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Abstract: Mathematical models of propeller thrust and torque are traditionally based
on steady state thrust and torque characteristics obtained in model basin or cavitation
tunnel tests. Experimental results showed that these quasi steady state models do
not accurately describe the transient phenomena in a thruster. A recently published
dynamic model was based on the experimental observations. Describing zero advance
speed conditions accurately, this model, however, does not work for a vessel at non-
zero relative water speed. This paper derives a large signal dynamic model of propeller
that includes the e�ects of transients in the ow over a wide range of operation.
The results are essential for accurate thrust control in dynamic positioning and in
underwater robotics.

Keywords: propellers, thrusters, dynamic positioning, underwater robotics, thrust
control

1. INTRODUCTION

Underwater vehicle (UUV) speed and position
control systems are subject to an increased focus
with respect to performance and safety. This is
due to an increased number of commercially and
militarily applications of UUVs. So far most focus
has been directed towards the design of the outer-
loop control system, that is speed and positioning
control systems while the design of the propeller
servo loops have received less attention. Fault
monitoring and diagnosis are achieving increasing
attention as well to enhance safety and reliability
of marine vessels. Both areas require more accu-
rate dynamic models. The control system moti-
vation for better dynamic models is that better
models give better control performance. The mo-
tivation from fault diagnosis is that better models
give faster detection of not-normal operation.

When designing a thruster control system, forces
and moments are realized by a propeller control
system using a mapping from thrust demand to
propeller revolution. This is a non-trivial task
since a propeller in water su�ers several phe-
nomena that cause thrust losses. Similar mapping
would be the basis for diagnostic tools that super-
vise thruster performance.

The main phenomenon to consider is thrust losses
caused by axial water inow, the speed up of
the water going into the propeller. The axial ow
velocity will in general di�er from the speed of the
vehicle. The dynamics of the propeller axial ow
is usually neglected when designing the propeller
shaft speed controller. This leads to thrust degra-
dation since the computed thruster force is a func-
tion of both the propeller shaft speed and axial
ow. The magnitude of the axial ow velocity will
strongly inuence the thrust at high speed so it is
crucial for the propeller performance. In a diagno-
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Fig. 1. De�nitions of axial ow velocity up; ad-
vance speed ua and vehicle speed u:

sis system, incorrect modelling could lead to false
alarm for degraded propeller performance caused
by transient ow phenomena. Alternatively the
diagnosis thresholds would be set so high that real
faults would not be diagnosed at an early stage
of development. Results from experiments showed
that dynamic e�ects play a signi�cant role which
was not accounted for in steady state models.

In (Yoerger et al., 1991) a one-state model for
propeller shaft speed n with thrust torque T as
output was proposed.

This model can be written:

Jm _n+Knjnjn jnj = Qm (1)

T = T (n; up) (2)

where Qm is the control input (shaft torque).
It is convenient to assume that up = 0 when
computing T:

(Healey et al., 1995) modi�ed the models (1){(2)
to describe overshoots in thrust which are typical
in experimental data. Based on the results of Cody
(Cody, 1992) and McLean (McLean, 1991), Healey
and co-workers proposed a two-state model:

Jm _n+Knn = Qm �Q (3)

mf _up + df (up � u) jup � uj = T (4)

T = T (n; up) (5)

Q = Q(n; up) (6)

Here n is the shaft speed, up is the axial ow
velocity in the propeller disc and u is the forward
speed of the vehicle. This was done by modelling
a control volume of water around the propeller as
a mass-damper system.

Experimental veri�cations of the one-state and
two-state models are found in (Whitcomb and
Yoerger, 1999). The model of Healey includes the
dynamic ow e�ects that occur during increase or
decrease of the thruster shaft torque and the ex-
perimental veri�cation indicates that the model is
sound around zero vessel speed. It fails, however,
when the vessel speed is nonzero, i.e. makes speed
through water or is subject to current.

The problem with nonzero vessel speed relative
to water is that the propeller is loaded di�erently

in this condition, and lift and lifting line theories
have to be employed to adequately include these
phenomena. This paper extends the earlier results
to a model that is valid over a range of operation of
a marine propellers. The paper starts with looking
at the induced axial and tangential velocities
in the propeller race, combines this with the
classical momentum theory, and assumes a volume
of water is accelerated/decelerated in transient
conditions. Assessment of propeller thrust is done
by employing lifting line theory results and the
�nal propeller model is obtained using lift result
on the elements of a propeller blade. Simulation
results illustrate the features of the new model.
The propeller theory adopted for our purpose
is well known (see (Lewis, 1988),(Breslin and
Andersen, 1994)), but the combination into a
dynamic control model is believed to be a new
contribution.

