, cat(. . . ,mk))) and even omit the
“multiplication” operator · when clear from the context.

• enc(m) an encoding function for mapping into a
smaller alphabet, e.g., a Base64 encoding. For simplic-
ity, we assume here that only one such encoding is
used, but our results can easily be extended to several
such encodings.

• offk(m) to “compute the offset” of m: it yields a k-
byte string representing the length of m. (For this to
work, m cannot be arbitrary large; we define the precise
behavior later.)

• We will in Section III augment the signature Σ with
a set of function symbols form1(·), . . . , formn(·) to
represent the clear-text structure more abstractly than
with low-level operators like cat.

We build ground terms from this signature as expected;
the set of ground terms is denoted TΣ. Given a set V of
variable symbols (disjoint from Σ) we denote with TΣ(V )
the set of terms containing also variables of V . Denote with
[x1 7→ t1, . . . , xn 7→ tn] the substitution of variables xi to
terms ti where no variable xi can occur in any term tj . We
extend substitutions to functions on terms as expected.

Let us also say that a ground term is abstract if it does not
contain any of operators cat(·, ·), enc(·), and off·(·). In fact,
the main theorem below will show that we may safely avoid
reasoning about any of these “low-level clear-text operators”
and use only abstract terms.

We have so far only described the signature of the terms.
We now attach a meaning to each symbol in a very concrete
way as functions on strings.

B. Crypto Algebras

Let B∗ denote the set of all byte-strings. We now consider
a class of algebras that use B∗ as the universe and interpret
every function symbols f ∈ Σ with arity n as a function
fC : (B∗)n → B∗. Thus each fC represents the meaning of
that symbol on actual messages (note that for every constant
c ∈ Σ0, cC is simply a byte-string in B∗).

We later define a common black-box intruder model for
the cryptography, e.g., the intruder can decrypt scrypt(k,m)
to derive m iff he can derive k from his knowledge; vice-
versa he can only produce the encryption scrypt(k,m) when
he knows both k and m. We do not make any formal link be-
tween the abstract symbol scrypt and the concrete encryption
function scryptC (as it is done in cryptographic soundness
results). In fact, we actually do not exclude “absurd” models
of cryptography like scryptC(k,m) = m. (However, in
such models the black-box intruder model may not properly
reflect the properties of the real implementation.)

We do however make some requirements about the fC

functions that implement the non-cryptographic operators,
e.g., that catC is really string concatenation. This will be
made precise in Definition 1.

We fix a set of variables V (disjoint from Σ). For every
variable x ∈ V , we also fix a set |x| to be an arbitrary,
non-empty subset of the natural numbers. This represents
the allowed length of the strings that can be substituted for
x, e.g., |x| = N when x can hold strings of any length.
Similarly, for all constants c ∈ Σ0 we fix |c| = {l} to be
a singleton set. Here ε is the only constant of length {0}.
For strings str ∈ B∗ we define |str| = l to be the length in
bytes as is standard.

Definition 1 (Crypto Algebra): Let C be a Σ-algebra, and
let | · |C : TΣ(V) → P(N) be a length function. We say
(C, | · |C) is a crypto algebra iff the following holds:
• The universe of C is B∗.
• Thus, every function symbol f ∈ Σ of arity n is

interpreted in C as a function fC : (B∗)n → B∗. We
write tC for the interpretation of a ground term t in C,
i.e., f(t1, . . . , tn)C = fC(tC1 , . . . , t

C
n).

• Recall that the literals L ⊆ Σ0 are verbatim strings. For
each such literal s, let sC = s.

• For all variables and constants t ∈ V ∪ Σ0, |t| = |t|C .
• The length of a ground term is a singleton set, namely

the length in bytes of its interpretation: |t|C = { |tC | }.
• For general terms (that are not necessarily ground) we

define [[·]]C : TΣ(V)→ P(B∗) as follows:

[[x]]C =
⋃

l∈|x| Bl

[[f(t1, . . . , tn)]]C = {fC(s1, . . . , sn) |
s1 ∈ [[t1]]C ∧ . . . ∧ sn ∈ [[tn]]C}

Note that for every ground term t, [[t]]C = {tC}.
• We require that |t|C = {|s| | s ∈ [[t]]C}
• The interpretation of cat is string concatenation, i.e.,

catC(s1, s2) = s1 · s2.
• We require that offC indeed yields the length of a given

string. Formally, for strings s, s′ and length k ∈ N,
from offCk(s) = s′ follows |s′| = k and if |s| < 256k

then s′ is a k-byte representation of |s|. (One must fix
either big-endian or little-endian representation here. If
|s| ≥ 256k, then the length is not representable and the
implementation may choose any k-byte value to return.)

• Finally, we require that enc(·) gives an encoding into
a smaller alphabet X ( B: we require that enc : B∗ →
X∗ is a bijective (1-to-1) mapping. Examples would be
hexadecimal or Base64. The model indeed reflects that
the hexadecimal encoding of a string s has length 2|s|,
while the Base64-encoding has length 4 d|s|/3e. For
simplicity, we do not consider more than one encoding,
but all results can be extended accordingly.

For most of this paper (unless where noted otherwise),
we will consider a fixed crypto algebra (C, | · |C) and omit
·C subscripts when no confusion arises. We may also refer
to C alone as a crypto algebra, leaving implicit that it has
an associated length function | · |C . We conclude this section
with the concept of a string-substitution θ that is a mapping



from variables to strings such that |θ(x)| ∈ |x|. We extend
θ to a mapping from terms to strings by θ(f(t1, . . . , tn)) =
fC(θ(t1), . . . , θ(tn)).

III. FORMATS

In order to formalize the abstraction of the con-
crete message structures, we now introduce symbols
form1(·), . . . , formn(·) to represent the different formats
abstractly. We define a small simple language to define
formats.

Definition 2: A format declaration for an operator form
has the shape:

form(x1, . . . , xn) = fld1 · fld2 . . .fldm

Here, the xi are variables (assuming we have again fixed a
set |xi| of possible lengths for each variable xi). The fld i

are called fields and each field can be any of the following:
• a literal constant c ∈ L \ {ε},
• a variable xi (1 ≤ i ≤ n),
• an offset construction offk(xi) · xi where k ∈ N,

1 ≤ i ≤ n, and |x| ⊆ {0, . . . , 256k − 1}. This means
that the length of the value x is literally written as a
k-byte field, followed by the value x itself,

• an encoding enc(xi) of a variable (1 ≤ i ≤ n).
For simplicity, we assume that forms are linear in the sense
that none of the xi occurs in more than one field.1

For a format declaration formi(x1, . . . , xn) = . . . the
admissible length of the j-th argument is |xj |. We thus say
that the term formi(t1, . . . , tn) is legal, if |ti| ⊆ |xi|. For
a term t of arbitrary shape we say that t is legal if every
form·(·)-subterm of t is legal. We generally forbid illegal
terms in the rest of this paper, i.e., we restrict TΣ(V) to the
subset of legal terms (for given length definitions of variables
and functions) without introducing a new symbol.
The rationale for excluding illegal terms is that terms simply
cannot be filled into a form when they do not have an
appropriate size. A buffer overflow is a typical example
of a flawed implementation that does not check the size
restriction of fields. The restriction to legal terms thus
excludes such flawed implementations. This is in fact not
a restriction on the intruder abilities we define below, since
we allow him arbitrary use of low-level functions like cat.

The definition of formats is specific to the protocol or
protocol suite that one wants to consider. Given a definition
of a set of formats, we extend the crypto algebras of
Definition 1 as follows.

For every declaration formi(x1, . . . , xn) = fld1 · . . . ·fldm

and every s1 ∈ [[x1]]C , . . . , sn ∈ [[xn]]C , we set

formC(s1, . . . , sn) = [x1 7→ s1, . . . , xn 7→ sn](fld1·. . .·fldm).

1The extension to non-linear patterns is straightforward: the parser just
additionally needs to check that the respective substrings are equal.

