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This paper provides a review of the recent developments that had a major impact on the current state-of-
the-art exact algorithms for the vehicle routing problem (VRP). The paper reviews mathematical formu-
lations, relaxations and recent exact methods for two of the most important variants of the VRP: the
capacitated VRP (CVRP) and the VRP with time windows (VRPTW). The paper also reports a comparison
of the computational performances of the different exact algorithms for the CVRP and VRPTW.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Vehicle routing problem (VRP) is a generic name given to a whole
class of problems involving the design of optimal routes for a fleet of
vehicles to service a set of customers subject to side constraints. The
VRP is a central problem in the physical delivery of goods and ser-
vices. In practice, several variants of the VRP exist, depending on
the nature of the transported goods, the quality of service required,
and the characteristics of customers and vehicles. Some typical com-
plications are heterogeneous vehicles located at different depots,
customers incompatible with certain vehicle types, customers
accepting delivery within specified time windows, multiple-day
planning horizons and vehicles performing multiple routes. In all
cases, the objective is to supply the customers at minimum cost.

The simplest and most studied member of the VRP family is the
capacitated VRP (CVRP). In the CVRP, a fleet of identical vehicles lo-
cated at a central depot has to be optimally routed to supply a set
of customers with known demands. Each vehicle can perform at
most one route and the total demand of the customers visited by
a route cannot exceed the vehicle capacity. Another important var-
iant of the VRP is the VRP with time windows (VRPTW) that gener-
alizes the CVRP by imposing that each customer is visited within a
specified time interval, called time window.

Several heuristics have been proposed for the CVRP and its variants
in the literature. For surveys of both exact and heuristic methods for
these VRPs up to 2002, the reader is referred to Toth and Vigo (2002).
ll rights reserved.
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In this paper, we survey the most effective exact methods pro-
posed for the CVRP and the VRPTW in the literature in the last ten
years. Section 2 reviews exact methods for the CVRP while Sec-
tion 3 deals with exact methods for the VRPTW. Conclusions are re-
ported in Section 4.
2. The capacitated vehicle routing problem (CVRP)

The CVRP can be described as follows. An undirected graph
G = (V0,E) is given where V0 = {0,1, . . . ,n} is the set of n + 1 vertices
and E is the set of edges. Vertex 0 represents the depot, and the ver-
tex set V = V0n{0} corresponds to n customers. A nonnegative cost
dij is associated with each edge {i, j} 2 E. Each customer i 2 V re-
quires a supply of qi units of goods from depot 0 (we assume
q0 = 0). A set of m identical vehicles of capacity Q is stationed at
the depot and must be used to supply the customers. A route is de-
fined as a least-cost elementary cycle R = (0, i1, . . . , ih,0) of graph G
passing through the depot and such that the total demand of the
customers visited does not exceed the vehicle capacity. The cost
c(R) of a route is equal to the cost of the solution to the Traveling
Salesman Problem (TSP) defined by the set R of vertices.

The CVRP is to design m routes of minimum cost, one for each
vehicle, so that all customers are visited exactly once; the CVRP
is NP-hard as it is a natural generalization of the TSP.

Many formulations have been proposed for the CVRP (see Achu-
than and Caccetta, 1991; Toth and Vigo, 2002; Kara et al., 2004), but
not all of them have been used to derive exact algorithms. Currently,
the most successful exact methods for the CVRP are based on the
two-index flow formulation, the two-commodity flow formulation
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proposed by Baldacci et al. (2004), and the set partitioning formula-
tion proposed by Balinski and Quandt (1964). These algorithms are
described in Sections 2.1 and 2.2. In Section 2.3, a comparison of
the computational performances of these algorithms is reported.
2.1. Branch-and-cut algorithms

The branch-and-cut (BC) algorithms for the CVRP are based either
on the two-index flow or the two-commodity flow formulation.

