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Summary

Three main topics are presented in this thesis. The first and largest topic con-
cerns network modelling of functional Magnetic Resonance Imaging (fMRI) and
Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian me-
thods are used to model brain networks derived from resting state fMRI data.
The models used are the Infinite Relational Model (IRM), Bayesian Community
Detection (BCD), and Infinite Diagonal Model (IDM). The models have differ-
ent constraints on how they cluster nodes. IRM is flexible in the sense that
it allows for complex interactions between clusters of nodes. BCD conforms
to the definition of community structure in the sense that it forces clusters of
nodes to have larger density of internal connections than external connections.
IDM models only the linking within a cluster and treats linking between clusters
as background noise. The models are evaluated for their ability to reproduce
node clustering and predict unseen data. Comparing the models on whole brain
networks, BCD and IRM showed better reproducibility and predictability than
IDM, suggesting that resting state networks exhibit community structure. This
also points to the importance of using models, which allow for complex interac-
tions between all pairs of clusters. In addition, it is demonstrated how the IRM
can be used for segmenting brain structures into functionally coherent clusters.

A new nonparametric Bayesian network model is presented. The model builds
upon the IRM and can be used to infer shared clustering structure across dif-
ferent types of networks. The model is used to jointly model fMRI and DWI
networks. However, results show only a limited amount of sharing across fMRI
and DWI networks. Using the model within the same modality can reveal the
clustering consistency across scans. A high consistency was found between DWI
networks and an intermediate level of consistency was found between fMRI net-
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works. The model is of interest for other applications, for instance in finding
dissimilarity between network structure in case-control studies.

The second topic of the thesis concerns local functional connectivity. In particu-
lar the local functional connectivity is studied in patients with multiple sclerosis
(MS). The functional connectivity in a small neighborhood was estimated us-
ing Kendall’s Coefficient of Concordance (KCC). By generating voxelwise KCC
maps, MS patients were compared with healthy controls. MS patients had
reduced KCC in cerebellum and KCC correlated negatively with disease pro-
gression. Lesion load of the left cerebellar peduncles correlated negatively with
KCC suggesting that the reduced local connectivity in MS is caused by disrupted
inputs to the cerebellum.

The final topic of this thesis concerns model selection for Gaussian Kernel Prin-
cipal Component Analysis (KPCA) denoising. KPCA can be used for non-linear
denoising by mapping data to feature space using a non-linear map. By pro-
jecting data onto a subspace in feature space and mapping this projection back
to input space noise in data is (hopefully) removed. However, two important
parameters must be set, namely the scale of the Gaussian kernel and the sub-
space dimensionality. A principled method for selecting these two parameters
is presented. The method is based on maximizing the signal energy in feature
space. When testing on synthetic and real data, the method outperformed a
number of other heuristics in terms of signal to noise ratio of the denoised data.



Resumé (Danish)

Den menneskelige hjerne best̊ar af et gigantisk netværk af forbundne neuroner,
der i samarbejde former vores eksistens og lader os agere ud fra sanseindtryk.
Hjerneaktivitet kan m̊ales med funktionel magnetisk resonans skanninger (fMRI)
og ved at bruge matematiske netværksmodeller kan hjerneomr̊ader grupperes
ud fra hvordan de arbejder sammen. I denne afhandling bliver forskellige mod-
eller, der kan danne disse grupperinger, testet for deres stabilitet og prædik-
tionsevne. Resultatet viser at en model, der favoriserer community struktur,
klarer sig bedst. Community struktur er karakteriseret ved høj link-tæthed
indenfor en gruppe og lav link-tætheder til andre grupper og findes ofte i fx
sociale netværk. Ydermere bliver en model, der kan finde fælles grupperinger
i forskellige netværks typer, udviklet. Modellen anvendes p̊a funktionelle og
strukturelle hjernenetværk. Resultatet viser dog en beskeden fælles struktur
mellem de to typer netværk, hvilket dog reflekterer begrænsninger i optagelsen
af data. Brugen af disse netværksmodeller til analyse af hjernenetværk er relativ
ny, men modellerne har et stort potentiale til bl.a. at finde forskelle i hjernens
kommunikation mellem raske og syge.

I et andet studie inkluderet i afhandlingen undersøges lokale netværksegenskaber
i funktionelle netværk. Den lokale konnektivitet, som er et m̊al for hvor godt et
lille omr̊ade af hjernen er funktionelt forbundet med de omkringliggende hjer-
neomr̊ader, bliver sammenlignet mellem patienter med multipel sklerose (MS) og
raske personer. Resultatet viser en nedsat lokal konnektivitet i lillehjernen hos
MS, og ydermere at konnektiviteten bliver lavere ved højere sygdomsgrad. Det
tyder p̊a at dette skyldes læsioner i hjerneomr̊adet, der rummer forbindelserne
til lillehjernen.
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Det sidste omr̊ade som berøres i afhandlingen er vedrørende fjernelse af støj fra
data. Kernel Principal Component Analysis (KPCA) kan bruges til støjfjernelse
men resultatet afhænger af valg af parametre. Vi har udviklet en metode
hvorved udvælgelsen af disse parametre sker automatisk og vi viser at meto-
den klarer sig bedre end andre heuristikker til parametervalg.
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Chapter 1

Introduction

From the brain and the brain alone arise our pleasures, joys, laughter and jests,
as well as our sorrows, pains and griefs.
- Hippocrates



2 Introduction

Each of the 1011 neurons in the human brain has on average 7000 synaptic con-
nections constituting a gigantic neural network. The communication between
different brain regions is forming our memories, experiences and guides us to
perform actions. The neural network constitutes one of the most intriguing net-
works, and a huge amount of effort is put into understanding its details – from
a behavioral level to the micro-structural level. By understanding the brain’s
function and structure we can better understand brain diseases and help remedy
pathologies. Enormous effort is put into understanding how brain regions are
connected, e.g., the newly founded Human Connectome Project aims at map-
ping the so-called connectome, an exhaustive map of the neural connections.

Resting state functional magnetic resonance imaging (rs-fMRI) has become one
of the most widely used methods to study brain function. The first study which
attributed the resting fMRI signal with neural activity was made by Biswal et al.
(1995) when they correlated the time series of voxels in one part of the motor
cortex and observed that other regions of the motor network showed significant
correlations. Since then, the number of studies using resting state as a research
tool has rapidly increased. In fact, searching PubMed (www.pubmed.org) for
resting state fMRI entries reveals an exponential increasing number of entries
over the last decade, whereas fMRI entries in general only increase linearly
(Figure 1.1).

The classical way of analyzing task fMRI is to correlate the fMRI signal with
regressors describing the task, however, in rs-fMRI there are no external stimuli
or task. Therefore the common strategy is to use correlation type analysis,
which aims at exploring the mutual signal fluctuations between different brain
regions and thereby infer functional connectivity. This is commonly done by
correlating the time series from a seed region with the rest of the brain to
explore the connectivity pattern or to use multivariate methods which explores
common spatio-temporal features of the BOLD signal. Independent Component
Analysis is one of the most popular of such methods and has revealed that
a number of so-called resting state networks exist (Damoiseaux et al., 2006).
These networks have shown to be very consistent across subjects and represent
brain regions which fluctuate in synchrony at a relatively low frequency (in the
order of 0.1-0.01Hz). Alterations in the representations of resting state networks
have been found in a wide range of neurological and psychiatric diseases such as
schizophrenia (Skudlarski et al., 2010), Alzheimer’s disease (Sorg et al., 2007),
and Parkinson’s disease (Wu, Wang, Chen, Zhao, Li and Chan, 2009).

Diffusion Weighted Imaging (DWI) is a popular tool for estimating structural
connectivity. DWI measures the movement of water molecules and can thereby
reveal the local directions of fiber bundles. By mapping fiber directions in a fine
grid it is possible to use tractography methods to follow the directions from a
seed and thereby estimate how brain regions are anatomically connected.

www.pubmed.org
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Figure 1.1: Number of entries per year in PubMed (www.pubmed.org) searches
using the search queries ’fmri’ and ’("resting state") AND fmri’ respec-
tively. The number of resting state fmri entries are increasing exponentially
while the fmri entries only increase linearly. Note that the number of fmri en-
tries has been divided by 50. The search was performed on January 23, so the
numbers for 2013 might not be fully updated. Figure adapted from (Snyder and
Raichle, 2012).

A natural framework for analyzing the structural and functional connections
is to use graph theory. In graph theory, connections between nodes are char-
acterized, and different network properties can therefore be investigated. One
of such properties, which is of particular interest for this thesis, is how nodes
group together to form so-called communities (Newman and Girvan, 2004). A
community is a group of nodes with a high link density within the community
with low link density to the rest of the network. Forming such communities in
brain networks can reveal how different parts of the brain work together. The
main part of the thesis is using a family of nonparametric Bayesian methods for
finding node clustering in networks. Nonparametric Bayesian models are models
which cannot be parameterized by a finite number of parameters, as the model
is allowed to grow with the complexity of the data. The models put different
constrains on how clusters relate to each other. The most flexible model, the
Infinite Relational Model (IRM)(Kemp et al., 2006; Xu et al., 2006), have no
constrains on how clusters can relate to each other and therefore allow for a flex-
ible node clustering. The Bayesian Community Detection (BCD) (Mørup and
Schmidt, 2012) adheres to the definition of community structure as it forces
a stronger linking within a community than to other communities. However,
BCD still allows for complex relations to other clusters. These models are com-
pared with two other alternatives which treat all linking between clusters as
background noise.

Another topic of the thesis is modelling of connectivity at the local level. Here,

www.pubmed.org


4 Introduction

Kendall’s coefficient of concordance is used to estimate the synchrony of fMRI
signals in small neighborhoods reflecting the local connectivity properties. Maps
representing local connectivity are generated and compared between a group of
multiple sclerosis (MS) patients and healthy controls (HC).

The final topic of the thesis is concerning model selection for Gaussian Kernel
Principal Component Analysis (KPCA) denoising. In Gaussian KPCA the two
parameters must be set, namely the Gaussian scale σ and the subspace dimen-
sion in feature space. A principled method for simultaneously selecting these
parameters is presented.

1.1 Organization of this Thesis

The thesis is organized as follows.

Chapter 2 describes the fMRI and DWI datasets used.

Chapter 3 describes the efforts done on utilizing Bayesian complex network
models for estimating brain connectivity at the whole brain level. The methods
are introduced and the paper contributions are summarized.

Chapter 4 describes work on estimating functional connectivity at the local
level and how the local connectivity is altered in patients with MS.

Chapter 5 introduces KPCA and shows how it can be used for data denoising.
In particular the contribution on selecting parameters for Gaussian KPCA is
described.

Chapter 6 summarizes and concludes on the thesis as a whole.



Chapter 2

Data

Not everything that can be counted counts, and not everything that counts can
be counted.
- Albert Einstein

This chapter will first introduce functional Magnetic Resonance Imaging (fMRI).
Then the datasets, which are used in this thesis, will be described along with
the preprocessing steps applied to the data.



6 Data

2.1 Functional Magnetic Resonance Imaging

In fMRI the blood-oxygen level dependent (BOLD) signal is measured (Ogawa
et al., 1990). The BOLD signal is an in-direct measure of the underlying neu-
ronal activity. When neurons are activated they consume oxygen in the nearby
blood, which then becomes deoxygenated. Deoxyhemoglobin is paramagnetic
and therefore distorts the local magnetic field, which is detectable by a MR
scanner. The increased energy demand causes an increase in the local cere-
bral blood flow, resulting in an increased oxygen-to-deoxygen ratio, which is
observed via an increased MR signal response. This increased MR response due
to increased neural activity is commonly known as the hemodynamic response
function (HRF). The HRF is a relatively slow response and peaks at around 5
seconds after stimulation and returns to baseline again at 12-20 seconds post
stimuli.

2.2 DRCMR Data

The data described in this section was collected at the Danish Research Centre
for Magnetic Resonance (DRCMR) by Anne-Marie Dogonowski and Kristoffer
H. Madsen.

2.2.1 Subjects

The dataset from DRCMR consist of 42 MS patients and 30 HC. All MS patients
fulfilled the revised McDonald criteria (Polman et al., 2005) and the HC had
no history of neurological or psychiatric diseases. Subjects were tested with the
Edinburgh handedness inventory (Oldfield, 1971), which revealed that 27 HC
and 39 MS subjects were right-handed. All the patients were recruited from the
Danish Multiple Sclerosis Center, which is a large MS center in Copenhagen,
Denmark. Of the patients 27 were relapsing-remitting MS (RR-MS) and 15
patients were secondary progressive (SP-MS). The patients did not have any
relapse 3 months prior to scanning, and they were all rated with the Expanded
Disability Status Scale (EDSS) (Kurtzke, 1983). The patients’ EDSS scores
ranged from 0 to 7 (median 4.3). Please see Anne-Marie Dogonowski’s PhD
Thesis for further details on the subjects (Dogonowski, 2012).
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2.2.2 Resting State Data

The MRI was conducted on a 3T Siemens (Erlangen, Germany) Magnetom Trio
scanner. The first scan during in the session was a 20 minutes resting-state fMRI
(T2* weighted echo planar imaging) scan. The subjects were instructed to rest
(eyes closed) and not think of anything in particular. Subjects were also asked
to avoid any voluntary movements. The scan parameters were: TR=2490ms,
TE=30ms, flip-angle=90◦, 480 volumes, 42 axial slices, 3 mm isotropic reso-
lution, field of view (FOV) 192x192mm. Cardiac cycles were recorded using
infrared pulse oximeter and respiratory cycles were recorded using pneumatic
thoracic belt. After the functional scan a magnetization prepared rapid gradient
echo (MPRAGE) scan was conducted using the scan parameters; TR=1550ms,
TE=3.04ms, inversion time (IT) = 800ms, 192 sagittal slices, 1 mm isotropic
resolution, FOV=256mm, flip-angle = 9◦.

Resting State Data Pre-processing
Before further analysis the fMRI data was preprocessed using statistical para-
metric mapping (SPM8, Wellcome Trust Centre for Neuroimaging1) imple-
mented in Matlab 7.9 (MathWorks, Massachusetts, USA). The first five volumes
were discarded to reach steady-state magnetization. The remaining images were
realigned using a two-step procedure, which first aligns all images to the first
volume in the time series and then to the mean volume. The EPI images were
then normalized to standard space by first co-registering them to the T1-image
using a 6-parameter rigid-body transformation. The T1 image were normalized
to MNI305 space by using the unified segmentation/normalisation procedure
(Ashburner and Friston, 2005), which is implemented in SPM. The EPI images
was then normalised by applying the same normalisation transformation.

The EPI images are confounded by noise induced both by scanner instabilities
and physiological noise (cardiac, pulsation and respiration) (Dagli et al., 1999;
Glover et al., 2000; Lund et al., 2006; Smith et al., 1999). These different noise
contribution can give rise to signal changes similar to those observed in rs-fMRI
(Birn et al., 2006) and therefore the time series were temporally filtered prior to
further analysis. A linear filter were constructed which included the following
components. A 1/128 Hz cut-off high-pass filter, implemented as discrete co-
sine basis functions, was included to remove low-frequency scanner drifts. The
cardiac and respiratory signals were modelled using a Fourier expansion of the
cardiac (10 parameters) and respiratory (6 parameters) cycles and the first order
cardiac by respiration interaction effects (4 parameters) (Glover et al., 2000).
Head motion was modelled by a Taylor expansion of the realignment parameters
and their time-lagged version (Friston et al., 1996). Birn et al. (2006) showed
that the respiration volume over time produce signal changes similar to rs-fMRI

1http://www.fil.ion.ucl.ac.uk/spm

http://www.fil.ion.ucl.ac.uk/spm
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signals. To account for this the filter included time-lagged versions of the respi-
ration volume (from -20 to 20 seconds in 1 second intervals). Finally, the filter
included time series from voxels in the cerebrospinal fluid and white matter.

2.2.3 Diffusion Weighted Imaging

Each subject underwent two diffusion weighted imaging (DWI) scans using a
twice-refocused spin echo sequence (Reese et al., 2003). For each session, dif-

fusion along 61 directions were recorded with b = 1200s/mm
2
. Additionally,

10 b = 0 images were obtained. Scan parameters used were TR=8200ms,
TE=100ms, flip-angle = 90◦, 2.3mm isotropic voxels, matrix size 96×96×61. To
compensate for subject motion and Eddy currents artifacts, the DWI volumes
were aligned to the first DWI volume (b = 0) using an affine image transfor-
mation using normalized mutual information (Collignon et al., 1995). The dis-
placements of the affine transformations were combined with the displacement
maps of SPM8’s Fieldmap approach (Jezzard and Balaban, 1995), and displace-
ment maps correcting for the non-linearity of the scanner gradients, resulting in
a single resampling for each volume, achieved using cubic interpolation. The ro-
tational parts of the affine transformations are extracted and gradient directions
corrected using the Finite Strain approach (Alexander et al., 2001).

Tractography
For tractography FMRIB Software Library2 (FSL) was used. FSL’s Bedpostx
was used to estimate voxelwise diffusion parameters for each subjects’ two DWI
sessions. Bedpostx uses Markov Chain Monte Carlo sampling to build distri-
butions of the diffusion parameters and allows for detection of crossing fibers.
FSL’s Probtrackx (Behrens et al., 2003) was used for probabilistic tractography.

2.3 FCON1000 Resting State fMRI Data

In addition to the DRCMR dataset two other datasets were analyzed. These
sets are part of the FCON1000 database and therefore publicly available3. We
used the Beijing Zang set (part 2), which consists of 42 subjects. Each subject
were scanned with 225 volumes, TR=2000ms, and with 33 axial slices. Likewise
the Leipzig set was used, which included 37 subjects (21 females), ages=20-42y,
each scanned with 195 volumes at a TR=2300ms and with 34 axial slices. The
first 5 volumes for these subjects had already been discarded. Using SPM8

2http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
3http://fcon_1000.projects.nitrc.org/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://fcon_1000.projects.nitrc.org/
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the remaining volumes were realigned to time series mean and normalized to
standard MNI305 space using the template EPI image available in SPM8.
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Chapter 3

Whole Brain Connectivity

Out of intense complexities intense simplicities emerge.
- Winston Churchill

Section 3.1 gives a short introduction to networks and node clustering. Section
3.2 introduces the Infinite Relational Model, Infinite Hofman-Wiggins, Infinite
Diagonal Model, and the Bayesian Community Detection model. Section 3.3
explains the Markov chain Monte Carlo (MCMC) methods for model inference
and section 3.4 introduces methods for model evaluations. Section 3.5 sum-
marizes the four papers which use the Bayesian methods for modelling brain
networks derived from fMRI and DWI.



12 Whole Brain Connectivity

(a) (b)

Figure 3.1: (a) An undirected and unweighted network. (b) The network’s
adjacency matrix A with dots representing links.

3.1 Network Models

Graph theory provides a mathematical formulation on how nodes in a net-
work interact. It therefore provides a natural framework for many applications
wherein the system can be described as a set of nodes and the node interactions
can be characterized. Examples of such uses are in modelling social, traffic,
citation, and neurobiological systems. A network is a set of nodes, which are
connected by links if a relation exists between them. The network is directional
if the links have a certain direction and weighted if the links have values dif-
ferent from unity. In the following only simple networks, which are undirected
and unweighted networks without loops or multiple edges, are considered. Let
J be the number of nodes, then the [J × J ] adjacency matrix A describes the
linking between nodes in the network. For unweighted and undirected networks
Aij = Aji = 1 if a link between nodes i and j exist, otherwise Aij = Aji = 0.
The absence of a link is referred to as a nonlink. Figure 3.1 shows an example
network along with its adjacency matrix.

3.1.1 Community Structure

Networks can be studied at different levels. At the local level features such as
node degree, motifs, clustering coefficient, centrality can be characterized. At
the global level features such as link degree distribution and modularity can be
quantified.

At the intermediate level networks can be represented in a compressed form
by clustering nodes according to how they link to other nodes. A common
clustering strategy is to group nodes together such that they have a high internal
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link density with low link density to the remaining network. Such clusters are
commonly known as communities, a term which stems from social networks,
where it is observed that persons within a certain community are more related
to each other than to persons outside the community. The degree to which a
given node partition exhibit community structure can be measured using the
modularity index (Newman and Girvan, 2004). Informally, the modularity index
is defined as the fraction of links which fall within clusters minus the expected
number of within-cluster links in a random node degree preserved network.
Finding the node partition with optimal modularity is an NP-hard problem
(Brandes et al., 2007). However, several methods exist which aims at optimizing
modularity, that is, finding the node partition with highest modularity, see e.g.,
(Lehmann and Hansen, 2007; Newman, 2006).

In neuroimaging the use of graph theory has gained a lot of momentum recently
(Bullmore and Bassett, 2011; Sporns, 2011), which is partly due to the increasing
number of resting state and diffusion studies conducted. Brain networks are
formed by representing brain regions as nodes and either structural or functional
connectivity as links. In rs-fMRI the modularity index has been related to
motor learning (Bassett et al., 2011), visual working memory (Stevens et al.,
2012), normal aging (Meunier et al., 2009), and sleep (Tagliazucchi et al., 2013).
Likewise, a number of studies have demonstrated that modularity can be used
as bio-marker. E.g., (Alexander-Bloch et al., 2010) showed reduced modularity
in patients with childhood-onset schizophrenia and in a recent study Gamboa
et al. (2013) showed that patients with early multiple sclerosis had increased
modularity compared with healthy controls, an effect which was interpreted as
diminished functional integration between functional units. In addition negative
correlation between modularity and performance in a dual task was found.

It is, however, not known if modularity reflects the best grouping of nodes. In a
modularity optimized node partition the within-cluster link density is optimized
without paying attention to the specific linking to other clusters. A better repre-
sentation at the intermediate level might be formed by partitioning the network
into clusters by taking the specific between-cluster linking into consideration.
Clusters are herein not only formed by optimizing the internal cluster linking
but also by considering how the cluster relates to other clusters. The approach
taken in this thesis is to use a family of nonparametric Bayesian models, which
are capable of modelling between-cluster link probabilities. By placing differ-
ent constrains on the probability of observing links between clusters, it can be
investigated which model best represent the data. The next section will give a
formal description of the nonparametric Bayesian network models considered.
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3.2 Nonparametric Bayesian Network Models

This section will introduce the Infinite Relational Model, Infinite Hofman-Wiggins,
Infinite Diagonal Model, and Bayesian Community Detection. These models
make use of the Chinese Restaurant process, which is also described. The in-
troduction will depart from a description of the Stochastic Blockmodel.

3.2.1 Stochastic Blockmodel

In the Stochastic Blockmodel (Nowicki and Snijders, 2001) the probability of a
link between two nodes is determined by cluster membership of the nodes. Let
K be the number of clusters and let zi denote the cluster membership for node
i, and let z = [z1, ..., zJ ]> define the cluster membership of all nodes, that is,
the node partition. Then the Stochastic Blockmodel defines a matrix ρ, with
the element ρzizj being the probability of links between nodes in clusters zi and
zj . By drawing from the Bernoulli distribution with probability ρzizj between
each pair of nodes i and j, the model can be used to generate networks. The
structure of ρ determines the structure of the generated network (Karrer and
Newman, 2011). For instance if ρ have zeros in the off-diagonal the generated
network will consist of disconnected clusters. If the values in the diagonal of
ρ are large compared to off-diagonal values the network will conform with the
definition of a community structured network, where nodes within a cluster have
dense connections while being sparsely connected to the rest of the network. In
the Stochastic Blockmodel the number of clusters K is a fixed finite number
and have to be set by the experimenter or learned using model selection.

3.2.2 Chinese Restaurant Process

The nonparametric models described below make use of the Chinese Restaurant
Process (CRP) (Aldous, 1985) as prior for the node partition and thereby allows
for an infinite number of possible clusters.

In general terms is the CRP a process for generating a partition of a set of N
objects. Imagine a Chinese restaurant with infinitely many round tables each
with infinite capacity. The first costumer to arrive at this restaurant sits at
table1. The second costumer then chooses to sit at table1 with probability 1

1+α
or at an un-occupied table with probability α

1+α . In general, the i-th costumer
sits at an un-occupied table with probability α

i−1+α or at table k with probability
nk

i−1+α , where nk is the number of costumers already sitting at table k. After
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N costumers have been seated the distribution of the costumers (objects) on
the different tables (clusters) defines a partition of the N objects. The process
is exchangeable, meaning that the order in which the costumers arrive at the
restaurant can be permuted without changing the probability of the resulting
partition (Aldous, 1985). α controls the number of clusters generated. In the
limit of α → ∞ the probability of starting a new table is 1. When α = 0 the
probability of starting a new table is 0. Thus, the higher α the more clusters
generated. Since the CRP is stochastic each draw from the process will generate
a new distribution. The expectation and variance of the number of clusters K
can be calculated as (Liu, 1996; Teh, 2010)

E[K|J ] =

J∑

i=1

α

i− 1 + α
' α log

(
1 +

J

α

)
(3.1)

Var[K|J ] =

J∑

i=1

α(i− 1)

(i− 1 + α)2
' α log

(
1 +

J

α

)
(3.2)

Thus, the number of clusters grows logarithmically with the number of objects.
The probability of a given partition z is

P (z|α) =
αK(nk − 1)!(α− 1)!

(J + α− 1)!
=
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)
, (3.3)

where J is the number of objects, nk is the number of objects assigned to cluster
k and K is the number of clusters. Figure 3.2 shows 100 distributions (draws)
generated from the CRP using α = 0.5, α = 1, and α = 5 respectively each
with J = 1000 objects. The distributions are sorted according to the size of
the largest cluster. Using α = 0.5 relatively few clusters are generated while
increasing α also increases (on average) the number of clusters.

3.2.3 Infinite Relational Model

The Infinite Relational Model (IRM) (Kemp et al., 2006; Xu et al., 2006) is a
nonparametric generalization of the Stochastic Blockmodel. It uses a hierar-
chical Bayesian framework by using the CRP as prior for the node partition
z. Using the CRP, the model is able to learn the number of clusters from the
data, and it potentially allows for as many clusters as nodes in the network. A
Beta distribution is used as prior for the link probabilities ρkl, in this thesis a
symmetric Beta distribution (Beta(β, β)) is considered.

In neuroimaging we are often presented with a number of networks defined
on the same set of nodes. Consider for instance networks derived from the
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Figure 3.2: 3D histogram showing cluster sizes for 100 distributions generated
from the CRP using α = 0.5, α = 1, and α = 5 respectively each distribution
having 1000 objects. The distributions have been sorted according to the cluster
size of the largest cluster. For α = 0.5 relatively few clusters were generated
with the largest cluster being relatively large compared to the other clusters.
Increasing α = 1 increases the probability of generating more clusters.

same brain regions but from different subjects or sessions. The notation A(n)

is used for the n-th network (subject). The IRM can then be defined over
all subjects, such that a common node partition is found across all subjects.
The link probabilities can either be shared across the group or individual for
each subject. For instance Mørup et al. (2010) modelled individual subject link
probabilities and in (Andersen et al. (2012), Paper C) and (Andersen et al.
(2013), Paper E) the link probabilities were shared across the group of subjects.
If not stated otherwise, the multi-network definition of IRM with shared link
probabilities will be used.

Thus, the IRM can be summarized as follows.

Infinite Relational Model
Node partition: z ∼ CRP(α)

Link probabilities: ρkl ∼ Beta(β, β)

Links: A
(n)
ij ∼ Bernoulli(ρzizj )

The process of generating networks from this model involves first generating
a node partition using the CRP. Next, cluster link probabilities are generated
from the Beta distribution. Finally, for each network n links are drawn from
the Bernoulli distribution according to the link probabilities.

Having defined the model we seek an expression for the conditional posterior
distribution of a node’s assignment given the assignments of the other nodes.
This can then be used to infer the node partition z using Markov Chain Monte
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Carlo (MCMC) methods. The conditional posterior distribution will be derived
below while the MCMC procedure will be described in Section 3.3.

For brevity, let the set of N adjacency matrices be defined as Ã = {A(n)}Nn=1.
The Bernoulli likelihood for observing Ã given z and ρ is

P (Ã|z,ρ) =
∏

n

∏

j>i

ρ
A

(n)
ij

zizj (1− ρzizj )

(
1−A(n)

ij

)

=
∏

j>i

ρ

(∑
n A

(n)
ij

)
zizj (1− ρzizj )

(
N−∑n A

(n)
ij

)

=
∏

k≥l
ρ
N+

kl

kl (1− ρkl)N
−
kl , (3.4)

where N+
kl and N−kl are the sum of all links and nonlinks across all networks

between cluster k and l, respectively. The Beta probability of ρ is given as

P (ρ|β) =
∏

k≥l

Γ(2β)

Γ(β)2
ρβ−1
kl (1− ρkl)β−1, (3.5)

where Γ(x) = (x− 1)! is the Gamma function. By combining Eq. 3.3, Eq. 3.4,
and Eq. 3.5 an expression for the joint distribution of Ã, z, and ρ is

P (Ã, z,ρ|α, β) = P (Ã|z,ρ)P (ρ|β)P (z|α)

=

[∏

k≥l
ρ
N+

kl

kl (1− ρkl)N
−
kl

]

×
[∏

k≥l

Γ(2β)

Γ(β)2
ρβ−1
kl (1− ρkl)β−1

]

×
[
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]

=

[∏

k≥l

Γ(2β)

Γ(β)2
ρ
N+

kl+β−1

kl (1− ρkl)N
−
kl+β−1

]

×
[
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
. (3.6)

Since the Beta distribution is conjugate prior to the Bernoulli distribution the
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link probabilities can be integrated out, resulting in

P (Ã, z|α, β) =

∫
P (Ã, z,ρ|α, β)dρ

=

[∏

k≥l

B(N+
kl + β,N−kl + β)

B(β, β)

][
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
, (3.7)

where B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the Beta function. Using Bayes’ theorem the con-

ditional posterior distribution of the assignment of a single node zi is found
as

P (zi = l|Ã, z\i, β, α) =
P (Ã, z\i, zi = l|α, β)

∑
l′ P (Ã, z\i, zi = l′|α, β)

, (3.8)

here z\i is the assignments of all other nodes than node i.

The conditional posterior distribution is used in the MCMC sampling, which
will be described in section 3.3.

3.2.4 Infinite Hofman-Wiggins

Hofman and Wiggins (2008) proposed a restricted Stochastic Blockmodel, which
only specifies a single within-cluster link probability ρw and a single between-
cluster link probability ρb. Thus, the model restricts all within-cluster link
probabilities to be equal and all between-cluster link probabilities to be equal.
To be consistent with the other models, the link probability matrix can be
formed with the elements

ρkl =

{
ρw if k = l
ρb otherwise.

(3.9)

A nonparametric version of this model, termed Infinite Hofman-Wiggins (IHW),
was proposed by Mørup et al. (2011). Like in the IRM, a CRP prior is used for
the node partition and a symmetric Beta prior is used for the link probabilities.
The Bernoulli likelihood is then given as

P (Ã|z, ρw, ρb) = ρ
N+

w
w (1− ρw)N

−
w ρ

N+
b

b (1− ρb)N
−
b , (3.10)

where N+
w and N−w are the total number of links and nonlinks which fall within

clusters and N+
b and N−b are the total number of links and nonlinks which fall

between clusters. Likewise, the joint Beta probability of ρw and ρb is given by

P (ρw, ρb|β) =

[
Γ(2β)

Γ(β)2
ρβ−1
w (1− ρw)β−1

][
Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

]
.(3.11)
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Again, the joint likelihood P (Ã, z, ρw, ρb|α, β) can be formed and the link prob-
abilities ρw and ρb can be integrated out

P (Ã, z|α, β) =

∫
P (Ã, z, ρw, ρb|α, β)d(ρw, ρb)

=

[
B(N+

b + β,N−b + β)B(N+
w + β,N−w + β)

B(β, β)2

]

×
[
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
. (3.12)

Using Eq. 3.8 an expression for the conditional probability of the assignment of
a single node given the other nodes can be found and used in the MCMC.