Example 1: Recall that we may omit cat(·, ·); let |x| =
{16}, |y| = {0, . . . , 65535} and |z| = N:

form1(x, y, z) = myform x off2(y) y z

form2(x, z) = 〈myxform〉
〈nonce〉enc(x)〈/nonce〉
〈name〉enc(z)〈/name〉

〈/myxform〉

From the definition of [[·]] follows how to construct a parser
for form1 and form2. For form1, we first require that the
string starts with the tag myform. Then the next 16 bytes
are parsed as x. Then we read two bytes, telling us the length
l of y; then we read y to be the next l bytes. Finally, all the
rest of the message is read as z. If the string does not start
with the tag, or we reach the end of the string while more is
expected, the parsing fails and the format cannot be of kind
form1.

For form2, first note that our definition of formats does
not include whitespaces, and they would lead to confusion
in formats like form1, while XML does allow whitespaces
between all tokens. However, for machine-generated XML-
messages whitespaces are redundant and can be omitted.2

Since the technical presentation in this paper is already com-
plicated enough, we work here with XML-formats without
whitespaces, and only briefly discuss in Section VII how
to extend our result to allow whitespaces. We assume that
the alphabet X (that enc(·) encodes to) does not contain any
symbols with syntactical meaning in XML such as the angle
brackets and the slash. Thus, parsing requires the XML tags
〈myxform〉 and 〈nonce〉. Then we read the longest string
that contains only characters of the alphabet X. This is in
fact the only way to parse a string since said alphabet cannot
contain the next character after enc(x), namely 〈 . The string
read of enc(x) is then appropriately decoded and assigned
to variable x. Again, the parsing fails if x does not have
length 16 as specified by the format. The rest of parsing
this format is of course similar.

The examples indicate that format description can be used
to systematically derive parser implementations that enforce
specified restrictions. An immediate question is whether a
given format is un-ambiguous. For instance if |x| = |y| = N,
then format form(x, y) = x y is ambiguous—as we define
it next.

A. Parsing and Ambiguity

We define for a format formi(x1, . . . , xn) that a string s
can be parsed for formi as θ iff
• θ is a string-substitution with domain {x1, . . . , xn},
• |θ(xi)| ∈ |xi|,
• θ(formi(x1, . . . , xn)) = θ(fld1 · . . . · fldn) = s.

2There is one exception: between tags and attributes, at least one whites-
pace is required, e.g., 〈a href = ”...”〉 requires a whitespace between a and
href. In this case we could define a standard, e.g., one space.



Define that a format formi(x1, . . . , xn) is ambiguous iff
there is a string s that can be parsed in two different ways,
i.e., as string substitutions θ1 and θ2 such that θ1(xi) 6=
θ2(xi) for some 1 ≤ i ≤ n.

In the example form(x, y) = x y where |x| = |y| = N
for instance the single character c can be parsed either as
θ1 = [x 7→ c, y 7→ ε] or as θ2 = [x 7→ ε, y 7→ c].

It is easy to generally exclude such ambiguities: an item
that has variable length shall either be sent with an offset
construction, or as the last element of a format (“taking the
remainder of the message”), or under the encoding enc(x)
followed by a character in B \ X.

Definition 3: A form declaration formi(x1, . . . , xn) =
fld1 · . . . · fldm is said to have clear boundaries if for every
field fld i with i < m holds:
• fld i = xj implies

– |xj | = {l} (i.e., xj has a fixed length)
– or i > 1 and fld i−1 = offk(xj) (i.e., xj has

variable length with an offset construction).
• fld i = enc(xj) implies that for every s ∈ [[fld i+1]], s

is not the empty string and starts with a letter in B\X.
For formats with clear boundaries we can easily write a

parser that is given as argument a list of fields and a string
(as a list of characters)–see Fig. 1. This algorithm in Pseudo-
Haskell code uses functions
• head l and tail l that return the first element and

the rest list l, respectively. They return error when
l=[] (the empty list).

• take n l takes the first n elements of list l, similarly
drop n l removes the first n elements. Both return
an error when the list has less than n elements.

• takeWhile p l returns the longest prefix of l such
that each element satisfies p, and dropWhile is the
counter-part.

• toNum s gives the integer represented by string s.
• elemX checks whether a element belongs to set X.
• We write [x|->t] and the like for the substitutions

created. Finally, we assume that in building substitu-
tions we check conformity with the length, i.e., that
|t| ⊆ |x|.

Theorem 1: Let formi(x1, . . . , xn) = fld1 · . . . · fldm be
a format with clear boundaries. Given a string s, there is at
most one string substitution θ as which s can be parsed for
form formi. If such a θ exists, then parse [fld1, . . . ,fldm] s
will return θ and produce an error otherwise.

Proof: It is straightforward that the above algorithm is
sound. Also it is obvious that for all cases that involve fields
with fixed lengths and offset construction, there is no other
choice to parse the string. If it is any other variable, then by
clear boundaries it must be the last field of the format, so
again there is just one choice to parse, namely setting the
variable to the remaining string. The only other case is an
encoded field enc(x). By clear boundaries, the next field (if

it exists) starts with a letter that is not n X. Thus, we parse
until we hit the first element that is not in X; this yields the
longest prefix of s that we can possibly parse as enc(x). It
is also the shortest, because otherwise the remainder of s
starts with a letter in X that cannot be parsed as the next
field in the recursive call.

B. Disjoint Formats

Another aspect that is later relevant for abstracting is
whether two formats are actually sufficiently different so
that confusions are excluded. We want to exclude that one
honest agent produces a message form1(t1, . . . , tn) and
another who receives this message accidentally parses it
as form2(t′1, . . . , t

′
m). Note that unencrypted forms are of

course not protected against manipulations by the intruder
(e.g., he may replace tags) but one given message should
have an “un-ambiguous meaning” in the sense that it can
be parsed in only one way. Formally, we say two formats
formi(x1, . . . , xn) and formj(y1, . . . , ym) are disjoint iff
[[formi(x1, . . . , xn)]]∩ [[formj(y1, . . . , ym)]] = ∅. (Recall that
in case of variables, the semantics considers the set of byte
strings that are allowed by the declared variable lengths.)

In general, deciding whether two formats are disjoint is
difficult, for instance through the offsets we get a com-
plicated relation between lengths of one message and the
content of another. However, in practice it is often quite
easy, for instance if the formats start with distinct tags we are
already done. We give here a simple procedure for checking
disjointness that uses over-approximation in difficult cases.
For this over-approximation the procedure is a sufficient but
not necessary for disjointness: when the procedure answers
True, then the given formats are indeed disjoint.

The algorithm disjoint(F1, F2) in Fig. 2 receives two
formats as arguments, which are again given as lists of fields.
We make again several simplifications to the presentation:
• In the call disjoint(F1, F2) we make a case-distinction

on the shape of F1 and of F2. By symmetry of disjoint-
ness, we would have to write many almost identical
cases that differ only in the order of the Fi. We then
write only one case.

• Again, we assume that patterns are linear, so we do not
need to compare the value of different fields.

• We assume literal constants are only of length 1 (as
longer constants can be broken down).

• Since [[offk(x) · x]] ⊆ B∗, we can simplify the pro-
cedure by over-approximating all offset constructions
with variables of unbounded length. Similarly, we over-
approximate all variables that have more than one
length with arbitrary length. Thus we have only vari-
ables of fixed length l, which we denote as x[l] in the
algorithm, and variables of unbounded length which we
denote x[∗].

It may seem strange that after all the care we have spent
on the details of modeling variables with an offset con-



parse [] s = if s=="" then [] else error
parse (t:ts) s =

case t of
c -> -- constant (for simplicity assume constant of length one)

if (head s)==c then parse ts (tail s) else error
x -> if (length x)==[l] -- fixed length l

then [ x |-> take l s]++(parse ts (drop l s))
else [ x |-> s ] -- in this case ts is empty by def. clear boundaries

off_k(x) -> -- by construction (head ts)==x
let n=toNum (take k s) -- offset

s’=drop k s -- rest of string
in [x|->take n s’]++(parse (tail ts) (drop n s’))

enc(x) -> [x|-> dec (takeWhile elemX s)]++(parse ts (dropWhile elemX s))

Figure 1. Parser for formats with clear boundaries.

struction, we here over-approximate them by arbitrary-length
variables. In fact the precise length are most relevant for
parsing, but typically not for disjointness: in “good” designs,
the distinction between two formats will not result from
the precise lengths of some fields, but by some identifying
constant in a fixed position. We come back to this issue in
the TLS case study in Section VIII.

