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Defining accurate acoustical boundary conditions is of crucial importance for room 

acoustic simulations. In predicting sound fields using phased geometrical acoustics 

methods, the absorption coefficients or surface impedances of the boundary surfaces can be 

used, but no guideline has been developed on which boundary condition produces the best 

results. In this study, various boundary conditions in terms of normal and random 

incidence absorption coefficients, and normal incidence surface impedances are used in a 

phased beam tracing model, and simulated results are validated with boundary element 

solutions. Two rectangular rooms with uniform and non-uniform absorption distributions 

are tested. It is concluded that the impedance and random incidence absorption boundary 

conditions produce reasonable results with some exceptions at low frequencies for 

acoustically soft materials. 

 

1 INTRODUCTION 

 

 The acoustic properties of building elements such as sound absorption coefficients or 

surface impedances are crucial input data for room acoustic simulations. Absorption coefficients 

are mainly used for geometrical acoustics methods, whereas wave-based methods generally 

require surface impedance data. Phase geometrical acoustics methods can adopt both absorption 

coefficient and surface impedance boundary conditions. This paper mainly aims to evaluate 

various approximate boundary conditions for a phased beam tracing model. The main question is 

which boundary condition for the phased geometrical acoustics best approximates locally 

reacting boundaries. As a validation tool, the boundary element method employing the identical 

surface impedance boundary condition is used.  

 Surface impedance boundary conditions are likely to be superior, because they fully 

describe the physical characteristics of the boundary, i.e., the magnitude and phase changes on 

reflections. It has been reported that phased geometrical acoustics simulations using surface 

impedances as boundary conditions agree well with measurements.
1,2

 The use of the normal 

incidence specific surface impedance (ζnor
 
)
 
implies that the absorber is of local reaction, because 

the surface impedance is assumed to be constant over the angle of incidence. If measured 
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impedance data are not available, one has to approximately estimate absorption coefficients of 

the boundary. There are a variety of absorption coefficients to be used in the phased beam 

tracing: normal incidence and random incidence absorption coefficients (αnor, αrand,), which are 

assumed to be independent of the incidence angle. αnor holds only for normal incidence. αrand 

strictly assumes random incidence of randomly-phased plane waves onto a large panel, which is 

unlikely in actual sound fields. However, no comparisons have been conducted among various 

absorption and impedance boundary conditions. The goal of this study is to find out the boundary 

condition that best approximates a locally reacting boundary in rectangular rooms and how the 

simulation error changes with various boundary conditions for the phased beam tracing model. 

 

2 ACOUSTIC QUANTITIES AND THEIR RELATIONS 

 

2.1 Normal incidence specific surface impedance 

This quantity is normally measured by the tube method, by which the impedance at a certain 

surface is calculated for normal incidence of plane waves. The specific surface impedance is 

normalized by the characteristic impedance of air by Eq. (1), and will be simply called as the 

impedance in what follows. 
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2.2. Normal incidence absorption coefficient 

The normal incidence absorption coefficient is also measured by the tube method in the 

following relationship to the impedance: 
2
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2.3. Random incidence absorption coefficient 

The theoretical random incidence absorption coefficient for plane wave incidence on an 

infinitely large surface can be calculated as follows:
3
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where αinf (θi) is the oblique incidence absorption coefficient at an incidence angle θi as follows:  
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3 METHODS 

 

3.1. Test rooms and boundary conditions 

Narrow band spectra at 2 Hz intervals were calculated for two rooms that are different in 

shape and volume: a well proportionate room with dimensions of 1.9×1.4×1 m and a 

disproportionate room of dimensions of 5×1×1 m. The first room is optimum for achieving 

evenly spaced modes.
4
 For the proportionate room, one source and 54 receivers were chosen. 

The source position was (0.1, 0.1, 0.4) representing a teacher, because this room was regarded as 

a ¼ scale model of a lecture room. A total of 54 receivers were positioned with x changing from 

0.15 to 1.75 with steps of 0.2, and y changing from 0.2 to 1.2 with steps of 0.2, and a fixed z of 

0.3. For the disproportionate room, one source and 36 receivers were positioned. The source was 

located at (0.1, 0.1, 0.4) and 36 receivers were positioned with x changing from 0.5 to 4.5 with 

steps of 0.5, and y changing from 0.2 to 0.8 with steps of 0.2, and a fixed z of 0.3. 



Various uniform distributions of absorption in the test rooms were examined. A set of 

impedance data of [40, 20, 10, 7, 4], with acronyms of BC1-BC5, was tested as shown in Table 

1, where the corresponding absorption coefficients are also shown, ranging from 0.1 to 0.8. A 

realistic non-uniform distribution in the proportionate room was also tested. The ceiling, floor, 

and the side walls were assigned with the impedance data of [5.9, 18, 38], which corresponded to 

the random incidence absorption coefficients of 0.66, 0.32, and 0.17, respectively.  

