The influence of surface water
Groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China
Brauns, Bentje; Bjerg, Poul Løgstrup; Song, Xianfang; Jakobsen, Rasmus

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The influence of surface water-groundwater interactions on the shallow groundwater in agricultural areas near Fu River, China

Bentje Brauns (1), Poul L. Bjerg (1), Xianfang Song (2), Rasmus Jakobsen (4)

(1) DTU Environment, Miljøvej, Building 113, 2800 Kgs. Lyngby, DK; (2) IGSNNR, Chinese Academy of Sciences (CAS), 11A Datun Road, Beijing 100101, PRC; (3) Sino Danish Center (SDC), Niels Jensens Vej 2, 8000 Aarhus C, DK; (4) GEUS, Øster Voldgade 10, 1350 Copenhagen, DK

Email: benb@env.dtu.dk

Introduction

The Northern China Plain (NCP) is known as a very important area in China for the production of maize and winter wheat. The needed application of fertilizers and pesticides can hereby have strong impacts on the quality of shallow groundwaters.

Many agricultural fields are located along waterways, which are also used for irrigation. Potential contamination between surface- and groundwater is therefore possible if a high degree of connection exists.

In order to assess the interaction and the risks of pollution in these specific areas, a small-scale field study was undertaken near the Baiyangdian Lake area, China, in 2013/2014.

Study aims

The aims of the study were:
- To identify flow and transport processes on site
- To assess annual changes in the system
- To obtain information about contaminant exchange between surface water and groundwater

Results I – Physical interaction/water flow

- Water flow was continuously from the river into the groundwater (estim. vertical and horizontal flow 0.7 cm/day & 0.2m/day, respectively)
- Supported by water level, temperature, & tracer (Br) measurements

Results II – Chemical interactions

- Low nitrate levels (2-3 mg/L NO3-N) compared to many European sites
- Very high ion content/EC – indicates other pollution sources
- Bicarbonate type water dominating (no dominant cation)
- Reduction processes only in HZ
- SW and GW chemistry very similar, except a shift in Ca2+ (see piper diagram)

Summary and conclusion

Typical interactions found in the study are:
- Pollutants carried in by the river water (2,4-D, boron, Ni)
- Trace elements released in the HZ by redox processes (Mn, Fe)
- Pollutants & elements with similar concentration in SW & GW (atrazine, Cl)

The study showed that not local agricultural activities themselves, but the impact of the surface water causes the biggest threat to the local aquifer systems.


Thanks for help to: Xianming Sun(2), Bing Zhang(2), Wenjia Wang(2), Zhenyu Sun, Baogang Jiang(2) and Yilei Yu(2)