Challenges in subsurface in situ remediation of chlorinated solvents

Broholm, Mette Martina; Fjordbøge, Annika Sidelmann; Christiansen, Camilla Maymann; Hønning, J.; Hansen, B. H.; Nedergaard, L. W.; Kern, Kristina; Uthuppu, Basil; Jakobsen, Mogens Havsteen; Kjeldsen, Peter

Total number of authors:
12

Published in:
In Situ Remediation’ 14

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
BOOK OF ABSTRACTS
Session 1: Urban groundwater contamination and emerging contaminants

Challenges in Urban Hydrogeology – Examples from Berlin ...1
Groundwater energy and remediation: realising the synergy in the Netherlands2
Emerging contaminants in urban groundwater in areas of Doncaster ...4
Carbon and chlorine isotopes fractionation of chlorinated ethenes during diffusive transport in low permeability sediments ..5
Adaptation: A requirement when assessing and managing emerging contaminants – Perfluorooctane Sulfonate (PFOs) as a case study ..6
Identification of hotspots of surface water quality on a large pre alpine catchment7
Evidence for ion exclusion effect during transport of Perfluorooctane Sulfonate (PFOs) in groundwater8
Oxidative treatment of clopyralid ...9
Feasibility of bioscreens for regional VOC-plume in industrial urban area ..10

Session 2: Novel methods for the assessment of in situ remediation processes and performance

Radon - an effective environmental tracer for subsurface NAPL contamination and in situ remediation assessment ...11
Removal of diesel hydrocarbons by constructed wetlands – isotopic methods to describe degradation12
To what extent can isotopes help substantiate natural attenuation of chlorinated ethenes13
Assessment of residual dense non-aqueous phase liquid (DNAPL) ..14
Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater15
Implementing and assessing progress of remediation projects using performance based contracts: a fair way of contracting remediation works? ..16
Bench scale remediation efficiency trials for in situ remediation ..17
Improved recirculation system to treat chlorinated solvent contamination and to allow for heat recuperation18
Assessment of contaminant natural attenuation in a double aquifer system with a complex industrial history: a regional case study with a combined hydrochemical-multiple isotope approach ..19
Tracer testing to assess light non-aqueous phase liquid mobility: first application in the UK20
The use of smart dual phase extraction and real time data for maximising the return on investment in land contamination remediation ..21
Use of practical tracers for effective design and implementation of in situ remediation technologies23
Nitrogen and oxygen isotopes reveal the sources and sinks of inorganic nitrogen in an industrially contaminated groundwater system ..24
GWSDAT (GroundWater Spatiotemporal Data Analysis Tool) ... 25

Session 3: Permeable reactive barriers, in situ chemical oxidation, enhanced abiotic and thermal treatment technologies

Challenges in subsurface in situ remediation of chlorinated solvents .. 26

Integrating sustainable in situ thermal and biological treatment at a fractured bedrock site.............................. 27

Use of electrokinetically-enhanced bioremediation (EK-BIO) and chemical oxidation (EK-ISCO) to remediate source areas in clay and silt .. 28

Application of Permeable Reactive Barriers for sustainable remediation of groundwater contaminated by heavy metals and BTEX .. 29

A combination of high vacuum extraction and in situ chemical oxidation for the recovery and destruction of chlorinated hydrocarbons .. 30

Innovative gas powered in-situ thermal desorption to remediate PCBs in low permeability soils at a facility in Spain .. 31

Carbo-Iron® - one of the studied particles in NanoRem ... 32

Remediation of a mixture of organic compounds by electrical resistance heating and pump & treat 33

In situ thermal technology for a variety of applications ... 34

Use of alternative materials in a permeable reactive barrier to treat TCE contaminated groundwater 35

Thermally enhanced soil vapour extraction at a site contaminated with volatile chlorinated hydrocarbons – from pilot test to full scale remediation .. 36

Self-sustaining treatment for active remediation (STAR): overview and in situ and ex situ applications of the technology .. 37

High Efficiency In Situ Treatment Technology (HEISTT) .. 38

Surfactant enhanced aquifer restoration at a former chemical weapons manufacturing site 39

Using phytoremediation for priority soil contaminants recovery and subsequent biomass valorisation: an integrated solution from the UK perspective .. 40

Carbon dioxide (CO2) supersaturated water injection (SWI) to enhance dense non-aqueous phase chlorinated hydrocarbons mass recovery: first UK field trial .. 41

Session 4: Natural attenuation and engineered in situ bioremediation

Microbial services and their management: recent progresses in soil cleanup and bioremediation technology 42