 

3.2. Reflection modeling in phased beam tracing method 

Although the details of PBTM are not explained in this article, the reflection modeling used in 

the study should be explained. Whichever boundary condition is given, the portion of reflected 

energy is estimated. From the impedance, the plane wave reflection coefficient is calculated as 

follows: 
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Therefore the reflection coefficient is a function of the incidence angle, although the impedance 

is not angle-dependent. Note that this coefficient is strictly correct for large panels. For grazing 

incidence or relatively small sized panels, another reflection modeling can be used.
5,6

   

For given approximate absorption coefficients, the angle dependence and phase shift on 

reflection are neglected. Therefore a real-valued and positive reflection coefficient is calculated 

as  

  
1 ,i ir    (6)  

where the subscript i can be “nor”, “rand”, or “field”.  

 

3.3. Boundary element models 

The boundary element method can solve acoustic problems numerically based on the 

discretized  Helmholtz - Kirchhoff integral equation on a surface mesh.
7
 An in-house boundary 

element model is used for comparisons. For the proportionate, the boundary element model 

contains 6880 triangular elements with 3442 nodes, of which the 6λ per element condition is 

satisfied up to 1000 Hz. For the disproportionate room, it has 7228 elements and 3616 nodes, 

therefore its upper cutoff frequency is about 700 Hz. For the two rooms, the linear shape function 

and seven Gaussian points were used. The boundary element simulations are regarded as the 

reference simulations. 

 

3.4. Error measures 

Once transfer functions at 2 Hz intervals are calculated using PBTM and BEM, they are 

converted to the dB scale re. 1 Pa, SPLPBTM and SPLBEM, respectively. In addition, 1/3 octave 

band spectra are computed based on the narrow band transfer functions, and named as 

SPLPBTM,oct and SPLBEM,oct. Two errors are defined to compare phased beam tracing simulations 

with boundary element simulations: a narrow band error as e1 by Eq. (7), and a 1/3 octave band 

error as e2 by Eq. (8).  
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where fup and flow are the upper and lower frequency limit of a frequency band, fc is the center 

frequency of the band, and Nline is the number of frequency lines in the frequency band of 



interest. The upper valid frequencies of the proportionate and disproportionate room boundary 

element models are 1000 Hz and 700 Hz, respectively, therefore the highest center frequencies of 

the 1/3 octave band are 800 Hz for the proportionate room, and 500 Hz for the disproportionate 

room. For single-value errors, these errors are averaged over the entire frequency range and over 

the receiver locations as shown in Tables 1-2. 

 

4 RESULTS AND DISCUSSIONS 

 

4.1. Uniform absorption in the proportionate room 

Average simulation errors in the proportionate room are shown in Table a and Fig. 1. In Table 

1, the errors averaged over the frequency bands and receivers are listed. Figure 1 shows the 

averaged errors over the receiver positions as a function of the frequency for αnor, αrand, and ζnor. 

For the lowest absorption case, BC1, the 1/3 octave band error is significantly lower than the 

narrow band error. For e1, the random incidence absorption boundary condition shows best 

results below 200 Hz, whereas the impedance boundary condition yields the best results at higher 

frequencies. The errors are increased as the frequency increases. For e2, the random incidence 

absorption and impedance boundary conditions yields similar results at frequencies higher than 

300 Hz, whereas better agreements are found for the random incidence absorption boundary 

condition below 300 Hz. The normal incidence absorption coefficient boundary condition yields 

the worst results. 

BC2 shows similar results to BC1. However, the errors become lower than those for BC1, 

because the simulation errors at the non-resonance frequencies become alleviated for higher 

absorption cases.
8
 Among the three boundary conditions tested, the lowest e1 is found for the 

impedance boundary condition, whereas the lowest e2 is observed using the random incidence 

absorption. This is mainly ascribed to the fact that the impedance boundary condition slightly 

underestimates the room response at frequencies below 300 Hz. Beyond the Schroeder frequency 

of 423 Hz, the simulation accuracy employing the impedance boundary is enhanced and at least 

comparable to the random incidence absorption boundary condition.  

For BC3, the lowest e2 is found among the tested boundary conditions in Table 1. The 

impedance boundary condition underestimates the room response at frequencies below 300 Hz, 

but the errors are reduced above the Schroeder frequency. The best boundary condition in terms 

of e1 is the impedance data, whereas a slightly better result is found for the random incidence 

absorption boundary in terms of e2. At frequencies lower than 60 Hz, the normal incidence 

absorption boundary produces the best results. 