Theorem 2: If disjoint(F_1,F_2)=True, then
[[F1]] ∩ [[F2]] = ∅.

Proof: The proof is by structural induction, one in-
duction step for each case of the algorithm: for each case
the property holds if it holds for each recursive call of the
algorithm.

As all cases are very similar, we give only one case:
(x[l], y[∗]). The induction hypothesis in this case (see the
recursive calls of this case): [[F1]] ∩ [[y[∗] : F2]] = ∅ and
[[x[∗] : F1]] ∩ [[F2]] = ∅. To show is that this implies
[[x[l] : F1]] ∩ [[y[∗] : F2]] = ∅.

Suppose this were not true, i.e., there is a string s ∈ [[x[l] :
F1]] and s ∈ [[y[∗] : F2]]. Thus s can be written as s = s1 ·s′1
for some s1 with |s1| = l and some s′1 ∈ [[F1]]; and also
s can be written as s = s2 · s′2 with some s2 ∈ B∗ and
s′2 ∈ [[F2]]. Consider two cases: First, if |s1| ≤ |s2| then
s2 = s1 · s3 for some string s3. Thus s3 · s′2 = s′1 ∈ [[F1]].
Also s3 · s′2 ∈ [[y[∗] : F2]] so, [[F1]] ∩ [[y[∗] : F2]] cannot be
empty, contradicting the induction hypothesis.

Second, if |s1| > |s2| then s1 = s2 · s4 for some s4. Thus
s4 · s′1 = s′2 ∈ [[F2]] and also s4 · s′1 ∈ [[x[∗] : F1]], so [[x[∗] :
F1]] ∩ [[F2]] 6= ∅, contradicting the induction hypothesis.

IV. THE CONCRETE ALGEBRA

We have so far defined a signature and semantics for
terms as strings. One can see this as an algebra C, where the
universe is P(B∗) and every function symbol f is interpreted
by fC , thus the interpretation of a term t in C is [[t]].

For automated verification, this algebra is problematic,
since we are using actual cryptography. For instance, hash
functions necessarily have collisions in real cryptography, so

there are terms t1 and t2 where [[t1]] 6= [[t2]] but [[h(t1)]] =
[[h(t2)]]. Of course, it should be difficult for an attacker to
find collisions in reality (at least for good hash functions).
The same holds for randomly chosen nonces or collisions
between different constructions. For instance there may be
terms t, k, and m such that [[h(t)]] = [[crypt(k,m)]], but it
should be hard, given t, to find such k and m. One could
say that these kinds of collisions are “accidents” that happen
with a low probability and it is practically impossible for an
attacker to exploit them. Therefore most formal verification
approaches implicitly exclude these collisions by modeling
messages as terms where in a free algebra, i.e., two terms
are equal in the algebra iff they are syntactically equal.

We want to model all the details of the real world as far
as structuring/formatting of messages is concerned, but still
abstract from the cryptography. The rationale is of course
that the clear-text operations are much easier to manipulate
than cryptography, for instance it is not a problem, given
a string s ∈ X∗ to find another string s′ ∈ B∗ such that
s = encC(s′).

We now define a new algebra that picks the best of
both worlds, abstracting away all “accidental” collisions
caused by the cryptography and preserving all details of the
non-crypto operators. A key insight is that the unwanted
collisions are due to the concrete choice of C, i.e., how the
symbols are interpreted. Recall that in the definition of a
cryptographic algebra C we have made several requirements
on the interpretation of the non-cryptographic function sym-
bols (and on the universe and lengths), while we deliberately
have not specified how the cryptographic functions work.

The idea is now to define an abstract algebra in which two
ground terms t1 and t2 are equal iff they are equal in every
cryptographic algebra C. In other words, we want t1 and t2 to
be interpreted equally only when this is a consequence of our
requirements on the interpretation of the non-cryptographic
functions:

Definition 4: We define ≈ as the least relation on ground



disjoint [] [] = False
disjoint [] (c:F2) = True
disjoint [] (x[*]:F2) = disjoint [] F2
disjoint [] (x[l]:F2) = if l>0 then True else disjoint [] F2
disjoint [] (enc(x[*]):F2) = disjoint [] F2
disjoint (f1:F1) (f2:F2) =

case (f1,f2) of
(c,c’) -> c != c’ || disjoint F1 F2
-- if we start with different constants (both length 1) we are done
-- otherwise compare the remaining fields
(c,x[l]) -> if l==0 then disjoint (c:F1) F2 -- x is empty, discard

else disjoint F1 (x[l-1]:F2) -- the first letter of x consumes c
(c,x[*]) -> disjoint (c:F1) F2 -- x may be empty (discard)

&& disjoint F1 (f2:F2) -- otherwise x consumes c
(c,enc(x[*])) -> (not (elemX c) || disjoint F1 (f2:F2))

-- x can consume the c if c is in the alphabet
&& disjoint (c:F1) F2 -- otherwise x could be empty

(x[l],y[m]) -> if (l<=m) then disjoint F1 (y[m-l]:F2)
-- if x is longer, then it is consumed by y
else disjoint (x[l-m]:F1) F2

(x[l],y[*]) or (x[l],enc(y[*]))
-> disjoint F1 (f2:F2) -- x could be completely consumed by y

&& disjoint (x[*]:F1) (F2) -- or y could be completely consumed by x,
-- for simplicity remainder of x set to length *

all other -> disjoint F1 (f2:F2) && disjoint (f1:F1) F2) -- one consumes the other

Figure 2. Sufficient check for format disjointness (omitting symmetric cases).

terms such that t1 ≈ t2 iff in every cryptographic algebra
(C, | · |C) it holds that tC1 = tC2 . Note that ≈ is a congruence
relation. We extend it to non-ground terms t1 ≈ t2 iff
σ(t1) ≈ σ(t2) for every substitution σ that maps all variables
to ground terms.

We define the detailed term model D as the quotient
algebra TΣ/ ≈. (The quotient algebra is an algebra that
interprets two terms as equal iff they are equal modulo
≈. Formally, the universe of the quotient algebra is the
set {[t]≈ | t ∈ TΣ} of equivalence classes [t]≈ = {t′ |
t ≈ t′}. The interpretation of function symbols in D
is: fD([t1]≈, . . . , [tn]≈) = [f(t1, . . . , tn)]≈. Note that this
definition of fD chooses representatives t1, . . . , tn from the
respective equivalence classes, but since ≈ is a congruence
relation, the result does not depend on this choice.)

We give a few examples to illustrate this new algebra D.
First note that we have a very precise representation of the
non-cryptographic operators. For instance

• cat is associative cat(t, cat(u, v)) ≈ cat(cat(t, u), v)
and ε is the neutral element s · ε ≈ ε · s ≈ s.

• Length relates to concatenation as expected:
offk(s · t) ≈ offk(t · s),

• When using hexadecimal encoding, we have
enc(s · t) ≈ enc(s) · enc(t). We have this property for
Base64 only if |s| is divisible by 3. (Note that this level

of precision is beyond what one can axiomatize with
algebraic equations.)

On the other hand, concerning cryptography, the algebra
D behaves as standard term-algebraic message models:
• For any two different constants c and d we have c 6≈ d.
• Hash functions are collision free in D: h(s) ≈ h(t) iff
s ≈ t for any ground terms s and t.

• Similarly we do not have any clashes between distinct
cryptographic elements: crypt(s, t) 6≈ h(u).