Let S ¼ fS : S # V ; jSjP 2g, and let qðSÞ ¼
P

i2Sqi be the total de-
mand of customers in S 2 S and k(S) the minimum number of vehi-
cles of capacity Q needed to service all customers in S. Moreover,
let d(S) be the cutset defined by S (i.e., d(S) = {{i, j} 2 E : i 2 S, j R S
or i R S, j 2 S}.

Let xij be an integer variable that takes value in {0,1}, for all
{i, j} 2 En{{0, j} : j 2 V}, and value in {0,1,2}, for all {0, j}, j 2 V, with
xij = 1 when edge {i, j} is traversed and x0j = 2 when the single cus-
tomer route (0, j,0) is in the solution.

The two-index vehicle flow formulation of the CVRP is as
follows.

ðFÞ zðFÞ ¼min
X
fi;jg2E

dijxij ð1Þ

s:t:
X

fi;jg2dðfhgÞ
xij ¼ 2; 8h 2 V ; ð2Þ

X
fi;jg2dðSÞ

xij P 2kðSÞ; 8S 2 S; ð3Þ
X
j2V

x0j ¼ 2m; ð4Þ

xij 2 f0;1g; 8fi; jg 2 E n ff0; jg : j 2 Vg; ð5Þ
x0j 2 f0;1;2g; 8f0; jg; j 2 V : ð6Þ

Constraints (2) are the degree constraints for each customer, and
constraints (3) are the capacity constraints. Whenever k(S) = q(S)/Q,
constraints (3) are called fractional capacity inequalities. Constraint
(4) states that m vehicles must leave and return to the depot.

The LP-relaxation of F can be strengthened if k(S) is computed as
k(S) = dq(S)/Qe, where dxe denotes the smallest integer not less than
x. In this case, constraints (3) are called rounded capacity con-
straints. Several authors have proposed valid inequalities to rein-
force the lower bound achieved by the LP-relaxation of F. Some
of these inequalities are derived by extending, to formulation F,
the successful results of polyhedral combinatorics developed for
the TSP (see Grötschel and Padberg, 1985).

Augerat et al. (1995) were the first to describe an exact BC algo-
rithm for the CVRP based on formulation F strengthened by valid
inequalities such as the generalized capacity constraints, hypotour
inequalities, comb inequalities, path-bin inequalities. The BC algo-
rithm of Augerat et al. (1995) was able to solve, for the first time,
a CVRP instance involving 135 customers. An improved version
of the BC algorithm of Augerat et al. (1995) is described in Naddef
and Rinaldi (2002).

Ralphs et al. (2003) described a BC algorithm based on the two-
index formulation and on the addition of rounded capacity con-
straints in a cutting plane fashion.

Lysgaard et al. (2004) described a BC algorithm based on formu-
lation F, strengthened by valid inequalities, including the rounded
capacity, generalized capacity, framed capacity, strengthened comb,
multistar, partial multistar, extended hypotour inequalities, and Gom-
ory mixed integer cuts. Their BC algorithm solved several instances
not solved by Augerat et al. (1995).

Baldacci et al. (2004) proposed a two-commodity flow formula-
tion of the CVRP which extends the TSP model introduced by Finke
et al. (1984). This formulation requires, for each edge {i, j} 2 E, a
binary variable xij that is equal to 1 if the edge is in the solution,
and two variables yij and yji representing the vehicle load and the
empty vehicle space (i.e., yji = Q � yij) on edge {i, j}, whenever
xij = 1. The resulting model involves (2n + jEj + 3) constraints. It
can be shown that (i) any solution (x,y) of the LP-relaxation of this
model is also a feasible solution of the LP-relaxation of F when
k(S) = q(S)/Q is used in constraints (3), and (ii) (x,y) satisfies the
generalized multistar inequalities not implied by F.

Baldacci et al. (2004) described a BC algorithm based on this
model using only rounded capacity inequalities and reported com-
putational results showing that their BC algorithm is competitive
with the algorithm of Naddef and Rinaldi (2002).