For BC4, increased errors are noticed for the random incidence absorption and impedance 

boundary conditions at low frequencies, whereas the normal incidence absorption boundary 

condition yields the best result. Above 80 Hz, the errors using the random incidence absorption 

and impedance boundary conditions tend to be lower than those using the normal incidence 

absorption coefficient and the best correspondence is found for the impedance boundary 

condition above the Schroeder frequency. 

For BC5, noticeably amplified errors are found at low frequencies, whereas the high 

frequency errors are quite reduced for the impedance and random incidence boundary condition. 

The normal incidence absorption coefficient boundary condition yields the lowest error at low 

frequencies. Above 90 Hz, the errors using the random incidence absorption and impedance 

boundary conditions become lower, and the best correspondences are found for the impedance 

boundary condition above the Schroeder frequency. Note that e2 is larger than e1 for the 

impedance boundary condition, because large errors are found at low frequencies. 



For the three low absorption cases (BC1-BC3), the random incidence absorption boundary 

condition best approximates the local reaction boundary condition at low frequencies. Above the 

Schroeder frequency, the impedance boundary condition agrees best with the boundary element 

simulations. e2 is smaller than e1, as can be seen in Table 1, which indicates that the errors at the 

resonance frequencies are likely to be lower than those at the non-resonance frequencies, as also 

pointed out in Refs. 2,8. PBTM is inherently more accurate at the resonance frequencies, 

therefore the calculated 1/3 octave band spectra are more accurate. Generally the normal 

incidence absorption coefficient leads to the most inaccurate simulations, whereas the 

random/field incidence absorption and impedance boundary condition represent the locally 

reacting surfaces better. However, for the first few axial modes below 100 Hz, the normal 

incidence absorption boundary condition yields a similar agreement to the other boundary 

conditions, which is not surprising, because it is obvious that the sound propagation is one-

dimensional. Roughly speaking, below the Schroeder frequency the random incidence absorption 

boundary condition is better, whereas the accurate results are guaranteed with the impedance 

boundary condition above the Schroeder frequency. The discrepancies between the random 

incidence absorption and impedance boundary condition, however, are quite small above the 

Schroeder frequency.  

For the high absorption cases (BC4-BC5), the random incidence absorption and impedance 

boundary conditions yield very reliable results at high frequencies, whereas the normal incidence 

absorption produces the best results below 100 Hz. This is related to the sphericity error for high 

absorptions at very low frequencies, as Lam and Ingard already pointed out,
2,9

 because only the 

plane-wave reflection coefficient is employed in the PBTM simulations. As Ingard found, the 

sphericity error is indeed related to the angle of incidence: The sphericity error for oblique angle 

incidence becomes most significant for the lowest impedance, BC5, which supports the 

predominance of the incident energy at near normal directions.
9
 This is the reason why the use of 

the normal incidence absorption coefficient ensures accurate results in this frequency range 

below 100 Hz. The best PBTM simulation can be obtained by combining the boundary 

conditions: the normal incidence absorption coefficient below 70 Hz, the random incidence 

absorption between 70 to 150 Hz, and the impedance beyond 150 Hz. Because many room 

acoustic simulations do not require responses in the very low frequency range, say below 100 

Hz, the random incidence absorption and impedance boundary conditions are recommended in 

most cases. 

 

4.2. Non-uniform absorption in the proportionate room 

A non-uniform distribution of absorption was simulated. A typical lecture room has a large 

amount of absorption on the ceiling, but acoustically reflective walls. The average absorption 

coefficients in terms of the normal and random incidence absorption were calculated as 0.21 and 

0.31, which is similar to BC2 in Table 1. Figure 2 shows the error as a function of the center 

frequency of the 1/3 octave bands. Similar error trends are found: the impedance boundary 

condition yields the lowest e1 except for the very low frequency bands, whereas the random 

incidence absorption coefficient boundary condition guarantees the lowest e2 except for the 800 

Hz band. 

 

4.3. Uniform absorption in the disproportionate room 

Again the five boundary conditions are assigned on the boundary walls in the 

disproportionate room. It has been found that the more disproportionate the room, the larger the 

errors.
8
 In Table 2, average errors over the frequency range and the receiver positions are listed. 

In terms of the narrow band error e1, the impedance boundary condition yields the best results. 



However, the errors are quite increased compared with the proportional room case, e.g., for BC5, 

the lowest e1 and e2 are increased by 1.2 dB and 2.5 dB, respectively. It turns out that the random 

incidence absorption boundary condition consistently yields the best results in terms of e2, but 

the differences in e2 between the random incidence absorption and the impedance boundary 

condition are less than 0.3 dB as shown in Table 2.  