3.2.5 Infinite Diagonal Model

A less restricted version of IRM, termed the Infinite Diagonal Model (IDM),
was also proposed in (Mørup et al., 2011). In IDM clusters are allowed different
within-cluster link probabilities ρkk, however, all between-cluster link probabil-
ities ρb are shared, forming the link probability matrix

ρkl =

{
ρkk if k = l
ρb otherwise.

(3.13)

The Bernoulli likelihood for the IDM is then given as

P (Ã|z,ρ) = ρ
N+

b

b (1− ρb)N
−
b

[∏

k

ρ
N+

kk

kk (1− ρkk)N
−
kk

]
, (3.14)

where N+
kk and N−kk are the number of links and nonlinks within cluster k and

N+
b and N−b are the total number of links and nonlinks which fall between

clusters. The Beta prior for the link probabilities is

P (ρ|β) =
Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

[∏

k

Γ(2β)

Γ(β)2
ρβ−1
kk (1− ρkk)β−1

]
. (3.15)

The joint distribution can be formed and ρ can be integrated out

P (A, z|α, β) =

∫
P (A, z,ρ|α, β)dρ

=

[
B(N+

b + β,N−b + β)

B(β, β)

][∏

k

B(N+
kk + β,N−kk + β)

B(β, β)

]

×
[
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
. (3.16)
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Again, Eq. 3.8 can be used to derive an expression for the conditional probability
of the assignment of a single node given the other nodes.

3.2.6 Bayesian Community Detection

Bayesian Community Detection (BCD) was proposed by Mørup and Schmidt
(2012) and is a restricted version of the IRM which conforms to the definition of
community structure. The model restricts the between-cluster link probabilities
between any two clusters such that it can at most be as high as the lower of
the two within-cluster link probabilities. Networks generated with this model
will then have lower link density between any two clusters than link density
within the clusters. The model is described generatively as follow. First, a node
partition is generated using the CRP and the within-cluster link probabilities
(diagonal of ρ) are drawn from the Beta distribution. Then, for each cluster a
cluster gap γk is drawn from a Beta distribution and thus takes values between
[0; 1]. The between-cluster link probability between cluster k and l is then
generated from an incomplete Beta distribution, BetaInc(a, b, wkl), which is a
Beta distribution constrained to the interval [0;wkl]. In BCD, wkl is set to
the minimum of the cluster gap times the within-cluster link probability of the
two clusters, that is, wkl = min(γkρkk, γlρll). Finally, links are drawn using the
Bernoulli distribution according to the cluster link probabilities. The cluster gap
controls the degree of community structure. In the limiting case when γk = 0,∀k
the generated network will be composed of disconnected clusters as there will
be no linking between clusters. When γk = 1,∀k then the between-cluster link
probability can at most take the value of the largest of the two within-cluster
link probabilities. In the following the cluster gap is shared across all clusters
and is just denoted γ. To summarize the BCD model:

Bayesian Community Detection
Node partition : z ∼ CRP(α)

Cluster gap : γ ∼ Beta(v, v)

Link probability : ρkl ∼
{

Beta(β, β) if k = l
BetaInc(β, β, wkl) otherwise.

where wkl = min[γρkk, γρll]

Links : A
(n)
ij ∼ Bernoulli(ρzizj )

Let ρ̇ = {ρkl|k = l} and ρ̈ = {ρkl|k 6= l} be the sets of within and between
cluster link probabilities respectively. Then the joint distribution of Ã, z,ρ,
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and γ is

P (Ã, z,ρ, γ|α, β) = P (Ã|z,ρ)P (ρ̈|ρ̇, γ, β)P (ρ̇|β)P (γ|v)P (z|α)

=

[∏

n

∏

j>i

ρ
A

(n)
ij

zizj (1− ρzizj )1−A(n)
ij

]

×
[∏

k>l

ρβ−1
kl (1− ρkl)β−1

Bxkl
(β, β)

][
K∏

l=1

ρβ−1
ll (1− ρll)β−1

B(β, β)

]

×
[
γv−1(1− γ)v−1

B(v, v)

][
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
, (3.17)

where Bx is the incomplete Beta function. Integrating over ρ̈

P (A, z, ρ̇, γ|α, β) =

∫
P (A, z,ρ, γ|α, β)dρ̈

=

[
K∏

k=1

ρ
N+

kk+β−1

kk (1− ρkk)N
−
kk+β−1

B(β, β)

]

×
[∏

k>l

Bxkl
(N+

kl + β,N−kl + β)

Bxkl
(β, β)

]

×
[
γv−1(1− γ)v−1

B(v, v)

][
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)

]
. (3.18)

Again, using Bayes theorem and eliminating terms which does not depend on
ρll the marginal posterior reduces to

P (ρll|Ã, z, ρ̇\ρll, β, α, γ) ∝

ρ
N+

ll +β−1

ll (1− ρll)N
−
ll +β−1

∏

k 6=l

Bxlk
(N+

kl + β,N−kl + β)

Bxkl
(β, β)

. (3.19)

The conditional distribution of a node’s assignment is given as (Mørup and
Schmidt, 2012)

P (zi = l|Ã, z\i, ρ̇, β, α, γ) ∝

ρ
r+il
ll (1− ρll)r

−
ilαKnl\i

∏

k 6=l

Bxkl
(N

+\i
kl +r+ik+β, N

−\i
kl +r−ik+β)

Bxkl
(N

+\i
kl +β, N

−\i
kl +β)

, (3.20)

where r+
il and r−il are the total number of links and nonlinks from node i to all

nodes in cluster l. When terms which does not depend on γ are ignored the
posterior reduces to

P (γ|Ã, z, ρ̇, β, α) ∝

γv−1(1− γ)v−1
∏

k>l

Bxkl
(N

+\i
kl +β,N

−\i
kl +β)

Bxkl
(β,β) . (3.21)
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The conditional distributions are used in model inference, which will be de-
scribed in Section 3.3.

3.2.7 Model Summary

The IRM is the most flexible of the four models and is able to model networks
with very complex structure. IRM specifies specific link probabilities between
all clusters and is therefore able to cluster a group of nodes with high internal
link density into separate clusters if they link differently to other clusters. Like-
wise, IRM can group nodes with a low internal but high external linking and can
therefore capture structure which is beyond the definition of community struc-
ture. The BCD also models complex between-cluster linking and has therefore
many of the same features as IRM, however, with the constraint that the link
probability between any two clusters cannot be greater than either of the two
within-cluster probabilities. On the other hand, IDM and IHW only specifies
a single between-cluster link probability, which can be seen as a background or
noise probability and does not contribute to finding structure in the data.

A nice feature with the nonparametric Bayesian framework is that the exper-
imenter does not have to specifically set the number of clusters. Due to the
use of the CRP prior the number of clusters is learned during model inference.
The framework also provides an elegant way of inferring the node partition from
a group of subjects, with the choice of using individual subject or shared link
probabilities.

Figure 3.3 shows a single network generated from each of the 4 models.

3.3 Model Inference

In the previous sections the generative models were defined and expressions for
the conditional posterior distributions were derived. This section will describe
how the conditional posterior distributions are used in model inference.

3.3.1 IRM, IHW, and IDM Model Inference

In the previous sections the generative models were defined, which allow one to
generate data by drawing samples from the model. However, we are interested
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(a) IRM (b) IHW (c) IDM (d) BCD

Figure 3.3: Networks generated from each of the four models with α = 1, β = 1
and for BCD, v = 1. Nodes are grouped according to cluster membership.
Dots represent links and the gray-shaded background indicates the cluster link
probabilities. The IRM model creates complex structured data where all cluster
link probabilities are allowed to be different. In the IHW all within-cluster link
probabilities are equal and all between-cluster link probabilities are equal. In
IDM all between-cluster link probabilities are equal while the within-cluster
link probabilities are individual. In BCD the within-cluster link probability
for a given cluster is always greater than or equal to the between-cluster link
probabilities to the other clusters, however, differences in the different between-
cluster link probabilities are allowed.

in inferring the model parameters given the data. By using the model definitions
the joint likelihoods were derived and by using Bayes theorem expressions for
the conditional posterior distributions were found. It is then possible to sample
from these posterior distribution using MCMC.

In IRM, IHW, and IDM the cluster link probabilities were integrated out,
which means that model inference only needs to sample over node assignments
z. A sampling scheme using Gibbs sampling in combination with split-merge
Metropolis-Hastings updates i used (Jain and Neal, 2004; Kemp et al., 2006;
Mørup et al., 2010).

In Gibbs sampling, each node’s assignment is in turn updated according to the
conditional distribution of that node’s assignment given the assignments of the
remaining nodes. Since Gibbs sampling update the nodes’ assignments one at
a time, it might be hard to merge two existing clusters or split a single cluster
into two separate clusters. Therefore a restricted split-merge scheme is applied
in combination with the Gibbs sampling. The split-merge procedure selects two
nodes at random. If the two nodes are currently in two separate clusters, then a
new partition is proposed, where all nodes from the two clusters are merged into
a single cluster. If the two nodes are currently in the same cluster, then a new
assignment is proposed, found using restricted Gibbs sampling, which splits the
nodes into two clusters. The restricted Gibbs sampling places the two nodes into
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two empty clusters and the remaining nodes are assigned to either of the two
clusters based on their conditional probability. This state is referred to as the
launch state. The launch state is refined by allowing nodes from the two clusters
to be re-assigned to either of the two clusters. The resulting configuration is the
split-proposal, which will be the new state in the Markov chain if it is accepted
with the Metropolis-Hasting acceptance probability.

3.3.2 BCD Model Inference

In IRM, IHW, and IDM it was possible to integrate out the cluster link prob-
abilities. However, due to the dependency between the link probabilities in
BCD it is only possible to integrate the between-cluster link probabilities out.
The within-cluster link probabilities and the cluster gap are sampled using
Metropolis-Hastings. z is sampled using Gibbs sampling with split-merge moves
as described above, however, proposals for within-cluster link probabilities and
the cluster gaps are first generated from their prior distribution (Mørup and
Schmidt, 2012).

For model inference, software1 written by Morten Mørup and Mikkel N. Schmidt
is used.

3.4 Model Evaluation

This section describes the measures used for evaluating the models.

3.4.1 Mutual Information

The similarity between two samples is calculated using the normalized mutual
information (NMI) between their partitions z′ and z′′, given as

NMI =
2MI(z′, z′′)

MI(z′, z′) + MI(z′′, z′′)
, (3.22)

1The IRM, IDM, and IHW software is available from http://www.imm.dtu.dk/upload/

institutter/imm/isp/teaching/02901-2012/morup_exercises.zip and the BCD software from http:

//www2.imm.dtu.dk/pubdb/views/edoc_download.php/6147/zip/imm6147.zip

http://www.imm.dtu.dk/upload/institutter/imm/isp/teaching/02901-2012/morup_exercises.zip
http://www.imm.dtu.dk/upload/institutter/imm/isp/teaching/02901-2012/morup_exercises.zip
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6147/zip/imm6147.zip
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/6147/zip/imm6147.zip
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where the mutual information (MI) is given as

MI(z′, z′′) =

K′∑

k=1

K′′∑

l=1

P (z′ = k, z′′ = l) log

(
P (z′ = k, z′′ = l)

P (z′ = k)P (z′′ = l)

)
, (3.23)

where K ′ and K ′′ are the number of clusters in z′ and z′′, respectively.

3.4.2 Test Log Likelihood

If a model with shared ρ is inferred on a set of networks, the test log likelihood
of another set of networks can be calculated. Let z′ and ρ′ be the partition and
corresponding link probabilities learned from a set of networks. Then the test
log likelihood of another set of networks Ã′′ = {A′′(n)}Nn=1 can be calculated as

logP (Ã′′|ρ′, z′) =

1

N

N∑

n=1

∑

j>i

[
A
′′(n)
ij log(ρ′z′iz′j ) + (1−A′′(n)

ij ) log(1− ρ′z′iz′j )
]
. (3.24)

It is also possible to calculate the test log likelihood for a model with individual
ρ if two or more networks are available per subject.

3.4.3 ROC AUC

The Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC)
can be calculated on data held out from model inference. Held-out data can
either be links and nonlinks, which is treated as missing during inference, or
entire networks not included in the inference procedure. AUC is measured
by calculating the link probabilities of held out data using the inferred model
parameters. By thresholding the probabilities at different levels, the ROC of
true positives versus false positives can be made and the area under this curve
indicates how well the model predicts test data. AUC = 1 indicates perfect
prediction where AUC = 1

2 is prediction at random.

3.5 Summary of Papers

Three of the included papers in this thesis are using the methods described in
the above sections. A fourth paper propose a new model based on the IRM,
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which is able to infer shared clustering structure across different network types.
This section will give a short summary of the papers.

3.5.1 Paper D, Identification of Functional Clusters in the
Striatum Using Infinite Relational Modeling

This paper utilized the IRM for segmentation of the human striatum. The stria-
tum is the main input structure to the human basal ganglia and specific parts
of the striatum receives projections from different cortical areas (Haber, 2003).
Thus the aim of this paper was to use IRM to cluster voxels in the striatum
for identification of these different input zones. The DRCMR rs-fMRI dataset
(see section 2.2) was used and voxels of the putamen and caudate nucleus was
extracted. Using the rs-fMRI time series from these voxels the correlation ma-
trix was constructed for each of the 30 healthy controls included. The correla-
tion matrices were thresholded to include the highest 5000 positive correlations,
which then constitutes the adjacency matrices. We used the IRM model which
modelled individual subject link probabilities ρ(n) but had a shared node par-
tition across subjects. Using α = β = 1, we ran inference with 100 different
initializations each for 1000 iterations. The sample with the highest value of the
posterior distribution for each run was used as point estimate.

The found node partitions were very consistent across initializations as measured
with NMI between each pair of partitions (mean=0.78, std=0.04). From the 100
partitions the co-occurrence matrix was created, which counts how often each
node-pair was clustered together. Using this co-occurrence matrix we performed
agglomerative hierarchical clustering based on average linkage and thresholded
this hierarchy to achieve the final node partition. The resulting clusters were
found to represent interhemispheric homologue areas in left and right striatum.
The paper also investigated the influence of varying the hyperparameters α
and β. Setting β = 1, we varied log10(α) from −15 to 15. In this range the
MI/NMI between splits and number of found clusters were relatively stable.
Setting α = 1, we varied log10(β) from −6 to 2, which had a greater impact
on both the reproducibility and the number of clusters inferred by the model.
The best MI was found with β = 0.1. MI, however, is dependent on the number
of clusters, which can be seen from the high correlation between the curves
for MI and number of clusters. The NMI is less dependent on the number of
clusters and optimal repetition (NMI=1) was found at β = 100. However, here
only 2 clusters were estimated and thus this solution does not provide much
information.

To evaluate the model’s ability to predict missing links we treated at random
2.5% of the links and an equivalent number of non-links as missing. The AUC
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score was used to evaluate how well the model predicted these missing entries.
Across all 30 subjects we found the mean (std) AUC score to be 0.83 (0.06)
which is well above chance for all subjects.

In summary, this paper show how the IRM model can be used to segment
voxelwise brain regions into functionally similar clusters. Furthermore, the re-
producibility of clusterings were evaluated using a split-half framework where
MI and NMI were used to evaluate clustering similarity. The model’s ability
to predict missing links/nonlinks was demonstrated and we found well above
chance prediction in all subjects.

3.5.2 Paper C, Identifying Modular Relations in Complex
Brain Networks

This paper introduce a general framework for evaluating Bayesian models. The
evaluation framework builds on the NPAIRS (nonparametric prediction, activa-
tion, influence, and reproducibility resampling) split-half re-sampling (Strother
et al., 2002) by estimating the models’ predictability and reproducibility using
several half-splits of the subject sample. The data sample was split into two
equally sized groups and the models were inferred on both splits. The repro-
ducibility was estimated as the NMI between node partitions for the two splits
and the predictability as the test likelihood. A model with shared ρ was used,
which allow the calculation of test log likelihood.

IRM was evaluated against IDM and IHW using both synthetic data and rs-
fMRI data. Three synthetic datasets were generated from each of the three
generative models. Each dataset consisted of 20 networks each with 100 nodes.
On the data which contains complex structure (IRM generated), the IRM was
superior to the two other models both in predictability and reproducibility.
Data generated from the two other models does not contain the same relational
structure as the off-diagonal elements of the link probability matrices are all
equal. In this case the IRM did not overfit the data and produced results
comparable with the other two models. In addition to the synthetic data the
models were evaluated on rs-fMRI data. Using the Automated Anatomical
Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) the mean signal in each of
the 116 included regions were calculated and the 116 × 116 correlation matrix
were formed for each subject. The correlation matrices were thresholded to
include the top 1000 positive correlations forming the adjacency matrices. The
models were evaluated using the same framework as on the synthetic data.
The results showed that the IRM was superior to the two other models in
both reproducibility and predictability, suggesting that rs-fMRI data is better
modelled with a model that allows complex interactions between clusters.
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To summarize on this paper; using the NPAIRS evaluation framework we showed
that the IRM was superior to the other models when data exhibit complex
relations. When data were generated from the two simpler models, IRM did
not severely overfit and produced comparable predictability and reproducibility
as compared with the models which generated the data. IRM fitted the rs-fMRI
data best, suggesting that networks derived from whole-brain rs-fMRI exhibit
complex relations.

3.5.3 Paper E, Coordinated Activation in the Resting Brain
is Community Structured - (under review)

In this paper we extended the analysis of rs-fMRI data using Bayesian network
modelling. The same framework, as presented in Paper C, was used to evaluate
the models. The three models IRM, BCD and IDM were used to model rs-fMRI
data from three cohorts. Using the full DRCMR data sample, we ran model
inference using the three methods with 10 different initializations. The repro-
ducibility within each method was very high (mean MNI > 0.96 for all methods).
Likewise, the clusterings between IRM and BCD were very similar with mean
MNI = 0.94. In contrast, the clusterings found with IDM was less similar to
IRM and BCD, with mean NMI of 0.76 and 0.75, respectively. When using
the NPAIRS split-half framework, we showed that IRM and BCD were better
than IDM to predict unseen data, which were the case for all three datasets and
link densities investigated. For small link densities IDM showed comparable
reproducibility compared to IRM and BCD, however, for link densities greater
than 8% both IRM and BCD were clearly superior to IDM. Among IRM and
BCD the latter showed better or on par reproducibility and predictability for
all datasets and link densities.

The two main findings in this paper were that (i) predictability and reproducibil-
ity of whole-brain rs-fMRI were greatly improved when modelling the complex
relations between clusters (IRM and BCD models) and (ii) since BCD showed
greater or on par performance compared to IRM we concluded that the organi-
zation of rs-fMRI networks is consistent with a community structured model.

To accompany this paper a toolbox was made2. This toolbox is able to construct
networks from fMRI data and run the IRM, BCD, IHW, and IDM models as
well as make simple visualizations of the results. A screenshot of the GUI is
shown in Figure 3.4.

2Available from https://brainconnectivity.compute.dtu.dk/

https://brainconnectivity.compute.dtu.dk/
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Figure 3.4: Toolbox for generating networks from fMRI data and running the
IRM, BCD, IHW, and IDM models. The toolbox is also able to make simple
visualization of the results.

3.5.4 Paper F, Joint Modelling of Structural and Func-
tional Brain Networks - (in preparation)

Analyzing fMRI and DWI in a joint model allows one to potentially benefit from
the complementary information the two modalities provide. There is a great
interest in trying to combine these two modalities to reveal how the structural
connections are mediating the functional activity (Damoiseaux and Greicius,
2009). For instance, studies have showed that nodes of the default mode network
is also structurally connected (Greicius et al., 2009; Teipel et al., 2010). The
aim of this paper was to explore clustering similarities in networks derived from
fMRI and DWI.

In this paper we used the fMRI and DWI data from the DRCMR dataset.
The fMRI networks were derived as in Paper E and Paper C by calculating
the correlation between all regions in the AAL atlas. However, the time series
were split into two splits (by blocking into 8 blocks and use 4 random blocks
per split) and thereby generated two rs-fMRI networks per subject. To generate
DWI networks, the AAL atlas were normalized to each subject’s native diffusion
space. Each region was in turn used as seed and the remaining regions as target
in probabilistic tractography. Using FSL’s Probtrackx, 5000 streamlines per
voxel in the seed region was send off. For each voxel in the seed region RA the
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count of streamlines reaching target region RB was found and the average of
these counts dRA→RB

was calculated. This number will in general not be the
same as the count of seeding in RB and using RA as target region, therefore
the average of dRA→RB

and dRB→RA
was used as element in the connectivity

matrix. This matrix was then thresholded to give the DWI network ADWI. This
was done for both of the two DWI datasets per subject resulting in two DWI
networks per subject.

Figure 3.5 plots a fMRI and DWI network from a single subject, panel (i) shows
the fMRI network and panel (ii) the DWI network. The two networks show
clear differences in structure, for instance the fMRI network have dense connec-
tions between right and left hemispheres, while most of the DWI connections
are within the same hemisphere. Panel (iii) shows the result on running IRM
on fMRI alone. Colors indicate cluster membership and for illustration pur-
poses are all nodes within a cluster connected by links (even though they might
not be connected in the given network). In addition, the combined adjacency
and link probability matrices are shown for both the fMRI and DWI networks.
The resulting clusters are in all cases interhemispheric homologue areas. The
permuted AfMRI shows clear structure with most link densities being high or
near zero. Permuting ADWI according to the same clustering (found with fMRI
data), the link probability matrix is less structured with many elements having
intermediate values. Panel (iv) shows the result on running IRM on DWI alone.
Here, most clusters are within the same hemisphere and again shows the corre-
sponding permuted adjacency matrix (permuted ADWI) a more clear structure
than the permuted fMRI adjacency matrix (permuted AfMRI). Panel (v) shows
the result on running IRM on both fMRI and DWI networks, thus forcing the
same clustering in the two modalities (allowing for individual link probability
matrices for all networks). The clusters found here are a mix of the clusters
found in the modality specific analysis, some clusters have only nodes within a
hemisphere and some clusters have nodes in both hemispheres.

In Paper F a new model is proposed, which is capable of finding shared clus-
ters between two (or more) types of networks. In the general case the model is
defined over n network types (modalities) each having m networks (subjects or
repetitions). Here, the model is described in terms of fMRI and DWI networks,
however, this could easily be extended to include other modalities, such as EEG,
MEG, or cortical-thickness networks, as long as the networs are defined on the
same set of nodes. The model is an extension of the IRM model and can be de-
scribed generative as follows. A Bernoulli variable per node determines whether
the node is shared across fMRI and DWI. If a node is shared, the cluster in
which it participate, is the same for both fMRI and DWI. On the contrary, if
the node is individual, it is clustered differently in fMRI and DWI. The clus-
ter membership for the shared nodes are drawn from a common CRP, while
cluster memberships for individual nodes are drawn from two separate (fMRI
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and DWI specific) CRPs. Each network is associated with its own cluster link
probabilities, which are distributed according to a Beta distribution. Finally,
for each network (subject) and network type (fMRI and DWI) links are drawn
from a Bernoulli distribution with the specific subject-modality-cluster linking
probability. The model is schematically shown in Figure 3.6. The blue and
red nodes are shared across network type since they are members of the same
clusters for both modalities. The remaining nodes are individual (un-shared)
across network type since they exhibit different clustering structure in the two
modalities.

Using two sets of fMRI and DWI networks per subject, we ran the model within
modality (fMRI1 vs. fMRI2, and DWI1 vs. DWI2) and between-modality
(fMRI1 vs. DWI1, and fMRI2 vs. DWI2). The analyses were done at the
single subject level. By inspecting the fraction of shared nodes in the within-
modality analysis, the clustering consistency between scans can be revealed. In
the between-modality analysis, the fraction of shared nodes reveals if common
structure can be found between modalities. In the between-modality analysis
the new model (partially-shared) were compared with a fully-shared model and
a fully-unshared model. The fully-shared model assumed that all nodes were
shared across network types, which corresponds to running a single IRM. The
fully-unshared model assumed that all nodes were individual, which corresponds
to running two separate (modality specific) IRM models. The between-modality
analysis was evaluated using predictability and reproducibility.

In the within-modality analysis, a high clustering consistency was found be-
tween DWI networks with above 90% shared nodes between the two sets. This
was seen for all link densities considered. The fMRI networks showed inter-
mediate amount of consistency between sets (about 90% shared nodes at 3%
link density which decreased to below 50% shared nodes for 50% link density).
When modelling fMRI and DWI jointly, however, a low number of shared nodes
were found (below 25% for link densities ≥ 10%). The partially-shared model
was generally on par with the fully-unshared model, indicating low information
shared between modality. Though, for low link densities (3% and 5%) a mi-
nor improvement in predicting fMRI links/nonlinks with the fully-shared and
partially-shared models was observed. However, this comes with a decrease
in predicting DWI networks. The partially-shared model did not improve the
reproducibility either.

To summarize, a new nonparametric Bayesian model, which can infer common
node clustering across network types, was presented. fMRI and DWI networks
showed only limited amount of shared structure. When testing the model within
modality, a high consistency was found in the DWI networks and intermediate
amount of shared clusters in the fMRI networks. The model is general and can be
used for other applications, such as detecting group differences between subject
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populations. This, however, requires further model validation and testing.
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Figure 3.5: (i) Posterior, superior, and lateral views on a fMRI network from
a single subject. (ii) Same views on the DWI network from same subject. (iii)
Clustering found when running IRM on fMRI networks. Colors indicate cluster
membership and fMRI adjacency matrix (AfMRI) and DWI adjacency matrix
(ADWI) have been permuted according to IRM clustering found on fMRI alone.
(iv) Clustering found when running IRM on DWI alone. The adjacency matrices
are permuted according to IRM clustering (found from DWI networks). (v) IRM
results found on running IRM on combined fMRI and DWI.
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Figure 3.6: Schematic model description. Panel A shows the adjacency matrices
for two network types. The small black dots indicate edges. Grouping structures
are indicated with colors to the left and above the adjacency matrices and group
link probabilities are indicated with the gray-scaled background. In this example
nodes belonging to the first two modules are shared across network type while
the remaining nodes show different grouping in the two networks. Panel B gives
a graphical layout of the networks where nodes are shown with filled circles and
edges as lines. The colors indicate the same grouping structure as in panel A.



Chapter 4

Local Brain Connectivity

Everything should be made as simple as possible, but not simpler.
- Albert Einstein

This chapter presents work done on investigating how the local homogeneity
of rs-fMRI is effected in patients with multiple sclerosis (MS). Contrary to the
methods presented in Chapter 3, which considers whole-brain connectivity, this
work looks at brain connectivity at the local level. Section 4.1 shortly describes
MS. Section 4.2 describes how Kendall’s Coefficient of Concordance (KCC) can
be used to estimate the local homogeneity of fMRI signals. Section 4.3 summa-
rizes the paper on local homogeneity alterations in MS.
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4.1 Multiple Sclerosis

Multiple Sclerosis (MS) is an autoimmune, inflammatory neurological disease
(Goldenberg, 2012), which attacks the myelin sheath around axons in the central
nervous system. This damage affects the cortico-cortical and cortico-subcortical
signal transmission (Compston and Coles, 2002; Lowe et al., 2002; Waxman,
2006). The disease leads to a wide range of disabilities including psychical, cogni-
tive, and mental disabilities. Most MS patients (85-90%) (Lublin and Reingold,
1996) starts in the relapsing-remitting (RR) phase which is characterized by
unpredictable events of attacks (relapses) followed by remission periods. 65% of
RR-patients will transfer to the secondary-progressive (SP) phase (Confavreux
and Vukusic, 2006) where the symptoms will get worse in between attacks. The
patient’s disability due to MS can be measured using the Expanded Disability
Status Scale (EDSS) (Kurtzke, 1983), which is a scale between 0-10, where 0
means no disability and 10 means death due to MS.

4.2 Regional Homogeneity

Alternative to modelling long-range functional brain connectivity the regional
homogeneity (ReHo) approach, as the name suggests, models the regional or the
local homogeneity of the fMRI signal. ReHo was suggested by Zang et al. (2004)
as an alternative method for analyzing rs-fMRI data. Abnormal local signal
homogeneity has been found in pathological diseases such as neuromyelitis optica
(Liang et al., 2011), Alzheimer’s (He et al., 2007), Parkinson’s disease (Wu,
Long, Zang, Wang, Hallett, Li and Chan, 2009) and Schizophrenia (Liu et al.,
2006). Regional homogeneity is typically calculated using Kendall’s Coefficient
of Concordance (Kendall and Smith, 1939) (KCC) in small [3 × 3 × 3] cubic
regions of the brain. KCC estimates the agreement of fluctuations in the time
series and can be seen as a measure of correlation between a number signals.
Calculating KCC between voxels in a small neighborhood then reveals how well
synchronized the voxels’ time series are in that neighborhood. Since KCC is a
rank correlation it does not depend on the absolute amplitude of the signals.

The KCC is calculated as follows. Each of the T time points of a voxel’s fMRI
signal is given a rank according to signal amplitude. For the N voxels considered
the sum of ranks across voxels for timepoint t is denoted rt. The sum of squares
of rt is then calculated as s =

∑T
t=1(rt − r̄)2, where r̄ is the mean across all rt.

KCC is then

KCC =
s

1
12N

2(N3 −N)
. (4.1)
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Figure 4.1: Z-score normalized KCC map for a single subject. Red values
indicate areas with increased KCC and blue areas with decreased KCC compared
to the mean KCC value in the brain.

The denominator in the equation above is the maximal value of s, which is
obtained when all ranks across voxels are equal, and thus ensures that KCC
normalizes to 1. The greater KCC the greater (fMRI) signal synchrony.

Normally KCC is calculated in a [3×3×3] cubic region of the brain and the value
assigned to the center voxel. This is repeated for the whole brain to generate
a KCC-map. Since spatially smoothing of the EPI-images prior to calculating
KCC would artificially increase the KCC values, spatial smoothing is applied
to the KCC-map. To render the KCC values more normally distributed, the
KCC maps are often z-score normalized (Zuo et al., 2010) by subtracting off
the mean KCC value of all brain voxels and divide by the standard deviation
of KCC values in the same voxels. When normalized, the KCC values represent
number of standard deviations away from the mean KCC across the brain.

4.2.1 Relation to Graph Theory

There is a close relation between KCC and the mean of pairwise Spearman
rank correlations between all pairs of voxels. Specifically if the Spearman rank
correlation between voxels i and j is denoted πij , then the mean of pairwise
Spearman rank correlations is calculated as π̄ = 1

1
2N(N−1)

∑
i<j πij . Then KCC

can be calculated as (Legendre, 2005)

KCC =
(N − 1)π̄ + 1

n
=
N(N − 1)π̄ +N

N2
=

2
∑
i<j πij +N

N2
, (4.2)

which equals the mean across all elements in π (with ones in the diagonal). Thus,
in a weighted network where weights are given by Spearman rank correlations,
the (adjusted) mean of all links corresponds to KCC.
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4.3 Paper B, Multiple Sclerosis Impairs Regional
Functional Connectivity in the Cerebellum

A number of studies have identified inter-regional connectivity alterations in
patients with MS (Dogonowski, Siebner, Sørensen, Paulson, Dyrby, Blinkenberg
and Madsen, 2013; Dogonowski, Siebner, Sørensen, Wu, Biswal, Paulson, Dyrby,
Skimminge, Blinkenberg and Madsen, 2013; Lowe et al., 2002; Roosendaal et al.,
2010). The motivation for this paper was to study how the local connectivity is
changed in patients with MS.