2.2. Algorithms based on the set partitioning formulation

The Set Partitioning (SP) formulation of the CVRP was originally
proposed by Balinski and Quandt (1964) and associates a binary
variable with each feasible route. The Balinski and Quandt formu-
lation is the following.

LetR be the index set of all routes. Let ai‘ be a binary coefficient
equal to 1 if vertex i 2 V belongs to route ‘ 2 R and 0 otherwise
(note that a0‘ = 1, 8‘ 2 R). Each route ‘ 2 R has an associated cost
c‘ which is the sum of the costs of the edges traversed. Let n‘ be a
binary variable that is equal to 1 if route ‘ 2 R is in the optimal
solution and 0 otherwise.

Model SP is as following:

ðSPÞ zðSPÞ ¼min
X
‘2R

c‘n‘ ð7Þ

s:t:
X
‘2R

n‘ 6 m; ð8Þ
X
‘2R

ai‘n‘ ¼ 1; 8i 2 V ; ð9Þ

n‘ 2 f0;1g; 8‘ 2 R: ð10Þ

Constraint (8) requires that at most m routes are selected, and con-
straints (9) specify that each customer i 2 V must be covered by one
route.

In the following, we use R‘ and E(R‘) to indicate the subset of
vertices of graph G visited and the edges traversed by route
‘ 2 R, respectively.

Formulation SP cannot be used directly to solve nontrivial CVRP
instances because of the large number of potential routes. Model
SP is very general and can take into account several route con-
straints (e.g., time windows) because the route feasibility is implic-
itly considered in the definition of the route set R.

The optimal solution cost of the LP-relaxation of SP, called LSP,
dominates the lower bounds provided by the LP-relaxation of for-
mulation F when k(S) = q(S)/Q (see Baldacci et al., 2004) because
any LSP solution implicitly satisfies a variety of valid inequalities
that are not implied by the LP-relaxation of F. In particular, Baldac-
ci et al. (2004) have shown that LSP implies fractional capacity, gen-
eralized large multistar and knapsack large multistar inequalities.
Letchford and Salazar González (2006) have shown that LSP im-
plies some hypotour-like inequalities by projection.

Moreover, Baldacci et al. (2004) have shown that any SP solu-
tion n can be transformed into an F solution x by setting:

xij ¼
X
‘2R

g‘ijn‘; 8fi; jg 2 E; ð11Þ

where the coefficients g‘ij are defined as follows: (i) if ‘ is a single
customer route (0,h, 0) then g‘0h ¼ 2 and g‘ij ¼ 0; 8fi; jg 2 E n f0; hg;
(ii) if ‘ is not a single customer route, then g‘ij ¼ 1; 8fi; jg 2 EðR‘Þ
and g‘ij ¼ 0; 8fi; jg 2 E n EðR‘Þ.

Let F be the family of valid inequalities for model F that can be
expressed in a general form as:
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X
fi;jg2E

at
ijxij P bt ; t 2 F : ð12Þ

Thus, using Eq. (11), inequalities (12) become the following inequal-
ities for the SP model:X
fi;jg2E

at
ijg

‘
ijn‘ P bt ; t 2 F : ð13Þ
2.2.1. The exact algorithm of Fukasawa et al. (2006)
Fukasawa et al. (2006) described an exact algorithm based on

the SP model where the variables correspond to the set of q-routes,
introduced by Christofides et al. (1981), while the constraints cor-
respond to the set partitioning constraints (8), (9) and valid
inequalities (13), such as rounded capacity inequalities, framed
capacity, strengthened comb, multistar, partial multistar, generalized
large multistar and hypotour inequalities, all presented in Lysgaard
et al. (2004) for formulation F.

A (q, i)-path is a nonnecessarily elementary path, starting from
the depot, visiting a set of vertices (without 2-vertex loops) of total
demand equal to q, and ending at vertex i. Let f(q, i) be the cost of a
least-cost (q, i)-path; functions f(q, i) can be computed by using dy-
namic programming (DP) (see Christofides et al., 1981). A q-route
is a (q,0)-path of cost f(q,0).