Due to the “semantic” definition of ≈ as equalities that
hold in all crypto algebras, reasoning in D is not trivial. In
fact, the key contribution of this work is that we can safely
abstract from this and move to a free algebra. The first step
towards this is the following generalization of the previous
examples:

Lemma 1: Let t = f(t1, . . . , tn) and t′ = g(t′1, . . . , t
′
m)

be terms in which ε does not occur and f ∈
{crypt, scrypt, sign, h,mac}. Then t ≈ t′ implies f = g and
ti ≈ t′i for all 1 ≤ i ≤ n.

Proof: The difficulty of this proof lies in the semantic
definition of ≈ as those equations that hold in all crypto
algebras. We proceed indirectly and assume terms t and t′

as in the statement and where f 6= g or ti 6≈ t′i for some
1 ≤ i ≤ n; we show that this implies t 6≈ t′. To prove t 6≈ t′,
we construct a special crypto algebra C in which tC 6= t′

C .



This C is a bit “absurd” in the sense that it does not reflect
a useful implementation of the crypto operators; its mere
purpose is to easily find an interpretation in which t and t′

are unequal.
Let D = B∗ \ (X∗ ∪ L). Note that this set is countably

infinite. Thus there exists an injective function fi : (B∗)4 →
D. We may also assume that |fi(s1, s2, s3, s4)| ≥ |s1| +
|s2|+ |s3|+ |s4|. We define the injective crypto algebra C as
follows. We define cryptC(s1, s2, s3) = fi(crypt, s1, s2, s3)
where we literally introduce the string crypt as the first
argument. Similarly we design an interpretation for all other
uninterpreted symbols (all except {cat, enc, off}∪L); when
the arity is smaller than 3, we fill the respective si with ε.

We can easily conclude the proof for the cases f = g,
g ∈ {crypt, scrypt, sign, h,mac}, and g ∈ U, since the in-
jectivity of C ensures that t and t′ are interpreted differently.
Similarly, we already conclude for the cases when g ∈ L or
g = enc, since D is disjoint from X∗ and L.

The case g = offk(·) can be handled with a different
crypto algebra: we set the particular interpretation of t to a
string s with |s| 6= k. The case g = formi is handled by
replacing it with the corresponding format definition.

Finally for the case g = cat, observe that in the injective
crypto algebra C, all crypto-operators produce a string that
is at least as long as the sum of the lengths of the arguments,
and this holds also for enc(·) and cat(·, ·); the only operator
that may produce a shorter string is offk(·). This allows us
to exclude that t′ somehow contains t as a subterm: Suppose
for some proper subterm t′′ of t′ we have t′′C = t′

C and this
subterm is not under an offk(·). Since ε cannot occur (i.e.,
we cannot have t′ = cat(ε, t) and the like), we have that
|t′C | > |tC | which excludes t ≈ t′.

So we now can assume that no subterm of t′ is C-
equivalent to t except maybe under some offk(·). Therefore,
we either have tC 6= t′

C (and are thus already done) or, if
tC = t′

C we can produce a modified crypto algebra C′ that
is identical to C except that we change the interpretation of
f for the particular argument tC1 , . . . , t

C
n to some different

result of the same length (so that offk(t) will not change).
This will not change the interpretation of t′ but of t, so
t′
C′

= t′
C

= tC 6= tC
′

and thus t 6≈ t′.

A. Freedom of Forms

We have shown that the cryptographic operators in our
algebra D behave like free functions. The non-cryptographic
operators do not, in fact they have rather complicated
properties. The crucial next step is that the form-operators
indeed also behave like free function symbols in D—if all
forms are un-ambiguous and pairwise disjoint:

Lemma 2: Given formi is an un-ambiguous format. Then
formi(t1, . . . , tn) ≈ formi(t

′
1, . . . , t

′
n) implies

t1 ≈ t′1, . . . , tn ≈ t′n.
Given two disjoint formats formi and formj (thus i 6= j),

then formi(t1, . . . , tn) 6≈ formj(t
′
1, . . . , t

′
m).

Proof: For the first part, let formi(x1, . . . , xn) =
fld1 , . . . ,fldm be an un-ambiguous format definition. As-
sume formi(t1, . . . , tn) ≈ formi(t

′
1, . . . , t

′
n) while ti 6≈ t′i

for some i. Thus there is a crypto algebra C in which
tCk 6= t′k

C ; fix such a crypto algebra C and let s =

formi(t
′
1, . . . , t

′
n)C and si = t′i

C for each i.
We use our parser and by Theorem 1, s can only be parsed

for formi by θ = [x1 7→ s1, . . . , xn 7→ sn] (in algebra C).
The unambiguity implies that s cannot be parsed as θ′ =
[x1 7→ tC1 , . . . , xn 7→ tCn] since tCk 6= t′k

C
= sk and thus

θ′ 6= θ. Thus, formi(t1, . . . , tn)C 6= formi(t
′
1, . . . , t

′
n)C and

thus formi(t1, . . . , tn) 6≈ formi(t
′
1, . . . , t

′
n), contradicting the

assumption.
For the second part, let formi and formj be disjoint

formats. Suppose formi(t1, . . . , tn) ≈ formj(t
′
1, . . . , t

′
m).

Then formi(t1, . . . , tn)C = formj(t
′
1, . . . , t

′
m)C in any

cryptographic algebra C, and thus [[formi(x1, . . . , xn)]]C ∩
[[formj(y1, . . . , ym)]]C 6= ∅, contradicting the disjointness of
the forms.

Now suppose we are considering only terms that do not
directly use the “low-level string operations” cat, off, enc, ε,
but instead use formats. Thus we are considering the signa-
ture Σ′ = Σ \ {cat, off, enc, ε}. Putting Lemmata 1 and 2
together we have that the resulting sub-algebra of D over Σ′

is isomorphic to the free term algebra over Σ′:
Theorem 3: Let Σ′ = Σ \ {cat, off, enc, ε} and suppose

all formats are un-ambiguous and pairwise disjoint. Then
for all s, t ∈ TΣ′ holds s ≈ t iff s = t. Moreover for
terms with variables we can use free algebra unification: let
s, t ∈ TΣ′(V) and τ be any unifier with τ(s) ≈ τ(t) and
over full Σ. Then s, t have a most general unifier σ in the
free algebra over TΣ′ and τ is an instance of σ modulo ≈.

Proof: The statement s ≈ t iff s = t for ground terms
follows from Lemmata 1 and 2. For unification assume we
are given a set of pairs of terms over TΣ′(V). We follow the
steps of the free algebra unification algorithm, obtaining the
most general unifier σ if one exists, and show for every step
that any unifier τ (over Σ and ≈) is an instance of σ.

First, if we have a pair (x, t) of a variable x to unify with
some term t (or the symmetric case (t, x)); then we check
if x occurs as a proper subterm in t. In this case there is no
unifier modulo ≈, because t = f(. . .) (for x to be a proper
subterm of t) and f cannot be cat or offk by assumption,
preventing that t could “collapse” to one of its subterms.
Otherwise, if x does not occur in t, [x 7→ t] is the valid
most general unifier for this pair (and any unifier τ must
support this); so we apply it to all pairs and continue.

If we have a pair (t, t′) with t = f(t1, . . . , tn) and
g(t′1, . . . , t

′
m), then the free algebra unification algorithm

checks that f = g (and fails otherwise) and replaces the pair
(t, t′) with U = {(t1, t′1), . . . , (tn, t

′
n)}. We have to show

that every solution τ with τ(t) ≈ τ(t′) is also a solution for
U . Suppose τ is a grounding solution, i.e., τ(t) and τ(t′) are
ground, then by Lemmata 1 and 2, f = g and τ(ti) ≈ τ(t′i)



for every 1 ≤ i ≤ n. Also the non-grounding τ support U
since all their grounding instances do.

V. INTRUDER MODEL

We have defined an algebra D to represent terms and
defining when two terms are equal. Now we finally do
something with these terms and define a (Dolev-Yao-style)
deduction relation K ` t where K is a finite set of terms
(messages) and t is a term. We say the intruder can derive
term t from knowledge K. We define ` to be the least
relation closed under the rules in Fig. 3 that we explain
in the following.