These errors are plotted as a function of the frequency in Fig. 3. The random incidence 

absorption boundary condition is superior at frequencies below 200 Hz, whereas the impedance 

boundary condition agrees best with the boundary element simulations above 200 Hz. Note 

increased errors in Fig. 4(j) at frequencies lower than 100 Hz due to the spherical error, but the 

error employing the impedance boundary condition decreases significantly, as the frequency 

increases. The random incidence absorption boundary condition consistently produces the lowest 

error even at low frequency for low impedances than the normal incidence absorption 

coefficients in terms of both e1 and e2.   

 

5  CONCLUSIONS 

 

This study investigates absorption and impedance boundary conditions for a phased beam 

tracing model. PBTM simulations employing normal incidence absorption, random incidence 

absorption, and impedance boundary conditions are compared with boundary element solutions 

in two rectangular rooms under the assumption of locally reacting boundaries. A large range of 

impedance and absorption boundary conditions is tested with uniform and non-uniform 

absorption configurations. The impedance boundary condition is found to yield the best results at 

higher frequencies above the Schroeder frequency with a few exceptions, whereas the random 

incidence absorption coefficient boundary conditions are proved to be a robust and accurate 

boundary condition, in particular at low frequencies. The normal incidence boundary condition 

generally produces larger errors, and this type of boundary condition is only acceptable for the 

first few axial room modes and/or for the boundaries having low impedance or high absorption. 

A non-uniform boundary configuration shows similar error trends for the tested boundary 

condition. For the disproportionate room, the errors are increased, but the error trends of the 

boundary conditions investigated are similar to the proportionate room case. By using the plane 

wave reflection coefficients computed from the impedance boundary condition, the simulation 

errors can be amplified at frequencies below 100 Hz for low impedance/high absorption. This 

sphericity error, however, occurs only at very low frequencies, therefore in many cases the 

impedance boundary condition with plane-wave reflection modeling is a reliable boundary 

condition.  
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Table 1 –  Errors for five uniform absorption conditions and one non-uniform condition in the 

proportionate room. The surface impedance, corresponding normal, random, field 

incidence coefficients, and Schroeder frequencies are indicated. The lowest errors are 

indicated in bold. 

 
ζnor αnor αrand fSch 

Mean e1 Mean e2 

αnor αrand ζnor αnor αrand ζnor 

BC1 40 0.10 0.17 566 4.0 2.2 1.8 2.2 0.6 0.9 

BC2 20 0.18 0.30 423 3.7 1.4 1.2 2.4 0.6 0.9 

BC3 10 0.33 0.49 331 3.7 1.2 1.0 2.5 0.9 1.0 

BC4 7 0.43 0.60 299 3.7 1.4 1.0 2.6 1.1 1.1 

BC5 4 0.64 0.79 260 3.5 1.8 1.2 2.6 1.7 1.7 

Non-

uniform 

 0.21 0.31 414 3.5 2.5 2.2 2.9 1.2 1.5 

 

Table 2 –  Errors for five uniform absorption conditions and one non-uniform condition in the 

disproportionate room. The surface impedance and Schroeder frequencies are 

indicated. The lowest errors are indicated in bold. 

 
ζnor fSch 

Mean e1 Mean e2 

αnor αrand ζnor αnor αrand ζnor 

BC1 40 416 4.0 2.0 1.6 3.1 1.2 1.4 

BC2 20 311 4.5 2.0 1.5 3.9 1.4 1.7 

BC3 10 243 5.4 2.8 1.7 4.4 2.0 2.2 

BC4 7 219 6.1 3.5 1.9 4.9 2.5 2.8 

BC5 4 192 7.3 5.3 2.4 6.2 4.1 4.2 

 



 

Fig. 1 –  Errors in the proportionate room. (a),(c),(e),(g),(i) e1; (b),(d),(f),(h),(j) e2. (a),(b) BC1; 

(c),(d) BC2; (e),(f) BC3; (g),(h) BC4; (i),(j) BC5.  , αnor; , αrand; :ζnor.  
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Fig. 2 –  Errors in the proportionate room for the non-uniform distribution. (a) e1; (b) e2.  



 

 

Fig. 3–  Errors in the disproportionate room. (a),(c),(e),(g),(i) e1; (b),(d),(f),(h),(j) e2. (a),(b) 

BC1; (c),(d) BC2; (e),(f) BC3; (g),(h) BC4; (i),(j) BC5.  , αnor; , αrand; 

:ζnor. Δ indicates the Schroeder frequency. 

 