Because the resulting formulation has an exponential number of
both columns and rows, Fukasawa et al. used a column-and-cut gen-
eration (CCG) method to compute the lower bound and a branch-
and-cut-and-price (BCP) algorithm to solve the CVRP. Their exact
method decides at the root node, according to the best balance be-
tween running time and bound quality, to solve the CVRP either
using the BC method of Lysgaard et al. (2004) or their BCP algorithm.

2.2.2. The exact algorithm of Baldacci et al. (2008)
Baldacci et al. (2008) proposed an exact algorithm based on mod-

el SP, strengthened by the following two types of valid inequalities.

2.2.2.1. Strengthened capacity inequalities. These inequalities are
obtained by lifting the rounded capacity constraints of F expressed
in the form of inequalities (13). Let RðSÞ be the index subset of
routes visiting at least one customer of set S 2 S. The strengthened
capacity inequalities are:X
‘2RðSÞ

n‘ P dqðSÞ=Qe; 8S 2 S: ð14Þ
2.2.2.2. Clique inequalities. Let H ¼ ðR; EÞ be the conflict graph
where each vertex corresponds to a route and the edge set E con-
tains an edge f‘; ‘0g;8‘; ‘0 2 R; ‘ < ‘0, such that R‘ \ R‘0–f0g. Let C be
the set of all cliques of H.

Clique inequalities are:X
‘2C

n‘ 6 1; 8C 2 C: ð15Þ

Let SP0 denote the problem obtained by adding strengthened
capacity and clique inequalities to problem SP, and let LSP0 denote
the LP-relaxation of SP. Let u = (u0,u1, . . . ,un) be the vector of dual
variables associated with constraints (8) and (9), where u0 6 0
and ui 2 R, i 2 V. Moreover, let vS P 0, S 2 S, and gC 6 0, C 2 C, be
the dual variables of constraints (14) and (15), respectively.

The exact method of Baldacci et al. (2008) can be described as
follows.

1. Solve relaxation LSP0, and let (u0,v0,g0) be an optimal dual solu-
tion of LSP0 of cost z0.

2. Define the reduced problem cSP resulting from SP0 as follows: (i)
replace the route set R with the largest subset bR#R such that
c0‘ < zUB � z0; ‘ 2 bR, where c0‘ is the reduced cost of route ‘ with
respect to (u0,v0,g0) and zUB is a valid upper bound on the CVRP;
(ii) add all constraints (14) and (15) whose associated slacks are
not in the optimal basis of LSP0.

3. Solve problem cSP using a general purpose integer programming
solver.

The effectiveness of this method relies on the quality of the dual
solution (u0,v0,g0) achieved as the size of subset bR depends on the
gap zUB � z0.

The core of the algorithm of Baldacci et al. (2008) is the method
for solving SP0. They propose to solve LSP0 using three CCG proce-
dures, called H1, H2 and H3, that produce three lower bounds LB1,
LB2 and LB3 (such that LB1 6 LB2 6 LB3) corresponding to the costs
of three different dual solutions of LSP0. The three procedures are
executed in sequence, and the dual solution produced by proce-
dure Hk is used to generate the master problem of procedure
Hk+1, k = 1,2.

The first two procedures H1 and H2 ignore clique inequalities
(15) and use rounded capacity constraints instead of strengthened
capacity inequalities (14). H1 replaces the route set R with the set
of all q-routes whereas H2 uses elementary routes instead of q-
routes. The CCG method used by H1 and H2 differs from standard
CCG algorithms based on the simplex as it uses a dual ascent heu-
ristic to find a near-optimal dual solution of the master problem.
H3 is a CCG method based on the simplex to solve LSP0 including
both inequalities (14) and (15), that inherits the master problem
from H2. In practice, H3 is fast as it requires few iterations to con-
verge to an optimal dual solution of LSP0.