The (Axiom) rule says that every term in K is derivable.
For composing terms, we first define a subset Σp ⊆ Σ that
describes the public symbols: we assume that functions like
encryption are not themselves secret (only the keys may
be), so the intruder is able to apply them to any terms he
knows. For simplicity we assume that all symbols except
uninterpreted constants U are public.3 This in particular
means that all literals in L are public. One reason for this
is that the intruder should always be able to create formats
himself (replacing the parameters xi with values he knows).
Thus, rule (Comp) expresses that the intruder can apply
functions in Σp to any known terms.

For decomposition, the intruder can decrypt messages if
he has the necessary decryption key. This is formalized in
the rules (Dscrypt), (Dcrypt), and (Open). (We model
here a signature primitive that reveals the signed text even
without knowing the verification key; but other models are
also compatible with our approach.) Similarly, for cat and
enc and all the forms, the intruder can obtain the “contents”,
as formalized by (Split), (Dec), and (Parse). For hashes
and Macs as well as offk, we have no rules since the intruder
cannot extract the original message in these cases.

Finally, we have the rule (Eq) that says that for every
term, the intruder can derive also every ≈-equivalent variant.
Note that the rule (Parse) is redundant in the presence of
(Eq) since the intruder can first rewrite the respective form
into its definition as a concatenation (with encodings) and
then apply (Split) and (Dec) as necessary. However, we
want to show below that under certain conditions, we can
safely omit the rule (Eq) without excluding attacks.

A. The Lazy Intruder

A popular verification technique is the constraint-based
approach, that we refer to as the lazy intruder [6]–[8]. The
basic idea is that many security problems of communicating
processes can be reduced to satisfiability of a number of
constraint satisfaction problems. (In fact, this number of
constraint satisfaction problems is in general infinite, but

3As a variant, some verification approaches may use “private” functions
like shk(A,B) to denote a secret shared key of agents A and B, these
will then of course be excluded from Σp.

K ` t (Axiom) t ∈ K

K ` t1 . . . K ` tn
K ` f(t1, . . . , tn)

(Comp) f ∈ ΣP

K ` scrypt(k,m) K ` k
K ` m (Dscrypt)

K ` crypt(pub(k),m) K ` priv(k)

K ` m (Dcrypt)

K ` sign(priv(k),m)

K ` m (Open)

K ` cat(m1,m2)

K ` mi
(Split)

K ` enc(m)

K ` m (Dec)

K ` formi(m1, . . . ,mn)

K ` mj
(Parse) j ∈ {m1, . . . ,mn}

K ` t
K ` t′

(Eq) t ≈ t′

Figure 3. Intruder deduction relation.

it is finite if all processes except the intruder can perform
only finitely many transitions.)

Each constraint satisfaction problem is a finite conjunction∧n
i=1Ki ` ti. We only give an intuition why this reflects a

security problem; for a formal account see for instance [8].
The intuition is that we represent a symbolic state transition
system where each state is parametrized over some variables
(that are placeholders for arbitrary ground terms) along with
some constraints that decide which values for the variables
are possible and a current knowledge K of the intruder.
Whenever the intruder receives a message, we add it his
knowledge K, and whenever the intruder sends a message,
we create a new variable x and add the new constraint K `
x. We work with x as the message sent and accordingly
substitute it for a more concrete term if the receiver has
requirements on x. Thus, roughly speaking, for constraints
of the form K ` t the messages in K are received by the
intruder from honest agents, and t is the pattern of message
that an honest agent is willing to receive.

We have so far not formally defined K ` t for terms with
variables. An interpretation I is a mapping from V to TΣ,
and we extend it to a function on terms and sets of terms as
expected. The define that I |= K ` t iff I(K) ` I(t). For
conjunctions we have of course I |= φ ∧ ψ iff both I |= φ
and I |= ψ. We say that a constraint φ is satisfiable iff there
is an interpretation I such that I |= φ.

VI. MAIN RESULT

We now use the lazy intruder approach as a convenient
way to represent and reason about attacks. We emphasize,
however, that our result is independent from a particular



verification technique like the lazy intruder. Also, while
the lazy intruder provides a decision procedure only when
limiting the steps of all non-intruder processes, our result
does not rely on such bounds. We do only assume that
one considers a security problem that can be reduced to
a number of lazy intruder constraint reduction problems
(possibly infinitely many).

Our main result is now: when using formats, a lazy
intruder constraint is satisfiable iff it is satisfiable in the free
algebra. Here, using formats intuitively means that the hon-
est agents never use the low-level functions cat, enc, off, ε
directly but instead always use one of the formi to structure
messages. Moreover all used forms have to be un-ambiguous
and pairwise disjoint. Remember that modulo ≈, each form
is equivalent to some low-level term, and the intruder is
always able to use low-level terms. The point is that if all
honest participants use un-ambiguous and pair-wise disjoint
formats, all attempts to manipulate messages on the low-
level is pointless for the intruder.

We formalize this notion of “using formats” as conditions
on the terms in lazy intruder constraints: recall that in K ` t,
all K and t terms are message patterns sent and received by
honest agents, respectively.

Definition 5: A lazy intruder constraint
∧n

i=0Ki ` ti is
called well-formatted iff the following holds:
• K0 ⊆ K1 . . . ⊆ Kn

• Each variable occurring in Ki also occurs in
{t1, . . . , ti−1}. 4

• The symbols {cat, enc, off, ε} do not occur in any Ki

or ti.
• All formi of Σ are un-ambiguous and pairwise disjoint.
Theorem 4: Given a well-formatted, satisfiable intruder

constraint φ, then exists an interpretation I that satisfies φ
in the free algebra, i.e., no deduction proof I(K) ` I(t)
requires the use of the (Eq) rule, and I maps every variable
to a ground term in which cat, enc, offk, ε do not occur.

Proof: Given a well-formatted constraint φ that is
satisfiable, and let I be a satisfying interpretation. Thus for
every constraint Ki ` ti, we can label ti with a ground
proof tree for I(Ki) ` I(ti) (formed with instances of the
rules in Fig. 3). We show that there is an interpretation I ′
that satisfies φ and that does not use any low-level symbols
and that is a solution in the free algebra (i.e., that works
without the (Eq) rule of Fig. 3). To that end, we step by
step transform the constraint, where these transformations
are sound in the sense that the constraint has either the same
set of models or fewer ones.

No top-level forms: First observe that a constraint
of shape K ∪ {formi(t1, . . . , tn)} ` t is equivalent to
K∪{t1, . . . , tn} ` t. To see that, we can adapt the proof tree

4This and the previous condition are often called well-formedness and are
standard in lazy intruder approaches: the intruder knowledge monotonically
grows and all variables that occur in messages from other participants
actually result from choice of the intruder in earlier messages.

for I(K) ` I(t) accordingly: whenever formi(t1, . . . , tn)
is needed, we can compose it from the ti using (Comp).
Similarly the constraint K ` formi(t1, . . . , tn) is equivalent
to K ` t1 ∧ . . . ∧ K ` tn. Thus, whenever we have
formi on the left-hand or right-hand side of a constraint,
we can replace it by its subterms without changing the
set of models. We can thus silently assume through the
rest of this procedure that we do not have any terms with
root symbol formi. (Note formi terms may well occur as
proper subterms and thus “come to the surface” during our
constraint reduction procedure.)

Simple Constraints: If the constraint has only variables
on the right-hand side, i.e., all ti ∈ V , then we are done,
because the intruder can always construct some term from
his knowledge.

Non-Simple Constraints: Thus in the following we only
need to care about constraints that have at least one ti /∈ V .
Choose the one with the lowest index i, and consider the
proof tree for I(Ki) ` I(ti). We consider different cases
based on the root node in this proof tree.
• For every (Eq) node we consider also the next deeper

node in the tree; if it is again (Eq), we can merge
the two proof steps to one (since ≈ is transitive).
Otherwise, if it is one of the (Axiom), (Comp), or
destructors, we consider the (Eq) together with the
respective rule. Thus in the following we will consider
(Axiom), (Comp), and destructors, modulo ≈.

