Experimental and Kinetic Modeling Study of Ethanol Combustion at High Pressures and Intermediate Temperatures

Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

Publication date: 2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Experimental and Kinetic Modeling Study of Ethanol Combustion at High Pressures and Intermediate Temperatures

Hamid Hashemi, Jakob Munkholt Christensen, Peter Glarborg
Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
E-mail: pgl@kt.dtu.dk

Introduction

A series of experimental and numerical investigation into ethanol oxidation at high pressures and intermediate temperatures has been done. The experiments, with ethanol and oxygen highly diluted in nitrogen, were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The fuel-air equivalence ratio of the reactants was varied in the range of 0.1–43, i.e. from oxidizing to strongly reducing conditions. The total flow rate of the reactor was kept constant and temperature and residence time of the reactor were changed.

Furthermore, a reaction mechanism based on the previous model by the current research group is developed. Selected rate constants have been updated according to new measurements or calculations, and the general pressure dependency format for the pressure dependent reactions has been used widely. In addition to modeling of the present experiments, the mechanism is used to simulate other published data on ignition delay time and laminar burning velocity of ethanol.

Experimental Setup – Laminar Flow Reactor

- Quartz reactor to minimize surface reactions
- Steel pressure shell to achieve high pressures
- Temperature: 600–900 K
- Pressure: 50 bar
- Flow: 4.78 NL/min
- Isothermal Zone: 40–44 cm
- Residence time: 4.6–6.4 s
- Measurement via 6890N Agilent GC: O₂, CO, CO₂, light hydrocarbons, alcohols, and DME

Resulting in Figure 1, showing the schematic diagram of the high pressure laminar flow reactor.

Reaction Kinetics Model

- Developed based on the previous mechanism [1]
- Updated in accordance with new measurements and calculations, e.g., H₂/O₂ subset and ethanol reactions subset [2]
- 986 reactions and 136 species
- Solution via Chemkin-Pro

Resulting in Figure 2, showing the graph of reducing experiments in the flow reactor (0.525% ethanol and 0.0363% O₂ in N₂, Φ = 43.4) at 50 bar pressure.

Results– Continued

- Fig 3. Results of stoichiometric experiments in the flow reactor (0.347% ethanol and 1.008% O₂ in N₂, Φ = 1.0) at 50 bar pressure.
- Fig 4. Results of oxidizing experiments in the flow reactor (0.312% ethanol and 9.830% O₂ in N₂, Φ = 0.1) at 50 bar pressure.
- Fig 5. Laminar burning velocity of EtOH/Air at atmospheric pressure, measurements from [2-8].
- Fig 6. Ignition delay time of EtOH/O₂/N₂ at stoichiometric condition, measurements from [9-10].

Summary

The flow reactor results show that at stoichiometric and oxidizing conditions, oxidation is initiated at 725–750 K. For reducing conditions, the major consumption of oxygen happens at 775–800 K and with increasing temperature, concentrations of products of the reduction process (e.g. methane) increased monotonically.

The present model in general provides a satisfactory agreement with the measurements in the flow reactor. However, the model requires further improvement for prediction of ignition delay time at low temperatures and also for laminar burning velocity.

References