2. NOMENCLATURE

Ap Propeller disc area (m2)
u Surge speed of vehicle (m/s)

up Axial ow velocity in disc (m/s)

ua Ambient water velocity (m/s)

n Propeller shaft speed (rad/s)

Xu Linear coeÆcient in surge (kg/s)

Xujuj Quadratic coeÆcient (kg/m)

X _u Added mass in surge (kg)

t Thrust deduction number (-)

w Wake fraction number (-)

mf Mass of in control volume (kg)

m Mass of vehicle (kg)

df0 Linear damping (kg/s)

df Quadratic damp. (kg/m)

Jm Inertia for motor/propeller (kgm2)

Qm Motor control torque (Nm)

CL Lift coeÆcient (-)

D Propeller diameter (m)

T Propeller thrust (N)

Q Propeller torque (Nm)

J0 Advance ratio (-)

KT Thrust coeÆcient (-)

KQ Torque coeÆcient (-)

� Density of water (kg/m3)

�i Angle of attack (rad)

Tnjnj Thrust coeÆcient (kgm)

Tjnjua Thrust coeÆcient (kg)

Qnjnj Torque coeÆcient (kgm2)

Qjnjua Torque coeÆcient (kgm)

R(u) Hull resistance (N)

3. DYNAMIC FLOW

With reference to the notation of Fig. 1, looking
at a Bernoulli tube that comprises the propeller,
we have Bernoulli's law upstream,
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The dynamics of a mass of water in the Bernoulli
tube is a quantity mf as empirical mass

mf _up = Tp +Ap(pu � pd) (9)

With Eq. 7 less Eq. 8 this is also

mf _up = Tp +
1

2
�Ap(u

2

a � u
2

w)

The usual result from momentum theory (Lewis,
1991) gives

up =
1

2
(ua + uw)() uw = 2up � ua (10)

Combining Equations 9, 8 and 7 gives

mf _up +
1

2
�Ap(u

2

w � u
2

a) = Tp

insertion of the momentum theory result Eq. 10
yields

mf _up + 2�Apup(up � ua) = Tp (11)

This equation is only valid for quasi-stationary
ow, not for u and up having opposite signs simply
because we can't use Bernoulli's law on that case.
Further, negative speed is not accounted for. Thus
we need to write Eq. 11 as

mf _up + 2�Ap jupj (up � ua) = Tp (12)

It remains to �nd other constraints between values
of Tp and up since Eq. 12 only gives an implicit
relation and Tp obviously will be a function of up:

4. BLADE SECTION FORCES

The basic lift theory for a section of a propeller
blade is well known indeed, but hydrodynamic lit-
erature concentrates on iterative design solutions
for the propeller itself in a steady state and does
not provide the type of dynamic model of thrust
and torque that is needed for control.

This section adopts the basic hydrodynamic the-
ory to formulate a dynamic model using the in-
stantaneous axial ow as one of the states. This
model will subsequently be compared with the
steady-state hydrodynamic model which is com-
monly available in the form of the propeller char-
acteristics.

Lift theory applied to a propeller considers a
section of a blade at radius R. The chord at this
section is c. The relative velocity of the element is
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Fig. 2. Flow velocity diagram for a section of a
propeller blade with rotational speed n rad/s.
ua is the undisturbed inow velocity to the
screw propeller. upt and upa are tangential
and axial induced velocities. �i is the hydro-
dynamic angle of attack and � the insidence
angle to the blade section. The relative veloc-
ity VR and � determine the lift force.

VR: Lift theory states that the force components
on the section are lift and drag. The lift is

L =
�

2
c dr jVRjVR CL(�)

where CL(�) is the lift coeÆcient of the pro�le for
an angle � of incidence. We start with assuming a
non-viscous uid and expand later to the viscous
case.

A velocity diagram for a blade section is shown in
Fig. 2 for the non-viscous case. The Figure shows
the hydrodynamic pitch angle �i, the advance
angle � and the propellers pitch line �: The angle
of incidence is � = � � �i: At a radius R of the
propeller,

tan� =
ua

nR
and

tan�i =
ua + upa

nR� upt
The e�ective radial velocity is

 ��
OE = nR� upt

where n is in rad/s. The e�ective axial speed is
��!
EB = �!u p = �!u a + �!u pt: The open water ad-

vance velocity (without propeller) is
�!
EA = �!u a:

Inspection of the geometry of the Figure shows

that
��!
CB =

�!
V R sin� and

��!
BC ?