• If it is the (Axiom) rule, then there is a term t′ ∈ Ki

such that I(t′) ≈ I(ti). Note that ti is not a variable,
but t′ may be. If t′ = x is a variable, then by well-
formattedness there is an earlier tj , j < i in which x
occurs. Since ti is the first term that is not a variable,
tj = x. Thus we have Kj ` x, and we can simply use
instead the derivation tree for I(Kj) ` I(x). (This kind
of reduction is well-founded since there is a smallest
ti.)
If t′ is not a variable, then t′ and t′i have by Theorem 3
a unique most general unifier σ that is identical with the
most general unifier in the free-algebra and that does
not map any variable to a term with low-level symbols.
Thus I is an instance of σ (i.e., I(x) = I(σ(x)) for all
variables). We can thus apply σ to the entire constraint
without loosing the model I (and without introducing
new models). After this substitution, we have σ(Ki) `
σ(ti) which is tautological as σ(ti) ∈ σ(Ki) and we
can thus delete this conjunct.

• If it is a (Comp), i.e., we have a proof tree of the form

I(Ki) ` u1 . . . I(Ki) ` uk
I(Ki) ` I(ti)

where I(ti) ≈ f(u1, . . . , uk) for some f ∈
Σp. Note that ti = f ′(u′1, . . . , u

′
l) where f ′ /∈

{cat, enc, off, form·(·), ε} (recall that in case of top-
level form·(·) we move to equivalent constraints with-



out top-level form·(·)). Again by Theorem 3, we have
thus f = f ′ and uj ≈ I(u′j) for all j. Thus, we can
replace conjunct Ki ` ti with Ki ` u′1 ∧ . . .∧Ki ` u′l.
The modified constraint still supports model I and does
not introduce new models.

• The analysis steps are a bit tricky, since the proof trees
may contain further analysis or composition steps. The
general principle is here to first go to one of the “inner-
most” analysis steps, i.e., so that no sub-tree of the
proof has further analysis steps. We will first handle
that analysis step. To make this easier to read, let us
suppose this is an (Dscrypt) step; the cases (Dcrypt),
(Open), and (Parse) are similar, the cases (Split) and
(Dec) will be handled separately.
So we have a step of the form

Π1

I(Ki) ` scrypt(k,m)

Π2

I(Ki) ` k
I(Ki) ` m

with two sub-trees Π1 and Π2. If Π1 is a composition
step, then the intruder has just symmetrically encrypted
a message and then decrypted it again. (That this com-
position could be by any other operator than scrypt(·, ·)
is excluded here again by Theorem 3.) We can then
simplify the proof tree by replacing the derivation for
m with the corresponding subtree of Π1. Otherwise, it
can only be a leaf. Then there is a term t′ ∈ Ki such
that I(t′) ≈ scrypt(k,m).
If t′ is actually a variable, say t′ = x, then x must be
introduced in an earlier constraint Tj ` tj = x, and we
replace the proof tree Π1 with the proof tree for tj , and
continue with the next applicable case.
Finally if t′ is not a variable, then t′ = scrypt(k′,m′)
for some k′ and m′ with I(k′) ≈ k and I(m′) ≈ m.
We can then indeed realize the respective decryption
step on the constraint. To that end, note that I |= Ki `
k′ (as proved by Π2), so we do not loose the model
I if we add Ki ` k′ to our constraint. Then we can
safely add the decrypted message m′ to all Kj with
j ≥ i. This is possible since m′ can be derived in
every Kj ⊇ Ki and it is necessary to add to all these
Kj ⊇ Ki to ensure that they remain supersets (or else
we would destroy well-formattedness).

• If the inner-most analysis step is (Dec) (and the case
(Split) is similar). We then have a proof-subtree of the
form:

Π
I(Ki) ` enc(m)

I(Ki) ` m

where Π is a proof tree for enc(m). If Π is a leaf
node, then consider the corresponding term m′ ∈ Ki

with I(m′) ≈ enc(m). If it is a variable m′ = x, again

we replace the proof tree Π with the proof tree that x
has in the constraint where x was introduced.
The remaining case is that Π consists of (Comp) steps
and axioms. We claim that in this case we can find
a composition for m directly, without constructing a
more complex term enc(m) (or cat(m, ·) or cat(·,m))
that has to be decomposed. This final piece of the proof
is given in the next paragraph.
Elimination of enc and pair: It remains to show a

property for proofs that use only composition except for
a final step (Dec) or (Split): we show that these can be
done as pure composition proofs without (Dec) or (Split).
More precisely, given a set K of ground terms where every
term has a top-level symbol in {crypt, . . . , sign, h,mac} as
well as public constants. We say a comp-proof is a K ` t
proof that uses only (Eq), (Comp) and (Axiom). We now
show: If there is a comp-proof K ` enc(m) then there is
also a comp-proof for K ` m. (Similarly, one can prove: if
there is a comp-proof for K ` cat(m1,m2) then there are
comp-proofs for K ` m1 and K ` m2.)

Since K ` enc(m), we can syntactically construct a term
t using only elements of K and public symbols, such that
t ≈ enc(m). Note that m may contain a subterm of the form
offk(m0) where m0 can not necessarily be constructed from
K. Let m′ be a modification of m where each such offk(m0)
is replaced this with an ≈-equivalent offk(m′0) where m′0
has the same length as m0 and can be constructed from K
and public symbols. Note that m′ ≈ m, and thus, if we can
prove K ` m′ with only (Comp), so we can prove K ` m
with only (Comp). To that end it suffices to prove that m′

can be syntactically constructed using only elements in K
and public symbols.

Suppose this were not the case, i.e., m′ contains some
subterm m1 that cannot be composed with elements from K
and public symbols (and this subterm cannot be underneath
an offk(·)). Let C be again the injective crypto algebra from
the proof of Lemma 1 that is injective on the cryptographic
functions and uninterpreted constants in U. Recall that
enc(m′) ≈ enc(m) ≈ t, thus enc(m′)C = tC . Since m1

is a term that occurs only in m′ and not in t, we can
create a modified crypto algebra C′ in which m′

C′ 6= m′
C

but tC
′

= tC . Then we have enc(m′)C
′ 6= tC

′
and thus

enc(m′) 6≈ t, contradicting the assumption.
Termination: One may wonder if our transformation

of the constraints can run into an infinite loop. In fact most
steps reduce the problem in some sense as they work off
nodes of the proof trees. However, there are substitutions
which can increase the actual size of the constraint store
again, since they replace variables with more complex terms.
However, since all unifiers are in the free algebra, the
number of variables in the constraints decreases with every
substitution (except the identity), and so no sequence of steps
can involve an infinite number of non-identity substitutions,
and all other steps decrease the constraint size.



We conclude this section with the remark that in some
applications also arise some inequality constraints s 6≈ t
along with the intruder deduction constraints. As for instance
shown in [8], this extension can be reduced to some ≈-
unification problem. This unification problem is not hard:
since s and t are produced by honest participants, s and t
are again terms without low-level symbols and by Theorem 3
we can thus use free-algebra unification.

VII. ABSTRACTION OF THE SCANNING PROBLEM

We have so far considered forms without whitespaces.
However formats like XML allow whitespaces between
tokens. For instance in the example ◦〈◦ nonce ◦〉 ◦ enc(x) ◦
〈/ ◦ nonce ◦〉◦ we have marked with ◦ all positions where
XML would allow whitespaces (we like nonce to be parsed
as a token name, so it cannot be broken by whitespaces);
additionally, one may insert whitespaces anywhere into the
string produced by enc(x). An implementation that allows
for whitespaces should thus accept any string for enc(x)
that consists only of symbols of X and whitespaces, and
simply filter the whitespaces. Vice-versa, if we think of
implementations generating enc(x), the implementation is
free to insert whitespaces, adding non-determinism to the
model. In order to keep this manageable, we assume a
modified function enc(t, r) where t is the term to encode
and r is a randomness string, specifying in some way where
and how to insert white spaces. As is already the case for
encryption, we may simply omit the r in the notation when
not interesting.