In (Dogonowski et al., 2014) (Appendix B) we estimated ReHo by calculating
KCC maps for each of 42 subjects with MS and 30 healthy controls (HC). After
z-score normalizing and spatial smoothing we compared voxelwise KCC maps
between MS and HC using a non-parametric two-sample T-test with age as co-
variate as implemented in FSL Randomise1. The significance level was set at
p < 0.05 at the cluster level. Subjects with MS showed a decrease in regional
homogeneity in lobule V and VI of the left cerebellar hemisphere. Likewise, a
similar region in the right cerebellar hemisphere showed a trend toward signif-
icance. Similarly, a cluster in the left cerebellum, comprising regions of Crus
I and Crus II which extended into Crus II and left dentate nucleus, showed
negative correlation between KCC and EDSS scores. The direction of the cor-
relation means that patients with higher EDSS scores (more disability) showed
less regional homogeneity. Also, a cluster in the right cerebellum showed a trend
towards significance.

To investigate the cause of the decreased MS regional homogeneity in cerebel-
lum, we extracted the mean KCC values in the two clusters showing group
differences (in left and right cerebellum) from the MS subjects. Likewise, we
extracted the mean lesion load (LL) of the cerebellar peduncles and cortico-
spinal tract (CST). Significant correlations (controlling for age) between LL of
the left cerebellar peduncles and KCC in left (p = 0.005) and right cerebellum
(p = 0.016) was found. Likewise, when the cerebellar peduncles was segregated
into inferior, middle, and superior peduncles we found significant correlations
between KCC of left cerebellum and LL in inferior (p = 0.029) and middle
(p = 0.012) but not superior (p = 0.841) peduncles. Significant correlation was
found between right cerebellum and LL in middle peduncles (p = 0.042) but
not inferior (p = 0.122) and superior (0.072) peduncles. No significant correla-
tions was found with the LL in CST. All the correlations had a negative slope
meaning that the greater lesion load the less regional homogeneity.

1fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/randomise/index.html

fsl.fmrib.ox.ac.uk/fsl/fsl-4.1.9/randomise/index.html


Chapter 5

Kernel Principal Component
Analysis Denoising

When I have clarified and exhausted a subject, then I turn away from it, in order
to go into darkness again.
- Carl Friedrich Gauß

This chapter introduces Kernel Principal Component Analysis (KPCA), which
is a non-linear generalization of linear PCA. KPCA can be used for denoising,
however, two important parameters, namely the number of components and the
scale used for the Gaussian kernel, must be set. Paper A presents a principled
way of selecting these two parameters.
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Figure 5.1: Example illustrating the idea behind denoising using KPCA. (a) The
2D data in input space. (b) Data mapped to feature space using the Gaussian
kernel with σ2 = 4 and projected onto the first two principal components. (c)
The denoised data (preimages) in input space. Here data was denoised using
the iterative scheme presented in (Mika et al., 1999) using 11 components.

5.1 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a standard method to do feature ex-
traction, dimensionality reduction, visualization, or denoising. PCA works in
the linear domain by projecting data onto the directions with largest variance.
However, if data lies on a non-linear manifold linear PCA might not work well.
KPCA is a non-linear generalization of PCA. When using KPCA for data de-
noising the data is projected onto more general non-linear manifolds by mapping
data to feature space using a non-linear mapping function. In feature space lin-
ear PCA is applied and when data is projected onto a number of the largest
eigenvectors and mapped back to input space the so-called pre-image is recov-
ered, where the hope is that noise has been removed from the data.

The process involved in KPCA denoising is illustrated in Figure 5.1. (a) shows
the two-dimensional data consisting of blue data points inside a circle of red
data points. (b) shows data projected onto the two first principal components
in feature space. Here data was mapped with the Gaussian kernel using σ2 = 4.
The first component captures distance from the center (in input space) and
the second component captures radial distance. (c) shows the pre-images after
mapping the data back to input space where noise have been removed.

KPCA has been applied in a number of fMRI applications. In (Rasmussen
et al., 2012) KPCA was used for fMRI denoising, where improved classification
performance after KPCA denoising was demonstrated. Song et al. (2008) also
used KPCA for denoising and showed increased sensitivity in activated voxels.
Thirion and Faugeras (2003) used KPCA for dynamic fMRI modelling.
Sidhu et al. (2012) used KPCA for dimensionality reduction and feature extrac-
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tion for classification of ADHD vs. HC. Likewise, Du et al. (2012) used KPCA
features for classification of schizophrenia patients vs. HC. In a very recent pa-
per, Song et al. (2014) used KPCA to remove physiological noise in fMRI data.
Abrahamsen and Hansen (2011) considered a sparse pre-image reconstruction
and show improved brain state decoding accuracy and more reproducible pre-
images.

5.1.1 Mathematical Formulation of KPCA

The following introduction to KPCA follows the derivation in (Bishop, 2006).
Let the D = {xi}Ni=1 be the set of N data samples in input space X . In linear
PCA the sample co-variance matrix of D is decomposed using an eigen decom-
position, and the principal components then correspond to the eigenvectors of
the co-variance matrix.

Non-linear PCA can be done by mapping the data to feature space F using a
non-linear map ϕ. The map ϕ(x) of x is called the image of x. Then in feature
space linear PCA can be conducted on the co-variance matrix of the mapped
data points. However, KPCA makes use of the kernel-trick, which states that a
kernel function g(xm,xn) can be defined such that it equals the inner product
of their feature space mapped representations

g(xm,xn) = ϕ(xm)>ϕ(xn). (5.1)

The goal is then to formulate the PCA in feature space in terms of the kernel
function and thus avoid working directly in feature space. For now assume that
the data is centered in feature space F . Then the co-variance matrix is given as

C =
1

N

N∑

n=1

ϕ(xn)ϕ(xn)>. (5.2)

The eigen decomposition is then

Cui = λiui, (5.3)

where ui is the eigenvector corresponding to the eigenvalue λi. If C is substi-
tuted with the definition given in Eq. (5.2) then

1

N

N∑

n=1

ϕ(xi)(ϕ(xn)>ui) = λiui, (5.4)

where by observing that the inner product (ϕ(xn)>ui) is a scalar, we can con-
clude that ui lies in the span of the mapped datapoints ϕ(xn), which means
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that it can be written as

ui =

N∑

n=1

ainϕ(xn). (5.5)

Inserting this into Eq. (5.4)

1

N

N∑

n=1

ϕ(xn)ϕ(xn)>
N∑

m=1

aimϕ(xm) = λi

N∑

n=1

ainϕ(xn). (5.6)

By multiplying both sides with ϕ(xl)
> the equation can be expressed using the

kernel function g(xn,xm) = ϕ(xn)>ϕ(xm).

1

N

N∑

n=1

g(xl,xn)

N∑

m=1

aimg(xn,xm) = λi

N∑

n=1

aing(xl,xn). (5.7)

This can be written in matrix notation as

G2ai = λiNGai, (5.8)

where G is the kernel matrix with Gij = g(xi,xj). The ais can be found by
solving the following eigenvalue problem

Gai = λiNai, (5.9)

When having solved for the ais the solution is normalized by requiring that the
eigenvectors ui have unit length, which equals to

1 = u>i ui =

N∑

n=1

N∑

m=1

ainaimϕ(xn)>ϕ(xm) = a>i Gai = λiNa>i ai. (5.10)

The derivation above assumed that the mapped data ϕ(x) was centered. This
is in general not the case, however, it can be achieved by

ϕ̃(x) = ϕ(x)− ϕ̄, (5.11)

where ϕ̄ = 1
N

∑N
l=1 ϕ(xl) is the mean image. This can be written in terms of

the kernel function

g̃(xn,xm) = g(xn,xm)− 1

N

N∑

l=1

g(xl,xm)− 1

N

N∑

l=1

g(xn,xl)+
1

N2

N∑

j=1

N∑

l=1

g(xj ,xl).

(5.12)

The eigenvectors ui are not retrieved per se, however, the projection bk of a
pattern x onto the k-th eigenvector can be calculated using kernel functions as

bk = ϕ̃(x)>ui =

N∑

n=1

ainϕ̃(x)>ϕ̃(xn) =

N∑

n=1

aing̃(x,xn). (5.13)
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Likewise, an expression for the projection Pqϕ(x) onto the first q eigenvectors
is given as

Pqϕ(x) =

q∑

i=1

biui + ϕ̄ =

q∑

i=1

bi

N∑

n=1

ainϕ̃(xn) + ϕ̄ (5.14)

5.1.2 The Pre-image Problem

The idea with KPCA denoising is to project Pqϕ(x) back to input space to
recover the so-called pre-image, which hopefully is a less noisy version of x. The
exact mapping back to input space might not exist. However, an estimate x̂
which minimizes

||ϕ(x̂)− Pqϕ(x)||2 = ||ϕ(x̂)||2 − 2Pqϕ(x)>ϕ(x̂) + const., (5.15)

can be found. Using the Gaussian kernel

g(x,y) = exp

(
−||x− y||2

2σ

)
(5.16)

Mika et al. (1999) proposed an iterative fixed point algorithm to find x̂ given as

x̂t+1 =

∑N
i=1 κ̃i exp(−||x̂t − xi||2/2σ2)xi∑N
i=1 κ̃i exp(−||x̂t − xi||2/2σ2)

, (5.17)

with κi =
∑q
k=1 bkaki and κ̃i = κi + 1

N (1−∑N
j=1 κj).

5.2 Paper A, Model Selection for Gaussian Ker-
nel PCA Denoising

In (Jørgensen and Hansen, 2012)(Appendix A) we propose kernel Parallel Anal-
ysis (kPA) for model selection in Gaussian KPCA denoising. kPA provides a
principled way of selecting the scale σ2 of the Gaussian kernel and the num-
ber of components q to retain. The method builds upon parallel analysis (PA)
(Beauducel, 2001; Horn, 1965; Ledesma and Valero-Mora, 2007), which is used
in linear PCA to estimate the number of components to retain. PA compares
the eigenvalues of the co-variance matrix of the original data with eigenvalues
of the co-variance matrix of null-data. The null-data is generated by permut-
ing the data within variables a number of times and for each permutation the
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Figure 5.2: Example illustrating kPA. (a) plots the eigenvalues λ of original data
(solid line) and the threshold T selected using permuted data (dashed line) for
a given σ. The grey area represent the signal energy E. (b) plots the signal
energy E (top) and the number of components to retain q (bottom) for different
values of σ. Finding the maximum of E selects both the scale σkPA and the
number of components qkPA.

eigenvalues are calculated. For each component a threshold is calculated as the
95th percentile of null-eigenvalues for that component. The number of eigen-
values from the the original data which exceeds this threshold is selected as the
dimensionality of the subspace.

kPA takes the same approach as PA, however, the eigenvalues for original and
permuted data is calculated in feature space. Thus, this requires that both
the original and permuted data are mapped to feature space given a specific
σ. In feature space the number components q to retain is found in the same
way as in PA, however, note that q will depend on the scale value used, thus
we can write q(σ). The idea is then to calculate the signal ’energy’ as the
sum of the retained components’ eigenvalues minus the threshold. This signal
energy also depends on the scale and kPA therefore chooses the scale σkPA which
maximizes the energy. Once σkPA is found the number of components follows as
qkPA = q(σkPA). kPA is illustrated in Figure 5.2 where the eigenvalue spectrum
and threshold are plotted and the signal energy corresponds to the gray area.
The energy is plotted for different values of σ and the maximum is selected,
which then provides an estimate for both σ and q.

kPA is tested using both synthetic data as well as on the USPS dataset of
handwritten digits and we show that kPA outperforms other heuristics for se-
lecting the scale as well as dimensionality of the subspace. A Matlab toolbox
for performing kPA was developed and is freely available1.

1 http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6236

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6236
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In a recent report Varon et al. (2013) extended upon the kPA. Especially, the
authors note that kPA has difficulties when the dimensionality of data in input
space is low. So instead of estimating the eigenspectra from permuted data
they estimate the distribution of distances between data points in input space.
From this distribution they then generate distance matrices, which are mapped
to feature space from which the eigenspectra are computed. They also propose
modifications to the fixed-size method as a method to estimate the kernel matrix,
which is useful for large datasets. They report improved results especially for
low dimensional data using these improvements.

The kPA method is a principled method to determine the two parameters in
KPCA. KPCA has already found applications in neuroimaging and future inves-
tigations will reveal if kPA is able of finding suitable parameters for denoising
in, e.g., fMRI datasets. fMRI data contains noise from a number of sources
(scanner, physiological, movement) and a unsupervised method to denoise data
would be highly desirable.
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Chapter 6

Discussion and Conclusion

To arrive at the simplest truth requires years of contemplation.
- Isaac Newton
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The main topic of this thesis is network modelling of MR data. The modelling
is done at several levels considering both whole brain connectivity as well as
modelling of brain connectivity at the local level. In particular, nonparametric
Bayesian models were evaluated for use in modelling brain networks. At the
local level KCC was used to investigate the local connectivity of fMRI signals
and group differences between MS and HC was found. Finally, a principled
method to select the parameters for Gaussian KPCA was presented. KPCA
is a method with many applications and have already found applications in
modelling fMRI data.

At the whole brain level three different nonparametric Bayesian models to infer
node clustering were compared. The models differ in the constrains they put on
the probability of links between clusters. IRM is the most flexible of the models
as this model does not constrain the link probability between clusters. BCD
adhere to the definition of community structure and constrains the link proba-
bilities such that a cluster (or community) will have larger within than between
cluster linking. Finally, the IDM models individual within-cluster linking but
constrains all between-cluster link probabilities to be equal. IDM can be seen as
a probabilistic version of the modularity index, which is often used for defining
communities in brain networks. Among the three models, IRM and BCD were
found to be more predictable and reproducible than IDM. This points to the
importance of modelling specific between-cluster link probabilities. Comparing
the two most expressive models (IRM and BCD) it was found that BCD had
higher or on par predictability and reproducibility, with larger difference for the
lower link densities. The increased predictability and reproducibility suggests
that networks derived from resting state fMRI are community structured.

The model formulation allow one to represent the networks in a compressed
form. In particular, a new network can be formed with clusters as nodes and
cluster link probabilities as weighted links. These compressed networks can
then be used in further analysis, e.g., in group or correlation analysis. This was
explored in (Mørup et al., 2010), where the cluster link probabilities were used
to classify between MS patients and HC.

Model comparison was achieved with a split-half framework. Modelling shared
link probabilities across subjects allows one to evaluate the predictive likelihood
for test data. This, together with the reproducibility of clusterings between data
splits, forms the evaluation measures. In the model evaluation in Paper C and
Paper E a group model was used, which models shared link probabilities across
subjects. However, evaluating a model with individual subject link probabilities
could be achieved by having multiple datasets per subject. Thereby the subject
specific link probabilities can be used for predicting test data for the same
subject. This is in fact the approach taken in Paper F where two sets of data
were available per subject.
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In addition to whole brain network modelling the methods can be used at the
local level to, e.g., group voxels into functionally coherent clusters. In Paper
D we showed the utility of the IRM model in segmenting voxels in the human
striatum. This was achieved by constructing the network by correlating striatal
voxels against each other. IRM clustered interhemispheric homologue voxels
together indicating that IRM was able to cluster areas involved in same neural
computations together. As alternative to segmenting striatum by considering
the internal connectivity, a bipartite model could be used. In a bipartite network
the connectivities between a set of voxels to another set of voxels are found and
forms the basis for analysis. As such, the striatal voxels could be correlated
against voxels in cortex. This would result in a clustering of striatal voxels and
clustering of cortical voxels and an estimate of the connectivity between elements
of the two sets of clusters. In such a model one could test the hypothesis that
different areas in striatum exhibit different connectivity to different cortical
areas (Di Martino et al., 2008).

Integrating information from structural and functional brain imaging is an area
which attracts increasing attention (Damoiseaux and Greicius, 2009; Hinne
et al., 2014). Jointly modelling functional and structural connections might
reveal information which is not possible to reveal with either modality alone. A
novel model based on the IRM, which can infer shared network structure across
different network types, is presented. The model allows clusters to be shared or
un-shared across network type. The model was tested on networks derived from
fMRI and DWI data. Limited amount of shared clustering between these two
modalities was found, which might be due to a number of reasons. As was shown
in Figure 3.5 there are many between-hemisphere links in the functional net-
works. However, only a limited amount of streamlines find its way across corpus
callosum in the tractography analysis, resulting a lower number of connections
between hemispheres for the diffusion network. It has been shown (Honey et al.,
2009; Ng et al., 2013) that some of the inconsistencies between functional and
structural connectivity can be accounted for by allowing indirect structural con-
nections. In this study we used Pearson correlation as basis for the functional
connections. Pearson correlation cannot distinguish direct from indirect con-
nections, that is, if a node A is correlated with node B and B is correlated with
C, there is a lower limit on the correlation between A and C (Zalesky et al.,
2012). One way to come around this problem, would be to estimate (sparse)
partial correlations (Ng et al., 2012) and allow for indirect (second order) struc-
tural connections (Bowman et al., 2012). This could render the two types of
brain networks more similar and might increase the percentage of shared clus-
tering. When comparing the two DWI networks per subject, we found a high
degree of shared clustering between sets, which suggests that even though the
networks are derived from probabilistic tractography the two networks are very
consistent. Comparing the two rs-fMRI networks per subject, an intermediate
amount of sharing was found, which indicates less consistency in resting state
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networks. This inconsistency can be due to the non-stationarity of resting state
brain correlation, which are reported in, e.g., (Allen et al., 2012). The proposed
method is not specific to modelling structural and functional brain networks,
but can be used for other types of networks, which are defined on the same set
of nodes across network types. An interesting application could be in modelling
of group differences in clustering in case-control studies. The model, however,
needs further testing before this is possible.

Another approach used in this thesis is to estimate the local functional con-
nectivity by estimating the coherence of the fMRI signals in small neighbor-
hoods. Generating maps reflecting these local connectivities enable us to com-
pare groups of subjects. In particular, we showed that subjects suffering from
multiple sclerosis had reduced local connectivity in cerebellum compared to
healthy controls, and that the local connectivity decreased with disease progres-
sion. This reduced local connectivity in cerebellum is most likely due to lesions
in the cerebellar peduncles, as larger lesion load reduced the local connectivity
more.

The final topic covered in this thesis in on model selection for denoising using
Gaussian KPCA. When denoising using KPCA both the scale of the Gaussian
kernel as well as the subspace dimensionality must be selected. To the best of
our knowledge our proposed method was the first principled way to simultane-
ously select both of these parameters. Our method, termed kPA, builds on the
Parallel Analysis method for subspace selection in classical PCA. However, in
order to also select the Gaussian scale we suggest to optimize the signal energy
in feature space, which, when optimized, simultaneously selects both model pa-
rameters. KPCA have already found applications in neuroimaging, however,
future work will reveal if kPA is able to select suitable parameters when denois-
ing neuroimaging data.
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Brief Papers

Model Selection for Gaussian Kernel PCA Denoising

Kasper Winther Jørgensen and Lars Kai Hansen

Abstract— We propose kernel parallel analysis (kPA) for auto-
matic kernel scale and model order selection in Gaussian kernel
principal component analysis (KPCA). Parallel analysis is based
on a permutation test for covariance and has previously been
applied for model order selection in linear PCA, we here augment
the procedure to also tune the Gaussian kernel scale of radial
basis function based KPCA. We evaluate kPA for denoising of
simulated data and the U.S. postal data set of handwritten digits.
We find that kPA outperforms other heuristics to choose the
model order and kernel scale in terms of signal-to-noise ratio of
the denoised data.

Index Terms— Denoising, kernel principal component analysis,
model selection, parallel analysis.

I. INTRODUCTION

Kernel principal component analysis (KPCA) is of increas-
ing interest in signal processing, in particular for non-linear
signal denoising, see [1] and [2]. While conventional principal
component analysis (PCA) denoises signals by projecting onto
a linear signal subspace, KPCA denoises by projection onto
more general non-linear signal manifolds. A non-linear signal
manifold is identified by first mapping the input data to
feature space using a non-linear function. In feature space
conventional PCA can be applied to extract the main variation
in the data by projecting the data onto the subspace spanned
by the eigenvectors of the q largest eigenvalues. Finally, the
denoised signal is obtained by reconstructing the so-called
pre-image in input space.

The representer theorem allows effective implementation of
the non-linear mapping through inner products represented by
the kernel function [3]. Here we will consider the widely used
radial basis function aka Gaussian kernel defined by the func-
tion k(x, y) = exp(−||x − y||2/2σ 2). The smoothing scale
parameter σ plays an important role to the quality of the pre-
image as do the number of principal components retained q .
Conventional linear PCA is obtained in the limit σ →∞.
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A number of heuristics has been suggested to select the
scale. Teixeira et al. [1] consider denoising of handwritten
digits and they denoise each of the digits in the USPS
data set [4] individually and set σ to the maximal dis-
tance between each of the training points to the average
of all training points. Arias et al. [5] set σ as the aver-
age distance to the rσ -th nearest neighbors, rσ = {1, 5}.
Thorstensen et al. [6] estimate σ as the median of all mutual
distances between all training points. Kwok and Tsang [2]
set σ to the mean of all mutual training distances. Like-
wise, for PCA there exist several methods to estimate the
number of components q . The Guttman-Kaiser criterion [7]
retains all components with eigenvalues greater than the
mean. The so-called Scree criterion plots the eigenvalues
in decreasing order and finds the ‘elbow’ of the eigenval-
ues spectrum. The lack of a likelihood function for KPCA
prevents the use of cross-validation approaches proposed in
[8], Alzate and Suykens [9] have proposed an alternative
loss function that promotes sparsity, and which also with
manual inspection of projection distributions allow model
selection. Parallel analysis (PA) [10]–[12] is a resampling
based alternative for estimation of q in PCA. PA compares
the eigenvalues with the distribution of eigenvalues obtained
by PCA on data sets distributed according to a null hypoth-
esis of zero covariance. The PA null distributed data sets
are obtained by permuting the measurements among the
data points within each feature dimension and q is deter-
mined as the set of original PCA eigenvalues greater than
the 95th percentile of the corresponding null distribution of
eigenvalues.

In this communication, we adapt PA to KPCA to select
the model order q and furthermore extend it to automatically
select the smoothing scale parameter σ for Gaussian kernels.
In particular, we optimize σ to maximize the accumulated
eigenvalue advantage of the leading q components compared
with PA null data. To our knowledge, this is the first general
and automatic scheme for tuning q and σ for KPCA.

II. THEORY

A. KPCA

Let X define the set of N data points X = [x1, . . . , xN ]′ in
input space X . Let ϕ be a non-linear map from X to feature
space F . The kernel matrix K is constructed from the inner
products, i.e., K i, j = k(xi , x j ) = ϕ(x j )

′ϕ(x j ). The eigen
decomposition of the centered kernel matrix is found: K̃ =
H K H = U�U ′, where H = I − (1/N)11′ is the centering
matrix, I is the N × N identity matrix, 1 = [1, 1, . . . , 1]′ is
a N × 1 vector, U = [α1, . . . ,αN ] with αi = [αi1, . . . , αi N ]′
is the matrix containing the eigenvectors and � =
diag(λ1, . . . , λN ) contains the corresponding eigenvalues [13].

2162–237X/$26.00 © 2011 IEEE
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The kth orthonormal eigenvector of the covariance matrix
in the feature space can be shown to be

vk =
N∑

i=1

αki√
λk

ϕ̃(xi ) = 1√
λk

�̃αk (1)

where ϕ̃(x) = ϕ(x) − ϕ̄ is the centered map with ϕ̄ =
(1/N)

∑N
i=1 ϕ(xi ) and �̃ = [ϕ̃(x1), ϕ̃(x2), . . . , ϕ̃(xN )]. The

projection βk of the pattern x onto the kth component
is then

βk = ϕ̃(x)′vk = 1√
λk

N∑

i=1

αki ϕ̃(x)′ϕ̃(xi )

= 1√
λk

N∑

i=1

αki k̃(x, xi ) (2)

while the projection Pqϕ(x) of ϕ(x) onto the subspace
spanned by the first q eigenvectors can be found as

Pqϕ(x) =
q∑

i=1

βivi + ϕ̄

=
q∑

i=1

1

λi
(α′i k̃x )(ϕ̃αi )+ ϕ̄

= �̃Mk̃x + ϕ̄ (3)

with M = ∑q
i=1(1/λi )αiα

′
i and k̃x = H(kx − (1/N)K 1),

where kx = [k(x, x1), . . . , k(x, xN )]′.

B. Pre-Image Problem

For denoising we are interested in projecting Pqϕ(x) back
to input space to recover the denoised pattern z - the so-called
pre-image. An exact pre-image of Pqϕ(x) may not exist but
a least squares estimate z can be obtained by minimizing

||ϕ(z)− Pqϕ(x)||2 = ||ϕ(z)||2−2Pqϕ(x)′ϕ(z)+const. (4)

In this brief, we will use the original iterative fixed point
algorithm proposed by Mika, Schölkopf et al. [3]

zt+1 =

N∑
i=1

γ̃i exp
(−||zt − xi ||2/2σ 2

)
xi

N∑
i=1

γ̃i exp
(−||zt − xi ||2/2σ 2

) (5)

with γi =∑q
k=1 βkαki and γ̃i = γi + (1/N)(1 −∑N

j=1 γ j ).

C. Kernel Parallel Analysis (kPA)

We extend the idea of PA to KPCA including choice of
smoothing scale σ for the Gaussian kernel, and we refer to
the proposed method as kPA.

In feature space the eigenvalue λi for component i of the
PCA is compared with the distribution of eigenvalues of null
data sets obtained by permuting the data in input space p
times. For component i , the reference threshold Ti is set to the
value of the 95th percentile in the component’s distribution
of eigenvalues. The number of components q to retain is
chosen such that the original data eigenvalues are larger than

threshold for all retained components. Note, that both the
original data eigenvalues, the reference thresholds, and the
number of components q will depend upon the Gaussian
scale σ

q(σ ) = max
λi (σ )−Ti (σ )>0

i. (6)

A conservative estimate of the signal energy can be obtained
as the cumulated difference between the original data eigen-
values and reference threshold levels

E(σ ) =
q(σ )∑

i=1

λi (σ )− Ti (σ ). (7)

The proposed method chooses the kernel scale σ to maximize
E(σ ). The energy is an estimate of the variance of the retained
components in kernel space when accounting for the variance
of null data. Thus, maximizing the energy in kernel space will
maximize the variance of the true signal.

By column-wise permuting the data between samples for a
given input dimension, we assure that the null-data is drawn
from a distribution which has the same marginal distributions
as the original data. Furthermore the input dimensions of the
null distribution are statistical independent, i.e., the joint prob-
ability density function is fully factorized. This means that all
manifold structures in input space are destroyed. Note this is a
stronger condition than necessary in PA which only requires a
null distribution with no covariance. Hence, the corresponding
null distribution in feature space is that of a kernel mapped
fully factorized distribution in input space with the correct
input space marginals. The kernel spectrum of permuted data
represents this “null” information. The distribution of the null
kernel spectrum, as estimated by repeated permutation, allows
us to determine when structure is present–identified in kPA as
eigenvalue magnitudes rejected in the distribution of the null
spectrum (p < 0.05).

Pseudocode for the kPA algorithm is shown in Algorithm 1.
The algorithm starts by making p permutations of the data
matrix X . Then the energy is estimated for a number Nσ of
different scales σ and the scale σkPA with maximal energy
is chosen with the corresponding number of components
q(σkPA).

The algorithm calculates the eigenvalues of p kernel
matrices. This is repeated for the number of scale values
investigated Nσ . The calculation of the data point distance
matrix used for the kernel matrix generation can be calculated
prior to the iteration over scale values and thus reduces the
computations needed. The computational complexity of the
eigenvalue calculation is in general O(N3), where N is the
number of data points, though there exist iterative methods for
finding the first few eigenvalues of large symmetric matrices
which are faster [14]. Thus the worst-case time complexity
of the kPA algorithm is O(pNσ N3).

III. EXPERIMENTS

We use two data sets for illustration. In both data sets,
we create noisy data from a set of clean patterns which
allows us to measure the quality of the denoising procedure.
This experimental design is adapted from the original KPCA
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Algorithm 1 kPA
1: Make p permuted replicas of the data matrix by permuting

elements in the columns of X independently:
Xperm

j ← permute(X), j = 1, . . . , p.
2: Calculate and center the kernel matrix K orig corresponding

to the original data matrix Xorig:
K̃

orig = H K orig H .
3: For each permuted dataset calculate and center the kernel

matrix K perm
j :

K̃
perm
j = H K perm

j H, j = 1, . . . , p.
4: for σ = σstart → σend do
5: Calculate eigenvalues of kernel matrix:

λi (σ )← eigval(K̃
orig

, σ ).
6: For the j th permutation calculate eigenvalue for compo-

nent i in kernel space:
λ̃i, j (σ ) ← eigval(K̃

perm
j , σ ), i = {1, . . . , N}, j =

{1, . . . , p}.
7: For component i set the threshold Ti to the 95th per-

centile of eigenvalues of null data:
Ti ← 95th percentile of λ̃i,∗(σ ).

8: Use (6) to estimate q(σ ).
9: Use (7) to estimate E(σ ).

10: end for
11: Select the scale σkPA which maximizes E .
12: Set the number of components to q(σkPA).

paper [3]. The average signal-to-noise ratio (SNR) over data
points was calculated and used as performance metric, where
SNR is defined as

SNR(dB) = 10 log10
〈S2〉
σ 2

res
(8)

where S is the noise-free data and σ 2
res is the variance of the

residual noise after de-noising.
We used p = 49 in the experiments for this brief, which

we found resulted in satisfactory results. While increasing p
sometimes give more accurate tests this comes with increased
computational times.

A. Semi-Circles Simulation

An artificial data set was constructed as two equally popu-
lated non-intersecting semi-circles placed initially in a 2-D
space (N = 500). The two dimensions were both rotated
to occupy 25 dimensions generating a d = 50 dimensional
data set. White Gaussian noise (σnoise = 0.5) was added in
all 50 dimensions and kPA was used to estimate q and σ
before denoising. Fig. 1 shows the eigenvalues of the first ten
eigenvectors for the data and the reference threshold level T
for null data using σ = 4.5 and p = 49. The shaded area
between the two curves where λi > Ti was next optimized
over the single parameter σ . Fig. 2(a) shows the cumulative
eigenvalue difference E(σ ) as a function of the scale value
σ ∈ [2.5, 6.5]. The maximum of E(σ ) is attained at σ = 4.5.
Fig. 2(b) shows the number of components q(σ ) as function
of the scale, q = 3 components is retained for the optimal σ .
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Fig. 1. Simulated data ‘semi-circles’ (N = 500, d = 50). The eigenvalues
of the empirical data and the null hypothesis 95% percentile reference level.
The cumulated eigenvalue difference-‘the signal energy’ E is the gray area
between the two curves. In kPA this area is maximized by tuning the scale
of the Gaussian kernel.
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Fig. 2. Simulated data ‘semi-circles’ (N = 500, d = 50). (a) E(σ ) versus
kernel scale σ . (b) Corresponding model order q chosen by kPA.

To illustrate the simulation data set we use linear PCA on
the noise-free data in input space and project the data onto
the two first components obtained on noise-free data. Fig. 3
presents the projected data before noise was added, after noise
was added, and after denoising using the optimized parameters
found by kPA.