A key component of the algorithm of Baldacci et al. (2008) is the
procedure, called GENROUTE, that solves the pricing problem in H2

and H3 and generates the final reduced problem cSP .
Let P be the set of all elementary paths of minimum cost from

the depot such that q(P) 6 dQ/2e + qr(P), 8P 2 P, where qðPÞ ¼P
i2VðPÞqi, r(P) and V(P) represent the load, the terminal customer

and the subset of visited customers of path P, respectively.
GENROUTE is a two-phase procedure based on the observation

that every feasible route can be obtained by combining a pair of
paths P; P 2 P such that: (a) rðPÞ ¼ rðPÞ; (b) VðPÞ \ VðPÞ ¼
f0;rðPÞg; (c) qðPÞ þ qðPÞ 6 Q þ qrðpÞ. GENROUTE uses bounding
functions, based on the q-path relaxation, to limit the size of the
path set P, by avoiding the generation of paths that cannot be in
any optimal CVRP solution and an algorithm for generating the
routes which avoids the enumeration of all path pairs.

2.2.3. The exact algorithm of Baldacci et al. (in press)
Baldacci et al. (in press) extended the exact method of Baldacci

et al. (2008) to solve the CVRP and VRPTW by means of the follow-
ing improvements.

1. ng-route relaxation. The ng-route relaxation is a new state-
space relaxation that improves the q-path and t-path relax-
ations proposed for the CVRP and VRPTW, respectively. This
relaxation provides ng-routes, that are used as an alternative
to q-routes in procedure H1 and in computing better bounding
functions used in procedure GENROUTE. The ng-path relaxation
consists of partitioning the set of all possible q-paths ending at
vertex i according to a mapping function that associates with
each q-path a subset NG of the vertices visited that depends
on the order in which they are visited.
Let Ni # V be a set of selected customers for vertex i (according
to some criterion) such that Ni3i and jNij 6D(Ni), where D(Ni) is
a parameter. For a given path P = (0, i1, . . . , ik), let P(P) be the
subset of V(P) containing customer ik and every customer ir,
r = 1, . . . ,k � 1, of P that belongs to all sets Nirþ1 ; . . . ;Nik . An
ng-path (NG,q, i) is a nonnecessarily elementary path
P = (0, i1, . . . , ik�1, ik) starting from the depot, visiting a subset of
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customers of total demand equal to q such that NG = P(P), end-
ing at customer ik, and such that ik R P(P0), where
P0 = (0, i1, . . . , ik�1). Let f(NG,q, i) the cost of a least-cost ng-path
(NG,q, i). Any (NG,q,0)-path is called ng-route. Functions
f(NG,q, i) can be computed using DP recursions.

2. Subset-Row (SR3) inequalities. Jepsen et al. (2008) introduced
Subset-Row (SR3) inequalities for the VRPTW. SR3s represent a
subset of clique inequalities. Let C# fC # V : jCj ¼ 3g be the sub-
set of all customer triplets and RðCÞ be the subset of routes
serving at least two customers in C. Subset-Row (SR3) inequal-
ities are:
Table 1
Comput

Class

A
B

E-M
F
P

Avg
Tot
X
‘2RðCÞ

n‘ 6 1; 8C 2 C: ð16Þ
3. Weak Subset-Row (WSR3) inequalities. WSR3s are a weaker
version of SR3s. Given C 2 C, the route set RðCÞ contains only
those routes traversing at least an edge {i, j} with i, j 2 C.
WSR3 dual variables can be easily considered in solving the
pricing problem and in computing the bounding functions used
by GENROUTE. The SR3s and, thus, the WSR3s are separated by
complete enumeration. Both SR3s and WSR3s are used instead
of clique inequalities.

4. A new pricing strategy involving multiple dual solutions.
Baldacci et al. (in press) propose a new algorithm, more efficient
than GENROUTE, to generate routes of negative reduced costs in
H3 that also uses the dual solution achieved by H2 to eliminate
routes that cannot be in any optimal solution. Such improve-
ment stabilizes the CCG procedure based on the simplex and
improves the final lower bound achieved by H3.

