Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

Zong, Xu; Chen, Hongjun; Seger, Brian; Pedersen, Thomas; Dargusch, Matthew S.; McFarland, Eric W.; Li, Can; Wang, Lianzhou

Published in:
Energy & Environmental Science

Link to article, DOI:
10.1039/C4EE01503G

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Showcasing research from the collaborative team of Lianzhou Wang from the University of Queensland, Australia, and Can Li from Chinese Academy of Sciences.

Title: Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell

Identifying processes capable of producing valuable chemicals by using waste products is significant. This work introduces a dual-functional solar-to-chemical approach which can convert toxic hydrogen sulfide (H$_2$S) to simultaneously produce valuable hydrogen peroxide (H$_2$O$_2$) and elemental sulfur.

Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell†

Xu Zong,ab Hongjun Chen,ab Brian Seger,c Thomas Pedersen,d Matthew S. Dargusch,eb Eric W. McFarland,f Can Li*b and Lianzhou Wang*a

A solar-to-chemical conversion process is demonstrated using a photoelectrochemical cell without external bias for selective oxidation of hydrogen sulfide (H\textsubscript{2}S) to produce hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) and sulfur (S). The process integrates two redox couples anthraquinone/anthrahydroquinone and I-/I\textsubscript{3}- and conceptually illustrates the remediation of a waste product for producing valuable chemicals.

Broader context
Identifying cost-effective processes for use of solar energy is challenging. Production solely of low-value fuels such as hydrogen necessitates extremely low capital cost systems that have been yet to be identified. Demonstrating a dual-function solar-to-chemical process making higher value chemicals from photogenerated electrons and consuming negative value waste products with the holes can significantly improve the economic sustainability of the process. In this work, we demonstrate a combined photoelectrochemical cell for the remediation of toxic hydrogen sulfide (H\textsubscript{2}S) and the production of valuable hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}). Moreover, we highlight the importance of fine-tuning the selectivity of photochemical reactions by using well-designed transformation processes.

The efficient transformation of solar energy into important products and fuels is essential for the realization of a solar energy economy.1–4 Photochemical processes with dual-functionalities are attractive due to their potential for activating two or more reaction partners in a single photoredox catalytic cycle without the necessity of quenching or sacrificial reagents.5–7 This means that both the photogenerated electron and hole can drive useful redox reactions, therefore making use of the potential energy stored in both carriers.

To utilize a dual-function approach, different strategies can be used to drive useful reactions with the electrons and the holes. In photoelectrochemical–photocatalytic water splitting reactions, H\textsubscript{2} and O\textsubscript{2} are directly produced simultaneously.8–11 An indirect strategy is to store solar energy in intermediate species and then use the intermediate species to drive the subsequent reactions.7 In many cases, this indirect pathway is kinetically more favourable and therefore more easily implemented. Moreover, an indirect pathway may make the reaction choice more flexible and potentially produce commercially valuable products with high selectivity. We have investigated the dual-function approach to achieve efficient solar energy transformation for target reactions with potentially useful and valuable products.

As is well-known, hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) is an important commodity oxidant.12–13 It is currently produced by an anthraquinone (AQ) process, in which hydrogenation of AQ with H\textsubscript{2} produces anthrahydroquinone (H\textsubscript{2}AQ) and subsequent oxidation of H\textsubscript{2}AQ by O\textsubscript{2} produces H\textsubscript{2}O\textsubscript{2} (Scheme S1†).14 As an alternative to this process, photochemical reduction of O\textsubscript{2} to produce H\textsubscript{2}O\textsubscript{2} is attractive for production of H\textsubscript{2}O\textsubscript{2} as a chemical product or fuel.15–17 Moreover, the production of valuable and easily-storable hydrogen peroxide using a photochemical reaction may avoid the costs and safety concerns of processes using H\textsubscript{2}.