To test kPA more extensively, conditions were varied. The
number of data points was varied as N = {250, 500, 750}
with noise levels σnoise = {0.50, 0.75, 1.00}. In all cases data
were distributed equally between the two semi-circles. kPA
was used to estimate σ and q and the data were denoised.
Table I shows the estimated q and σ along with SNR mean
and standard deviations for 100 repetitions of kPA along with
the SNR-optimal combination of the parameters (q, σ ) found
by exhaustive grid search. For all the nine combinations of
sample size and noise level, the kPA estimated parameters
remain constant across the 100 repetitions of the experiment.
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Fig. 3. Simulated data ‘semi-circles’ (N = 500, d = 50). Data in the three
panels are all projections on the two first principal components from linear
PCA on the noise free in input space. (a) Projections of the noise-free data
set onto the two first principal components. (b) PC projections of data with
Gaussian white noise added (σnoise = 0.5). (c) PC projections of the denoised
data using KPCA with σ = 4.5 and q = 3 as determined by kPA.

Likewise, for equal noise level the kPA estimated parameters
remain constant across the sample size. Different SNR-optimal
parameter combinations were found in the 100 repetitions. For
σnoise = {0.50, 1.00} the kPA solution is included in the range
of SRN-optimal solutions. For σnoise = 0.75 the scale takes an
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Fig. 4. Simulated data ‘semi-circles’. The SNR (dB) landscape as function
of scale parameter σ and the number of components q. Here N = 500,
d = 50, and σnoise = 0.5. The kPA solution is indicated by the asterisk at
(q, σ ) = (3, 4.5) and the SNR-optimal solution is indicated with boxes.
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Fig. 5. Mean and standard deviations of SNR (dB) in 100 repetitions of the
denoised USPS digits obtained from exhaustive search (SNR-ptimal) and by
kPA for three different noise levels.

intermediate value of the two optima, which causes the SNR
to drop significantly compared to the SNR-optimal solution.

Fig. 4 shows the SNR-surface when varying q and σ for
(N, σnoise) = (500, 0.5). The solution found by kPA (q, σ ) =
(3, 4.5) is indicated with an asterisk while the SNR-optimal
solutions are indicated with boxes.

B. USPS Handwritten Digits

kPA was next applied to the USPS database of handwritten
digits, often used to illustrate KPCA [3], [4]. Images were
normalized to the range [–1;1] and various number of data
points N = {100, 200, 300, 400} were used equally distrib-
uted among the ten digits. Gaussian noise with σnoise =
{0.75, 1.00, 1.25}was added. We used kPA to determine σ and
q and used these parameters to denoise the data and calculate
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TABLE I

SIMULATED DATA ‘SEMI-CIRCLES’. THE ESTIMATED KPCA DIMENSION

q , THE SCALE σ, AND MEAN AND STANDARD DEVIATION OF SNR (dB)

ESTIMATED WITH KPA VERSUS SNR-OPTIMAL PARAMETERS FOUND BY

EXHAUSTIVE GRID SEARCH. THE TEST WAS CARRIED OUT WITH

DIFFERENT COMBINATIONS OF DATA SAMPLE SIZE N = {250, 500, 750}
AND NOISE STANDARD DEVIATION σnoise = {0.50, 0.75, 1.00}. WE

REPORT THE PARAMETERS FOUND IN 100 REPETITIONS

kPA SNR-optimal

SNR SNR

N σnoise q σ (dB) q σ (dB)

250 0.50 3 4.5 12.35 2 9.0 12.50

±0.28 3 4.0, 4.5, 5.0 ±0.27

0.75 2 6.5 8.96 2 8.0, 8.5, 9.0 9.15

±0.37 3 3.5 ±0.37

1.00 2 8.0 6.44 1, 2 7.0, 7.5, 8.0 6.66

±0.31 8.5, 9.0 ±0.28

500 0.50 3 4.5 13.75 2 9.0 13.77

±0.23 3 4.0, 4.5, 5.0 ±0.22

4 3.0

0.75 2 6.5 10.19 2 8.5, 9.0 10.52

±0.23 3 3.5, 4.0 ±0.23

1.00 2 8.0 7.89 2 7.0, 7.5, 8.0 7.89

±0.25 8.5, 9.0 ±0.25

750 0.50 3 4.5 14.42 3 4.5, 5.0, 5.5 14.46

±0.18 4 3.0 ±0.18

0.75 2 6.5 10.71 2 9.0 11.17

±0.20 3 3.5, 4.0 ±0.22

1.00 2 8.0 8.60 2 7.5, 8.0 8.61

±0.21 8.5, 9.0 ±0.21

the SNR of the denoised images. Fig. 5 presents the results
(mean and standard deviation of 100 repetitions) in terms of
the SNR for the kPA solution and the best solution found in
exhaustive grid search. The kPA solution is seen to be robust
to the number of data points and the noise level used. Table II
reports the q and σ values observed in the 100 repetitions
under the varying conditions. For both kPA and SNR-optimal
solution, the chosen scale value remain constant across N but
increases with increasing σnoise. kPA chooses larger scales
for all scenarios than the SNR-optimal scale. Both the kPA
and SNR-optimal q are increasing with N and decreasing
with σnoise. kPAs subspace dimensions q are generally, but
not uniformly, smaller than the SNR-optimal solution. The
possible tendency to underfit the signal subspace dimension
was also noted in [12].

Next, the kPA scale estimate σ was compared with five
other heuristics to set the scale: 1) maximal distance between
each training point to average of all training points [1];
2) median distance between training points [6]; 3) mean
distance between training points [2]; 4) average distance
to the nearest neighbor [5]; and 5) average distance to the
nearest five neighbors [5]. For this test, the noise level was set
to σnoise = 1.00 and the number of components was fixed to
the q chosen by kPA. Fig. 6 presents the mean and standard

TABLE II

USPS DATASET. DENOISING WITH DIFFERENT COMBINATIONS OF

NUMBER OF DATA POINTS N = {100, 200, 300, 400} AND ADDITIVE

NOISE STD. σnoise = {0.75, 1.00, 1.25}. THIS TABLE PRESENTS THE

OBSERVED q AND σ IN 100 REPETITIONS OF THE EXPERIMENT USING

KPA. IN COMPARISON, THE SNR-OPTIMAL SOLUTIONS OBTAINED FROM

EXHAUSTIVE GRID SEARCH ARE SHOWN

kPA SNR-optimal

N σnoise q σ q σ

100 0.75 9–14 15–16 16–21 9–11

1.00 8–14 19 9-14 10–11

1.25 6–13 21–23 4–10 11–13

200 0.75 14–18 16 27–32 9–10

1.00 12–17 19 15–20 10–11

1.25 9–17 22–23 7–13 11–12

300 0.75 16–20 16 34–42 9

1.00 14–19 19 18–26 9–10

1.25 11–19 22–23 9–16 10–13

400 0.75 18–22 16 40–46 9

1.00 15–20 19 21–28 9–10

1.25 14–20 22–23 11–18 10–12
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Fig. 6. Mean and standard deviations of SNR (dB) in 100 repetitions of
the denoised USPS digits obtained by choosing scale according to the six
methods. (1) Maximal distance between each training point to average of
all training points. (2) Median distance between training points. (3) Mean
distance between training points. (4) Average distance to the nearest neighbor.
(5) Average distance to the nearest five neighbors. (6) kPA. Here σnoise = 1,
results were similar at other noise-levels. For all data cases kPA significantly
outperforms the other five competing methods.

deviation of 100 repetitions for N = {100, 200, 300, 400} and
shows that kPA outperforms the other methods for all sample
sizes investigated, with extremely significant p-values.

The computational complexities for the methods used
here is: 1) O(N); 2)–5) O(N2); and 6) O(pNσ N3). The
mean computational times tkPA for the kPA method
in this experiment were {N, tkPA} = {100, 9.7s; 200, 27.2s;
300, 51.9s; 400, 92.1s}, with Nσ = 3, p = 49. For methods
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using the Guttman–Kaiser criterion, the Scree criterion and kPA for choosing
the number q of components to retain. The scale σ was chosen by kPA.
Here σnoise = 1, results were similar at other noise-levels. kPA is better than
the Scree and clearly superior to the Guttman–Kaiser criterion.

1)–5) the computational times were t < 0.1 s for all N .
The experiments were done on a Intel(R) Core(TM) i7 CPU,
2.67 GHz system. So, the improved performance of kPA comes
with an increased computational time also. This is due to the
fact that kPA is based on permutation tests in kernel space
while the other methods work on distances in input space.

Finally, we compare methods to choose the number of
components q . We compare the kPA solution to the Scree
criterion and the Guttman-Kaiser criterion. The Scree criterion
was implemented as the first point where the difference
between two consecutive eigenvalues in the sorted eigenspec-
trum was less than 5% of the largest consecutive difference.
The Guttman-Kaiser method estimated q as the number of
eigenvalues greater than the mean. Fig. 7 plots means and
standard deviations of 100 repetitions. kPA significantly out-
performs both the Scree and Guttman-Kaiser criteria. In all
cases, the differences between kPA and the other methods are
extremely significant.

IV. CONCLUSION

We propose kPA, a generalization of PA to KPCA. kPA
completes the widely used Gaussian KPCA as an algorithm,
as it both solves the subspace dimensionality problem and
tunes the smoothing scale parameter. The method optimizes
the energy function, which is the accumulated eigenvalue
advantage of the leading q components compared with null
data. The energy is only a function of the Gaussian kernel
smoothing scale, thus the optimization is 1-D. We used two
datasets to extensively test the proposed method, namely the
artificial semi-circles data and the USPS dataset of hand-
written digits. For the semi-circles data, the kPA obtained
parameters were shown to be constant across 100 repetitions
of the same noise-level and number of data points. Except
for σnoise = 0.75, the chosen parameters are in the range of

SNR-optimal solutions. For σnoise = 0.75, the kPA solution
takes an intermediate value for the scale parameter. For the
USPS dataset, we show that the SNR obtained using the kPA
solution is robust to the sample size and noise level compared
with the SNR-optimal solution. When compared with other
heuristics to chose the scale we show that kPA significantly
outperform all other methods. Also, when compared to other
methods to select the subspace dimensionality the kPA para-
meter estimates result in significantly higher SNR on the
denoised data.

Since kPA is based on permutation tests of the eigenspectra
in kernel space, the computational time is larger than the other
methods used for comparison in this brief. Future work will
focus on improving the computational complexity and test kPA
with other noise sources.
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Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to study changes in long-range
functional brain connectivity in multiple sclerosis (MS). Yet little is known about how MS affects functional
brain connectivity at the local level. Here we studied 42 patients with MS and 30 matched healthy controls
with whole-brain rs-fMRI at 3 T to examine local functional connectivity. Using the Kendall's Coefficient of
Concordance, regional homogeneity of blood-oxygen-level-dependent (BOLD)-signalfluctuationswas calculated
for each voxel and used as a measure of local connectivity. Patients with MS showed a decrease in regional
homogeneity in the upper left cerebellar hemisphere in lobules V and VI relative to healthy controls. Similar
trend changes in regional homogeneity were present in the right cerebellar hemisphere. The results indicate a
disintegration of regional processing in the cerebellum in MS. This might be caused by a functional disruption
of cortico-ponto-cerebellar and spino-cerebellar inputs, since patients with higher lesion load in the left
cerebellar peduncles showed a stronger reduction in cerebellar homogeneity. In patients, two clusters in the
left posterior cerebellum expressed a reduction in regional homogeneity with increasing global disability as
reflected by the Expanded Disability Status Scale (EDSS) score or higher ataxia scores. The two clusters were
mainly located in Crus I and extended into Crus II and the dentate nucleus but with little spatial overlap. These
findings suggest a link between impaired regional integration in the cerebellum and general disability and ataxia.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Multiple sclerosis (MS) is characterised by disseminated inflamma-
tory demyelination and axonal degeneration in the central nervous
system. The disease-related tissue damage delays and disrupts neural
signal transmission along cortico-cortical and cortico-subcortical con-
nections (Trapp et al., 1998), causing inefficient information transfer
between brain regions. Accordingly, functional magnetic resonance

imaging (fMRI) of spontaneous fluctuations in the blood-oxygen-level-
dependent (BOLD)-signal during the resting-state has demonstrated
changes in long-range functional connectivity of MS patients in the
motor network (Dogonowski et al., 2012; Lowe et al., 2002; Roosendaal
et al., 2010) and the default-mode network (Hawellek et al., 2011;
Rocca et al., 2010).

In addition to studying long-range connectivity within functional
brain networks, resting-state fMRI (rs-fMRI) can also be used to assess
local connectivity in a brain region. The homogeneity of resting-state
BOLD-signal fluctuations in neighbouring voxels reflects local brain con-
nectivity (Zang et al., 2004). Regional homogeneity has successfully
been used to identify abnormal local connectivity in pathological condi-
tions such as neuromyelitis optica, Alzheimer's and Parkinson's disease
(He et al., 2007; Liang et al., 2011; Wu et al., 2009). Here we employed
regional homogeneity analysis of resting-state BOLD-signal fluctuations
to test for brain regions where MS patients express an abnormal pattern
of local functional connectivity relative to healthy controls. Within the
patient group, we were also interested to identify brain regions where
the regional expression of local resting-state connectivity would predict
clinical disability.
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2. Subjects and methods

2.1. Patients and healthy subjects

Forty-two patients with definite MS fulfilling the revised McDonald
criteria (Polman et al., 2005) and 30 sex- and age-matched healthy
controls participated in the study. 39 of the 42 patients and 27 of the
30 healthy controls were right-handed as revealed by the Edinburgh
Inventory (Table 1) (Oldfield, 1971). Healthy subjects had no history
of neurological or psychiatric disease. The study was approved by
the scientific ethics committee of Copenhagen and Frederiksberg
Communities (protocol no. KF01—131/03 with addendum) and all
subjects gave written informed consent.

Patients were recruited from The Danish Multiple Sclerosis Center,
Copenhagen, Denmark and comprised 27 patients with relapsing–
remitting MS (RR-MS) and 15 patients with secondary progressive MS
(SP-MS) (Table 1). Only clinically stable patients who had not experi-
enced a relapse in the three months preceding the magnetic resonance
imaging (MRI)measurementwere included. Neurological or psychiatric
symptoms not attributable to MS were defined as exclusion criteria.
Patients were neurologically examined and clinical disability was
rated using the Expanded Disability Status Scale (EDSS) (Kurtzke,
1983). The EDSS score ranges from 0 to 10 where 0 equals a normal
neurological examination and higher scores indicate more disability.
In our patient group, EDSS scores ranged from 0–7 (median score:
4.3). The degree of ataxia was rated using theMultiple Sclerosis Impair-
ment Scale (Ravnborg et al., 1997). The ataxia score evaluated upper
and lower limb ataxia and ranges from 0 to 16, where 0 equals no ataxia
and the highest scores correspond to the inability to perform coordinat-
ed movements. The individual ataxia scores ranged from 0–13 (median
score: 3). 81% of the patients (n = 34) presentedwith ataxia defined as
having an ataxia score above 0.

2.2. Magnetic resonance imaging

MRI measurements were performed on a 3 T Magnetom Trio
scanner. All rs-fMRI measurements were recorded with a standard
single-channel birdcage head-coil using a T2*-weighted echo planar
imaging (EPI) sequence with a repetition time (TR) of 2490 ms, an
echo time (TE) of 30 ms and a flip angle of 90°. In total 480 whole-
brain volumes were acquired over 20 min. A brain volume consisted

of 42 contiguous axial slices with a slice thickness of 3 mm and a
64 × 64 acquisition matrix covering a field of view = 192 × 192 mm.
The resulting voxel size was 3 × 3 × 3 mm. Subjects were instructed
to rest with their eyes closed without falling asleep, and refrain from
any voluntary cognitive or motor activity. After the experiment, partic-
ipants were asked whether they managed to stay awake. All partici-
pants reported that they did not fall asleep during scanning. The
cardiac cycle was monitored with an infrared pulse oximeter attached
to the index finger. Respiration was monitored with a pneumatic
thoracic belt. Participants refrained from caffeine, cigarettes or alcohol
intake six hours prior to the fMRI-session. Patients continued to take
their usual medication.

Additionally, high-resolution three-dimensional structural MRI
scans of the brain were acquired using an eight-channel phased array
coil (Invivo, FL, USA). A sagittal magnetisation prepared rapid acquisi-
tion gradient echo (MPRAGE) sequence (TR = 1550 ms, TE = 3.04,
inversion time = 800 ms; flip-angle = 9°) was acquired consisting of
192 contiguous slices with a voxel size of 1 × 1 × 1 mm and an acqui-
sition matrix of 256 × 256. In addition, sagittal turbo spin echo (TSE)
images (TR = 3000 ms, TE = 354 ms) and fluid-attenuated inversion
recovery (FLAIR) images (TR = 6000 ms, TE = 353 ms) were obtain-
ed. The TSE and FLAIR images covered the whole brain consisting of
192 slices with a voxel size of 1.1 × 1.1 × 1.1 mm and a 256 × 256 ac-
quisition matrix. The structural scans were used to estimate total lesion
load of cerebral white-matter in MS patients and to exclude subclinical
white-matter lesions in healthy controls. Whole-brain lesion load was
quantified using a semi-automatic lesion segmentation method guided
by expert knowledge as described previously (Dogonowski et al., 2012).

Patients with MS showed reduced regional homogeneity in the
cerebellum. This prompted us to performa follow-up analysis on thepa-
tient data in which we tested for a linear relationship between lesion
load in the cerebellar peduncles and the cortico-spinal tract (CST) and
the change in regional homogeneity in the cerebellum. Lesion load in
the cerebellar peduncles was estimated by extracting the cerebellar
peduncles including the inferior,middle, and superior cerebellar pedun-
cles as defined in the JHUwhite-matter tractography atlas and split into
a left and right region-of-interest (ROI) (Hua et al., 2008). Lesion load of
the inferior,middle, and superior cerebellar peduncleswas also estimat-
ed individually. The ROI applied to estimate lesion load of the left, right
and combined CST was specified as defined in JHU white-matter
tractography atlas (Hua et al., 2008).

Table 1
Demographics and clinical characteristics.

Healthy controls Patients with MS RR-MS SP-MS

Number of subjects
(men; women)

30
(15; 15)

42
(20; 22)

27
(10; 17)

15
(10; 5)

Median age in years
(range)

45
(22–69)

45
(25–64)

39
(25–59)

51
(30–64)

Handedness
right; left; ambidextrous

27; 2; 1 39; 3; 0 26; 1; 0 13; 2; 0

Median disease duration in years
(range)

n.a. 11.5
(3–43)

9
(3–27)

20
(6–43)

Median EDSS score
(range)

n.a. 4.3
(0–7)

3.5
(0–6.5)

6.0
(3.5–7.0)

Median ataxia score
(range)

n.a. 3.0
(0–13)

2.0
(0–13)

4.0
(1–10)

Median whole-brain lesion load in ml
(range)

n.a. 21.4 (n = 41)
(1.8–126.3)

17.4 (n = 26)
(1.8–96.6)

35.8 (n = 15)
(3.7–126.3)

Median lesion load in left and right cerebellar peduncles in ml
(range)

n.a. 0.04
(0–1.1)

0.05
(0–1.1)

0.04
(0–0.8)

Treatment n.a. 35 24 11
IFN-β n.a. 6 6 0
Glatiramer acetate n.a. 9 9 0
Natalizumab n.a. 5 5 0
Immunosuppresive agents n.a. 10 5 5
Other n.a. 6 0 6

MS= multiple sclerosis; RR-MS = relapsing–remitting multiple sclerosis; SP-MS = secondary progressive multiple sclerosis; n.a. = not applicable; EDSS = Expanded Disability Status
Scale; IFN = Interferone.
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2.3. Resting-state fMRI data analysis

2.3.1. Pre-processing
Image pre-processing of the EPI images used statistical parametric

mapping (SPM) software (SPM8, Wellcome Trust Centre for Neuroimag-
ing, http://www.fil.ion.ucl.ac.uk/spm) implemented in Matlab 7.9
(MathWorks, Massachusetts, USA). The first five brain volumes were
discarded to account for T1 equilibrium effects. The remaining 475 brain
volumes were first realigned to the first volume in the time series, then
a mean volume was generated, and the realignment procedure was
repeated with this volume as the target. The volumes were then
co-registered to the same-session T1-weighted MPRAGE data set using
a six-parameter rigid-body transformation. The MPRAGE volumes were
spatially normalised to the Montreal Neurological Institute (MNI) 305
standard template using the unified segmentation andnormalisation pro-
cedure as implemented in SPM8 and the same normalisation parameters
were used to normalise the EPI images (Ashburner and Friston, 2005).
Spatial smoothing was not done at this step.

2.3.2. Noise filtering
Cardiac and respiratory activity is known to produce signal changes in

fMRI time-series (Lund et al., 2006) which could give rise to correlations
resembling those observed in rs-fMRI (Birn et al., 2006). In the current
study we address these issues by comprehensive filtering of cardiac and
respiratory effects (using separate recordings of cardiac and respiratory
cycles). Hence, possible confounding effects of residual movement and
physiological signals were reduced by filtering several nuisance signals
prior to further analysis. The filter was based on a Volterra expansion of
the estimated movement parameters obtained from the realignment
procedure (24 parameters), a Fourier expansion of the aliased cardiac
(10 parameters) and respiratory (6 parameters) cycles and correspond-
ing respiration by cardiac cycle interaction (4 parameters) (Friston et al.,
1996; Glover et al., 2000). Also changes in respiration volume over time
have shown to produce correlation patterns resembling those observed
in rs-fMRI (Birn et al., 2006). To take these changes into account the filter
also included 41 delayed versions (from −20 to 20 s) of the respiration
volume (Birn et al., 2006). In addition, time-series from white-matter
(left and right superior longitudinal fasciculus) and the lateral ventricles
were included in the filter. In addition, low frequency scanner drifts
were removed by including a discrete cosine basis set with a cut-off
frequency of 1/128 Hz.

2.3.3. Regional homogeneity
The regional homogeneity was assessed using the Kendall's

Coefficient of Concordance (KCC) measure (also known as Kendall's
W). We calculated the KCC for a cube consisting of 3 × 3 × 3 voxels
and the KCC-value was assigned to the centre voxel. KCCwas calculated
as follows: For each voxel each time point was assigned a rank (an
integer between 1 and 475) according to signal intensity. The sum of
ranks for a given time point i is denoted Ri and the average value of Ri
is denoted Rm. The KCC is then calculated as,

KCC ¼
Xn

i¼1
Rið Þ2−n Rmð Þ2

1
12

K2 n3−n
� �

where K = 27 is the number of voxels used in the KCC calculation, and
n = 475 is the number of time points. The KCC calculationwas repeated
for each voxel in the brain to create a regional homogeneity map (KCC-
map). The KCC-map was then z-transformed by subtracting off the
mean KCC of the whole brain and dividing by the standard deviation
of all KCC-values in the brain mask (Zuo et al., 2010). When
transforming to z-scores, the KCC-map represents values relative to
the mean KCC in the brain for each individual subject. KCC-maps were
created for each subject using in-house software. Finally, the KCC-

mapswere smoothedwith a 6 × 6 × 6 mmfull-width at halfmaximum
Gaussian kernel.

2.3.4. Statistical inference
Since the KCC-maps in general are not guaranteed to be normal

distributed, statistical inference at group level employed the non-
parametric permutation method using 5000 permutations as imple-
mented in the FSL software tool Randomise (http://fsl.fmrib.ox.ac.uk/
fsl/randomise/). We corrected for multiple comparisons by controlling
the family-wise error (FWE) rate at the cluster level considering all
brain voxels. Cluster extent threshold was set at p b 0.01 (two-tailed
test) and a corrected pFWE-value b 0.05 at the cluster level was consid-
ered statistically significant. Clusters with a corrected pFWE-value b 0.15
are reported as trends. The statistical maps were superimposed on a
mean normalised T1-weighted image based on the MPRAGE brain
scans of all subjects using Mango (http://ric.uthscsa.edu/mango/).
Anatomical locations were inferred using the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) for the cerebrum
and the probabilistic atlas of the human cerebellum (Diedrichsen
et al., 2009) to locate the cerebellar clusters.

We performed two main analyses. The aim of the first analysis was
to identify between-group differences in the spatial expression of
regional homogeneity including all voxels in the brain. To this end, we
compared the KCC-maps of MS patients and healthy controls using a
non-parametric two-sample permutation test. The second analysis
focused on MS patients exclusively and addressed the question where
in the brain regional homogeneity of BOLD-signal fluctuations reflects
global disease-related disability. Using only the data of MS patients,
we tested for a linear relationship between the voxelwise KCC-values
and individual EDSS scores using a non-parametric multiple linear re-
gression model. In both analyses, age was treated as a confounding
covariate.

Our main analysis revealed that MS patients show an abnormal
expression of regional homogeneity in the cerebellum. This finding
motivated a set of explorative post-hoc analyses to gain a deeper path-
ophysiological understanding of the main results. We performed the
same between-group analysis again, but we only included the 34 MS
patients who clinically displayed signs of ataxia. We also conducted
two exploratory analyses comparing the KCC-maps of patients with
ataxia versus patients without ataxia and the KCC-maps of patients
with RR-MS versus SP-MS using non-parametric two-sample permuta-
tion test with age as covariate. We also tested for a linear relationship
between the voxelwise KCC-values and individual ataxia scores in the
patient group using a similar multiple regression model with age as
covariate.

Since the between-group and regression analyses exclusively
revealed changes in the cerebellum, one obvious question waswhether
the altered regional homogeneity in the cerebellum is related to cere-
bellar lesion load. We estimated regional lesion load of the cerebellar
peduncles because they are the input and output structures of the cere-
bellum. CST lesion loadwas also estimated because of its importance for
sensory-motor functioning and served as a control tract. Lesion loadwas
extracted for right and left cerebellar peduncles and right and left CST.
We tested whether inter-individual variations in lesion load of right
and left cerebellar peduncles or right and left CST was linearly correlat-
ed with a decrease in mean KCC-values in the right and left cerebellar
clusters that had been revealed by the between-group comparison
while controlling for the effect of age. In each patient, we extracted
the KCC-values from all voxels which belonged to the left cerebellar
cluster reaching statistical significance in the between-group compari-
son. The voxels contributing to the mean KCC of the right cerebellar
hemisphere belonged to the cluster showing a trend decrease in KCC
in MS relative to healthy controls. The correlations were calculated
using Matlab's partial correlation controlling for age. Permutation tests
were conducted to assess the significance level (10.000 permutations).
The regression analyses were repeated including whole-brain lesion
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load as covariate. We tested for a correlation between lesion load of
each cerebellar peduncle (i.e., bilateral ROIs for the inferior, middle,
and superior peduncle) and the CST (i.e., bilateral ROI including
right and left CST) with the mean KCC of the cluster in right and left
cerebellum controlling for age.

As a few of the subjects included were left-handed, we repeated the
original between-group and regression analysis with EDSS scores using
a similarmodel including both handedness and age as covariates. Final-
ly, we tested whether a shorter resting-state fMRI session would yield
the same results as the analysis based on the entire data set recorded
over 20 min. This analysis was performed because most resting-state
fMRI protocols are shorter. We split the resting-state fMRI data in half
and repeated the between-group and the regression analysis with
EDSS score on thefirst half of the resting-state fMRI data (238 volumes).
In the additional post-hoc analysis, we applied an uncorrected p b 0.05
as statistical threshold.

3. Results

3.1. Reduced regional homogeneity in the cerebellum

Patients with MS showed reduced regional homogeneity in the left
cerebellar hemisphere relative to healthy controls (pFWE = 0.020;
peak Z-score = 4.63; peak coordinate (x,y,z): −18, −46, −26). The
area displaying a decrease in regional homogeneity was located in the
left superior cerebellar lobe, including mainly lobules V and VI extend-
ing into lobule IV and the vermis (Fig. 1). Corresponding regions in
the right cerebellar lobule VI with extensions into lobule IV and V
showed a similar decrease in regional homogeneity, but reached only
trend significance (pFWE = 0.127; peak Z-score = 4.21 at voxel (x,y,
z): 27,−67,−23). A subcortical cluster comprising right caudate nucle-
us, thalamus and globus pallidus also reached trend significance
(pFWE = 0.123; peak Z-score = 4.01 at voxel (x,y,z): 18, 2, 22). In
contrast, no area in the hemispheric cortex displayed a significant differ-
ence in regional homogeneity in patients with MS relative to healthy
controls, even at a more liberal statistical threshold (p b 0.15, FWE-
corrected). The reduced regional homogeneity in left and right superior

cerebellar lobe in MS patients relative to controls could be replicated
when removing the patients without ataxia (n = 8) from the analysis
(pFWE = 0.004; peak Z-score = 4.47 at voxel (x,y,z): 27, −67, −23).
The only difference was that the left and right cerebellar clusters
merged into one big cluster with the peak voxel localised in the right
cerebellar cluster. The main finding, a disease-related reduction in re-
gional homogeneity in patients in the left cerebellar cluster remained
significant after including handedness as covariate (pFWE = 0.022).
The comparison contrasting regional homogeneity in the RR-MS and
SP-MS groups yielded no significant differences in regional homogene-
ity between the phenogroups. Neither were significant differences in
regional homogeneity detected between ataxic patients and patients
without ataxia. Repeating the main analysis on half of the data, the
observed group differences remained significant.

3.2. Relation between regional homogeneity and global clinical disability

Regression analysis identified a single cluster in the left cerebellar
posterior lobe where regional homogeneity decreased with increasing
clinical disability as expressed by the EDSS score. The more the MS
patients were clinically affected (i.e. the higher the individual EDSS
score), the weaker was regional homogeneity in the left cerebellar
cluster (Fig. 2; pFWE = 0.031; peak Z-score = 4.52 at voxel (x,y,z):
−21, −82, −32). The cerebellar cluster covered Crus I and extended
into Crus II and the left dentate nucleus. A homologous area in the
right cerebellum comprising Crus I and parts of Crus II showed a similar
relationship between regional homogeneity and individual EDSS scores,
but this trend did not reach statistical significance (pFWE = 0.096; peak
Z-score = 3.98 at voxel (x,y,z): 27, −70, −38). The observed inverse
linear relationship between KCC-values and EDSS scores remained
significant after including handedness as covariate (pFWE = 0.033). A
regression analysis that only used the first half of the resting-state
fMRI data replicated the linear relation between EDSS score and KCC
in the left cerebellar cluster. Additionally, the right cerebellar cluster be-
came significant that failed to reach significance in the original analysis
using the entire fMRI data set.

Fig. 1. Decrease in regional homogeneity of cerebellar regions in MS. Coronal t-maps representing voxels with reduced regional homogeneity in MS compared with controls (A). Left
(B) and right (C) cerebellar clustermean normalised KCC and standard error bars of healthy controls andMS patients. KCC=Kendall's Coefficient of Concordance; HC=healthy controls;
MS = multiple sclerosis.
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Exploratory post-hoc regression analysis identified a single brain
cluster in the left cerebellar posterior lobe where regional homogeneity
decreased with increasing ataxia scores (Fig. 3; pFWE = 0.047; peak
Z-score = 3.61 at voxel (x,y,z): −6, −52, −41). This cluster also
comprised Crus II and Crus I, extending into the left dentate nucleus and
lobule IX. The cluster showing reductions in regional homogeneity with
increasing EDSS scores showed only limited overlap (20% of voxels)
with the cluster displaying decreases in regional homogeneity with
increasing ataxia scores (Fig. 3), although individual ataxia and EDSS
scores were highly correlated (correlation coefficient = 0.68; p b 0.001).

3.3. Relation between regional homogeneity and lesion load in the
cerebellum

In the 41 patients in whom structural MRI data of sufficient quality
were available lesion load of the cerebellar peduncles and CST were
extracted. The volume of the right cerebellar peduncle template was esti-
mated to 9.6 ml and the volume of left cerebellar peduncle template
9.9 ml. The maximal lesion load of the cerebellar peduncles accounted
for 1.1 ml, corresponding to 5.9% of the total cerebellar peduncles volume
(Table 1).