2.3. Computational comparison of exact algorithms for the CVRP

In this section, we report a computational comparison of the re-
sults obtained by Lysgaard et al. (2004) (hereafter called LLE),
Fukasawa et al. (2006) (FLL) and the two algorithms of Baldacci
et al. (2008) (BCM) and Baldacci et al. (in press) (BMR), on six
well-known classes of CVRP instances from the literature, called
A, B, E, F, M and P, and available at http://branchandcut.org/VRP/
data.

The algorithm of BMR was run on an IBM Intel Xeon X7350 Ser-
ver (2.93 GHz–16 GB of RAM). According to SPEC (http://www.spe-
c.org/benchmarks.html), BMR machine is three times faster than
the Pentium 4 2.6 GHz PC of BCM and the Pentium 4 2.4 GHz PC
of FLL and 10 times faster than the Intel Celeron 700 MHz PC of LLE.

Table 1 reports, for each class, the name (Class), the number of in-
stances (NP) and, for each exact method, the number of instances
solved to optimality (Opt), the average percentage deviation of the
lower bound (%LB) and the average computing time in seconds
(Time). For FLL, column OptBC reports the number of instances solved
to optimality by using the BC of Lysgaard et al., and column OptBCP

reports the number of instances solved by their BCP. The last two
lines of Table 1 report the total number of instances solved by each
method and the averages of lower bounds and computing times.
ational comparison of the exact methods for the CVRP.

BMR BCM FLL

NP Opt %LB Time Opt %LB Time Opt

22 22 99.9 30 22 99.8 118 22
20 20 99.9 67 20 99.8 417 20
12 9 99.8 303 8 99.4 1025 9

3 2 100.0 164 3
24 24 99.8 85 22 99.7 187 24

99.9 92 99.7 323
81 77 72 78
BCM was not able to solve to optimality 3 instances solved by
FLL and by BMR. Table 1 indicates that the lower bounds of BCM
and BMR are on average superior to the lower bounds of FLL in
all classes of instances considered. Notice that FLL solved 78 in-
stances to optimality, but 29 of them were solved using the BC of
Lysgaard et al. (2004). Table 1 indicates that BMR is, on average
faster than the other methods.

3. The vehicle routing problem with time windows (VRPTW)

The VRPTW is defined on a complete digraph G = (V0,A), where
V0 = {0,1, . . . ,n} is the vertex set and A is the arc set. Associated with
each arc (i, j) included in A is a travel cost dij and a travel time tij > 0,
where tij includes the service time at vertex i. It is assumed that
matrices dij and tij satisfy the triangle inequality. Associated with
each vertex i included in V is a demand qi and a time window [ei, li],
where ei and li represent the earliest and latest time to visit vertex
i. The time windows are assumed hard.

A fleet of m identical vehicles of capacity Q stationed at the de-
pot has to fulfill customer demands. A vehicle route
R = (0, i1, . . . , ir,0), with r P 1, is a simple circuit in G, passing
through the depot, visiting vertices V(R) = {0, i1, . . . , ir}, V(R) # V0,
and such that the following holds:

(i) The total demand of visited customers does not exceed the
vehicle capacity Q.

(ii) The vehicle leaves the depot 0 at time e0, visits each cus-
tomer in V(R) within its time window, and returns to the
depot before l0.

(iii) If the vehicle arrives at i 2 V(R) before ei, the service is
delayed to time ei.

The cost of route R is equal to the sum of the travel costs of the
arc set, A(R), traversed by route R.

The VRPTW consists of designing at most m routes of minimum
total cost such that each customer is visited exactly once. As the
VRPTW reduces to the CVRP if ei = 0 and li =1, "i 2 V0, the VRPTW
is NP-hard. Indeed, it is strongly NP-complete to find a feasible
solution for the VRPTW if m < n.