Enormous quantities of H\textsubscript{2}S are a byproduct of oil and gas production. It is toxic and expensive to manage. At present, H\textsubscript{2}S is primarily treated using the Claus process wherein it is partially oxidized by O\textsubscript{2} to yield S and H\textsubscript{2}O\textsubscript{2}.18 A solar-to-chemical process to selectively convert H\textsubscript{2}S and O\textsubscript{2} into S and H\textsubscript{2}O\textsubscript{2} (instead of H\textsubscript{2}O\textsubscript{2}), may have both economic and environmental benefits.
In this study, we coupled two separate photoelectrochemical reactions: reduction of O₂ with anthrahydroquinone (H₂AQ) to produce hydrogen peroxide (H₂O₂) and oxidation of hydrogen sulfide (H₂S) to elemental sulfur (S) with I₃⁻ produced by photooxidation of I⁻. To the best of our knowledge, this is the first reported photochemical approach that integrates selective H₂S oxidation and O₂ reduction reactions to produce hydrogen peroxide.

The approach of selectively converting H₂S and O₂ to S and H₂O₂ is shown in Scheme 1 and Scheme S2. The overall reaction consists of two integrated photoelectrochemical—chemical cycles occurring in the anodic and cathodic compartments separated by a NaSal membrane. Every cycle comprises one chemical and one photoelectrochemical reaction.

In the cycle occurring in the anodic compartment, H₂S is trapped and selectively oxidized to elemental sulfur and protons through a simple redox reaction (1.1 in Scheme 1) where the conversion of I₃⁻ to I⁻ is the corresponding reduction reaction. Subsequently, the resulting I⁻ is restored to I₃⁻ by the photogenerated holes during the photoelectrochemical reaction (1.2). The use of I⁻/I₃⁻ redox couples will ensure the efficient oxidation of H₂S, which is superior to the direct oxidation of H₂S on the electrode surface due to the mass transfer issue.

In the cycle occurring in the cathodic compartment, H₂O₂ is produced through a simple chemical reaction between H₂AQ and O₂ (2.1). The H₂AQ is oxidized to AQ (Scheme S3†), which is subsequently transformed to H₂AQ by the photogenerated electrons and the residual protons from oxidation of H₂S (2.2).

By integrating the two cycles linked by I⁻/I₃⁻ and AQ/H₂AQ redox couples, the net reaction is the production of S and H₂O₂ from H₂S and O₂ using solar energy. It is worth noting that I⁻/I₃⁻ and AQ/H₂AQ redox species are negatively charged and won't diffuse through the NaSal membrane. Therefore, the individual redox couples are confined within the anodic and cathodic compartments, respectively, which will prohibit the backward reaction and allow for the separation of the final products. To further clarify the engineering challenges for potentially implementing the concept in a real practice, a more detailed flow-stream design (Scheme S4†) of the reaction processes is presented in Scheme S4†. In this regard, Scheme 1 can be considered as a simplified format of Scheme S4†.

As a proof of concept, we investigated the cathodic and anodic sides of the reactions on p-type Si (p-Si) or n-type Si (n-Si) in a three electrode system, respectively (Fig. S1, experimental details in the ESI†).

The results of the chronoamperometry showed that the TiO₂/Ti/n-p-Si electrode’s performance decreased quickly initially, but remained comparatively stable after prolonged testing (Fig. 1b). During chronoamperometry, the AQ solution in the cathodic compartment gradually changed from light yellow to dark green, indicating the generation of H₂AQ (Fig. S3†). This partially led to the decreased activity observed on TiO₂/Ti/n-p-Si due to the blocking of light by H₂AQ. The solution can be restored to the original yellow colour rapidly when sparged with air, due to the rapid auto-oxidation of H₂AQ to H₂O₂ and AQ according to Scheme S3†. Therefore, the energy from photogenerated electrons can be stored as chemical potential energy in the form of H₂AQ and then liberated to reduce O₂ to produce H₂O₂ and S.
H$_2$O$_2$. The amount of H$_2$O$_2$ produced gradually increased with the reaction time. The Faradaic efficiency was calculated to be ca. 90% (Fig. 1d).