��!
OD: Then, since

� + �i = �;
��!
BD cos(�) =

��!
CB =

�!
V R sin(�): Fur-

ther, elementary manipulation gives
��!
ED = �!u p +

��!
BD = (

�!
nR � �!u pt) tan(� + �i) )

�!
V R sin(�) =

�!u p cos(�) � (
�!
nR��!u pt) sin(�).

Lift on an element dr of the blade is, using the
usual approximation for lift CL(�) = CL sin(�);



dL =
�

2
cdrCL jVRjVR sin(�) (13)

Drag is similarly

dD =
�

2
cdrCD jVRjVR sin(�) (14)

In a non-viscous uid, thrust is hence

dT = dL cos(�i) =
�

2
cdrCL jnR� uptj ((ua + upa) cos(�)

�(nR� upt) sin(�))

(15)

and torque amounts to

dQ = R dL sin(�i) =
�

2
cRdrCL jnR� uptj ((ua + upa) cos(�)

�(nR� upt) sin(�))

(16)

We note that the dT and dQ terms are quadratic.
We �nally note that when there are no friction
losses, the power balance for the section of the
disc gives

dQ(n�
upt

R
) = dT (ua + upa) (17)

The ideal eÆciency for the blade element is

�I =
dT ua

dQ !
=
nR� upt
ua + upa

ua

nR
=

tan�

tan�i

We later need the de�nitions

a =
upa

upa
; a0 =

upt

nR

then the hydrodynamic angle of attack is related
to the geometric angle � as

tan�i =
1 + a

1� a0
tan� (18)

5. RELATION TO OPEN WATER
PROPELLER DATA

Propeller data are commonly presented in the
form of non-dimensional propeller data. A plot of
Kq and Kt versus J is shown in Fig. 3

The characteristic is linear over a wide range of
advance, and a linear representation in J is valid
over this range,

KT = �0 + �1J

KQ = �0 + �1J
(19)

Using the nondimensionalisation of thrust, torque
and advance number, this is equivalent to a
quadratic model (Blanke, 1982), (Fossen, 1994),

T = Tnjnjnjnj � Tjnjua jnjua
Q = Qnjnjnjnj �Qjnjua jnjua

(20)

where

Tnjnj = �D4�0 Qnjnj = �D5�0
Tjnjua = �D3�1 Qjnjua = �D4�1

(21)

The coeÆcient Tjnjua is derived from steady state
where up has achieved its �nal value.
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To explicitly account for the dynamic variation in
axial water speed, we formulate the revised thrust
and torque model as

Tp(n; up) = T o
jnjnjnjn+ T o

jnjv jnjup
Qp(n; up) = Qjnjnjnjn+Qo

jnjv jnjup
(22)

where the relation of parameters in the open water
characteristics are

T o
jnjv =

1

1 + a
Tjnjv ; Q

o
jnjv =

1

1 + a
Qjnjv (23)

Combining Equations (22) with (12) gives the
revised model.

Remark 1: Including drag in the model would
not be diÆcult. The thrust equation would then
read dT = dLcos�i � dD sin�i and similar for
torque. This equation has the same quadratic form
as Eq. 15 but a square term Tjupjup jupjup would
be added. This means the KT propeller approx-
imation in J would not be linear but include a
J2term. There is no diÆculty in adding this term,
nor in getting its parameter from the propeller
characteristic. Therefore, as long as the accuracy
of the linear approximation is satisfactory, we can
disregard drag from the propeller blade, otherwise
the square term in up should be added. The same
goes for the torque equation.

6. DYNAMIC LARGE SIGNAL MODEL

For a �xed pitch propeller, the nonlinear state
equations have three states, propeller shaft speed,
vessel speed relative to water and inow velocity
at the propeller disc.

The acceleration of the shaft is given by the torque
balance,

Jm _n = Qeng �Qjnjnjnjn+Qo
jnjv jnjup (24)



Acceleration of water at the propeller disc by

mf _up + 2�Ap jupj (up � ua) (25)

= Tjnjnjnjn+ T o
jnjv jnjup

and Vessel speed is determined from the balance
between resistance and e�ective thrust

ms _u = R(u) + (1� t)Tp(n; up) (26)

where the average ow at the propeller disc (when
the propeller does not produce thrust) is that of
the vessel reduced by the wake fraction

ua = (1� w)u (27)

The propeller thrust in transient and steady state
condition, at any value of n, ua and up is

Tp(n; up) = Tjnjnjnjn+ T o
jnjv jnjup (28)

The advantage of this model over recently pub-
lished dynamic propeller models is that this model
is valid also when the ship makes speed through
water or is subject to current.