The correlations between cerebellar regional homogeneity and lesion
load of the cerebellar peduncles and CST are illustrated in Fig. 4. Lesion
loadof the left cerebellar peduncle showed a significant partial correlation
with the regional mean KCC in the left (p = 0.005) and right cerebellum
(p = 0.016),whereas lesion load of right cerebellar peduncles showedno
significant linear relation with right or left cerebellar regional mean KCC
(p ≥ 0.097). The results were reproduced when repeating the regression
analyses controlling for whole-brain lesion load. We also segregated
lesion load of the bilateral superior, middle, and inferior cerebellar

peduncles and correlated these lesion measures with left and right cere-
bellar regional mean KCC. Lesion load of middle cerebellar peduncles
showed a significant partial correlation with left (p = 0.012) and right
cerebellar regionalmeanKCC (p = 0.042). Lesion load of inferior cerebel-
lar peduncles showed a significant partial correlation with left regional
mean KCC (p = 0.029), and lesion load of superior cerebellar peduncle
showed a trend towards a partial correlationwith right cerebellar region-
almeanKCC (p = 0.072). Lesion load in left, right or bilateral CST showed
no linear correlation with right or left cerebellar regional mean KCC
(p N 0.2). The overall lesion load of the right (p = 0.012) and left
(p = 0.044) cerebellar peduncles showed a significant positive relation-
ship with individual EDSS scores.

4. Discussion

Using regional homogeneity of resting-state fluctuations in the
BOLD-signal as index of local functional connectivity, we show that
local functional connectivity is impaired in the left cerebellum in MS.
Regional homogeneity was found to be reduced in lobules V and VI of
the left cerebellar hemisphere in patients with MS relative to controls.
Further, patientswith higher EDSS scores displayed less local connectiv-
ity in Crus I and dentate nucleus of left cerebellum. Similar trends were
present in homologous regions of the right cerebellum. Post-hoc analy-
ses showed that patients with higher lesion load of the left cerebellar
peduncle showed more reduced local cerebellar connectivity.

4.1. Cerebellar regional homogeneity in MS

The impairment of regional functional homogeneity in MS extends
previous reports showing marked pathological changes in cerebellar

Fig. 2. Regional homogeneity of cerebellar regions correlates with disability in MS. Coronal t-maps representing voxels where KCC correlated with EDSS scores in MS (A). Left (B) and right
(C) cerebellar clustermean normalised KCC for each subject (y-axis) plotted against EDSS scores (x-axis) with a regression line. KCC=Kendall's Coefficient of Concordance; EDSS= Expanded
Disability Status Scale; RR = relapsing–remitting multiple sclerosis; SP = secondary progressive multiple sclerosis.

Fig. 3.Regional homogeneity of cerebellar regions correlateswith ataxia inMS. Coronalmaps representing voxelswhere KCC correlatedwith individual ataxia scores inMS (green cluster).
The blue cluster represents voxels where KCC correlatedwith EDSS scores inMS. The significant clusters of the two analyses showed limited spatial overlap (20% of voxels; yellow cluster
represented in the foreground) and mainly include Crus I (40%), Crus II (14%), the dentate nucleus (9%), lobule IX (9%), and lobule VI (10%).
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cortex inMS (Anderson et al., 2009; Gilmore et al., 2009; Kutzelnigg et al.,
2007). The cerebellum is critically involved in the temporal and spatial in-
tegration of neural inputs from both descending cortical afferents
(cortico-ponto-cerebellar projections) and ascending spinal afferents
(proprioceptive information via spino-cerebellar projections) via the
cerebellar peduncles (Ramnani, 2006). The reduced cerebellar regional
homogeneity might indicate that the temporo-spatial integration of
converging cortico-ponto-cerebellar and spino-cerebellar inputs is
disintegrated in patients with MS. The notion of dysfunctional neural in-
tegration in the cerebellum is supported by a series of positron emission
tomography studies which found bilateral reductions in cerebellar
resting-state glucose metabolism in early RR-MS which was ascribed to
the remote effect of demyelinating lesions (i.e. crossed cerebellar
diaschisis) (Blinkenberg et al., 2000; Derache et al., 2006). In addition,
two activation fMRI studies have reported decreased inter-regional func-
tional and effective connectivity during motor task involving cerebellar
regions in MS (Rocca et al., 2009; Saini et al., 2004).

Disrupted local connectivity in the cerebellummight be caused pri-
marily by local cortical damage. Alternatively, MS lesions in cerebellar
white-matter tracts might cause a functional disruption of neurotrans-
mission in these pathways. The latter hypothesis is supported by the
finding that patients displayed more reduced right and left cerebellar
regional homogeneity with increasing lesion load of the left cerebellar

peduncle. In particular, lesion load in the middle cerebellar peduncle
correlated with the decrease in regional cerebellar connectivity. The
middle cerebellar peduncle is a main input structure containing axons
which project from the nuclei pontis of the opposite side to the cerebel-
lar cortex. This structure–function relationship suggests that the dis-
turbed regional integration of incoming cortico- and spino-cerebellar
information increases with lesion load in the cerebellar peduncles, but
this hypothesis needs to be tested specifically in future studies.

When interpreting the present results, one needs to take into ac-
count the neuroanatomical organisation of the cerebellum. Research
has provided converging evidence that Crus I and Crus II represent the
‘cognitive’ cerebellum and lobules V–VI primarily represent the
sensory-motor cerebellum (Kelly and Strick, 2003; Krienen and
Buckner, 2009; O'Reilly et al., 2010). The between-group difference in
regional homogeneity was located in motor territories of the cerebellar
hemisphere, namely the cerebellar lobules V and VI that are connected
with corticalmotor regions. Motor impairment is prevalent inMS and is
mainly caused by lesions located along the CST, in particular in the spi-
nal cord. However, we found no relation between regional homogeneity
of the cerebellum and CST lesion load. This negative finding has, howev-
er, to be interpretedwith caution because our scanning protocol did not
cover the spinal cord where local lesions significantly contribute to
motor disability.

Fig. 4. Correlation between cerebellar regional homogeneity and lesion load of the cerebellar peduncles and cortico-spinal tract. The first row illustrates the correlations between regional
homogeneity in left or right cerebellar region-of-interest (ROI) with lesion load of left or right cerebellar peduncles. The second row illustrates the correlations between regional homo-
geneity of the left cerebellar ROI and lesion load of the bilateral inferior, middle, and superior cerebellar peduncles and cortico-spinal tract (CST). The third row illustrates the correlations
between regional homogeneity of the right cerebellar ROI and lesion load of the bilateral inferior, middle, and superior cerebellar peduncles and CST. KCC = Kendall's Coefficient of
Concordance; LL = lesion load; L = left; R = right; RR = relapsing–remitting MS; SP = secondary progressive MS; CST = cortico-spinal tract; Inf. peduncles = inferior cerebellar
peduncles; Mid. peduncles = middle cerebellar peduncles; Sup. peduncles = superior cerebellar peduncles.
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4.2. Local resting-state connectivity and clinical disability

Regional homogeneity of resting-state BOLD-signal fluctuations in
the cerebellum correlated negatively with clinical disability as reflected
by the EDSS score. Surprisingly, it was in cognitive (e.g. Crus I and Crus
II) rather thanmotor territories of the cerebellumwhere the decrease in
local functional connectivity was more pronounced in patients with
higher disability scores. We attribute this preferential association
between disease-related disability and reduced regional connectivity
in cognitive areas of the cerebellar cortex to the ‘resting-state’ during
which the fMRI data were recorded. The ‘resting-state’ represents a
more introspective state in which cognitive operations like day-
dreaming take place (Mason et al., 2007), while the motor system is
idling. In fact, specifically Crus I has shown to be functionally connected
with a network of cortical regions similar to the default-mode network
(Krienen and Buckner, 2009) which is a network associated with intro-
spection, remembering the past and planning the future (Buckner and
Vincent, 2007). If this explanationwere correct, an association between
a reduction in regional functional connectivity in the motor cerebellum
and disease-related disabilitymight becomemore obvious during a task
requiring sustained motor activity (e.g. tonic contraction or tapping
movements).

A negative linear relationship was also found between regional
homogeneity and the amount of ataxia: The stronger ataxia, the lower
was local resting-state connectivity in the cerebellum. Ataxia was a
frequent symptom in the patient group. 80% of the patients suffered
from ataxia which is in good agreement with the relative frequency of
ataxia reported in the literature (Kurtzke, 1970; Swingler and
Compston, 1992). Since the EDSS also includes the assessment of cere-
bellar dysfunction, it is not surprising that the ataxia and EDSS scores
were highly correlated. Despite of the tight relationship between
these two clinical measures, the cerebellar cluster showing a correlation
between reduced local resting-state connectivity and ataxia showed
little spatial overlap with the cluster showing a correlation between
local resting-state connectivity and EDSS. This raises the possibility that
certain ‘symptom clusters’might be associated with different spatial pat-
terns of disrupted local resting-state connectivity in the cerebellum. This
possibility remains to be examinedmore systematically in future studies.

The left cerebellar cluster showing a stronger decrease in local con-
nectivity with increasing disability extended into the dentate nucleus.
From a circuit perspective, the dentate nucleus is located downstream
to the cerebellar cortex receiving its input from the Purkinje cells.
Given that the dentate nucleus is the major cerebellar output channel
projecting to primary motor, premotor, oculomotor, prefrontal, and
posterior parietal areas of the cortex via synapses in the thalamus and
basal ganglia (Dum and Strick, 2003; Hoshi et al., 2005), the dentate
nucleus is in a particularly strategic position to transmit the negative
consequences of aberrant cerebellar processing to the neocortical
networks. This might explain why disrupted regional integration in
the dentate nucleuswas significantly related to clinical disability. An ad-
ditional link between an alteration of the dentate nucleus and clinical
disability has recently been reported in a structural MRI study which
focused on regional T2* hypointensities suggestive of pathologic iron
deposition in MS (Tjoa et al., 2005). Regional T2* hypointensity in
dentate nucleus was found to be the only variable that correlated with
ambulatory impairment and the EDSS score.

4.3. Local versus long-range network connectivity

Outside the cerebellum, no brain region showed a significant alter-
ation in regional homogeneity or a correlation between regional homoge-
neity and clinical disability. By applying a whole-brain network analysis
to the same rs-fMRI data set, we have previously shown that several sub-
cortical clusters in the cerebral hemisphere located in the thalamus and
basal ganglia have a stronger long-range connectivity with the motor
resting-state network in the same group of MS patients (Dogonowski

et al., 2012). This up-regulation of motor long-range motor connectivity
in the basal ganglia and thalamus as revealed by thewhole-brain network
analysiswas not accompanied by alterations in local functional connectiv-
ity. Likewise, the changes in local resting-state connectivity in the motor
part of the cerebellum were not associated with alterations in long-
range motor resting-state connectivity. Together, the complementary
analyses of resting-state functional connectivity prompt two conclusions.
From amethodological point, it can be concluded that alterations in long-
range and local resting-state connectivity are not two sides of the same
coin, and therefore canwell dissociate. While long-range connectivity re-
flects communication between distinct network nodes, local resting-state
connectivity do tell something about how fine grained local neural
activity is temporo-spatially correlated within a network node.

With respect to the pathophysiology of multiple sclerosis, the data
indicate that cerebral subcortical structures and the cerebellum show
different alterations in resting-state connectivity: While the basal gan-
glia and thalamus show an expanded long-range motor connectivity,
changes in local functional connectivity seem to prevail in the cerebel-
lum. This study suggests a possible link between lesion load of the cer-
ebellar peduncles and changes in local connectivity taking place in the
cerebellum. The lesioned cerebellar peduncles in MS might become a
bottleneck causing deficient parallel information transfer into the cere-
bellum reflected by a reduction in cerebellar local functional connectiv-
ity. Themore expanded long-range connectivity of the basal ganglia and
thalamus might be indicative of an impaired funnelling function of the
basal ganglia and thalamus secondary to a scattered disruption of
cortico-thalamic and cortico-striatal inputs due to hemispheric lesions
(Dogonowski et al., 2012).

4.4. Methodological considerations

In this study, we used a relatively long rs-fMRI session collecting a
comprehensive resting-state data set containing 480 volumes (20 min.
acquisition) for each subject. However, we were able to reproduce the
main results when only using the first half of the resting-state fMRI data
(i.e., the first 238 volumes of a single session). This suggests that the
sensitivity of the rs-fMRI approach might not necessarily increase when
raising the number of samples in a session. Especially with respect to
the long recording time, it might have been preferable to record resting-
state fMRI with the subjects having the eyes open and monitoring of
eye movements and electroencephalographic activity to capture any re-
duction in vigilance. Another limitation of this study is that no cognitive
tests were performed. This prevented us from relating local connectivity
changes in the ‘cognitive’ cerebellum to cognitive impairments. The
local connectivity changes in the right cerebellum only reached trend sig-
nificance. A larger sample size might have increased the chance to yield
significant changes in local connectivity also in the right cerebellum.
The cross-sectional study design also has some inherent limitations. Bet-
ter insights into the dynamics of functional brain connectivity changes
in MS are expected from longitudinal resting-state fMRI studies which
allow to trace the dynamic expression of impaired local and long-range
resting-state connectivity during the course of MS and to relate these to
the dynamics of clinical impairment.

We were able to relate cerebellar reductions in local connectivity
with lesion load of the cerebellar peduncles. In future studies, it would
be interesting to estimate the radial extension of each T2-weighted le-
sion perpendicular to the peduncle axis or to test impairment of ana-
tomical connectivity in the peduncles with diffusion MRI. This would
give a better picture of the extent of impairment of the input and output
structures of the cerebellum and might help to establish a more causal
link between structural damage of the cerebellar peduncles and local
changes in cerebellar resting-state connectivity.
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ABSTRACT

We evaluate the infinite relational model (IRM) against two
simpler alternative nonparametric Bayesian models for iden-
tifying structures in multi subject brain networks. The mod-
els are evaluated for their ability to predict new data and in-
fer reproducible structures. Prediction and reproducibility are
measured within the data driven NPAIRS split-half frame-
work. Using synthetic data drawn from each of the gener-
ative models we show that the IRM model outperforms the
two competing models when data contain relational structure.
For data drawn from the other two simpler models the IRM
does not overfit and obtains comparable reproducibility and
predictability. For resting state functional magnetic resonance
imaging data from 30 healthy controls the IRM model is also
superior to the two simpler alternatives, suggesting that brain
networks indeed exhibit universal complex relational struc-
ture in the population.

Index Terms— Infinite Relational Model, Complex Net-
works, fMRI

1. INTRODUCTION

The brain is composed of about 1011 neurons connected by
more than 1014 synapses forming an almost unfathomable
complex network [1]. Neuroimaging, e.g., by functional mag-
netic resonance imaging (fMRI), has the potential to identify
structures in the brain network. fMRI allows one to measure
the blood oxygen level and thereby an indirect measure of the
neuronal activity in a relatively fine spatial resolution. As the
signal-to-noise ratio in fMRI is rather poor we are in many
cases forced to average within a population of subjects to ob-
tain reproducible results. This averaging further limits the
spatial resolution of our models as considerable individual
variability exist in both anatomy and function [2].

While the dominant paradigm in functional neuroimage
analysis has been to identify local components of the network
based on the functional segregation hypothesis, see e.g. [3],
there is a current move towards modeling more global proper-
ties of the brain network including both functional and struc-
tural aspects, for reviews see, e.g., [4, 5]. Functional brain
network models typically summarize temporal relations be-

tween regions of the brain whereas structural networks are
obtained by, e.g., using tractography methods to track the
white matter bundles connecting different brain regions. One
of the challenges in brain imaging is to understand how brain
modules identified under the functional segregation approach
work together to perform important information processing
tasks such as perception, cognition, and decision making. We
currently pursue a strategy which is designed to mediate be-
tween functional localization and global description [6]. The
main idea is to search for so-called ’communities’ of nodes
characterized as groups of nodes that share certain connectiv-
ity properties, see e.g. [7] for background and references on
community detection.

In neuroimaging models we typically face two equally im-
portant objectives, namely on one hand to identify predictive
models, i.e., models that generalize to new data, and on the
other hand that the structures we learn are trustworthy, e.g.,
being reproducible across different subject groups. The two
objectives are quantified in the so-called NPAIRS split-half
resampling framework [8]. This framework has been used for
evaluation of Bayesian models before, e.g., in [9] in which
generalizability and reproducibility of the parameter poste-
rior distribution were of interest, however, the framework has
not been used before for evaluation of community detection
models. Here we for the first time investigate the predictabil-
ity and reproducibility of three Bayesian nonparametric mod-
els which are able to infer community structure in complex
networks.

The models are the infinite relational model (IRM)
[10, 11], the infinite diagonal model (IDM), and the model
proposed by [12] which will be termed infinite Hofman-
Wiggins (IHW) model, the term infinite referring to the fact
the complexity in terms of the number of communities is for-
mally unlimited. The three models vary in expressiveness, the
IRM allows different link characteristics within and between
components and are thereby able to infer general relations
between communities, the IDM is parametrized with differ-
ent link probabilities within communities but have a single
common between community link probability, while the link
probabilities in IHW are described with only two parameters;
one within and one between component link probability.

As mentioned we are interested in detecting community
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structure shared by a population of fMRI subjects. Thus while
we estimate the functional networks in each individual inde-
pendently, all three models represent all subjects by a com-
mon community structure and common link probabilities. An
additional benefit of this approach, compared to individual
models investigated [6] is that it become possible to compute
test likelihood for unseen data (subjects). Also, having com-
mon link probabilities the latent variables of the model do not
scale with the number of subjects, hence, allow for analysis
of a large number of subjects.

In conclusion: The main contributions of this paper are i)
a demonstration that a data driven predictability and repro-
ducibility framework for evaluation of neuroimaging models
can be adapted to Bayesian community detection and ii) use
of the framework to test whether the expressiveness of the full
IRM is needed to describe the functional networks of the rest-
ing state as measured by fMRI.

2. METHODS

Data in this paper consists of N undirected graphs, one per
subject, defined on a common set of nodes and described by
individual adjacency matrices A(n) for subject n. A(n)

i,j = 1 if
nodes i and j have similar hemodynamic responses and zero
otherwise.

2.1. Models

Formally we write the three generative models as:

Z|α ∼ CRP(α)

ρa,b|β+,β− ∼ Beta(β+
a,b, β

−
a,b)

A
(n)
i,j |Z,ρ ∼ Bernoulli(zirρz

>
jr ).

Z is the [J ×D] binary matrix indicating group membership
for each node and have a prior distribution given by the Chi-
nese Restaurant Process (CRP) with the hyperprior parameter
α. zir is the ith row vector of Z. ρ is a symmetric matrix
indicating the probability of links between each pair of com-
ponents. Here ρ is shared across graphs. The ρ structure
define the difference between the models compared in this
paper, which will be described below. The link probabilities
have a prior given by the Beta function with the two hyper-
prior parameters β+

a,b and β−a,b giving the pseudocount of links
and nonlinks between components a and b respectively. The
adjacency matrix A(n) for graph n has the prior given by a
Bernoulli trial biased by the link probability of links between
the components in which the two nodes participate. Three
different structures for the link probability matrix are con-
sidered. The full IRM model having a full upper triangular
matrix, the infinite diagonal model (IDM) having unique ele-
ments in the diagonal and identical off-diagonal elements, and
the model proposed in [12] having two parameters describing

the within and between component link probabilities, respec-
tively.

ρIRM =




ρ11 ρ12 . . . ρ1m
ρ21 ρ22 . . . ρ2m

...
...

. . .
...

ρm1 ρm2 . . . ρmm


 (1)

ρIDM =




ρ1 ρ0 . . . ρ0
ρ0 ρ2 . . . ρ0
...

...
. . .

...
ρ0 ρ0 . . . ρm


 (2)

ρIHW =




ρc ρ0 . . . ρ0
ρ0 ρc . . . ρ0
...

...
. . .

...
ρ0 ρ0 . . . ρc


 (3)

The joint likelihood over graphs can be written as

P (A(1), ...,A(N)|Z,ρ)

=
∏

n

∏

j>i

(zirρz
>
jr )A

(n)
i,j (1− zirρz

>
jr )

(
1−A(n)

i,j

)

=
∏

j≥i
(zirρz

>
jr )

(∑
n A

(n)
i,j

)
(1− zirρz

>
jr )

(
N−∑n A

(n)
i,j

)
(4)

We note that the joint likelihood can be written efficiently us-
ing the aggregate adjacency matrix, Atot =

∑
nA

(n).

2.1.1. IRM Model Inference

In this section we derive the posterior likelihood of a node’s
assignment given the assignments of the remaining nodes, for
the IRM model, which is needed in the model inference. For
the two other models please refer to [7]. By integrating out ρ
from eq (4) the posterior can be written as

P (Atot|Z,β+,β−)

=

∫
P (Atot|Z,ρ)P (ρ|β+,β−)dρ

=
∏

a≥b

Beta(M+
a,b + β+

a,b,M
−
a,b + β−a,b)

Beta(β+
a,b, β

−
a,b)

,

where M+
a,b is the total number of links and M+

a,b is the total
number of non-links between the groups a and b across all
graphs. Using Bayes’ theorem the posterior likelihood can be
found as

P (Z|A(1), ...,A(N),β+,β−, α) ∝
P (Atot|Z,β+,β−)P (Z|α) =

∏

a≥b

Beta(M+
a,b + β+

a,b,M
−
a,b + β−a,b)

Beta(β+
a,b, β

−
a,b)

×
[
αD

Γ(α)

Γ(J + α)

∏

a

Γ(na)

]
,



where na is the number of nodes assigned to component a.
The posterior likelihood for a node’s assignment given the
assignment of the remaining nodes is given by

P (Zi,a = 1|Z\zir ,A(1), ...,A(N)) ∝




ma

∏
b

Beta(M+
a,b+β

+
a,b,M

−
a,b+β

−
a,b)

Beta(β+
a,b,β

−
a,b)

if ma > 0

α
∏
b

Beta(M+
a,b+β

−
a,b,M

−
a,b+β

−
a,b)

Beta(β+
a,b,β

−
a,b)

otherwise.
(5)

ma =
∑
j 6=i Z(j, a) is the size of the ath functional group

disregarding the assignment of the ith node. This posterior
likelihood can be evaluated efficiently since we only need
M+ and M− and further to evaluate the Beta function for
entries affected by the considered assignment change.

2.2. NPAIRS Evaluation Criteria

The models’ predictability is evaluated using test log likeli-
hood. The data is randomly split in 2 equally sized sets (S1
and S2) and inference is made separately on each set. The
node assignment and link probabilities from the MAP solu-
tion are used to calculate the test log likelihood of the other
(unseen) split. The average test log likelihood of the two splits
is used as the predictability measure. The log likelihood of set
S2 for the model inferred using S1 is given as

logL(Z,ρ|AS2,(1), ...,AS2,(N)) =

1

N

N∑

n=1

∑

j>i

[
A

S2,(n)
i,j log(zirρz

>
jr )+

(1−AS2,(n)
i,j ) log(1− zirρz

>
jr )
]

Likewise, the reproducibility of the identified community
structures is measured by the mutual information (MI) be-
tween the node assignments Z(S1) and Z(S2) of the MAP so-
lution for each split,

MI(Z(S1),Z(S2)) =

D1∑

i=1

D2∑

j=1

p(z
(S1)
ir

, z
(S2)
jr

) log

(
p(z

(S1)
ir

, z
(S2)
jr

)

p(z
(S1)
ir

)p(z
(S2)
jr

)

)
.

3. EXPERIMENTS AND RESULTS

In this section we present results for two different dataset. The
first data set is synthetic data generated from each of the three
different models. The second dataset is a dataset of resting
state fMRI data from 30 healthy controls.

Model inference is based on a Gibbs sampling scheme
in combination with split-merge Metropolis-Hastings updates
[6, 10, 13]. Each node is initially assigned to one of 50 groups
at random. The algorithm runs for 500 iterations, where at

each iteration a Gibbs sampling scan is followed by a Split-
Merge step. In the model inference α = log(J) and β+ =
β− = 1.

3.1. Synthetic Data

Data from each of the three different generative models, IRM,
IDM, and IHW, were generated. Assignments for J = 100
nodes was drawn from the CRP with α = 5. Then the link
probabilities between components was drawn from the Beta
function using

β+
a,b =

{
2 if a=b
1 otherwise and β−a,b =

{
3 if a=b
5 otherwise.

constrained according to equations (1-3) for the three models.
Then, using the component assignments and link probabili-
ties 20 different adjacency matrices (graphs) per dataset was
drawn using the Bernoulli function. For testing the models’
predictability and reproducibility 500 different half-splits per
dataset was generated. For each split each of the models was
inferred and the predictability and reproducibility was evalu-
ated as described in section 2.2.

Reproducibility-predictability plots are shown in Fig. 1
and the histogram of the number of estimated components are
shown in Fig. 2. From Fig. 1 it is evident that for the IRM
data with complex relations the IRM is superior in estimat-
ing the complex component relations as seen by having better
reproducibility and predictability. The two other models pro-
duce comparable results with the IDM model having slightly
better reproducibility. The IRM model is close in estimating
the true number of components while the two other models
underestimates the number of component with a factor 2.

For the IDM generated data the IDM model has better
predictability and reproducibility than the IRM model, while
the IHW model obtains slightly better reproducibility than
the IDM model but with worse predictability. The better re-
producibility of the IHW model should be seen in the light
of overestimated number of components which increases the
mutual information if the assignments of the between splits
agree. The IRM underestimate the true number of compo-
nents, which also cause the lower reproducibility.

For the IHW generated data all three models have com-
parable results with the IHW model having slightly better re-
producibility than the IDM which is turn is slightly better than
the IRM model. The IDM and IHW estimates the true num-
ber of components well, while the IRM model underestimates
the true number of components.

3.2. Resting state fMRI data

Resting state functional magnetic resonance imaging (rs-
fMRI) data from N = 30 healthy controls was recorded for
20 min (482 volumes) per subject. The first two volumes
were discarded to account for T1 equilibrium effects, the re-
maining 480 volumes were realigned to the time-series mean



Fig. 1. Predictability (test log likelihood) as function of reproducibility (mutual information) for data generated with the IRM,
IDM, and IHW models respectively. Solid lines indicate the log likelihood for the true model (which generated the data). Dotted
lines indicate log likelihood for a random model in which all elements in the ρ matrix are identical. For the IRM generated data
the IRM model is superior compared to the two other models in both the predictability and reproducibility measures with the
two other models having comparable results. For the IDM generated data the IDM is slightly better better than the IRM model
and has a better predictability than the IHW, though with the IHW reproducing slightly better. For the IHW generated data all
models are almost comparable though with slightly better results in favor of the simpler models.

Fig. 2. Histogram of number of components estimated using the three models. Data was generated using either the IRM,
IDM, or IHW generative model. For the IRM generated data the IRM model is close in estimating the true number of com-
ponents (indicated with the vertical dotted line) while the two other models underestimate the number of components. For the
IDM generated data the IDM model closely finds the right number of components while the IRM model underestimate and
IHW overestimate the number of components. For the IHW generated data both the IDM and IHW finds the true number of
components while the IRM underestimate.

and spatially normalized to the MNI template using SPM.
Nuisance effects related to residual movement or physiologi-
cal effects were removed using a linear filter comprised of 24
motion related and a total of 64 physiological effects includ-
ing cardiac, respiratory, respiration volume over time, and
time series from left and right hemispheres CSF and white
matter voxels.

The mean signal in each of the 116 regions covered in the
AAL database [14] was extracted and the [116×116] correla-
tion matrix was created for each subject. These matrices were
thresholded to include the top 1000 links and thereby formed
the adjacency matrices. 200 different half-splits were gener-

ated and the reproducibility and predictability were calculated
between the half-splits for each of the three models.

For visualization of the estimated communities a co-
occurrence matrix of the count of each pair of nodes were in
the same community were made. Based on this co-occurrence
matrix we performed agglomerative hierarchical clustering
using average linkage. This clustering was thresholded to
include the number of communities corresponding to the me-
dian number found across the 400 half-splits. Fig. 3 shows the
reproducibility-predictability plot and Fig. 4 plots the number
of components estimated using each of the three models. The
more complex IRM model interestingly yields better repro-



Fig. 5. Resting state fMRI data. Community structure for each of the three models. Top row IRM model, middle row IDM
model, bottom row IHW model. For each model the consensus of 400 runs are plotted at three different planes in the 3
dimensional stereotaxic MNI space (X: left to right; Y: posterior to anterior; Z: ventral to dorsal).

ducibility and predictability compared with the other models.
The IDM and IHW models yields comparable predictability
but the IHW shows better reproducibility. Fig. 5 shows the
layout of the identified communities in the stereotaxic MNI
space in coronal, sagittal, and axial planes respectively. Lines
connecting nodes in a community are shown with the same
color. For all three models the communities are highly sym-
metric across hemispheres. The two simpler models IDM
and IHW produce a huge cluster in the occipital and parietal
lobes, while especially the IHW produces a large number of
small communities. The huge component is segregated in
several components with the IRM model, made possible by
the more expressive parametrization.

4. DISCUSSION AND CONCLUSION

We used the NPAIRS framework for quantification of the pre-
dictability and reproducibility of three models for structural

inference in complex brain networks. For synthetic data gen-
erated from each of the models we show that the IRM model
identifies a general relational structure when such exist in net-
work data. The two simpler models fail in both predicting
unseen data and reproduce across datasets. When data is gen-
erated using the simpler models the IRM still produce compa-
rable predictability and reproducibility results and thus does
not seem to produce severe overfits.

Based on resting state fMRI data from 30 subjects ex-
tracted in 116 brain regions covering the whole brain we show
that the IRM model is superior in terms of both predictability
and reproducibility compared with the less expressive mod-
els. Visual inspection of the inferred communities indeed
indicates that the richer representation of the IRM produces
a more detailed yet reproducible connectivity pattern in the
resting human brain.



Fig. 3. Reproducibility-predictability plot of the fMRI
dataset. Dotted line indicates log likelihood for a random
model in which all elements in the ρ matrix are identical.

Fig. 4. Number of components estimated using the IRM,
IDM, and IHW models for the 400 half-splits of the data.

Acknowledgement

This work is funded by the Lundbeck Foundation (grant-nr
R48 A4846).

5. REFERENCES

[1] S.M. Blinkov and I.I. Glezer, The human brain in figures and
tables: a quantitative handbook, Basic Books New York:,
1968.

[2] A.M. Galaburda, G.D. Rosen, and G.F. Sherman, “Individual
variability in cortical organization: its relationship to brain lat-
erality and implications to function,” Neuropsychologia, vol.
28, no. 6, pp. 529–546, 1990.

[3] K.J. Friston, A.P. Holmes, K.J. Worsley, J.P. Poline, C.D. Frith,
and R.S.J. Frackowiak, “Statistical parametric maps in func-
tional imaging: a general linear approach,” Human brain map-
ping, vol. 2, no. 4, pp. 189–210, 1994.

[4] Olaf Sporns, “The human connectome: a complex network.,”
Annals of the New York Academy of Sciences, vol. 1224, no. 1,
pp. 109–25, Apr. 2011.

[5] Edward T Bullmore and Danielle S Bassett, “Brain graphs:
graphical models of the human brain connectome.,” Annual
review of clinical psychology, vol. 7, pp. 113–40, Apr. 2011.

[6] M Mørup, K.H. Madsen, A.M. Dogonowski, H. Siebner, and
L.K. Hansen, “Infinite Relational Modeling of Functional Con-
nectivity in Resting State fMRI,” Neural Information Process-
ing Systems 23, 2010.

[7] M. Mørup and M. N. Schmidt, “Bayesian community detec-
tion,” Neural Computation, 2012.