We investigated the anodic reactions on functionalized Pt/p+n-Si electrode. The p$^+$ doping of the n-Si electrode allows for increased photocurrent for the oxidation reaction. Deposition of a Pt catalyst film can protect the Si underneath as well as catalyze I$^-$ oxidation to I$_3^-$. As shown in Fig. 2a, Pt/p-n-Si electrode showed an onset potential of -0.2 V vs. RHE and delivered a photocurrent of ca. 12 mA cm$^{-2}$ at an applied potential of as low as 0 V vs. RHE in an acidic KI electrolyte. These values are outstanding compared with our previous functionalized n-Si electrode which showed a more cathodic onset potential of 0.1 V vs. RHE. Moreover, the Pt/p-n-Si electrode showed greater stability during chronoamperometry (Fig. 2b).

During chronoamperometry, the KI solution in the anodic compartment gradually changed to red, indicating the generation of I$_3^-$. As shown in Fig. 2c, Pt/p-n-Si electrode was bubbled into the solution containing I$_3^-$ (Fig. S5). As shown in Fig. 2d, Pt/p-n-Si electrode showed an onset potential of -0.2 V vs. RHE and delivered a photocurrent of ca. 12 mA cm$^{-2}$ at an applied potential of as low as 0 V vs. RHE in an acidic KI electrolyte. These values are outstanding compared with our previous functionalized n-Si electrode which showed a more cathodic onset potential of 0.1 V vs. RHE. Moreover, the Pt/p-n-Si electrode showed greater stability during chronoamperometry (Fig. 2b).

After separately verifying the cathodic and anodic reactions in three electrode systems, we investigated the integration of the two photoelectrochemical–chemical reaction pairs in a single two electrode system. Single photoelectrodes in the anodic (for n-Si) or cathodic (for p-Si) compartments were used as the light absorber. As shown in Fig. S6a, p-Si showed a negligible photocurrent at negative applied bias when using AQ and H$_2$SO$_4$ in the cathodic and anodic compartments, respectively. However, the photocurrent increased significantly when KI was added to the H$_2$SO$_4$ in the anodic compartment. The photocurrent and onset potential for AQ reduction was further improved on the TiO$_2$/Ti/n+p-Si electrode (Fig. 3b). As I$^-$ oxidation is thermodynamically more favorable than water oxidation, the use of KI can relieve the stringent requirement on the anodic side. However, TiO$_2$/Ti/n+p-Si only delivered a negligible photocurrent at zero applied bias. As the conduction band level of n-Si is higher than what is required for AQ and protons reductions, this low photocurrent at zero bias should be ascribed to the inefficient oxidation power of the photogenerated holes.

We then tentatively tried Pt/p-n-Si in a two electrolyte system with the expectation that an unbiased system could be established due to the high oxidation potential afforded by p-n-Si. As shown in Fig. 3a, Pt/p-n-Si showed a negligible photocurrent at zero bias when using KI and H$_2$SO$_4$ in the anodic and cathodic compartments, respectively. However, the photocurrent increased notably to 8 mA cm$^{-2}$ when adding AQ to H$_2$SO$_4$ in the cathodic compartment (Fig. 3c). The increased current is expected because AQ is more favorably reduced than protons (Fig. 1a). The selectivity for the H$_2$AQ production is calculated to be ca. 98% by comparing the photocurrent shown in Fig. 1a and

Fig. 2 (a) Current–potential and (b) chronoamperometry curves on Pt/p-n-Si in 0.1 M KI acidic solution at an applied potential of 0 V vs. RHE. (c) Picture showing the generation of S after bubbling H$_2$S into aqueous solution containing I$_3^-$ in the middle cuvette. (d) Time course of I$_3^-$ evolution. Solid squares represent the calculated amount based upon the charges and the open squares resemble the amount measured. Light source: AM1.5G, 100 mW cm$^{-2}$. A three electrode system was used during the measurement and 0.5 M H$_2$SO$_4$ was used in the cathodic compartment. The surface area of Pt/p-n-Si is ca. 0.5 cm$^{-2}$.