Remark 2: Damping in surge is modeled as the
sum of linear laminar skin friction, �Xuu; (see
Faltinsen and Sortland (Faltinsen and Sortland,
1987)) and nonlinear quadratic drag, �Xujuju juj
(see Faltinsen (Faltinsen, 1990)).

R(u) = �Xuu�Xujuju juj (29)

Similarly, linear damping, df0up; is included in
the axial ow model since quadratic damping,
df jupjup; alone would give an unrealistic response
at low speeds (zero quadratic damping at zero
speed).

Hence, the axial ow model reads

mf _up + df0up + df jupj (up � ua) (30)

= Tjnjnjnjn+ T o
jnjv jnjup (31)

Remark 3: Phenomena that were not included
in the model were drag e�ects, cross-coupling
drag, varying wake with turn or sway, air suction,
and possible interaction between several thrusters
and/or the hull.

Remark 4. The dynamics of the tangential ow
upt could play an essential role for the thrust
dynamics as well as the axial ow that is the
main concern in this paper. The modelling and
veri�cation of tangential ow dynamics would be
a natural extension of the present model.

6.1 Parameter Selection

At steady state, the derivatives are all zero, i.e.
_u = _up = 0. Then,

�Xu�u�Xujuj�u j�uj = (1� t)T (32)

df0�up + df j�upj (�up � �ua) = T (33)

m 1000 [kg] w 0:2
�X _u 0:05m [kg] t 0:1
�Xu 0:2 [kg=s] Jm 1:0 [kgm2]
�Xujuj 500 [kgm]

mf �Al [kg] a 0:25
l 0:30 [m] �1 �0:9435
D 0:30 [m] �0 0:4243
Ap

�
4
D2 [m2] �1 �0:1212

� 1025 [kg=m3] �0 0:0626

Table 1. Model parameters

Tjnjn 3:523

T 0

jnjua
�23:74

Qjnjn 0:1559

Q0

jnjua
�0:9148

Table 2. Thrust and Moment Parame-
ters

Thus,

df0 =
�Xu

(1� t) (1 + a) (1� w)
(34)

df =
�Xujuj

(1� t) (1 + a) a (1� w)
2

(35)

If these relations between the damping parameters
are not satis�ed, the steady-state values will not
be correct.

7. COMPUTER SIMULATIONS

We are to simulate the dynamic thruster model.
The motor is assumed to be a current controlled
DC-motor, Qm = kmim where im is the motor
current, and km its torque coeÆcient. Assume
that the axial ow parameter a, the wake fraction
number w, and the thrust deduction number t

are constant. The axial ow parameter a is set
to a = 0:25:

The parameters for the thruster force and hydro-
dynamic moment mappings are given in Table 2.

Description of the simulated case: At t = 0 the
vessel is at rest and all states are zero. The
following input signal was used

kmim =

8<
:

5 0 � t � 0:3tf
�5 0:3tf < t � 0:6tf
2:5 0:6tf < t � tf

(36)

Simulation results are shown in Figures 4 and 5.
The �rst shows speed and axial ow and demon-
strates the signi�cant di�erence between the two.
Had ua been used instead of up in the propeller
equations, dynamic properties would clearly have
been wrong.

The thrust and torque shown in Fig. 7 demon-
strates, again with the test sequence, veri�es that
the model operates over a large operational enve-
lope.

The resulting model was used as the basis of
a nonlinear observer and controller design for
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enhanced thruster control (Fossen and Blanke,
2000).

8. CONCLUSIONS

The paper has derived a dynamic model for axial
ow and propeller thrust and torque that remedies
the shortcoming of an earlier dynamic thruster
model, which was valid only around zero forward
speed. The model has been simulated and example
parameters shown for convenience. The model
was formulated using readily available propeller
characteristics from open water tests as primary
data, showing how these should be modi�ed to
obtain the dynamic model.

Real experiments were not available for validation,
so simulation was used, showing that the model

operates satisfactory also for large manoeuvres
with vessel speed ahead or astern.

The dynamics of the tangential ow upt could
play an essential role for the thrust dynamics as
well as the axial ow that was the main concern
in this paper. The modelling and veri�cation of
tangential ow dynamics would hence be a natural
extension of the present model.
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