Several exact algorithms have been presented for the VRPTW. A
review of the exact methods up to 2002 is reported in Cordeau
et al. (2002) and Kallehauge (2008). The best exact methods re-
cently published on the VRPTW are based on model SP, described
in Section 2.2, where the route set R contains any least-cost route
satisfying time windows constraints.

Model SP can be strengthened by any valid inequality studied
for the CVRP, as discussed in Section 2, and by the k-path inequal-
ities introduced by Kohl et al. (1999). The Kohl et al. strategy can be
defined as follows.

Let k(S) be the minimum number of routes needed to service
the customer subset S 2 S. Kohl et al. (1999) called k-path inequal-
ities the following generalization of the rounded capacity
constraints:
LLE

OptBCP OptBC %LB Time Opt %LB Time

20 2 99.2 1961 15 97.9 6638
6 14 99.5 4763 19 99.4 8178
7 2 98.9 126,987 3 97.7 39,592
0 3 99.9 2398 3 99.9 1046

16 8 99.2 2892 16 97.7 11,219
99.3 17,409 98.4 9935

49 29 56

http://branchandcut.org/VRP/data
http://branchandcut.org/VRP/data
http://www.spec.org/benchmarks.html
http://www.spec.org/benchmarks.html


Table 2
Computational comparison of the exact methods for the VRPTW.

Class n NP Solved Time

BMR JPSP DHL BMR JPSP DHL

C2 50 8 8 7 n.a. 8 79 n.a.
RC2 50 8 8 7 n.a. 27 268 n.a.

R2 50 11 11 9 n.a. 124 7086 n.a.
C1 100 9 9 9 9 25 468 18

RC1 100 8 8 8 8 276 11,004 2150
R1 100 12 12 12 12 251 27,412 2327
C2 100 8 8 7 8 40 2795 2093

RC2 100 8 8 5 6 3767 3204 15,394
R2 100 11 10 4 8 28,680 35,292 63,068
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X
‘2R

b‘ðSÞn‘ P kðSÞ; 8S 2 S; ð17Þ

where b‘(S) = j{(i, j) 2 A(R‘) : i 2 V0nS, j 2 S}j. These inequalities can be
lifted by defining b‘(S) = 1 if V(R‘) \ S – ;, and b‘(S) = 0 otherwise.

The separation algorithm consists of solving a VRPTW where
only the customers in S need to be serviced and the objective is
to minimize the number of vehicles used. For this reason, most
researchers considered the 2-path inequalities that consist of find-
ing any subset S 2 S, such that dq(S)/Qe = 1 and in solving a TSP
with time windows (TSPTW) for the set S [ {0}. When the TSPTW
is infeasible, then k(S) = 2 provides a valid 2-path inequality for S.
Other valid inequalities, related to k-path inequalities and called
Reachability cuts, have been investigated by Lysgaard (2006).

The exact algorithms for solving the resulting SP model of the
VRPTW use CCG methods for computing the lower bound and
either branch-and-price (BP) or BCP algorithms to find an optimal
integer solution. The key component of these algorithms is the
method for solving the pricing problem. This algorithm consists
of finding a number of VRPTW routes of negative reduced cost with
respect to the duals of the SP constraints (8), (9) and of the differ-
ent inequalities separated during the previous iterations. This
problem is solved using different DP strategies to find either non-
elementary or elementary routes.

The main difficulty faced by both BP and BCP algorithms is how
to take into account the duals of the different cuts in solving the
pricing problem. The duals of inequalities (8), (9) (say u0 and
ui 2 R, i 2 V) and the duals of inequalities defined according to
expressions (13) (say, wt, t 2 F ) can be associated with the arcs
of a route. Thus, it is easy to observe that the reduced cost c0‘ of a
route ‘ 2 R is equal to

P
ði;jÞ2AðR‘Þd

0
ij by defining the modified arc

costs d0ij as d0ij ¼ dij � 1
2 ðui þ ujÞ �

P
t2Fat

ijwt .
It is much more complex to solve the pricing problem when

considering set partitioning inequalities such as clique, subset
row, lifted versions of rounded capacity and k-path inequalities.
A possible way is to associate a binary state variable for each of
these inequalities in the DP algorithm where each variable repre-
sents the dual of the associated inequality in the reduced cost of
the emerging path. Unfortunately, the size of the resulting state-
space graph grows and the resulting DP algorithm becomes com-
putationally slow.