[8] S.C. Strother, J. Anderson, L.K. Hansen, U. Kjems, R. Kustra,
J. Sidtis, S. Frutiger, S. Muley, S. LaConte, and D. Rotten-
berg, “The quantitative evaluation of functional neuroimaging
experiments: The npairs data analysis framework,” NeuroIm-
age, vol. 15, no. 4, pp. 747–771, 2002.

[9] D.J. Jacobsen, L.K. Hansen, and K.H. Madsen, “Bayesian
model comparison in nonlinear bold fmri hemodynamics,”
Neural computation, vol. 20, no. 3, pp. 738–755, 2008.

[10] Charles Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, and
N. Ueda, “Learning systems of concepts with an infinite rela-
tional model,” in Proceedings of the National Conference on
Artificial Intelligence. 2006, vol. 21, pp. 381–388, Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999.

[11] Zhao Xu, Volker Tresp, Kai Yu, and H.P. Kriegel, “Infinite
hidden relational models,” In Proceedings of the 22nd Inter-
national Conference on Uncertainity in Artificial Intelligence,
2006.

[12] Jake M Hofman and Chris H Wiggins, “A Bayesian approach
to network modularity, 2008,” Phys. Rev. Lett, vol. 100, no. 25,
pp. 1–4, 2008.

[13] Sonia Jain and Radford M Neal, “A Split-Merge Markov
chain Monte Carlo Procedure for the Dirichlet Process Mixture
Model,” Journal of Computational and Graphical Statistics,
vol. 13, no. 1, pp. 158–182, 2004.

[14] N Tzourio-Mazoyer, B Landeau, and D Papathanassiou, “Au-
tomated anatomical labeling of activations in SPM using a
macroscopic anatomical parcellation of the MNI MRI single-
subject brain,” Neuroimage, vol. 15, pp. 273–289, 2002.



Appendix D

Identification of Functional
Clusters in the Striatum Using

Infinite Relational Modeling

Andersen, K. W., Madsen, K. H., Siebner, H., Hansen, L. K., and Mørup,
M. (2012), ’Identification of Functional Clusters in the Striatum Using Infinite
Relational Modeling’, in G. Langs, I. Rish, M. Grosse-Wentrup and B. Murphy,
eds, ’Machine Learning and Interpretation in Neuroimaging’, Lecture Notes in
Computer Science, Springer Berlin Heidelberg, pp. 226-233.



80 Appendix D



Identification of Functional Clusters

in the Striatum Using Infinite Relational
Modeling

Kasper Winther Andersen1,2, Kristoffer Hougaard Madsen1,2,
Hartwig Siebner2, Lars Kai Hansen1, and Morten Mørup1

1 DTU Informatics, Technical University of Denmark
2 Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital

Hvidovre
{kwjo,lkh,mm}@imm.dtu.dk,

{stoffer,hartwig.siebner}@drcmr.dk

Abstract. In this paper we investigate how the Infinite Relational Model
can be used to infer functional groupings of the human striatum using
resting state fMRI data from 30 healthy subjects. The Infinite Rela-
tional Model is a non-parametric Bayesian method for infering commu-
nity structure in complex networks. We visualize the solution found by
performing evidence accumulation clustering on the maximum a poste-
rior solutions found in 100 runs of the sampling scheme. The striatal
groupings found are symmetric between hemispheres indicating that the
model is able to group voxels across hemispheres, which are involved
in the same neural computations. The reproducibility of the groupings
found are assessed by calculating mutual information between half splits
of the subject sample for various hyperparameter values. Finally, the
model’s ability to predict unobserved links is assessed by randomly treat-
ing links and non-links in the graphs as missing. We find that the model
is performing well above chance for all subjects.

Keywords: complex network, graph theory, infinite relational model,
basal ganglia, striatum.

1 Introduction

Recently, graph theoretical network modeling has gained a lot of attention in neu-
roimaging, for reviews see, e.g, [3,15]. Both functional networks (using modalities
such as fMRI, EEG, and MEG) and anatomical brain networks (using DWI) have
been analyzed using complex network methods. These studies cover both studies
of the healthy brain as well as a wide range of neuropsychiatric and neurologic
disorders [16]. In this work we use the Infinite Relational Model (IRM) [8,17]
to infer functional groupings of the human striatum. The IRM model is a non-
parametric Bayesian network model, which assigns nodes into non-overlapping
groups. The probability of a link between two nodes is determined by the groups
the nodes are assigned to. During inference the number of groups and the group

G. Langs et al. (Eds.): MLINI 2011, LNAI 7263, pp. 226–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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assignments are inferred, while the group link probabilities can be integrated out
of the model and are therefore not determined during inference. These proba-
bilities are easily calculated afterwards given the group assignments. The IRM
allows analysis of multi-graph networks and thus provides a natural framework
for analyzing multiple subjects at once as demonstrated in [13].

The basal ganglia (BG) process information from the cerebral cortex in seg-
regated parallel cortico-BG-thalamocortical loops [1]. The BG are involved in
the adaptation of complex goal related behaviors [4,6] and play a key role in
the pathophysiology of many neurological (e.g., Parkinsons disease) and psychi-
atric (e.g., schizophrenia) disorders [11,14]. The caudate nucleus and putamen
(i.e., dorsal striatum) are the main input structures of the BG receiving topo-
graphically organized inputs from the cortex. Striatal sub-territory receives spe-
cific cortical inputs via corticostriatal feed-forward projections originating from
largely segregated cortical input zones [6,12]. The BG anatomy and function is
largely symmetric between the two hemispheres.

2 Methods

2.1 Data

Resting state functional magnetic resonance imaging (rs-fMRI) data from N =
30 healthy controls was recorded for 20 min (482 volumes) per subject. The first
two volumes were discarded to account for T1 equilibrium effects, the remaining
480 volumes were realigned to the time-series mean and spatially normalized to
the MNI template using SPM. Nuisance effects related to residual movement or
physiological effects were removed using a linear filter comprised of 24 motion
related and a total of 64 physiological effects including cardiac, respiratory, res-
piration volume over time, and time series from left and right hemispheres CSF
and white matter voxels. An anatomical mask consisting of the caudate nucleus
and putamen, which was made in WFU PickAtlas [10] using the Talairach Dae-
mon atlas [9], was used to extract the time series of the J = 825 voxels from all
subjects.

The network graph representing functional connectivity in subject n is rep-
resented by the [J × J ] adjacency matrix A(n). Each graph is then composed
of J nodes and A(n)(i, j) is 1 if a link is present between voxels i and j and 0
elsewhere. A(n) was obtained for each subject by first calculating the upper tri-
angular part of the Pearson correlation matrix and then thresholding the matrix
to include the highest 5000 positive correlations.

2.2 The Infinite Relational Model

Following the notation in [13] the IRM generative model can be written as:

Z|α ∼ CRP(α)

ρ(n)|β ∼ Beta(β, β)

A(n)(i, j)|Z,ρ(n) ∼ Bernoulli(zirρ
(n)z�jr ).
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As such, the probability of a link between two voxels is determined by the groups
in which the voxels are members of. ρ(n) is the subject specific group link prob-
ability matrix and defines the probability of links between groups. Z is a [J ×D]
binary matrix indicating group membership for each voxel and is shared across
all subjects. We use symmetric Beta functions with hyperparameter β as priors
for the group link probabilities and the Chinese Restaurant Process (CRP) is
used as prior for the voxel group assignments. By integrating ρ out the posterior
can be written as:

P (A(n)|Z, β) =
∫

P (A(n)|Z,ρ(n))P (ρ(n)|β)dρ(n)

=
∏

a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)
,

where M
(n)
+ (a, b) = (1 − 1

2δa,b)z
�
a (A

(n) + A(n)�)zb is the number of links and

M
(n)
− (a, b) = (1 − 1

2δa,b)z
�
a (ee

� − I)zb − M
(n)
+ (a, b) is the number of non-links

between group a and b. e is a vector of length J with ones in all entries. The
subjects’ adjacency matrices are assumed independent thus their joint distribu-
tion is:

P (A(1), ...,A(N)|Z, β) =
∏

n

∏

a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)
.

Using Bayes’ theorem the posterior likelihood can be found as:

P (Z|A(1), ...,A(N), β, α) ∝ P (A(1), ...,A(N)|Z, β, )P (Z|α) =[∏

n

∏

a≥b

Beta(M
(n)
+ (a, b) + β,M

(n)
− (a, b) + β)

Beta(β, β)

][
αD Γ (α)

Γ (J + α)

∏

a

Γ (na)

]
.

For model inference we use a Gibbs sampling scheme in combination with split-
merge sampling [7,8,13], requiring the posterior likelihood for a node’s assign-
ment given the assignment of the remaining nodes:

P (Z(i, a) = 1|Z\zir ,A(1), ...,A(N))

∝

⎧
⎪⎨
⎪⎩

ma

∏
n

∏
b

Beta(M
(n)
+ (a,b)+β,M

(n)
− (a,b)+β)

Beta(M
(n)

+\i(a,b)+β,M
(n)

−\i(a,b)+β))
if ma > 0

α
∏

n

∏
b

Beta(M
(n)
+ (a,b)+β,M

(n)
− (a,b)+β)

Beta(β,β) otherwise.

ma =
∑

j �=i Z(j, a) is the size of the ath functional group disregarding the as-

signment of the ith node. This posterior likelihood can be evaluated efficiently

since we only need to compute M
(n)
+ and M

(n)
− and evaluate the Beta function

for entries affected by the considered assignment change.
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3 Results and Discussion

3.1 Group Membership Visualization

The Gibbs samling result in a posterior distribution of group assignments which
makes visualization hard. Thus, here we use the Evidence Accumulation Clus-
tering (EAC) framework [5] to summarize and visualize the MAP solutions
from r = 100 runs, each ran for 1000 iterations and with α and β fixed to
1. From the MAP solutions we generated the voxel by voxel co-occurrence ma-
trix C = 1

r

∑r
i=1(Z

(i)Z(i)� − I) where C(i, j) is the empirical probability that
voxels i and j were observed in the same group. Using C agglomerative hier-
archical clustering based on average linkage was performed. We compare the
clustering found by IRM with a simpler approach where the mean adjacency
matrix S = 1

N

∑N
n=1 A

(n) was used for agglomerative hierarchical clustering in
place of C.

The median number of groups found in the 100 runs was 16 (range 14-18). The
average normalized mutual information (NMI) between each pair of the MAP
solutions was 0.78 (std=0.04) and all pairs were highly significant (p < 0.001,
as tested using permutation testing) indicating that the groupings found by
IRM are stable across runs. The cophenetic correlation can be used to assess
the dispersion of the co-occurrence matrix C and is therefore also a measure of
the stability of IRM solutions across random initializations[2]. The cophenetic
correlation was 0.98.

The left part of Fig. 1 shows the grouping found by EAC of the IRM MAP
solutions. The voxel groups are rendered on the anatomical mask used (gray:
putamen; purple: caudate nucleus) and shown next to the dendrogram. The
groups are symmetric between hemispheres, i.e. same sub-territory in left and
right striatum are grouped together, suggesting that the IRM is able to group
voxels in bilateral hemispheres which are involved in the same neural computa-
tions. Using the hierarchical clustering one can assess relations between groups.
Again, the model is able to extract meaningful anatomical information, since
here the green part of the tree defines the putamen, the red part defines the
ventral part of caudate head/tail, while the blue part defines the dorsal part of
caudate head/tail.

The right part of Fig. 1 show the voxel groups and dendrogram found by av-
erage linkage clustering of S. Besides cluster 10, which is a large cluster of both
right and left caudate nucleus, the clustering of S does not show the symmetry
of the IRM grouping but here the groups are in general lateralized to either left
or right striatum and are in general groups of nearby voxels. The green part
of the dendrogram defines right posterior putamen, blue is bilateral caudate
nucleus and anterior putamen, while red reflects posterior putamen. The cophe-
netic correlation of the hierarchical clustering based on S was 0.67 indicating
the dendrogram is representing less of the information in the data compared to
the dendrogram of the IRM model.
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Fig. 1. Left; agglomerative hierarchical clustering of the co-occurence matrix C of the
MAP solutions found from 100 starts of the IRM inference. Right; for comparison a
simpler approach where the average adjacency matrix S was used for agglomerative
hierarchical clustering in place of C.
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3.2 Varying Hyperparameters

To test the reproducibility of groupings found for various choices of hyperpa-
rameters we split the subject sample in half and ran the IRM on each subsample
and calculated the mutual information (MI) and normalized mutual information
(NMI) between the MAP solutions found from each subsample. This was re-
peated for 10 different splits for each hyperparameters value. Fig. 2(a) show the
mean (std) log likelihood, MI, NMI and number of groups found when varying
log10(α) from −15 to 15 keeping β = 1. Likewise, Fig. 2(b) shows the same when
varying log10(β) from −6 to 2 keeping α = 1. The IRM is seen to be very robust
for the choice of α, which controls the prior belief on the group distributions,
where both the MI and NMI remain constant over the wide α-range investigated.
The choice of β, which controls the prior belief on group link probabilities, have
a stronger influence of the MI and NMI. Here, NMI and log likelihood peaks at
β = 0.1. At β = 100 perfect repetition is found between the two splits (NMI=1)
although only 2 groups are found, so the information maintained in this grouping
is low as reflected by the low MI.

(a) Varying α (b) Varying β

Fig. 2. Log likelihood (top panel), mutual information (MI) and normalized mutual
information (NMI) (middle panel) and number of groups (lower panel) between the
MAP solutions found by randomly splitting the subjects in two half. Mean and standard
deviations are shown for 10 splits for each α (a) and β (b). The IRM is seen to be very
robust to the choice of α where both the MI and NMI remain constant over the wide
α-range investigated. The choice of β have a stronger influence of the MI and NMI.
Here, NMI and log likelihood peaks at β = 0.1. At β = 100 perfect repetition is found
between the two splits (NMI=1) although here the number of groups found is 2, so the
information maintained in this grouping is low as reflected by the low MI

3.3 Link Prediction

To evaluate the model’s ability to predict unobserved links we treated at ran-
dom 2.5% of the links and an equivalent number of non-links in each adjacency
matrix as missing. The area under the curve (AUC) of the receiver-operator
characteristics was used as performance measure to evaluate how well the model
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Fig. 3. The area under the curve (AUC) of the receiver-operator characteristics for the
link prediction for each of the 30 subjects. The mean (std) across subjects were 0.83
(0.06).

was able to predict these unobserved links. Fig. 3 shows the mean (std) AUC for
each of the 30 subjects of 100 model runs. Across subjects the mean (std) AUC
was found to be 0.83 (0.06) which is well above chance for all subjects.

4 Conclusion

In this work we used the Infinite Relational Model to infer functional groupings
in the human striatum. We show that the groups found are symmetric between
hemispheres indicating that the IRM is able to find groups of voxels which are
involved in the same neural computations. We evaluate the model’s reproducibil-
ity by splitting the subject sample in half and compute mutual information and
normalized mutual information between splits when varying the hyperparame-
ters of the model. We show that the solutions are very robust to the choice of α,
which controls the grouping distribution, while the solutions are more sensitive
to the choice of β, which controls the prior belief in group link probabilities.
Further, we show that the model is able to predict missing links in the graph
well above chance.
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plex networks. In particular we test their ability to predict unseen network

data and the reproducibility of their clusterings for different datasets. The

three models considered are the Infinite Relational Model (IRM), Bayesian

Community Detection (BCD), and the Infinite Diagonal Model (IDM). The

IRM is the most flexible of the three models with no restrictions on the

between-cluster link probabilities, the BCD model in contrast restricts the

between-cluster link probabilities to be strictly lower than within-cluster link

probabilities to conform with the modular community structure typically seen

in social networks, while the IDM restricts the individual between-cluster

link probabilities to be identical. Using three different datasets comprising

healthy volunteers’ rs-fMRI we found that the BCD model was in general the

most predictive and reproducible of the three. This suggests that rs-fMRI

data exhibits community structure and furthermore points to the significance

of modeling heterogeneous between-cluster link probabilities.

Keywords: complex network, graph theory, infinite relational model,

Bayesian community detection, resting state fMRI

Highlights

1. Three nonparametric Bayesian models for node clustering are used to

model rs-fMRI.

2. Models predictability and reproducibility are extensively evaluated using

resampling.

3. The community structure model shows better predictability and repro-

ducibility.

4. This finding suggests that rs-fMRI graphs exhibit community structure.
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5. Modelling between-cluster link probabilities adds important information.

1. Introduction1

Analysis of resting state functional magnetic resonance imaging (rs-fMRI)2

has emerged as a powerful research tool to study whole-brain functional con-3

nectivity. Since rs-fMRI provides information about intrinsic fluctuations in4

functional connectivity within and among brain networks, many conventional5

analysis schemes applied in task-related fMRI studies are irrelevant. Hence,6

a number of new techniques have been developed based on identification of7

stable spatio-temporal multivariate structure in the brain wide set of blood8

oxygen level dependent (BOLD) time series.9

Using correlation methods or flexible multivariate techniques like inde-10

pendent component analysis (ICA) it has been shown that the BOLD sig-11

nals of distant brain regions are coordinated suggesting interaction as they12

form so-called resting-state networks. The number and precise definition of13

these networks are controversial but several networks are broadly accepted,14

including the default mode network, motor network, visual network, fronto-15

parietal, dorsal attention network (Damoiseaux et al., 2006).16

Complex network analysis is a very active research field (Barabási, 2003)17

that has already found application in neuroimaging and in modeling resting18

state connectivity (Bullmore and Bassett, 2011; Sporns, 2011). The basic19

object is the ’network graph’. When applied to neuroimage analysis the20

network graph is formed by brain regions represented as nodes. Nodes are21

connected by a link if brain regions are co-activated above a certain threshold.22
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In rs-fMRI co-activation is often measured simply by calculating correlation23

between time series.24

Network structure can be studied at many levels, from local motifs to25

global features like scale free link distributions signifying long-range coordi-26

nation (van den Heuvel et al., 2008). At the intermediate level we may iden-27

tify clusters of highly linked nodes, i.e., high within-cluster link density and28

low link density to nodes in other clusters. By analogy to social networks such29

groups are referred to as communities. The presence of community structure30

in a network can be quantified by the global modularity index (Newman,31

2006). Modularity can also be used to identify communities, i.e., by clus-32

tering nodes such that the modularity index is maximized (Newman, 2006;33

Lehmann and Hansen, 2007). Modularity has been shown to be related to34

motor learning (Bassett et al., 2011), visual working memory (Stevens et al.,35

2012), and Meunier et al. (2009) found that modularity is reduced during36

normal aging. Evidence is emerging that global modularity can be used as37

a bio-marker. For instance patients with childhood-onset schizophrenia have38

reduced modularity of their resting state networks (Alexander-Bloch et al.,39

2010). However, focusing on modularity as the single summary of a com-40

plex network may be overly simplistic as the modularity measure does not41

account for variability in the inter-linking relations between functional clus-42

ters. Hence, modularity driven clustering might not reveal all salient aspects43

of community structure in a network. Indeed, modularity has been criticized44

for its lack of flexibility as a measure of community structure (Fortunato and45

Barthélemy, 2007).46

A better understanding of this important mid-level structure in brain47
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networks requires methods that can capture more informative representa-48

tions of community structure in brain networks. For this we turn to a family49

of expressive generative network models. Relational Models are statistical50

generalizations of graph clustering that consider not only the within-cluster51

density but also take the specific relations between clusters into considera-52

tion. The Infinite Relational Model (IRM) (Kemp et al., 2006; Xu et al.,53

2006) is a non-parametric generalization of the stochastic block model (Now-54

icki and Snijders, 2001), for inference of such generalized group structure in55

complex networks. As the IRM representation considers both linking within56

and between groups, a highly inter-linked group of nodes could in fact be57

clustered in different groups if they link in different ways to other clusters,58

i.e., the IRM can infer more general group structures beyond the conven-59

tional community structure. An additional feature of the IRM type of model60

is that it conveniently allows for analysis of multi-graph networks, which for61

neuroimaging data could be graphs from multiple sessions or subjects. For62

multi subject analysis one could look for a common node clustering structure63

over subjects but allow individual subject cluster linking densities (Mørup64

et al., 2010) or test the hypothesis that both clustering and link structure65

are shared between all subjects (Andersen et al., 2012b).66

A constrained variant of the IRM representing the community structure67

of graphs in the sense of grouping highly connected node sets was proposed68

recently in (Mørup and Schmidt, 2012). The Bayesian Community Detection69

(BCD) scheme restricts the between-cluster link densities to be strictly lower70

than within-cluster link densities, thus constraining the more general IRM to71

conform with the notion of a community in a social network. An additional72
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constraint can be introduced by considering the so-called Infinite Diagonal73

Model (IDM) (Mørup and Schmidt, 2012; Schmidt and Mørup, 2013). The74

IDM allows for differential within-cluster link densities but share a common75

between-cluster density and as such the variability in the link densities be-76

tween clusters is neglected when inferring the clustering structure. Thus,77

the IDM can be considered a probabilistic representation of the modularity78

concept.79

It should be noted that basing the graph on simple time series correlation80

certain metrical properties can be expected. In particular, if a node A is81

highly correlated with node B, and B is highly correlated with C, then there is82

a lower limit on the correlation between nodes A and C which can be inferred83

by the triangle inequality (Zalesky et al., 2012). This bound will support the84

formation of community structure, as in social relations: ’Friends of friends85

are friends’, however, we also note that by thresholding the correlation, the86

impact on the community structure of these geometrical constraints is non-87

trivial.88

Spatial grouping of brain regions by similarity of BOLD time series as89

pursued in the present work can be seen as complementary to classical ap-90

proaches to spatial grouping such as time series clustering (Goutte et al.,91

1999) and independent component analysis (ICA) (McKeown et al., 1998;92

McKeown, 2003). Compared with conventional clustering, the relational93

modeling approach has the advantage that clusters are formed by considering94

the connectivity patterns both within and between clusters, and furthermore95

relational models avoid the formation of a group prototype, hence allows for96

more flexible group structures to be found (Kemp et al., 2006). The use of97

6



ICA is based on strong assumptions of independency, which can be ques-98

tioned in the resting state as it has been observed that groups are negatively99

correlated in time (Fox et al., 2005).100

In this study, we apply the above-mentioned community detection sche-101

mes to rs-fMRI data acquired in three cohorts of healthy volunteers and in-102

vestigate to which degree functional brain networks as measured by rs-fMRI103

exhibit community structure. The three Bayesian relational methods, i.e.104

IRM, BCD, and IDM, for inference of group structure in complex networks105

differ only in the way the link probabilities between clusters are modeled. The106

rich link structures of the relational models can be seen as a way of inferring107

functional integration at the inter-community level as discussed in (Hagmann108

et al., 2008; Sporns, 2013). We evaluate the performance of these models with109

respect to their ability to predict out-of-sample data (predictability) and the110

robustness of their clustering under re-sampling of data (reproducibility) us-111

ing the NPAIRS split-half framework (Strother et al., 2002). The evaluation112

is carried out on three datasets from different sites and the models are eval-113

uated both within and between sites for several thresholds of the correlation114

matrices. The work in this paper builds on work presented in Andersen et al.115

(2012b).116

2. Methods117

For generality we investigate three rs-fMRI datasets. One dataset ac-118

quired locally at the Danish Research Centre for Magnetic Resonance (Copen-119

hagen) and two other rs-fMRI datasets publicly available in the FCON1000120

database (Biswal et al., 2010) (viz., the ’Beijing’ and the ’Leipzig’ datasets).121
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2.1. Copenhagen data122

The Copenhagen dataset included thirty healthy controls with no history123

of neurological or psychiatric disease. At the day of scanning all subjects124

were asked to refrain from caffeine, cigarettes or alcohol intake at least six125

hours prior to the scanning session. All subjects gave written informed con-126

sent prior to scanning and the study was approved by the local scientific127

ethics committee of Copenhagen and Frederiksberg Communities (protocol128

no. KF01 - 131/03 with addendum). The Edinburgh handedness inventory129

(Oldfield, 1971) revealed that all participants except two were right handed.130

All MRI measurements were performed on a 3.0 Tesla Magnetom Trio131

scanner (Simens, Erlangen, Germany). Each participant underwent an MRI132

session including a structural scan as well as a functional scan during rest133

both with full brain coverage. During the functional scan subjects were134

instructed to rest with their eyes closed without falling asleep, and refrain135

from any voluntary motor or cognitive activity.136

The first scan during each session was the rs-fMRI functional scan which137

consisted of a T2* weigthed echo planar imaging (EPI) sequence with a138

repetition time of 2490 ms, echo time 30 ms and flip angle 90 degrees. Over139

a period of 20 minutes we collected 480 brain volumes each consisting of 42140

axial slices with an isotropic resolution of 3 mm, field of view (FOV): 192x192141

mm. During scanning we monitored the subjects cardiac and respiratory142

cycles using an infrared pulse oximeter and a pneumatic thoracic belt. The143

structural scan was based on a magnetization prepared rapid gradient echo144

(MPRAGE) sequence with the following parameters: Repetition time (TR)145

= 1550 ms, echo time (TE) = 3.04, inversion time (IT) = 800 ms; 192 sagittal146
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slices; 1 mm isotropic resolution; FOV = 256 mm; flip-angle = 9 degrees.147

The functional images were preprocessed using statistical parametric map-148

ping software (SPM8, Wellcome Trust Centre for Neuroimaging, http://149

www.fil.ion.ucl.ac.uk/spm) implemented in Matlab 7.9 (MathWorks, Mas-150

sachusetts, USA). In order to allow stabilization of T1 equilibrium effects we151

discarded the first five volumes prior to analysis. The remaining 475 brain152

volumes were realigned to the time-series mean using a two-step procedure153

and then co-registered to the same-session T1-weighted MPRAGE scan by154

a 6-parameter rigid-body transformation. The T1-weighted scan was spa-155

tially normalised to the Montreal Neurological Institute (MNI) 305 standard156

template using the unified segmentation/normalisation procedure as imple-157

mented in SPM8 (Ashburner and Friston, 2005). Subsequently the same158

normalisation parameters were used to normalise the EPI images.159

Both hardware instability and unwanted physiological effects (such as car-160

diac pulsation and respiration) produce signal changes in fMRI time-series161

(Smith et al., 1999; Dagli et al., 1999; Glover et al., 2000; Lund et al., 2006).162

These signal changes may give rise to signal fluctuation resembling those163

typically observed in rs-fMRI data (Birn et al., 2006). In order to reduce164

these effects prior to extraction of time series for the regions of interest we165

applied comprehensive temporal filtering of cardiac, respiratory and motion166

related effects. The filter included a high-pass filter based on discrete co-167

sine basis functions (cut-off frequency 1/128 Hz). Cardiac and respiratory168

modeling cycles were modeled using Fourier expansions of the aliased cardiac169

(10 parameters) and respiratory (6 parameters) cycles as well as first order170

cardiac by respiration cycles interaction (4 parameters) effects (Glover et al.,171
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2000). Residual motion effects (24 parameters) were modeled using a Tay-172

lor expansion of the estimated movement parameters including spin-history173

effects (Friston et al., 1996). Changes in the respiration volume over time174

has been demonstrated to produce signal changes resembling those observed175

in rs-fMRI (Birn et al., 2006) we model these changes by included 41 time176

delayed versions (time delay between 20 and -20 seconds in one second in-177

tervals) of the respiration volume. Finally the filter included individual time178

series from cerebrospinal fluid voxels and white matter voxels from both the179

right and left hemispheres.180

2.2. Beijing and Leipzig data181

Two other datasets were used from the FCON1000 database (Biswal et al.,182

2010) (http://fcon_1000.projects.nitrc.org). See Appendix A for a183

list of subjects used. The Beijing dataset consist of 42 of the subjects from the184

Beijing Zang set. The dataset is recorded with 33 slices using TR=2000ms185

and with 225 brain volumes. The Leipzig dataset consist of 37 subjects (21186

females), ages 20-42, TR=2300ms, 34 axial slices, and 195 brain volumes.187

For both datasets the first 5 volumes have already been discarded. Pre-188

processing was done in SPM8 and included realigning to time-series mean for189

motion correction and normalising to standard MNI space using the template190

EPI image included in SPM.191

2.3. Graph construction192

We extracted the mean signal in each of the 116 regions covered in the193

AAL database (Tzourio-Mazoyer et al., 2002) and constructed the correlation194
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matrix for each subject. Since this matrix is symmetric only the upper diag-195

onal is further considered. Each subject’s correlation matrix were binarized196

at an individual level to maintain the highest d-percent correlations corre-197

sponding to having a graph link density at d-percent. After thresholding an198

adjacency matrix A is retrieved where Ai,j is the (i, j)-th element of A and199

Ai,j = 1 if there is a link between nodes i and j and Ai,j = 0 otherwise. Since200

we model multiple subjects A(n) denotes the adjacency matrix corresponding201

to subject n.202

2.4. The models203

This section will provide an overview of the models considered in this204

paper. For a more in depth description please refer to Schmidt and Mørup205

(2013). The goal is to group nodes into non-overlapping clusters, such that206

a common node-clustering across subjects is retrieved. Let z be the vector207

of nodes assignments where zi takes the integer value corresponding to the208

cluster index node i belongs to. The models used are all generative models209

meaning that given the model definition and the model parameters one can210

generate new graphs by drawing samples from the model. The models differ211

in the way they model the link probability between and within clusters. Let212

ρk,l represent the link probability between clusters k and l. Since we here213

consider undirected graphs ρ is symmetric.214

2.4.1. The Infinite Relational Model215

In IRM link probabilities within and between clusters are modeled in-216

dividually and without restrictions. As such the model allows for complex217

relations between clusters, and thus allow for flexible clustering of nodes.218
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Consider generating graphs from this model. The first step is to draw as-219

signments of nodes into clusters, which is done using the Chinese Restaurant220

Process (CRP) (Aldous, 1985) using the hyper-parameter α. The CRP gener-221

ates a cluster assignment, where α controls the number of clusters generated,222

where larger α will generate more clusters. Next, the link probabilities within223

and between clusters ρk,l are generated from the symmetric Beta distribu-224

tion using the hyper-parameter β. Finally, the cluster assignments and the225

link densities are used to generate links between nodes. This is done using226

the Bernoulli distribution, where the probability of a link (success) between227

nodes i and j is determined by the clusters (zi and zj) the nodes belong to.228

The generative model can be summarized as:229

Infinite Relational Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼ Beta(β, β)

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

In Appendix B.1 we derive the likelihood function for the IRM which is used230

in model inference.231

2.4.2. Infinite Diagonal Model232

The model termed Infinite Diagonal Model (IDM) (Mørup and Schmidt,233

2012) is a special case of the IRM where link probabilities between clusters234

are constrained to be equal. As such, the IDM does not model the relation235

between clusters but has a constant background link probability. The only236
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difference in terms of the model formulation is then237

ρk,l =





ρk,k if k = l

ρb otherwise.
238

2.4.3. Bayesian Community Detection239

A network community is defined as a group of nodes with more dense link-240

ing internally than externally. The Bayesian Community Detection (BCD)241

model proposed in (Mørup and Schmidt, 2012) enforces larger within-cluster242

link probabilities than between-cluster link probabilities. Like IRM, the clus-243

ter assignments are first generated using the CRP. A cluster-gap is then244

drawn from a symmetric Beta distribution with hyperparameter v. The245

within-cluster link probabilities are then drawn for each cluster again us-246

ing the Beta distribution. The between-cluster link probabilities are subse-247

quently drawn using the incomplete Beta distribution BetaInc(a, b, x) con-248

strained to the interval [0, x], with the density, p(θ) = 1
Bx(a,b)

θa−1(1 − θ)b−1,249

where Bx(a, b) is the incomplete beta function. The between-cluster link250

probability between two clusters k and l can then at most be as high as251

the smallest of the two within-cluster link probabilities multiplied by the252

cluster gap. The lower the gap-value the higher difference in within and253

between-cluster link probability. Finally, links are drawn using the Bernoulli254

distribution just like the other models. The generative model for BCD can255

thus be summarized as:256
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Bayesian Community Detection

