Bifurcation Analysis and Dimension Reduction of a Predator-Prey Model for the L-H Transition

Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens; Naulin, Volker; Xu, Guosheng

Publication date: 2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Bifurcation Analysis and Dimension Reduction of a Predator-Prey Model for the L-H Transition

Magnus Dam, Morten Brøns, Jens Juul Rasmussen, Volker Naulin, and Guosheng Xu

The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The model is recognized as a slow-fast system.

INTRODUCTION

The L- and H-modes are confinement states of a toroidal plasma, referring to states of low and high confinement, respectively. The transition from the L- to the H-mode is called the L-H transition. The T-mode is a transient, intermediate mode between the L- and H-mode, characterized by an oscillatory behavior. The L-H transition still lacks a first principle explanation. Modeling the L-H transition might contribute to a better understanding of the underlying mechanisms.

THE 3-ODE L-H TRANSITION MODEL

We consider the minimal 3-ODE predator-prey type L-H transition model suggested by Kim and Diamond [2, 3]. The model ignores spatial dependencies. The dependent variables in the model are:

- the drift wave turbulence level \(\varepsilon \),
- the shear of the zonal flow \(V_{z,z} \), and
- the gradient of the ion pressure \(\nabla N \).

The system can be formulated as

\[
\frac{dE}{dt} = E(N - a_2E - a_3E^2N^3 - a_4V_z^2),
\]

\[
\frac{dV_z}{dt} = V_z(\frac{b_1E}{1 + b_2E^2} - b_3),
\]

\[
\frac{dN}{dt} = Q(t) - N(c_1E + c_2),
\]

where \(a_i, b_i, c_i \), \(i = 1, 2, 3 \) are parameters and \(Q \) is the heating power. Introducing new variables and time:

\[
\alpha = \frac{1}{\sqrt{a_2}}, \quad \beta = \frac{1}{a_3}, \quad \gamma = \frac{1}{a_4},
\]

\[
\omega = \frac{1}{\sqrt{b_1}} \quad \tau = \frac{1}{c_1}, \quad \nu = \frac{1}{c_2},
\]

results in the non-dimensionalized system

\[
\frac{d\hat{u}}{dt} = \hat{u} \left(\hat{w} - \hat{u} - \hat{v} - \hat{w}^2 \right),
\]

\[
\frac{d\hat{v}}{dt} = \mu_v \left(\hat{u} - \mu_v \hat{w} - \mu_u \right),
\]

\[
\frac{d\hat{w}}{dt} = \mu_w (\hat{v} - \hat{w} - \hat{w}^2).\]

Here, \(\mu_i, i = 1, \ldots, 5 \) are new parameters and \(\sigma \) is the rescaled heating power.

BIFURCATION ANALYSIS

The nullclines are

\[
N_0 = \{ u = 0 \} \cup \{ u = w(1-w^2)-v \},
\]

\[
N_v = \{ v = 0 \} \cup \{ v = \mu_v(1+\mu_u)w \},
\]

\[
N_w = \{ w = 0 \} \cup \{ w = 1+\mu_u \}.
\]

Stability of the equilibrium points:

- \(L \) is a stable node when it is below \(N_v \).
- \(H \) is always a saddle (unstable).
- \(T \) is a focus point. Stability depends on the value of \(\sigma \).
- \(QH \) is stable for \(\sigma > 1 \).

THREE TRANSITION TYPES

The bifurcation diagram structure depends on \(\mu_i, i = 1, \ldots, 5 \). By varying \(\mu_2 \) and \(\mu_3 \), the three different transition types are observed.

DIMENSION REDUCTION WITH GSPR

Put \(\mu_2 = \frac{1}{\varepsilon} \), where \(0 < \varepsilon \ll 1 \).

- \(u \) and \(v \) are slow variables,
- \(w \) is a fast variable.

For \(\varepsilon > 0 \), but sufficiently small, solutions converge to the slow manifold,

\[
\mathcal{M} = \mathcal{M}_0 + \varepsilon \mathcal{M}_1 + \varepsilon^2 \mathcal{M}_2 + \ldots
\]

The reduced system of the flow is found by taking the limit \(\varepsilon \to 0 \):

\[
\frac{du}{dt} = u \left(w - u - v - w^2 \right),
\]

\[
\frac{dv}{dt} = \mu_v \left(\frac{u}{\sigma} - \mu_v w - \mu_u \right),
\]

\[
\frac{dw}{dt} = \mu_w \left(\frac{v}{\sigma} - 1 - \mu_u \right).
\]

The reduced system contains the same dynamics as the full system.

CONCLUSION

Kim and Diamond’s 3-ODE L-H transition model was investigated with bifurcation theory.

- The model contains three types of transitions: an oscillating, a sharp with hysteresis, and a smooth transition.
- The system can be reduced to a 2-ODE system

A spatio-temporal L-H transition model has been proposed by Miki et al. [4].