Performance of an in situ chemical reduction bio-barrier for remediation of tetrachloroethene and trichloroethene in a chalk aquifer ... 43
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape</td>
<td>44</td>
</tr>
<tr>
<td>Enhanced biodegradation: pilot scale application of nano-sized iron oxides</td>
<td>45</td>
</tr>
<tr>
<td>Bioremediation of groundwater enhanced by microbial interaction with solid state electrodes</td>
<td>46</td>
</tr>
<tr>
<td>Particle size effects on the reduction of sand hydraulic conductivity through biological clogging</td>
<td>47</td>
</tr>
<tr>
<td>A unique innovation to increase rate and performance of in situ bioremediation – Development of a new product</td>
<td>48</td>
</tr>
<tr>
<td>In situ enhanced reductive dechlorination the case for optimization via bioaugmentation and/or closed loop groundwater recirculation</td>
<td>49</td>
</tr>
<tr>
<td>Assessment of natural attenuation at a complex site</td>
<td>50</td>
</tr>
<tr>
<td>Metal bioprecipitation in particulate media – effect of particle and flow heterogeneity</td>
<td>51</td>
</tr>
<tr>
<td>Uranium biominerals; enhancing microbial metabolism to control radionuclide migration in groundwater</td>
<td>52</td>
</tr>
<tr>
<td>Electrokinetic injection of nitrate through media with varying permeability contrasts</td>
<td>53</td>
</tr>
<tr>
<td>Session 5: Fate and transport of contaminants in the vadose zone</td>
<td></td>
</tr>
<tr>
<td>Optimization of remediation strategies using vadose zone monitoring systems</td>
<td>54</td>
</tr>
<tr>
<td>Vadose zone studies at an industrial contaminated site: the vadose zone monitoring system and cross-hole geophysics</td>
<td>55</td>
</tr>
<tr>
<td>LNAPL transport and fate in the subsurface: Remediation industry best practice guidance</td>
<td>57</td>
</tr>
<tr>
<td>Reactive transport in porous media: verification of the subsurface processes with stable isotope fractionation</td>
<td>58</td>
</tr>
<tr>
<td>Investigating the impact of heterogeneity in streambed sediments on flow, transport and biodegradation processes in the hyporheic zone</td>
<td>59</td>
</tr>
<tr>
<td>Fate and transport of petroleum fuels in fractured rocks: a case study in chalk</td>
<td>60</td>
</tr>
<tr>
<td>Experimental investigation and modeling of fate and transport of nanoparticles in unsaturated sand</td>
<td>61</td>
</tr>
<tr>
<td>Session 6: Sustainability assessments of in situ remediation technologies, including economic aspects and feasibility studies</td>
<td></td>
</tr>
<tr>
<td>Innovative remediation techniques: The key to sustainable and green remediation?</td>
<td>62</td>
</tr>
<tr>
<td>Sustainable application of steam enhanced dual phase extraction in the treatment of heavier end and high viscosity hydrocarbons</td>
<td>63</td>
</tr>
<tr>
<td>Sustainability assessment and temporal variations between remediation technologies</td>
<td>64</td>
</tr>
<tr>
<td>A review of the legislative and regulatory basis for sustainable remediation in the European Union and United Kingdom</td>
<td>66</td>
</tr>
</tbody>
</table>
The influence of feasibility study in selecting a sustainable approach for the remediation of soils and deep impacted groundwater at active petrol stations ... 67

I+DARTS project: Sustainable in situ remediation for Arsenic polluted sites ... 68

Not only Hg: Environmental forensics applied to define remediation targets in an abandoned Hg mining-metallurgical site ... 69

A holistic approach to support sustainable urban renewal through the redevelopment of brownfields (BALANCE 4P) .. 70

Remediation techniques for in-situ treatment of contaminated soil and water: extensive pilot tests applied to a large brownfield area in Belgium .. 71
Session 3

Permeable reactive barriers, in situ chemical oxidation, enhanced abiotic and thermal treatment technologies
Chlorinated solvent source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. In situ remediation of these sites is particularly challenging in heterogeneous fractured media and where the solvents are present as DNAPL. In situ remediation by chemical as well as biological degradation of chlorinated solvents is a contact sport and requires direct contact between the contaminant and the reactants and/or degrading microorganisms. In fractured geologic media, where contaminants have spread to the low permeability matrix by diffusion, the contact between contaminant and reactant is limited by slow back diffusion of contaminant and in-diffusion of reactant if the only access for the reactant is via the high permeability fractures/conduits. Where DNAPL is present the mass distribution is very heterogeneous and the reactive degradation is often limited by dissolution of the DNAPL. Most recent research has been aimed at overcoming these challenges by enhanced and targeted reactant delivery methods. These include a wide range of very diverse technologies such as: enhanced injection methods, including fracturing; electrokinetic enhancement of delivery; ZVI-clay mixing for contact; hydrophobic and/or mobile nano-reactants targeting DNAPL. The complexity of the technologies varies greatly and the current level of implementation ranges from multiple full scale applications to bench scale testing. However, the basic degradation reaction involved is usually well established. Enhanced injection with fracturing increases the access to contaminants in clay/clayey media matrixes by shortening the diffusive distance and with ZVI-clay technology by physically mixing the reactant with the contaminated clay/clayey media. The efficiency of the injection technologies has been very variable and rather unpredictable in heterogeneous geologic media, hence, further developments are needed. The novel techniques involving electrokinetics induce migration of primarily ionic species/reactants independent of hydraulic permeability differences, hence transporting the reactant into the contaminated matrix and may be applicable for limestone/bedrock as well as clayey media. Only laboratory studies of electrokinetic enhancement have yet been published, and there is a need for thorough pilot scale studies and supporting laboratory studies. Injectable nano-particles with an affinity for DNAPL surfaces (or phases) may overcome dissolution limitations and provide direct contact with contaminant, limiting reactions with other reactive sites in the subsurface. Challenges lie in obtaining stability and mobility in water, affinity for DNAPL and at the same time maintain reactivity with contaminants. Upscaling to production for pilot studies without loss of efficiency is not trivial. In conclusion there continues to be a need for research and development and in particular for well documented pilot/full scale field studies.
This conference is organised within the framework of the Marie Curie Initial Training Network ADVOCATE - Advancing sustainable in situ remediation for contaminated land and groundwater, funded by the European Commission, Marie Curie Actions Project No. 265063

www.theadvocateproject.eu
www.claire.co.uk