Cluster assignments : z ∼ CRP(α)

Cluster gap : γ ∼ Beta(v, v)

Link probability : ρk,l ∼





Beta(β, β) if k = l

BetaInc(β, β, wk,l) otherwise.

where wk,l = min[γρll, γρkk]

Links : A
(n)
i,j ∼ Bernoulli(ρzi,zj)

2.5. Example 1257

For illustration we generate a graph consisting of 50 nodes from each of258

the three models with α = 5, β = 1. For the BCD model we set v = 1.259

Figure 1 shows the generated graphs. The plots are a combination of both260

the cluster assignment matrix, the adjacency matrix, and the link probability261

matrix. The adjacency matrix A is plotted, where links between nodes are262

indicated by small black dots. Cluster membership is indicated with the263

colors to the left and top of the adjacency matrix and the link probability264

matrix is indicated with gray shaded background. For IRM there are no265

restrictions in the link probability values, resulting in some between-cluster266

link probabilities being larger than within-cluster link probabilities. For the267

BCD model the between-cluster link probability between two clusters are268

restricted to be smaller than the within-cluster link probability times the269

gap. The gap was drawn from the Beta distribution and in this case the gap270

is γ = 0.96. For the IDM model all the between-cluster link probabilities are271
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IRM BCD IDM 

Figure 1: Example 1. Figure illustrating data drawn from each of the three models, IRM,

BCD, and IDM respectively. Plots illustrates both the adjacency matrix A (links indicated

by small black squared dots), cluster membership z as color codes to the left and top of the

adjacency matrix, and link probability matrix ρ as gray shading of the matrix elements.

equal meaning that clusters are only defined in the way they link internally272

in the clusters.273

2.6. IRM and IDM model inference274

In the previous sections we defined the generative models, which allow275

one to generate data by sampling from the model. However, we are inter-276

ested in inferring the model parameters given the data. By using the model277

definition the joint likelihood can be written and by using Bayes theorem278

an expression for the posterior distribution can be found. It is then possible279

to sample from this posterior distribution using Markov chain Monte Carlo280

sampling (MCMC) methods. For IRM and IDM the link probabilities can281

analytically be integrated out which means that we only have to sample over282

the node assignments. For that Gibbs sampling in combination with split-283

merge Metropolis-Hastings updates (Jain and Neal, 2004; Kemp et al., 2006;284

Mørup et al., 2010) is used. Below is a description of these two steps.285
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Gibbs sampling is a Markov-chain Monte Carlo sampling method. For286

each scan of the Gibbs sampler each node’s cluster assignment is updated287

using the conditional distribution of that node’s assignment given the as-288

signments of the remaining nodes. For IRM the conditional distribution is289

derived in Appendix B.1 (equation B.2) and for IDM it is derived in Ap-290

pendix B.2 (equation B.3).291

Given the incremental nature of the Gibbs sampling algorithm it has292

difficulties escaping local maxima of the probability landscape. E.g. it is293

hard to split a single cluster into two new clusters since this requires that294

nodes are moved one at a time from a cluster to the other cluster. To295

overcome this we use a restricted split-merge sampling scheme (Jain and296

Neal, 2004), which potentially merges two existing clusters into one or split297

a single cluster into two clusters. At each step of the algorithm two nodes298

are selected at random with uniform probability. If the two selected nodes299

currently are assigned different clusters then an assignment is proposed where300

these two clusters are merged into one cluster. On the contrary, if these301

two selected nodes are currently assigned to the same cluster then a new302

assignment is proposed where all nodes assigned to this cluster are split into303

two separate clusters. The split-proposal is found using a restricted Gibbs-304

sampling procedure. First a launch state is found by allocating the two305

nodes to two different empty clusters as proposed in (Dahl, 2005). Then306

remaining nodes are in random order assigned to either of the two clusters307

based upon their conditional probability. This state is then referred to as the308

launch state. The launch state is refined by restricted Gibbs sampling steps309

where nodes from the two new clusters can be re-assigned either of the two310
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clusters based on the conditional probability (equation B.2 and B.3). This311

procedure is restricted because only nodes from the cluster from which the312

nodes originally came from are re-assigned and they can only be assigned to313

either of the two new clusters. The proposed configuration is then sampled314

from the launch state. If this proposed state in the Markov chain is accepted315

with the Metropolis-Hasting acceptance probability then this becomes the316

new state else the old state is kept as the new state.317

2.7. BCD model inference318

In IRM and IDM we are able to marginalize link probabilities (ρ) out.319

This is not the case in BCD because between-cluster link probabilities are320

dependent of the within-cluster link probabilities. However, the vast major-321

ity of the parameters, namely the between-cluster link probabilities, can be322

integrated out (Appendix B.3). The remaining parameters z, ρ̇, and γ are323

sampled using MCMC, where ρ̇ refer to the within-cluster link probabilities324

(the diagonal of ρ). The within-cluster link probabilities and cluster gaps325

are sampled with Metropolis-Hastings. The cluster assignments z are like the326

IRM sampled with Gibbs sampling and split-merge moves, however new pos-327

sible values for the within link probabilities and cluster gaps are first drawn328

from their prior. In Appendix B.3 we derive the conditional distributions329

used in the sampling. For further information please see Mørup and Schmidt330

(2012).331

2.8. Example 2332

We illustrate differences in cluster assignments and link probabilities in-333

ferred by each of the three models. We generate a synthetic graph with334
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40 nodes, 10 nodes in each of four clusters. The example is designed such335

that cluster1 and cluster2 share the same within and between-cluster link336

probabilities, however only cluster2 is connected with cluster3. Cluster3 and337

cluster4 have low within-cluster probabilities but high between-cluster link338

probability. Cluster3 and cluster4 are not connected to cluster1 and clus-339

ter2. The first row in Figure 2 show the true assignment vector (z) coded as340

a 1-of-n matrix and the true link probabilities. The next rows show the as-341

signments and link probabilities inferred by the IRM, BCD, and IDM models342

respectively. Except for a single node IRM finds the correct grouping struc-343

ture. BCD assigns the first two clusters correctly and mislabels the same344

node as IRM, but BCD has difficulties with the remaining nodes because the345

true model has higher between-cluster than within-cluster link probabilities.346

Since IDM does not model the between-cluster link probabilities, it groups347

the first two clusters together and the next two clusters together.348

2.9. NPAIRS Evaluation Criteria349

To evaluate the performance of the models, we used the NPAIRS split-350

half evaluation framework (Strother et al., 2002). Under this framework351

the set of subjects were split into two half-splits (S1 and S2) and models352

was inferred on each half-split enabling us to estimate the predictability353

and reproducibility of the models. The models’ predictability was evaluated354

using test log likelihood. The node assignment and link probabilities from355

the sample with the highest value of the posterior distribution were used to356

calculate the test log likelihood of the other split. The test log likelihood357

was calculated for both splits (with the other split as training data) and358

the average test log likelihood was calculated and used as the predictability359
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IRM
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Figure 2: Example 2. First row show the true assignments coded as a 1-of-n matrix and

the true link probabilities. The next rows show the structure and link probabilities inferred

by IRM, BCD, and IDM respectively.

measure. The test log likelihood for split S2 (using the model parameters360

inferred using split S1) was calculated by361

logP (AS2,(1), ...,AS2,(N)|ρ, z) =362

1

N

N∑

n=1

∑

j>i

[
A

S2,(n)
i,j log(ρzi,zj) + (1− AS2,(n)

i,j ) log(1− ρzi,zj)
]
. (1)363

We measured the reproducibility of the models using normalized mutual in-364

formation between assignment matrices (zS1 and zS2) of the sample with the365

highest value of the posterior distribution inferred using the two different366

splits.367

NMI =
2MI(zS1, zS2)

MI(zS1, zS1) + MI(zS2, zS2)
, (2)368
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where369

MI(zS1, zS2) =
D1∑

k=1

D2∑

l=1

p(zS1 = k, zS2 = l) log

(
p(zS1 = k, zS2 = l)

p(zS1 = k)p(zS2 = l)

)
, (3)370

where D1 and D2 are the number of clusters inferred using S1 and S2, re-371

spectively.372

The model used in e.g. Mørup et al. (2010) used individual subject link373

probabilities, that is each subject was modeled with her own link probability374

matrix while sharing the node assignments z. This model allows for subject375

variability in the communication between clusters and can be used to test376

for differences in subject populations. However, here we are interested in the377

models’ predictive abilities, that is, how well can a model and its parame-378

ters learned from a sub-group of subjects predict the graphs from another379

group of subjects. Therefore we do not model individual subject link den-380

sities but constrain ρ to be common across subjects. The derivation of the381

models (Appendix B.1) reveal that this amounts to simply summing the382

adjacency matrices across subjects
∑

nA
(n) = Atot. This means that under383

this restricted model definition inference of the latent variables of the model384

does not scale with the number of graphs (subjects) and therefore our model385

formulation allows for analysis of large numbers of subjects.386

2.10. Experiments387

In all the experiments described below nodes were randomly assigned to388

one of 50 clusters and the sampler ran for 500 iterations. The sample with389

the highest value of the posterior distribution was then used as representative390

for a given run. In all experiments α = β = 1.391
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2.10.1. Estimated clusters392

To inspect the clustering of the different models, the inference procedure393

were launched 10 times for each model using a graph link density d = 8%394

and the sample with the overall highest value of the posterior distribution395

across the 10 runs was visualized. The reproducibility measured as the mean396

NMI between the samples with the highest value of the posterior distribution397

for each run was calculated. Likewise, the clustering similarity between the398

methods was also estimated by calculating the mean NMI between each pair399

of the 10 solutions found.400

2.10.2. Predictability and reproducibility401

We asked how well the clusterings reproduce between datasets and how402

well the models predict new data. To this end, we evaluated the models us-403

ing the NPAIRS framework. Subjects were randomly split into two equally404

sized groups and model inference was conducted on each split. The highest405

posterior distribution sample was identified for the two splits and NMI be-406

tween clusterings was calculated as a measure of the models’ reproducibility.407

Using the estimated link probability matrix and assignment from the sample408

with the highest value of the posterior distribution of one split the test log409

likelihood for the other split was calculated as a measure of the models’ pre-410

dictability. This was done by for 100 different half-splits of the Copenhagen411

dataset using 8% graph link density.412

2.10.3. Varying link density413

For further evaluation of the methods the analysis were repeated within414

each of the three datasets as well as between the datasets for graph link415
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densities of d = 2%, 4%, 8%, 16%, 32%. For analysis done within each in-416

dividual dataset the subjects were randomly split in half. For the between417

dataset analysis inference was done within each dataset and NMI and test418

log likelihood was calculated between datasets. For each link density the log419

likelihood ratio was calculated as the log likelihood of a random Erdős-Rényi420

model having the considered link density divided by the log likelihood of421

the inferred model. This makes the predictability measure more comparable422

between link densities, however, we note that the log likelihood cannot di-423

rectly be compared for different link densities as the data itself changes when424

changing the link densities.425

3. Results426

3.1. Estimated clusters427

Using a graph link density of 8% the reproducibility between solutions428

found with different restarts was measured as the NMI between the sample429

with the highest posterior distribution for each run. This was done within430

all three methods and between methods and results is shown in table 1 along431

with the number of clusters estimated by each of the methods. For all three432

methods the clustering for different initializations showed a very high consis-433

tency as the NMI was greater than 0.96 for all methods. Also, the number434

of estimated clusters was very consistent within method, but showed a great435

between method variability where IRM estimated on average 35.7 clusters,436

BCD estimated 41.0 and IDM estimated only 18.8. For BCD the mean (std)437

gap parameter was estimated to 0.88 (0.02). The IRM and BCD clusterings438

were found to be very similar with a mean NMI of 0.94. The IDM clustering,439
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Method IRM BCD IDM Mean (std) D

IRM 0.96 (0.01) - - 35.7 (1.25)

BCD 0.94 (0.01) 0.96 (0.02) - 41.0 (2.05)

IDM 0.76 (0.02) 0.75 (0.01) 0.97 (0.02) 18.8 (1.14)

Table 1: The mean(std) of normalized mutual information (NMI) between the clustering

of 10 runs within and between method along with the number of clusters (D) estimated

with each of the three methods IRM, BCD, and IDM.

however, was less similar to the other two methods with a mean NMI of 0.76440

and 0.75 to IRM and BCD respectively.441

In figure 3 the samples with the highest value of the posterior distribution442

across the 10 runs for each method are visualized. The first column shows the443

link probability matrix ρ which has been permuted such that clusters with444

the greatest overlap between methods are first. The labels for the clusters can445

be found in Appendix C. The matrix elements are color-coded in grey-scale446

according to the value of the link probabilities and the matrix element size447

indicate the size of the respective cluster. The first 5 clusters were identical448

between the three methods. The next 12 clusters were identical between449

IRM and BCD while IDM had all these clusters in one large cluster. When450

looking at the link probabilities between these 12 clusters it is evident that451

there is a high link probability within and between these nodes, but subtle452

differences exist between the different nodes which caused the IRM and BCD453

to cluster them into separate clusters. Since the IDM model does not consider454

the between cluster link probabilities these clusters were grouped together455

in the IDM method. The same were true for the next 6 clusters which were456

identical for the IRM and BCD and all lumped together in the IDM model457

23



because there is a relative high link probability between these clusters. The458

next three columns show the found clusters in posterior, lateral and superior459

views of the brain. The clusters are colored according to the colors shown460

next to the link probability matrices (and the labels given in Appendix C).461

Brain regions within clusters are connected with lines where line thickness462

indicates the average link density over subjects for the specific connection.463

This figure shows that in general the IRM and BCD clusterings were very464

similar. These two methods produced clusters with relatively few nodes and465

in general interhemispheric homologues areas were grouped together. IDM466

also grouped interhemispheric homologues areas together, however as just467

described this method does not consider specific relations to other brain468

areas so the clusters produced were larger rather unspecific clusters. For469

instance the cluster colored in turquoise is a cluster made up of 34 nodes470

including frontal, occipital, parietal, and temporal lobes.471
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IRM BCD IDM

Figure 3: The extracted clusters using the three methods IRM, BCD, and IDM respec-

tively. The first row shows the link probability matrices ρ which has been permuted such

that the order of the clusters correspond across methods. The matrix elements are color-

coded according to the value of the link probabilities and the size of the matrix elements

indicates the size of the respective cluster. The colors next to the matrices correspond to

different clusters. The next three rows show the clusters in three different views (superior,

posterior, and lateral) of the brain. The clusters are color coded according to the colors

next to the link probability matrices and node assignment for each node can be found

in Appendix C with the same color as plotted here. Different brain regions within each

cluster are connected with lines where the thickness of the line indicates the average link

density across subjects for the specific connection.
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In figure 4 we show an example of one of the clusters and how the results472

can be used to inspect connectivity between clusters. A cluster composed of473

left and right supplementary motor area and left precentral gyrus (A) was474

selected. This cluster was identical for IRM and BCD while results are not475

shown for IDM. The figure also displays the 4 clusters with highest between-476

cluster link probabilities to this cluster. These 4 clusters with highest link477

probabilities are: (B, ρA,B = 0.732) left and right postcentral gyrus, left and478

right paracentral lobule and right precentral gyrus; (C, ρA,C = 0.714) left479

and right middle cingulate gyrus); (D, ρA,D = 0.516); left and right superior480

frontal gyrus); (E, ρA,E = 0.456) left and right superior temporal gyrus).481

The line width between clusters in the figure reflects between-cluster link482

probabilities, likewise the width of the boxes reflect the within-cluster link483

probabilities.484
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A 

B C 

D E 

Figure 4: This figure shows a single cluster A composed of the areas left and right supple-

mentary motor area and left precentral gyrus. Also, the 4 clusters with highest between

cluster link probability to this cluster is shown. These 4 clusters are (B (ρA,B = 0.732); left

and right postcentral gyrus, left and right paracentral lobule and right precentral gyrus),

(C (ρA,C = 0.714); left and right middle cingulate gyrus), (D (ρA,D = 0.516); left and

right superior frontal gyrus), (E (ρA,E = 0.456); left and right superior temporal gyrus).

The line width between nodes reflect the link probabilities between clusters, likewise the

width of the boxes reflect the within-cluster link probabilities.

3.2. Predictability and reproducibility485

Figure 5 shows the PR scatter plot of the predictability versus repro-486

ducibility of the 3 methods using the NPAIRS split-half framework. Clearly,487

IRM and BCD performed better than IDM in both reproducibility and pre-488
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Figure 5: Reproducibility vs predictability plot for the three models using a link density

of 8%. IDM and BCD are better in NMI and test log likelihood than IDM (p < 0.0001).

BCD has better predictability (p = 0.023) than IRM while IRM and BCD do not differ in

reproducibility (p = 0.15).

dictability as measured with NMI and test log likelihood (p < 0.0001, permu-489

tation test). The IRM and BCD scatter plots overlap. However, testing for490

differences BCD showed slightly better predictability than IRM (p = 0.023)491

while the two methods did not differ in reproducibility (p = 0.15). On aver-492

age IRM estimated 29.6 (std=0.83) clusters while BCD estimated 34.8 (0.88)493

and IDM estimated 17.7 (1.13).494

3.3. Varying link density495

Figure 6 shows the mean data and its standard error for the reproducibil-496

ity, predictability, and number of clusters within and between the three497

datasets when varying link density. The first row shows the Copenhagen498

dataset, second row Leipzig, third row Beijing, fourth row between dataset.499

Inspecting clustering reproducibility the general tendency was that BCD per-500
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formed better or on par with IRM across all datasets and for all link densities.501

For IRM and BCD the general tendency was that reproducibility increased502

with higher link densities and seems to plateau between 16% and 32%. IDM503

showed better reproducibility for the lowest link density investigated 2% and504

then generally decreased with higher link densities and showed better or on505

par reproducibility compared with IRM and BCD for 2% and 4% link densi-506

ties.507

BCD and IRM showed higher predictability than IDM for all datasets508

and link densities. For the three within datasets BCD performed better509

than IRM, for higher link densities these two methods were on par. Please510

note that the test log likelihood ratio cannot be compared directly between511

different link densities. BCD generally estimated 5-10 more clusters than512

IRM. For IRM and BCD the number of clusters estimated increased with513

increasing link density. The opposite is seen with IDM which estimated514

fewer clusters with higher link densities.515
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Figure 6: First column normalized mutual information (NMI), second column test log

likelihood ratio, and third column number of clusters as function of graph densities. First

row Copenhagen, second row Leipzig, third row Beijing, fourth row between sites.

4. Discussion and conclusion516

Our aim was to explore statistical models for finding structure in networks517

at the intermediate level. Accumulated evidence points to the importance of518

community structure in brain networks, hence, we tested three statistical link519

models, which differed in terms of the different restrictions that were imposed520

30



on how nodes are clustered. The IRM is a very flexible representation for521

graph clustering, in which nodes can be grouped together without having522

a high link density among them. The BCD is a constrained version of the523

IRM that discards such group structures by insisting on higher within-cluster524

interaction, conforming with the notion of community structure. Finally,525

the IDM model is further constrained to ignore potential differences in the526

way nodes in a community interact with other communities, inspired by527

the methods aimed at identifying structure based on the global modularity528

concept.529

In general IRM and BCD clustered few nodes together corresponding to530

interhemipheric homologues areas. IRM and BCD model the between-cluster531

link probabilities, which allows one to inspect how different clusters link to532

each other, an example of this is shown in figure 4. While a low number533

of nodes in a specific cluster might not reveal a lot of information in itself534

important characteristics can be extracted and interpreted when consider-535

ing the information available from the between-cluster link probabilities. In536

contrast to these two most expressive models, IDM does not model specific537

between-cluster link probabilities. This results in larger clusters with rela-538

tively high within-cluster link probability, which are grouped together since539

the model does not care about specific relations to other clusters. These540

clusters are generally coarser and less nuanced compared to IRM and BCD541

rendering cluster interpretation difficult. An example of this is the large542

turquoise cluster shown in figure 3, which is composed of nodes in frontal,543

occipital, parietal, and temporal lobes.544

IRM and BCD produced representations that are predictive and repro-545
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ducible. Among IRM and BCD, the latter shows better or on par predictabil-546

ity and reproducibility for all three datasets and between the datasets for all547

investigated link densities. The predictability of IRM and BCD was clearly548

better than IDM, which was seen for all datasets and link densities. This549

suggests that taking between-cluster link probabilities into account improves550

both reproducibility and data predictability. The clusterings produced by551

IRM and BCD were very similar with mean NMI between clusterings of552

0.94 at 8% link density. The similarity between the representations of IRM553

and BCD indicates that the flexibility of IRM is not needed when mod-554

eling rs-fMRI data. Even though IRM is able to cluster nodes such that555

the clustering does not obey the community structure we see that IRM in556

general does produce clusterings which are very similar to BCD. The differ-557

ence between BCD and IRM was most pronounced for smaller link densities558

suggesting that despite the large similarity between IRM and BCD it helps559

having the community structure constraint on the clustering. This is most560

evident for smaller link densities where the graphs contain less information561

about the network. The better performance of BCD adds to the evidence562

that coordinated activation in the resting state is community structured.563

By invoking a non-parametric Bayesian approach, the three modeling564

schemes considered are less sensitive to conventional model specification is-565

sues such as determining the number of communities as the number of clusters566

is inferred during model inference. However, the models’ hyper-parameters567

still need to be set. In this study uniform priors were used, however other568

strategies could be considered. For instance, given the Bayesian framework569

it would be straightforward to sample the hyper-parameters as part of the570
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model inference (Kemp et al., 2006). Our analysis scheme is a population571

level model, as we enforced graphs (subjects) to share the model’s link prob-572

ability matrix. This allows us to estimate the out-of-sample predictability for573

new subjects. We note that it is feasible to model individual link probability574

matrices (Mørup et al., 2010; Andersen et al., 2012a). This enables test for575

group differences in link probabilities or correlating with behavioral or per-576

sonality measures, where specific between-cluster linking can be considered577

and enables a more specific conclusion about how, e.g., different population578

groups differ in linking structure.579

A number of studies have reported relevance of the conventional network580

modularity measure to important cognitive measures, such as short term581

memory capacity, reaction time etc. (Bassett et al., 2011; Stevens et al.,582

2012; Meunier et al., 2009). Our findings suggest that there is important583

structure in resting state networks beyond the global modularity. The rich584

link structures of the relational models can be seen as a way of infering585

functional integration at the inter-community level as discussed in (Hagmann586

et al., 2008; Sporns, 2013). Hence, an interesting open question is how to587

convert the flexible representations of the BCD to summary statistics that588

can be used as bio-markers. Indeed, initial evidence for the relevance of the589

community level link density (ρ) as a bio-marker for multiple sclerosis was590

presented in Mørup et al. (2010)591

In conclusion, we evaluated three different Bayesian models for finding592

structure in rs-fMRI graphs. We showed that BCD performs best compared593

to IRM and IDM in terms of predictability and reproducibility. This suggests594

that (1) rs-fMRI data adhere to the community structure and (2) modeling595
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specific between-cluster linking improves predictability and reproducibility.596

Toolbox597

A toolbox for performing the experiments conducted in this paper can be598

found at https://brainconnectivity.compute.dtu.dk/599
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Appendix B. Inference760

Appendix B.1. IRM761

As stated in section 2.4 the generative model for the Infinite Relational762

Model is763

Infinite Relational Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼ Beta(β, β)

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

For brevity we define the joint set of graphs as A = {A(1), ...,A(N)}. The764

Bernoulli likelihood can then be written as:765

P (A|z,ρ) =
∏

n

∏

j>i

ρ
A

(n)
i,j

zi,zj(1− ρzi,zj)
(

1−A(n)
i,j

)
766

=
∏

j>i

ρ

(∑
n A

(n)
i,j

)
zi,zj (1− ρzi,zj)

(
N−∑n A

(n)
i,j

)
767

=
∏

k≥l
ρ
N+

k,l

k,l (1− ρk,l)N
−
k,l ,768

where N+
k,l and N−k,l is the total number of links and nonlinks for all graphs769

between cluster k and l, respectively and N is the number of graphs (sub-770

jects). The prior for the link probabilities is a symmetric Beta distribution771

and can be written as772

P (ρ|β) =
∏

k≥l

Γ(2β)

Γ(β)2
ρβ−1
k,l (1− ρk,l)β−1

773
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where Γ(x) = (x − 1)! is the gamma function. The CRP prior for the node774

partition can be written as775

P (z|α) =
αKΓ(α)

∏
k Γ(nk)

Γ(J + α)
, (B.1)776

where J is the number of nodes per graph, nk is the number of nodes as-777

signed to cluster k and K is the number of clusters. These distributions are778

combined to yield the joint distribution for the IRM:779

P (A, z,ρ|α, β) = P (A|z,ρ)P (ρ|β)P (z|α)780

=
[∏

k≥l
ρ
N+

k,l

k,l (1− ρk,l)N
−
k,l

][∏

k≥l

Γ(2β)

Γ(β)2
ρβ−1
k,l (1− ρk,l)β−1

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
781

=
[∏

k≥l

Γ(2β)

Γ(β)2
ρ
N+

k,l+β−1

k,l (1− ρk,l)N
−
k,l+β−1

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
782

Now we can marginalize ρ:783

P (A, z, |α, β) =

∫
P (A, z,ρ|α, β)dρ784

=
[∏

k≥l

B(N+
k,l + β,N−k,l + β)

B(β, β)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
785

where B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function. Finally using Bayes’ theorem786

we can find the posterior distribution of the assignment of a single node zi787

P (zi = l|A, z\i, β, α) =
P (A, z\i, zi = l|α, β)∑
l′ P (A, z\i, zi = l′|α, β)

788

where z\i is the assignments of all nodes except node i. By writing out this789

equation and finding parts which change when a node is assigned to a cluster790

(Schmidt and Mørup, 2013) we have that:791

P (zi = l|A, z\i, β, α) ∝





nl\i
∏

k

B(N
+\i
k,l +r+i,kβ,N

−\i
k,l +r−i,k+β)

B(N
+\i
k,l +β,N

−\i
k,l +β)

if nl\i > 0

α
∏

k

B(r+i,kβ,r
−
i,k+β)

B(β,β)
otherwise.

(B.2)792
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N
+\i
k,l and N

−\i
k,l is the number of links and nonlinks between clusters k and l793

not counting links from node i. nl\i is the number of nodes assigned to cluster794

l disregarding the assignment of node i. r+
i,k and r−i,k is the number of links795

and nonlinks from node i to any node in cluster k. This posterior likelihood796

can be evaluated efficiently since we only need to compute N+ and N− and797

evaluate the Beta function for entries affected by the considered assignment798

change. The posterior likelihood is used in the Gibbs sampler to infer the799

node assignments.800

Appendix B.2. IDM801

The generative model for the Infinite Diagonal Model is given by:802

Infinite Diagonal Model

Cluster assignments: z ∼ CRP(α)

Link probabilities: ρk,l ∼





ρk = Beta(β, β) if k = l

ρb = Beta(β, β) otherwise.

Links: A
(n)
i,j ∼ Bernoulli(ρzi,zj)

The Bernoulli likelihood can accordingly be written as:803

P (A|z,ρ) = ρ
N+

b
b (1− ρb)N

−
b

[∏

k

ρ
N+

k
k (1− ρk)N

−
k

]
,804

where N+
k and N−k is the number of links and nonlinks within cluster k and805

N+
b and N−b is the total number of links and nonlinks which fall between806

clusters. The prior for the link probabilities can be written as807

P (ρ|β) =
Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

[∏

k

Γ(2β)

Γ(β)2
ρβ−1
k (1− ρk)β−1

]
808

44



The prior for the node partition is the same as the IRM model (equation809

B.1). The joint distribution for the IDM can then be written as:810

P (A, z,ρ|α, β) = P (A|z,ρ)P (ρ|β)P (z|α)811

= ρ
N+

b
b (1− ρb)N

−
b

[∏

k

ρ
N+

k
k (1− ρk)N

−
k

]
812

Γ(2β)

Γ(β)2
ρβ−1
b (1− ρb)β−1

[∏

k

Γ(2β)

Γ(β)2
ρβ−1
k (1− ρk)β−1

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
813

=
Γ(2β)

Γ(β)2
ρ
N+

b +β−1

b (1− ρb)N
−
b +β−1

814

[∏

k

Γ(2β)

Γ(β)2
ρ
N+

k +β−1

k (1− ρk)N
−
k +β−1

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
815

Now marginalizing over ρ:816

P (A, z, |α, β) =

∫
P (A, z,ρ|α, β)dρ817

=
B(N+

b + β,N−b + β)

B(β, β)

[∏

k

B(N+
k + β,N−k + β)

B(β, β)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
818

Finally using Bayes’ theorem we can find the posterior distribution of the819

assignment of a single node zi820

P (zi = l|A, z\i, β, α) =
P (A, z\i, zi = l|α, β)∑
l′ P (A, z\i, zi = l′|α, β)

821

By writing out this equation and finding parts which change when a node is822

assigned to a cluster we find that:823

P (zi = l|A, z\i, β, α) ∝824 



nl\i
B(N

+\i
l +r+i,l+β,N

−\i
l +r−i,l+β)

B(N
+\i
l +β,N

−\i
l +β)

B(N
+\i
b +

∑
k 6=l r

+
i,k+β,N

−\i
b +

∑
k 6=l r

−
i,k+β)

B(N
+\i
b +β,N

−\i
b +β)

if nl\i > 0

α
B(N

+\i
b +

∑
k 6=l r

+
i,k+β,N

−\i
b +

∑
k 6=l r

−
i,k+β)

B(N
+\i
b +β,N

−\i
b +β)

otherwise.
(B.3)825

r+
i,l and r−i,l is the number of links and nonlinks from node i to any node in826

cluster l.827
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Appendix B.3. BCD828

This section will give a short description of the inference in the Bayesian829

Community Detection (BCD) model, for further details please refer to Mørup830

and Schmidt (2012). The generative model for BCD is given by:831

Bayesian Community Detection

Cluster assignments : z ∼ CRP(α)

Cluster gap : γ ∼ Beta(v, v)

Link probability : ρk,l ∼





Beta(β, β) if k = l

BetaInc(β, β, wk,l) otherwise.

where wk,l = min[γρll, γρkk]

Links : A
(n)
i,j ∼ Bernoulli(ρzi,zj)

If we let ρ̇ = {ρk,l|k = l} and ρ̈ = {ρk,l|k 6= l} be the set of within and832

between link probabilities respectively. Then the joint distribution can be833

written as834

P (A, z,ρ, γ|α, β) = P (A|z,ρ)P (ρ̈|ρ̇, γ, β)P (ρ̇|β)P (γ|v)P (z|α)835

=
[ N∏

n=1

∏

j>i

ρ
A

(n)
i,j

zi,zj(1− ρzi,zj)1−A(n)
i,j

]
836

×
[∏

k>l

ρβ−1
k,l (1− ρk,l)β−1

Bxk,l(β, β)

][ K∏

l=1

ρβ−1
l,l (1− ρl,l)β−1

B(β, β)

]
837

×
[γv−1(1− γ)v−1

B(v, v)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
838

839
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Integrating over ρ̈:840

P (A, z, ρ̇, γ|α, β) =

∫
P (A, z,ρ, γ|α, β)dρ̈841

=
[ K∏

k=1

ρ
N+

k,k+β−1

k,k (1− ρk,k)N
−
k,k+β−1

B(β, β)

]
842

×
[∏

k>l

Bxk,l(N
+
k,l + β,N−k,l + β)

Bxk,l(β, β)

]
843

×
[γv−1(1− γ)v−1

B(v, v)

][αKΓ(α)
∏

k Γ(nk)

Γ(J + α)

]
844

Again, using Bayes theorem and eliminating terms which does not depend845

on ρl,l the marginal posterior reduces to846

P (ρl,l|A, z, ρ̇\ρl,l, β, α, γ) ∝ ρ
N+

l,l+β−1

l,l (1− ρl,l)N
−
l,l+β−1∏

k 6=l
Bxl,k

(N+
k,l+β,N

−
k,l+β)

Bxk,l
(β,β)

847

The conditional distribution for a node assignment is given as (Mørup and848

Schmidt, 2012):849

P (zi = l|A, z\i, ρ̇, β, α, γ) ∝ ρ
r+i,l
l,l (1− ρl,l)r

−
i,lαKnl\i850

∏

k 6=l

Bxk,l
(N

+\i
k,l +r+i,k+β,N

−\i
k,l +r−i,k+β)

Bxk,l
(N

+\i
k,l +β,N

−\i
k,l +β)

851

When terms which does not depend on γ are ignored the posterior reduces852

to853

P (γ|A, z, ρ̇, β, α) ∝ γv−1(1− γ)v−1
∏

k>l

Bxk,l(N
+\i
k,l + β,N

−\i
k,l + β)

Bxk,l(β, β)
854

Appendix C. Clusters labels855
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IRM IRM

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup L       
Frontal Sup R       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Cerebelum 7b L      
Cerebelum 7b R      
Vermis 7            
Vermis 9            
Cerebelum 9 L       
Cerebelum 9 R       
Vermis 8            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 3 R       
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Vermis 3            
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

BCD BCD

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup L       
Frontal Sup R       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Cerebelum 7b L      
Cerebelum 7b R      
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Cerebelum 3 R       
Vermis 3            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 9 L       
Cerebelum 9 R       
Vermis 7            
Vermis 8            
Vermis 9            
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

IDM IDM

Frontal Mid Orb L   
Frontal Mid Orb R   
Frontal Sup Orb L   
Frontal Sup Orb R   
Hippocampus L       
Hippocampus R       
ParaHippocampal L   
ParaHippocampal R   
Thalamus L          
Thalamus R          
Parietal Inf L      
Parietal Inf R      
Temporal Pole Sup L 
Temporal Pole Sup R 
Calcarine L         
Calcarine R         
Lingual L           
Lingual R           
Cingulum Mid L      
Cingulum Mid R      
Cuneus L            
Cuneus R            
Occipital Sup L     
Occipital Sup R     
Occipital Inf L     
Occipital Inf R     
Occipital Mid L     
Occipital Mid R     
Fusiform L          
Fusiform R          
Paracentral Lobule L
Paracentral Lobule R
Postcentral L       
Postcentral R       
Precentral R        
Precentral L        
Supp Motor Area L   
Supp Motor Area R   
Parietal Sup L      
Parietal Sup R      
Precuneus L         
Precuneus R         
Temporal Inf L      
Temporal Inf R      
Temporal Sup L      
Temporal Sup R      
Temporal Mid L      
Temporal Mid R      
Frontal Mid L       
Frontal Mid R       
Cingulum Ant L      
Cingulum Ant R      
Frontal Inf Oper L  
Frontal Inf Oper R  
Frontal Inf Tri L   
Frontal Inf Tri R   
Frontal Sup R       
Frontal Sup L       
Frontal Sup Medial L
Frontal Sup Medial R
Frontal Inf Orb L   
Frontal Inf Orb R   

Insula L            
Insula R            
Rolandic Oper L     
Rolandic Oper R     
Heschl L            
Heschl R            
SupraMarginal L     
SupraMarginal R     
Caudate L           
Caudate R           
Putamen L           
Putamen R           
Angular L           
Angular R           
Cingulum Post L     
Cingulum Post R     
Frontal Med Orb L   
Frontal Med Orb R   
Rectus L            
Rectus R            
Vermis 9            
Cerebelum 7b R      
Cerebelum 10 L      
Cerebelum 10 R      
Cerebelum 3 L       
Vermis 7            
Vermis 3            
Amygdala L          
Amygdala R          
Temporal Pole Mid L 
Temporal Pole Mid R 
Olfactory L         
Olfactory R         
Pallidum L          
Pallidum R          
Vermis 10           
Vermis 1 2          
Cerebelum 9 L       
Cerebelum 9 R       
Cerebelum 3 R       
Vermis 8            
Cerebelum 7b L      
Cerebelum 4 5 L     
Cerebelum 4 5 R     
Vermis 4 5          
Vermis 6            
Cerebelum 8 L       
Cerebelum 8 R       
Cerebelum 6 L       
Cerebelum 6 R       
Cerebelum Crus1 L   
Cerebelum Crus1 R   
Cerebelum Crus2 L   
Cerebelum Crus2 R   

Figure C.7: Labels from the extracted clusters using IRM, BCD, and IDM. The colors

correspond to the clusters from figure 3.