Fig. 3 Bias current–voltage curves in a two electrode system on (a–c) Pt/p-n-Si, and (b) TiO$_2$/Ti/n+p-Si electrodes. During the measurement, (a) KI and H$_2$SO$_4$, (b and c) KI and AQ were used in the anodic and cathodic compartments, respectively. Pt was used as the counter electrode in (a–c). Carbon was also tested as the counter electrode in (c). (d) Chronoamperometry at zero bias on Pt/p-n-Si electrode in two electrode system. The cathodic compartment contained saturated AQ in 0.5 M H$_2$SO$_4$ and the anodic compartment contained 0.1 M KI in 0.5 M H$_2$SO$_4$. The surface area of Pt/p-n-Si and TiO$_2$/Ti/n+p-Si is ca. 0.5 cm$^{-2}$.
c. Taking the solar energy stored in the form of I_3^- and H_2AQ during reactions 1.2 and 2.2 (Scheme 1) into consideration, the solar-to-chemical conversion efficiency was estimated to be ca. 1.1%. Therefore, by using Kl and AQ as the electrolyte, Pt/p/n-Si can affect the simultaneous oxidation of $I^- \to I_3^-$ and the reduction of AQ to H_2AQ under zero applied bias (Fig. S7†). This is due to the fact that the combined use of Kl and AQ species in the anodic and cathodic compartments can considerably decrease the potential required to run the photoelectrochemical cell.

When a carbon plate was used as the counter electrode instead of Pt, a negative shift in the onset potential and a higher photocurrent was observed at zero bias possibly due to the more efficient reduction of AQ on the carbon. This has been further testified by cyclic voltammetry on carbon and Pt electrodes in the presence of acidic AQ electrolyte (Fig. S8†). Using carbon to replace Pt would significantly reduce the cost of the system and the overpotential for H_2 evolution on carbon is quite high (Fig. S8a†), thus the use of carbon will ensure the high selectivity toward AQ reduction. No H_2 was observed in the cathodic compartment by gas chromatography, suggesting the high selectivity to H_2AQ instead of H_2 production. Our results suggest that the energy from the photogenerated electrons and holes can be stored simultaneously in the form of H_2AQ and I_3^- redox couples and subsequently released to produce H_2O_2 and S by reaction with O_2 and H_2S. Therefore, integrating the photochemical–chemical reaction pairs, solar energy is continuously driving the simultaneous oxidation of $I^- \to I_3^-$ and H_2AQ to produce H_2O_2 and S by reaction with O_2 and H_2S. Hence, the I^-/I_3^- redox cycle, the indirect photoreduction of O_2 to H_2O_2 and the photooxidation of H_2S to S were integrated to achieve a photochemical–chemical cycle with an overall efficiency of 1.1%.

Conclusions

A solar-driven process which requires no external bias is demonstrated with the dual-function of selective production of H_2O_2 and S from O_2 and H_2S. By combining the AQ/AQH_2 and I^-/I_3^- redox couples, the indirect photoreduction of O_2 to H_2O_2 and photooxidation of H_2S to S were integrated to achieve a photochemical–chemical cycle with an overall efficiency of 1.1%. This work not only demonstrates an innovative route for the environmental remediation of toxic and abundant H_2S and the simultaneous generation of a valuable chemical product but also highlights the importance of tuning the selectivity of photochemical reactions by using well-designed transformation processes.

Acknowledgements

This project was supported by Australian Research Council (through its DP and FT programs), Queensland State Government Smart State program (NIRAP) and 973 National Basic Research Program of the Ministry of Science and Technology of China (no. 2014CB239400). This work was performed in part at the QLD node of the Australian National Fabrication Facility. We gratefully acknowledge the Danish Ministry of Science for funding the Catalysis for Sustainable Energy (CASE) initiative and the Danish National Research Foundation for founding The Center for Individual Nanoparticle Functionality (DNRF54).

Notes and references