For all other whitespaces, we can use special variables
w1, w2, . . . to insert into the formats.5 We have usually
|wi| = N and we may have |wi| = N \ {0} for mandatory
whitespaces. We thus have an alphabet W ⊂ B of whites-
paces, W ∩ X = ∅, and string substitution must substitute
whitespace variables only with strings from W∗. We require
W ⊆ Σp. These variables are additional parameters of the
formats, and again we treat them as “silent” arguments (i.e.,
we do not denote them when no confusion arises).

This extension requires some updates on the results.
First, for ambiguity of formats, we require that whitespace
variables cannot be followed by a variable x (while enc(x) is
fine) and it cannot be followed by offk(x). This requirement
is necessary since for both x and offk(x), the concrete strings
in [[·]] can start with a byte in W, so the boundary may
be unclear. Under this additional restriction, the parser is
however easy to extend and we have again un-ambiguity.
For disjointness, the checking procedure is updated also in
a straightforward way: whitespace variables are treated like
normal (arbitrary-size) variables, except that constants that
are not in W are disjoint from them.

The results of Theorem 3 and 4 hold under this extension:
the additional silent arguments to enc(·) and formi do never

5From a users point of view, a more convenient notation is to use a special
“scanner” declaration, defining keywords/tags, whitespaces and comments.

hurt, and the whitespace variables can be treated as normal
variables. Note when we have a constraint K ` w for
a whitespace variable w, the intruder can also solve this
correctly, since we have set the whitespace alphabet W to
be public symbols.

VIII. CASE STUDY: TLS

As a practical case study, we examine the message formats
used in TLS [9]. Given the complexity of TLS with many
optional choices, it is not surprising that some of its features
are at the border of what the result of this paper supports—
and some are beyond. This indicates potential future exten-
sions that would be helpful in practice, but also demonstrates
how much our current method already covers. Note that we
do not verify TLS itself here, but we formalize all message
formats of TLS and show that they are pairwise disjoint
and unambiguous, so that it is sound to abstract the formats
into free function symbols as is standard in formal models
like [10].

Note also that typical models as in [10], [11] make
further simplifications, e.g., cryptographic, while our format
abstraction can also be used in models TLS.

Structure of TLS

TLS has two layers. At the top layer we have four sub-
protocols: Handshake for negotiating session keys, Change
Cipher for setting these keys into use, Alert for warning
and error messages, and Application Data for transmitting
the actual payload data. (We discuss the later addition of
the Heartbeat protocol below.) At the bottom, we have the
record protocol that acts as a kind of envelope for the top
layer protocols and can be described by a format as follows:

RECORD(sub,data) = sub·byte(3)·byte(3)·off2(data)·data

where byte(n) denotes literal one-byte constants (e.g.,
byte(3) · byte(3) is the (fixed) version number, actually
referred to as “TLS 1.2”). Variable sub is a one-byte tag
that specifies to which subprotocol data belongs to:
• byte(20) for the change cipher spec protocol,
• byte(21) for the alert protocol,
• byte(22) for the handshake protocol, and
• byte(23) for the application data protocol.

We have set the format RECORD in small capitals to indicate
that this is actually a “meta-format”: as concrete formats
we consider said four instantiations of sub and these are
obviously pairwise disjoint.

The data is however problematic, since by the 2-byte
offset, data needs to be less than 216 bytes long (and the
standard restricts it even further for technical reasons). Thus,
longer messages need to be fragmented into several record
packets by the sender, and joined again by the recipient.
This is beyond our current soundness result, and we can
thus cover here TLS only for data packets up to that length.
However, it seems intuitively clear that the fragmenting



mechanism does not induce further vulnerabilities: an at-
tacker can of course re-order these packets, but he could
do the same in a variant of the protocol where data is
transmitted as a single chunk (with a larger size bound or
unbounded)—and for this variant our result applies.

Handshake

We illustrate some key points at hand of a few formats
of the Handshake protocol. The full formalization can be
found in Fig. 4. Here, we abbreviate the notation offk(m)·m
with [m]k. Also, in Fig. 5 we show an example of how a
typical exchange looks like in Alice-and-Bob notation using
a subset of the formats. Note that in this version the client is
not authenticated and we leave out all complications such as
error handling or re-opening of sessions—as is often done
in simple protocol models.

Again HANDSHAKE is a meta-format where tag and data
are instantiated with concrete values to define formats like
server hello. (Variables like random that are used without
offset generally have some fixed length.) One complication
here is that the client can ask for some extended function-
alities and the server should tell in the server hello message
which of these functionalities that are actually available. In
this case we have an extended variant of the format:

server helloE(random, session id, cipher, compr, exts)

= HANDSHAKE(byte(2), . . . · compr · off2(exts) · exts)

Note that server hello and server helloE are disjoint as
they both have clear boundaries and all variables that are
not presented with offsets have fixed lengths. Also note
that there is no flag that says whether the extension is
present—this is decided by whether or not after parsing
compr further bytes are available. The server hello is an
example of a complication that is still supported by our
approach, however a more convenient notation for optional
parameters/constructions is desirable.

Forms client key ex and PMS form are an example of
messages that involve a cryptographic operations. This will
in fact be used as

client key ex(crypt(pub(k),PMS form(PMS)))

where pub(k) is the public key of the server and PMS is
the so-called pre-master-secret randomly generated by the
client. The point is that whenever we are not performing
an encryption of “raw” data like PMS, we should define
a format into which the information is embedded—in this
case, the PMS form includes the version number.

As a last example, consider the cert verify message.
Here, the signed handshake should actually contain a
signed hash of all previous handshake messages of the
session, i.e., h(m1 · . . . · mk). Here we thus concatenate a
sequence of messages without any further formatting con-
structs. Note however that each of the mi is an instance of
one of the formats, say formi(tsi) for some list of parameters

tsi. We could thus define an “all messages format” as follows
(removing duplicates in the arguments):

all(ts1, . . . , tsn) = form1(ts1) · . . . · formn(tsn)

As such, the all format is again unambiguous and disjoint
from all other formats. This follows from the fact that for
every string that can be parsed as one TLS format, no proper
prefix of that string can be parsed as the same format.

There is however a subtle problem: as mentioned some
formats like server hello have an optional extension which
simply consists of further bytes trailing the mandatory part.
When both variants are in use, also the concatenations occur
in the different variants, e.g.,

all1(. . .) = . . . · server hello · server cert . . .

all2(. . .) = . . . · server helloE · server cert . . .

and these variants are in general not disjoint, if for in-
stance the extension is not disjoint from the beginning of
server cert. The danger is that an intruder can get away with
deleting or inserting information like available/requested
extensions. In the concrete cases this seems practically in-
feasible (due to signed certificates). However this indicates a
weakness of the “trailing optionals” approach of TLS, which,
as the standard states, is an outdated approach kept for
compatibility. It seems reasonable to change this, spending
an extra byte for flagging whether an extension is present
or not.

During the publication process of this paper the so-called
Heartbleed attack was discovered in an implementation of
the Heartbeat extension of TLS [12]. One may in fact argue
that this is a problem of parsing messages: in particular the
vulnerable implementation suffers from a buffer overflow.
While the format (i.e., the protocol standard) is arguably
not to blame for the flaw, one may thus wonder if an
implementation that uses our format abstraction could have
prevented the problem. The idea is that our format descrip-
tions can be automatically translated into an API of parsers
and pretty printers, so that the implementation does not need
to directly handle byte strings anymore but rather always
uses the format API, similar to the use of crypto-APIs that
is already standard today. This could help to minimize the
chance of such accidents in implementations.