48



Appendix F

Joint Modelling of Structural
and Functional Brain

Networks

Andersen, K. W., Herlau, T., Mørup, M., Schmidt, M. N., Madsen, K. H.,
Dyrby, T. D., Lyksborg, M., Siebner, H. R., Hansen, L. K., (2014) ’Joint Mod-
elling of Structural and Functional Brain Networks’, in preparation.



140 Appendix F



Joint Modelling of Structural and Functional Brain
Networks

Kasper Winther Andersen1,2,3, Tue Herlau1,3, Morten Mørup1, Mikkel N. Schmidt1,
Kristoffer H. Madsen2, Tim B. Dyrby2, Mark Lyksborg1,2, Hartwig Siebner2, and Lars

Kai Hansen1

1 DTU Compute, Technical University of Denmark
2 Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre

3 shared first author

Abstract. Functional and structural magnetic resonance imaging (fMRI and dMRI)
have become the most important noninvasive windows into the human brain. A
major challenge in the analysis of brain networks is to establish the similarities
and dissimilarities between functional and structural connectivity. We formulate
a non-parametric Bayesian network model which allows for joint modelling and
integration of multiple network types. We demonstrate the model’s ability to de-
tect vertices that share structure across networks, both on artificial data as well as
joint analysis of fMRI and dMRI data. Using two fMRI and dMRI scans per sub-
ject, we found that structure in dMRI networks are very consistent across scans,
while fMRI graphs only show intermediate consistency. Comparing fMRI and
dMRI we found limited overlap in shared structure.

Keywords: Functional magnetic resonance imaging, diffusion weighted imaging, Bayesian
network models, complex networks

1 Introduction

While the dominant paradigm in neuroimaging remains functional localization, there
is much current interest in understanding the mechanisms behind brain wide coordina-
tion in more complex human behaviors. Network representations and graph theoretical
analyses offer new means to understand functional coordination both under normal be-
haviors and pathology. Current brain imaging technology offers multiple views on these
networks and it has been suggested that structural information obtained via diffusion
weighted imaging and information from functional MRI (fMRI) can be combined in a
synergistic way to produce a more complete picture, see e.g., [1–7].

We note that there are major systematic differences to the networks derived from
structural and functional imaging methods. While functional connectivity obtained by
fMRI measures dependencies on a time scale of 1-100 seconds, diffusion imaging re-
veals ’wiring’ that supports direct communication between neurons at time scales on
the order of 1-100 milliseconds. Furthermore, the characterization of connectivity by
fMRI is confounded by the presence of vascular fluctuations, movement and other con-
founding signals. Diffusion imaging based tractography is challenged in several ways,



2

both in the detection of local connectivity due to presence of crossing/kissing fibers
and in accurate detection of long-range connections due to long path lengths and the
presence of funneling structures such as the corpus callosum [8] making tracking of in
particular interhemispheric connections difficult.

Existing work on combining functional connectivity and structural connectivity is
based on comparing or correlating results obtained from each method independently
[9, 10]. This includes comparisons of descriptive measures of structural and functional
networks like the distribution of motifs or other global properties, such as the link
distribution, small world properties, or degree of modularity, for a recent review see
[7]. However, in order to fully benefit from the individual advantages of each modal-
ity thereby improving detection power and explicitly capture shared network structure,
models that are able to integrate both types on information in the same framework are
needed. This is indeed the aim of recent work on informing functional clustering by
measures of structural connectivity as derived from diffusion MRI [11]. Their so-called
anatomically weighted functional clustering method (awFC) produces more strongly
autocorrelated functional networks compared with conventional unweighted functional
clustering of time series.

The above mentioned approaches for structure-function integration assume that the
relation is global, leading, e.g., [11] to an awFC model in which the integration is con-
trolled by a single tunable integration strength parameter for the whole brain volume,
not allowing for partial integration and non-stationarity across brain structures. Such as-
sumed homogeneity is convenient from a computational point of view but is can hardly
be justified in our knowledge about distributed brain function or structural properties.
In general anatomy and function are markedly inhomogeneous: Areas differ much in
physiology, the type of signal they handle, and their role. Thus, there is significant dif-
ferentiation across the volume leading us to hypothesize a structure-function relation
which is non-stationary.

In order to address this issue we set up an expressive generative model that can po-
tentially learn the structure-function relation locally, and we compare this flexible model
with two reference models based on no coupling and global coupling respectively.
The new model is formulated in a new Bayesian non-parametric multi-graph model-
ing framework that allows for arbitrary relations between a set of modules also deter-
mined by data and most importantly directly models the potential integration between
structure and function at the node level. In particular we propose a non-parametric gen-
erative model that divides nodes into two types i) shared nodes that exhibit the same
clustering structure across modalities and ii) individual nodes (not shared) that are
clustered differently across modalities. This admit the analysis of shared and individual
structures in networks with multiple link types, i.e., graphs defined by functional and
structural connectivity respectively (see also Figure 1). This admits the investigation of
the structure-function relationship in brain networks and provides a general framework
for multimodal integration.

To validate our approach we train and test on two separate sets of structural and
functional MRI graphs obtained for a total of 22 subjects. We compare our modeling to
a model that assumes there are no clusters shared between the functional and structural
connectivity graphs and a model that assumes clusters are fully shared between the
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Fig. 1. Schematic model description. Panel A shows the adjacency matrices for two network
types. The small black dots indicate edges. Grouping structures are indicated with colors to the
left and above the adjacency matrices and group link probabilities are indicated with the gray-
scaled background. In this example nodes belonging to the first two modules are shared across
network type while the remaining nodes show different grouping in the two networks. Panel B
gives a graphical layout of the networks where nodes are shown with filled circles and edges as
lines. The color indicate the same grouping structure as in panel A.

functional and structural connectivity graphs. In addition, we investigate if subjects are
better modelled by subject specific partitions of the brain regions compared to partitions
that are the same across subjects.

1.1 Non-parametric multigraph models

A functional and a structural connectivity graph defined on the same set of R brain
regions can be jointly represented as an edge-labelled multigraph with two edge labels
or, equivalently, as an (R × R × 2) adjacency tensor, Ai,j,k. The infinite relational
model (IRM) [12, 13] is a prominent non-parametric Bayesian modeling approach for
analyzing such multigraphs, extending its parametric counterpart, the stochastic block-
model [14–16]. These models describe a graph as blocks of vertices which exhibit sim-
ilar patterns of relations to vertices in other blocks.

For a single unipartite graph with adjacency matrix Ai,j , the IRM model is defined
by the following generative process: The vertices are partitioned according to a Chinese
restaurant process (CRP), z ∼ CRP(α); for each pair of clusters an edge probability is
generated from a Beta distribution, ηµ,ν ∼ Beta(γ, δ); and each possible edge is then
generated from a Bernoulli distribution, Ai,j ∼ Bernoulli(ηzi,zj ).

Kemp et al. [12] describe IRM models applied to clustering multiple graphs, multi-
ple types of relations, and hypergraphs where edges can connect more than two vertices.
Based on the IRM model, Mørup et al. [17] model the functional connectivity of the
brain in resting state across multiple subjects in a model where the clustering is shared
between subjects but edge probabilities are allowed to vary between subjects. Ishig-
uro et al. [18] extend the IRM model to the analysis of time-evolving networks: Here
the edge probabilities are assumed to be stationary whereas the clustering structure is
modelled as time-dependent, inspired by the nonparametric hidden Markov model [19].
Based on an Indian buffet process and a logistic linear model, Miller et al. [20] model
multiple graphs in a flexible framework where each vertex is allowed to belong to mul-
tiple clusters.
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1) Draw the probability of nodes being shared:
φ ∼ Beta(κ, `)

2) For each node draw a binary variable Ji indicating
whether the node is shared or individual:

∀i Ji ∼ Bernoulli(φ)
3) For the shared nodes draw cluster assignments:

∀i : Ji = 0 {z(0)i } ∼ CRP(α)
4) For the individual nodes draw cluster assignments:

∀n, i : Ji = 1 {z(n)i } ∼ CRP(α)
5) For individual and shared clusters draw link probability:
∀n,m, µ, ν : µ ≤ ν η(n,m)

µ,ν ∼ Beta(γ, δ)
6) For all subjects and network types draw links:
∀n,m, i, j : i < j A

(n,m)
i,j ∼ Bernoulli(η

(n,m)

z
(n·Ji)
i ,z

(n·Jj)

j

)

Table 1. The proposed generative model

While all these existing models are able to detect modular structure in multiple
networks, none of them address the question of determining whether or not common
patterns of relations exist in a set of graphs (see Figure 1). In this work we wish to jointly
model graphs derived from structural and functional brain imaging with the purpose of
identifying which parts of the graphs that exhibit similar patterns and which parts that
are distinct in the two modalities. We present an approach to modeling multiple graphs
in which patterns explicitly are either shared or individual for each type of graph.

2 Methods

Consider a set of graphs
{
Gn,m

(
V,En,m

)
: n ∈ {1, . . . , N},m ∈ {1, . . . ,M}

}
, each

defined on the same set of vertices V = {v1, . . . , vK}. The set of graphs is indexed by
(n,m) where the former in the present context refers to whether the graph is derived
from functional or diffusion MRI (N = 2) and the latter refers to different subjects or
repetitions.

2.1 Generative model

We propose the following model for the set of graphs: For each vertex vi, a Bernoulli
variable Ji indicates whether its linking properties are shared across graphs, Ji = 0,
or are individual for each graph, Ji = 1. According to a Chinese restaurant process
(CRP), the set of shared vertices Vsh. = {vi : Ji = 0} is divided into a partition Z0

represented by {z(0)i }i∈Vsh.
where z(0)i is an index of the cluster to which vertex vi

belongs. For each n ∈ {1, . . . , N} the set of individual nodes Vin. = {vi : Ji = 1} is
divided into a partition Zn represented by {z(n)i }i∈Vin. . For each graph in the set, a link
probability variable η(n,m)

µ,ν determines the probability of observing a link A(n,m)
i,j in the

graph Gn,m between two vertices vi and vj belonging to cluster µ and ν respectively.
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The full generative model is described in Table 1. The tunable parameters of the model
are ψ = {κ, `, α, γ, δ} and they were all set to unity in our experiments.

The model posits a stochastic block structure which is identical across subjects /
repetitions (m) but only partially shared across network types (n). Since the degree of
shared block structure is variable, the model allows us to learn from data to what extent
common block structure is present across different types of networks. We further con-
sider two special cases of this partially-shared block model: A fully-shared Ji = 1 ∀i
and a fully-unshared Ji = 0 ∀imodel. In the fully-shared model a single partitioning of
the nodes is shared between all graphs; however, the link probabilities remain separate
for each graph allowing the model to capture shared group structure despite differences
in link densities. This type of modeling has previously been considered in [20]. In the
fully-unshared model each graph is assumed independent, and our model reduces to N
independent multi-graph infinite relational models (IRM) [12].

2.2 Inference

The parameters φ and η(n,m)
µ,ν are marginalized analytically, resulting in the following

joint posterior distribution, known up to a multiplicative constant,

p(z, J |A,ψ) ∝


 ∏

(m,n)

∏

(µ,ν)

B
(
γ + E

(m,n)
µ,ν , δ + E

(m,n)

µ,ν

)

B(γ, δ)




×


Γ

(
|Vin.|+ α

)

Γ
(
|Vsh.|+ α

)
N∏

n=0

α|Zn|Γ
(
|Zn|

)

Γ
(
|Vin.|+ α

)
∏

ζ∈Zn

Γ
(
|ζ|
)

× B

(
κ+ |Vin.|, `+ |Vsh.|

)

B(κ, `)
,

where B(·) is the Beta function, ζ is a set of vertices belonging to a given cluster, and

E
(m,n)
µ,ν (E

(m,n)

µ,ν ) denotes the number of edges (non-edges) between pairs of vertices
in cluster µ and ν respectively within the graph Gn,m. Evaluating this expression en-
tails counting these numbers of edges and non-edges as well as the number of vertices
associated with each cluster.

Since computing the entire posterior distribution of the remaining parameters in
the model is not computationally tractable (the number of possible values of the dis-
crete parameters in z and J is huge even for small graphs), we resort to inference
by Markov chain Monte Carlo methods. In particular, we use joint Gibbs sampling of
(Ji, z

(0)
i , . . . , z

(N)
i ). For each update we thus need to consider |Z0|+1+

∏N
n=1

(
|Zn|+

1
)

possible cluster assignments (where |Zn| is computed excluding vi). For large N the
z
(n)
i could be Gibbs sampled individually reducing the number of possible assignments

to |Z0|+ |Zn|+2. In addition to this we use two types of split-merge sampling inspired
by the approach of Jain and Neal [21], where splitting or merging clusters is used as a
Metropolis-Hastings proposal. In the first type, we consider splitting or merging clus-
ters within a single partition Zn. In the second type, we consider merging all vertices
in a non-shared cluster Zn into a shared cluster in Z0 or vice versa splitting a shared
cluster into N individual clusters. Inference in the two special cases, the fully-shared
and fully-unshared models, follows trivially.
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To decrease burnin time we used a tempered distribution in the burning phase pro-
portional to exp(τt log p(z, J |A,ψ)) where τ is the temperature schedule. In our ex-
periments we choose τt = τ0 + (1 − τ0)

(
t/T

)3/2
as the temperature schedule with

τ0 = 0.05/|J | and T is the total number of burnin iterations.

2.3 Model validation

To validate our models on functional and structural connectivity graphs we use split-
half cross-validation. For each subject we generate two sets of functional and structural
connectivity graphs. We infer parameters on one set of fMRI and dMRI graphs (i.e.,
training data) and evaluate the inferred models on the other set of fMRI and dMRI
graphs (i.e., test data). We will use two metrics to assess performance; area under the
receiver operating characteristic curve (AUC) and mutual information (MI). AUC will
be used to assess the model’s ability to account for structure in the test fMRI and dMRI
graphs whereas MI will be used to evaluate how reproducible the clustering structure
is. We used MI(z(1), z(2)) =

∑
µµ′ p(µ, µ

′) log p(µ,µ′)
p(µ)p(µ′) . Both AUC and MI will be

calculated for the fMRI and dMRI test data separately.

2.4 Data acquisition

We use fMRI and dMRI data obtained from 22 healthy volunteers.

Functional MRI: Resting state functional magnetic resonance imaging (rs-fMRI) data
was recorded for 20 min (482 volumes) per subject. The first two volumes were dis-
carded to account for T1 equilibrium effects, the remaining 480 volumes were realigned
to the time-series mean and spatially normalized to the MNI template using SPM8. Nui-
sance effects related to residual movement or physiological effects were removed using
a linear filter comprised of 24 motion related and a total of 64 physiological effects in-
cluding cardiac, respiratory and respiration volume over time as well as the time series
from CSF and white matter voxels in both the left and right hemispheres. In order to en-
able the characterization of reproducibility and predictive likelihood, the fMRI data was
blocked into 6 equally sized blocks each consisting of 80 non-overlapping volumes. For
each subject the 6 blocks was randomly split into two independent datasets each con-
taining 3 blocks. For each of the two datasets the mean signal in each of the 116 regions
as defined in the AAL database [22] was extracted and a [116× 116] correlation matrix
was formed for each of the datasets for each subject.

Diffusion MRI: Each subject underwent two diffusion weighted imaging (DWI) ses-
sions. For each session diffusion along 61 directions were recorded with b = 1200s/mm2.
Additionally, 10 b = 0 images were obtained. To compensate for subject motion and
Eddy currents artifacts, the DWI volumes of each subject were aligned with the first
DWI volume (b-value=0) using an affine image transformation with the cost criteria
of normalized mutual information (NMI) [23]. The displacements of the affine trans-
formations were combined with the displacement maps of SPM8’s Fieldmap approach
[24], and displacement maps correcting for the non-linearity of the scanner gradients,
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resulting in a single resampling for each volume, achieved using cubic interpolation.
The rotational parts of the affine transformations are extracted and gradient directions
corrected using the Finite Strain approach [25]. FSL’s Bedpostx was used to estimate
voxelwise diffusion parameters for each subjects’ two DWI sessions. Bedpostx uses
Markov Chain Monte Carlo sampling to build distributions of the diffusion parameters
and allows for detection of crossing fibres. FSL’s probtrackx [26] was used for proba-
bilistic tractography. The AAL brain regions were normalized to each subject’s native
space and used for seeding and target regions. For each voxel a distribution of 5000
pathway samples was generated and the average count of pathways to each region was
used to generate the connectivity matrix C. In order to generate un-directional graphs
we average C̃ = 1

2 (C +C>).

Construction of graphs: The correlation matrix derived from functional MRI and the
averaged pathway count matrix derived from diffusion MRI were thresholded to form
binary adjacency matrices. The threshold was selected such that the resulting graph had
a specific link density: We experimented with graph densities between 3 % and 50 %.

3 Results and discussion

3.1 Synthetic data analysis

To evaluate the method, we considered networks with an underlying structure support-
ive of a partially shared node configuration, but with a varying difficulty parameterized
by an order parameter ε, and each of the 3 models under consideration, the fully-shared,
fully-unshared and partially-shared, was evaluated on the networks.

For each ε a network of K vertices and C communities was constructed as follows:
n
2 elements of J was assigned to 1. The two relations z(1) and z(2) was constructed
as C clusters of equal size and a community assignment consistent with J according
to the generative model. The η(n)-matrices were constructed as a linear combination
η(n) = at + b(1 − t) where t is the C × C identity matrix, and a, b was selected
under the constraints (i) conditional on η(n), the networks should all have a constant
average density and (ii) if ε = 0 all entries of η(n) should be equal and if ε = 1 then
b = 0, see inserts in figure 2 for 3 networks corresponding to ε values indicated by
black vertical lines. We selected C = 8,K = 128 and an average density of 0.1. As
a measure of performance we considered the Normalized Mutual Information (NMI)
(NMI(z′, z′′) = 2MI(z′,z′′)

MI(z′,z′)+MI(z′′,z′′) ) between inferred z(n)-matrices and their true
value, and for the partially-shared model also NMI between J and its true value.

Results can be seen in figure 2. As expected the fully-unshared and partially-shared
model both recover the true community structure for ε ≈ 1, while the fully-shared
model cannot properly represent the true structure in this limit and hence detect poorer
cluster structure. However for very hard problems (ε ≈ 0.25), only the fully-shared
communities present sufficient evidence to infer the cluster structure, and thus the
shared model will begin to detect earlier than the fully-unshared model.

The partially-shared model is also able to exploit this feature of the data and hence
begin to detect earlier. Interestingly the partially-shared model seem to outperform the
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Fig. 2. Result of simulation of artificial data. Each value is averaged over 10 networks and each
simulation is run for 60 burn-in and 10 actual samples. All models were initialized in a fully
independent state with random cluster assignments across 8 clusters.

fully-shared model even for low ε, this may be due to each correctly identified clusters
making the remaining search space smaller, hence also enabling detection on the part
of the structure which is not shared.

3.2 Analysis of fMRI and dMRI data

We consider analysis of the MR data where fMRI and dMRI are modelled jointly for
each subject individually (i.e. M = 1). In addition we consider an within-modality
model, which models fMRI1 vs. fMRI2 and dMRI1 vs. dMRI2. For the latter analysis
we are not able to calculate AUC nor MI since we use both scans in the same model.

The results of the analysis is given in figure 3 where the mean and standard error
across subjects of the fraction of shared vertices, AUC, number of clusters, MI, and
NMI are given. The figure reveals a high consistency in the dMRI graphs between scans
with a mean fraction of shared nodes above 90% for all link densities. fMRI shows less
consistency in clustering across the two scans. The mean fraction of shared nodes is
90% at 3% link density, which falls below 50% for 50% link density. The second row
plots the AUC for training the model on set1 and predicting on test2 (left) and vica
virca (right). We observe that for link densities ≥ 10% the partially-shared model is on
par with the fully-unshared model. The third row plots the number clusters found by
the model, which increases with increasing link density and is slightly higher for fMRI
than dMRI. In the fourth row we plot the MI and NMI between clusterings in the two
scans. We find in general higher clustering consistency in dMRI than fMRI, which is
also consistent with the finding that dMRI in general have a higher number of shared
nodes in the within-modality model. The fully-unshared model have higher NMI for
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the dMRI data and is on par with the partially-shared for fMRI. The plots for AUC and
number of clusters show great consistency across the two scans.

4 Conclusion

Integration of the different modalities of structural and functional connectivity data re-
main a difficult challenge in computational neuroscience. We have proposed a frame-
work which allows for joint modelling of different network types and inference of ver-
tices which share structure. The model was evaluated on artificial data demonstrating
its ability to correctly identify shared and unshared vertices as well as indicating an
improved detection threshold in a high-noise setting compared to individual modelling.

The model was evaluated on fMRI and dMRI data derived from 22 subjects. By
using two scans of each data type per subject we ran the proposed model both within-
and between-modality. In the within-modality we observed that the dMRI exhibit a
highly consistent structure across data sets. The number of shared nodes were for all
link densities greater than 90%. The fMRI graphs were less consistent and the number
of shared nodes decreased when increasing link density. When comparing fMRI and
dMRI we found a low degree of similarity in clustering as revealed by the low number
of shared nodes. For link densities≥ 10% the fraction of shared nodes were below 25%.
There were a higher between-modality consistency for low (3% and 5%) link densities
this, however, it most likely due large null-clusters, which is large clusters with very
low link densities both within and between clusters.

Our model provides a principled unsupervised framework for establishing structure-
function relationship in brain networks. We believe this is a crucial property for models
which purpose to investigate the relationship between these data modalities and advance
our understanding on the relationship between the functional and structural organization
of the brain in both healthy and unhealthy subject populations.

Here we used the model to find similarity between fMRI and dMRI graphs. How-
ever, the model is general and can be used for any types of graphs defined on the same
set of nodes. Thus, the model could be used to infer group differences in clustering and
thus potentially serve as bio-marker for psychiatric and neurological disorders.
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8. Häberling, I.S., Badzakova-Trajkov, G., Corballis, M.C.: Callosal tracts and patterns of hemi-
spheric dominance: A combined fmri and dti study. Neuroimage 54(2) (2011) 779–786

9. Lowe, M.J., Beall, E.B., Sakaie, K.E., Koenig, K.A., Stone, L., Marrie, R.A., Phillips, M.D.:
Resting state sensorimotor functional connectivity in multiple sclerosis inversely correlates
with transcallosal motor pathway transverse diffusivity. Hum.Brain Mapp. 29(1097-0193
(Electronic) LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov’t SB - IM)
(July 2008) 818–827

10. Filippi, M., Agosta, F.: Structural and functional network connectivity breakdown in
Alzheimers disease studied with magnetic resonance imaging techniques. Journal of
Alzheimer’s disease : JAD 24(3) (January 2011) 455–74

11. Bowman, F.D., Zhang, L., Derado, G., Chen, S.: Determining Functional Connectivity usy-
ing fMRI Data with Diffusion-Based Anatomical Weighting. NeuroImage (May 2012)

12. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of
concepts with an infinite relational model. In: Proceedings of the national conference on
artificial intelligence. Volume 21. (2006) 381

13. Xu, Z., Tresp, V., Yu, K., Kriegel, H.P.: Learning infinite hidden relational models. Uncer-
tainity in Artificial Intelligence (UAI2006) (2006)

14. Holland, P.W., Blackmond, K., Leinhardt, S.: Stochastic blockmodels: First steps. Social
networks 5(2) (1983) 109–137

15. Snijders, T.A.B., Nowicki, K.: Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of Classification 14(1) (1997) 75–100

16. White, H.C., Boorma, S.A., Breiger, R.L.: Social structure from multiple networks. Ameri-
can Journal of Sociology 81 (1976) 730–780

17. Mørup, M., Madsen, K.H., Dogonowski, A., Siebner, H., Hansen, L.K.: Infinite relational
modeling of functional connectivity in resting state fMRI. In: Advances in Neural Informa-
tion Processing Systems (NIPS). (2010) 1750–1758

18. Ishiguro, K., Iwata, T., Ueda, N., Tenenbaum, J.B.: Dynamic infinite relational model for
time-varying relational data analysis. In: Advances in Neural Information Processing Sys-
tems (NIPS). (2010) 919–927

19. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical Dirichlet processes. Journal of
the American Statistical Association 101(476) (2006) 1566–1581

20. Miller, K.T., Griffiths, T.L., Jordan, M.I.: Nonparametric latent feature models for link pre-
diction. Advances in Neural Information Processing Systems (NIPS) (2009) 1276–1284

21. Jain, S., Neal, R.M.: A split-merge Markov chain Monte Carlo procedure for the Dirichlet
process mixture model. Journal of Computational and Graphical Statistics 13(1) (2004)
158–182

22. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix,
N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using
a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage
15(1) (January 2002) 273–289

23. Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated
multi-modality image registration based on information theory. In: Information processing
in medical imaging. Volume 3. (1995) 264–274



11

24. Jezzard, P., Balaban, R.S.: Correction for geometric distortion in echo planar images from
bo field variations. Magn Reson Med 34(1) (1995) 65–73

25. Alexander, D.C., Pierpaoli, C., Basser, P.J., Gee, J.C.: Spatial transformations of diffusion
tensor magnetic resonance images. Medical Imaging, IEEE Transactions on

26. Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S.,
Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty
in diffusion-weighted MR imaging. Magnetic resonance in medicine: Official journal of the
Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine
50(5) (November 2003) 1077–88



12

3 5 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Graph density (%)

F
ra

c
ti
o

n
 o

f 
s
h

a
re

d
 n

o
d

e
s

 

 

fMRI1 vs. dMRI1

fMRI2 vs. dMRI2
fMRI1 vs. fMRI1

dMRI2 vs. dMRI2

3 5 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Graph density (%)

A
U

C

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared fMRI
Fully−shared DWI

Fully−unshared fMRI

Fully−unshared DWI

3 5 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Graph density (%)

A
U

C

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared fMRI
Fully−shared DWI

Fully−unshared fMRI

Fully−unshared DWI

3 5 10 20 30 40 50
0

5

10

15

20

25

30

35

Graph density (%)

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared

Fully−unshared fMRI

Fully−unshared DWI

3 5 10 20 30 40 50
0

5

10

15

20

25

30

35

Graph density (%)

N
u
m

b
e
r 

o
f 
c
lu

s
te

rs

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared

Fully−unshared fMRI

Fully−unshared DWI

3 5 10 20 30 40 50
0.5

1

1.5

2

2.5

3

Graph density (%)

M
I

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared

Fully−unshared fMRI

Fully−unshared DWI

3 5 10 20 30 40 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Graph density (%)

N
M

I

 

 

Partially−shared fMRI

Partially−shared DWI

Fully−shared

Fully−unshared fMRI

Fully−unshared DWI

Fig. 3. Model inferred on individual subjects.



Bibliography

Abrahamsen, T. J. and Hansen, L. K. (2011), ‘Sparse non-linear denoising:
Generalization performance and pattern reproducibility in functional MRI’,
Pattern Recognition Letters 32(15), 2080–2085.

Aldous, D. J. (1985), ‘Exchangeability and related topics’, École d’Été de Prob-
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