IX. CONCLUSIONS AND RELATED WORK

This paper presents a novel kind of term algebraic model
that models all details of the non-cryptographic operators
for structuring messages. At the same time it abstracts from
all details of the cryptography. It does so by taking the
real byte-string message algebra and defining a new algebra
D based on congruence relation ≈ that includes exactly
those equalities that hold regardless of the cryptographic
algorithms. While this algebra is semantically defined and
thus hard to handle directly in reasoning, we show that
when all formats are un-ambiguous and pairwise disjoint,



HANDSHAKE(tag,data) = tag · [data]3

hello req() = HANDSHAKE(byte(0), ε)

client hello(time, random, session id, cipher suites, comp methods)

= HANDSHAKE(byte(1), byte(3) · byte(3) · time · random · [session id]1 · [cipher suites]2 · [comp methods]1)

server hello(time, random, session id, chosen cipher, chosen comp)

= HANDSHAKE(byte(2), byte(3) · byte(3) · time · random · [session id]1, chosen cipher, chosen comp)

server cert(certificate tls vec) = HANDSHAKE(byte(11), [certificate tls vec]3)

server key exchange(cipher config) = HANDSHAKE(byte(12), cipher config)

cert request(cert type, supp alg, cert auths) = HANDSHAKE(byte(13), [cert type]1 · [supp alg]2 · [cert auths]2)

server hello done() = HANDSHAKE(byte(14), ε)

cert verify(signed handshake) = HANDSHAKE(byte(15), signed handshake)

client key ex(EncrPreMasterSecret) = HANDSHAKE(byte(16),EncrPreMasterSecret)

finished(encr finished) = HANDSHAKE(byte(20), encr finished)

PMS form(secret) = byte(3) · byte(3) · secret

master form(PMS,R) = PMS · "master secret" · R
client finished(MS,R,H) = MS · "client finished" · R ·H
server finished(MS,R,H) = MS · "server finished" · R ·H
key block(MS,R) = MS · "key expansion" · R
alert(level,descr) = level · descr

change cipher() = byte(1)

Figure 4. Formats of TLS (omitting variants with optional extensions).

the sub-algebra D′ that does not use directly low-level
operators for message structuring (but uses the abstract
formats) is isomorphic to the free algebra. We then show
that if we consider a communicating system where all honest
agents are using abstract formats (that are un-ambiguous and
pairwise disjoint), and assuming attacks can be reduced to
satisfiability of K ` t intruder constraints, we can recast any
attack in D to one in D′. It is thus sound to verify protocols in
a free algebra with abstract formats and without considering
low-level structuring primitives—we can thus use existing
protocol verification tools without modification.

Closely related to our result are some soundness results
for typed models [8], [14]–[16]: these results essentially
prove that under certain conditions it is sound to bound the
depth of terms that the intruder can create. This ensures
termination in ProVerif and improves the efficiency of tools
like SATMC. These approaches are ideally suited for the
combination with our result: they assume, on the Dolev-Yao
level, the disjointness of certain message terms; our model
similarly requires disjointness of formats on the implemen-
tation level and proves the soundness of a Dolev-Yao-style
abstraction where the different formats are represented as
disjoint, free symbols formi. An interesting point is here
that for typing results we cannot allow unstructured terms
under cryptographic operators as in crypt(k, x) because an
agent receiving this message would accept any term for x.

Rather, the protocol would have to use some format in place
of x to ensure a unique interpretation of this information. In
a similar way, compositional reasoning combines well with
our results as also here disjointness of message formats is
at the core of the assumptions [17]–[20].

There are several works that use Dolev-Yao-style mod-
els with a term algebra modulo some algebraic properties
of cryptographic operators, e.g., in modular exponentia-
tion [21]. In principle it seems possible to extend our results
with some properties of cryptographic operators, but it seems
to require changes to some of the semantic proofs and we
leave this question for future work.

Several works have used the integration of more algebraic
properties into Dolev-Yao-style models in order to shrink
the gap between formal model and implementation with
regard to the structure of messages. CL-AtSe is to our
knowledge the only verification tool in this field that fully
supports an associative concatenation operator [22]. Also,
the use of associate-commutative operators has been used to
model and automatically verify protocols with XML-style
messages [23]. A problem with these approaches is that the
models still have no notion of message lengths or format
encodings. This leads to a large number of false positives,
since when applied to abstract terms, the structure often
allows mis-association that would not work in a real imple-
mentation (due to message lengths or encodings). Moreover,



Client A generates RA

A→ B : RECORD(byte(22), client hello(time,RA, ε, cipher , compr)

Server B generates RB and ID
B → A : RECORD(byte(22), server hello(time ′,RB , ID , cipher , compr),

RECORD(byte(22), server cert(sign(priv(key(ca)), x509(B, pub(key(B)))),

RECORD(byte(22), server hello done())

A checks the certificate (assuming here ca is a trusted certificate authority that A knows the public key of)
A extracts the public key of B and generates the pre-master secret PMS .
Compute master secret MS = PRF (master form(PMS ,RA + RB))

A→ B : RECORD(byte(22), client key ex(crypt(pub(key(B)),PMS form(PMS ))))

RECORD(byte(20), change cipher())

RECORD(byte(22),finished(PRF (client finished(MS ,RA + RB , h(prev msgs)))))

B → A : RECORD(byte(20), change cipher())

RECORD(byte(22),finished(PRF (server finished(MS ,RA + RB , h(prev msgs)))))

A and B compute the keys clientK = extractCK(key block(MS ,RA + RB))

and serverK = extractCK(key block(MS ,RA + RB))

A and B exchange payload messages as follows:
A→ B : RECORD(byte(23), scrypt(clientK ,PAYLOAD))

B → A : RECORD(byte(23), scrypt(serverK ,PAYLOAD))

Figure 5. Typical run of TLS in Alice and Bob notation.

one cannot really be sure that all properties that are relevant
for an attack are actually captured. This is the very reason
why our approach starts with an algebra D—without giving
any concern to automation at this point—that models exactly
the equalities of terms that the real implementation has,
except the ones that depend on the cryptography. Also, our
soundness result allows us to keep the verification process
free from all the complications of algebraic reasoning (e.g.,
that unification modulo an associative operator is infinitary).

The idea of abstract formats is not new. Most prominently,
the TulaFale tool uses a connection between XML-formats
of the concrete protocol and abstract symbols for that format
in the model used in ProVerif [24]. There is no proof of
soundness, probably since in a limited set of XML-formats,
it seems intuitively clear that nothing can go wrong. Our
result proves this formally and in a more general setting
(i.e., including also data-structure-style message formats).

In the “more cryptographic” literature, we find many
proofs of security protocols that consider no abstract Dolev-
Yao model but rather actual cryptographic algorithms and
reduce security to some (with high certainty) intractable
problems. Many of these works do not put much focus on
the non-cryptographic aspects, since these are problems that
can somehow be solved. When the details are considered,
we often have the limitation that the proofs are hard to
generalize [25]. When an implementation detail is changed,
it may have repercussions throughout the proof. In contrast,

our approach is modular: when the implementation of a
format is changed without changing the abstract formi (i.e.,
changing parameters) then all we need to check is that the
new implementation is still un-ambiguous and disjoint from
the other formats; the abstract verification on the Dolev-Yao
level does not need to be repeated.

In general, the verification on the crypto-
graphic/implementation level is much harder than on
the abstract Dolev-Yao level which is much easier for
automated and interactive verification, compositional
reasoning and refinement. In this spirit, several works
give computational soundness results linking the abstract
Dolev-Yao models with cryptographic models [1], [2].
One may see our work as the missing piece in this area,
systematically studying the structure of messages for large
classes of implementations. Since we abstracted from
cryptography, an interesting question for future work would
be whether one can combine our soundness result with the
computational soundness results. Our notion of forms is in
fact close to the notion of transparent functions in [26] and
a combination could obtain soundness for collections of
very diverse protocol formats.

As seen with the optional extensions in TLS, the real
world formats are sometimes beyond what can be conve-
niently expressed. Also, the formats we consider in this
paper are composed from a fixed number of elements.
There are however several applications for messages of an



unbounded number of elements, e.g., for certification one
may supply a chain of certificates (in a single message) and
its length should not be bounded. Most tools do not support
such open-ended messages, but first results exists [27]. More
generally, using dependent types to formalize more complex
formats with options, repetitions, or cardinality constraints
are interesting question for future work.
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