Kohl et al. (1999) described a BP algorithm which improves the
BP of Desrochers et al. (1992) by adding 2-path inequalities to LP-
relaxation of the SP formulation and by using nonelementary
routes without 2-vertex loops in solving the pricing problem. Ir-
nich and Villeneuve (2006) improved the BP of Kohl et al. (1999)
by using a sophisticated labelling algorithm to forbid routes having
k-vertex loops with k P 3. The numerical experiments on some
hard VRPTW instances generated by Solomon (1987) show that
k-cycle elimination, with k P 3, can substantially improve the low-
er bounds. The new labelling algorithm has proven to be a key
ingredient for solving to optimality more than 15 unsolved Solo-
mon instances with 25, 50, and 100 customers. Nonetheless, this
method fails to solve several instances with 25 customers.

Algorithms based on the computation of elementary routes
were proposed by Feillet et al. (2004), Danna and Le Pape (2005)
and Chabrier (2006). Righini et al. (2006) proposed a DP method,
called decremental state-space algorithm. This algorithm solves
the pricing problem by forcing the routes to visit the customers
of a selected subset V # V at most once. The least-cost route is
computed using a label-setting method that expands both forward
and backward paths from the depot and connects routes in the
middle.

A significant contribution has been given by Jepsen et al. (2008).
They extended the BCP framework by adding the SR3 inequalities
(described in Section 2.2.3) to the SP master problem. The SR3
inequalities provide better lower bounds but increase the complex-
ity of the pricing problem. The pricing problem is solved to optimal-
ity by using standard label setting techniques where each SR3
inequality is represented by an additional state variable. To improve
the performance of the label-setting algorithm, they introduced a
modified dominance criterion that handles the reduced cost calcula-
tion in a reasonable way. Moreover, to reduce the computing time,
they attempted to solve the pricing problem heuristically. If no route
with negative reduced cost is found, then the pricing is solved to
optimality. The computational results indicate that the algorithm
of Jepsen et al. (2008) outperforms those of Irnich and Villeneuve
(2006) and Chabrier (2006) and solves eight previously unsolved in-
stances. However, the algorithm did not succeed in solving four in-
stances previously solved by different authors.

The BCP of Jepsen et al. (2008) was improved by Desaulniers
et al. (2008) by adding both SR3 and generalized k-path inequali-
ties and using a tabu search heuristic, before using DP, to rapidly
generate negative reduced cost routes. Their method outperforms
all other algorithms, remarkably decreasing the computational
time on Solomon instances with 100 customers, and solving 5 of
the 10 open Solomon instances. The authors do not report any evi-
dence of the performance of their method in solving the Solomon
instances with 25 and 50 customers.

The exact method of Baldacci et al. (in press) described in Sec-
tion 2.2.3 for the CVRP also solves the VRPTW by simply using dif-
ferent route relaxations to consider the time window constraints.
These route relaxations are based on the (t, i)-path and the
(NG, t, i)-path relaxations.

A (t, i)-path is a nonnecessarily elementary path, without 2-ver-
tex loops, starting from the depot at time e0, visiting a set of cus-
tomers (even more than once) within their time windows, and
ending at vertex i at time ei 6 t 6 li.

Let f(t, i) be the cost of a least-cost (t, i)-path. A t-route, for a gi-
ven e0 6 t 6 l0, is defined as the (t,0)-path of cost f(t,0). Functions
f(t, i) can be computed using DP (see Christofides et al., 1981).

A (NG, t, i)-path is a nonnecessarily elementary path
P = (0, i1, . . . , ik�1, ik) starting from the depot at time e0, visiting a
subset of customers (even more than once) within their time win-
dows such that NG = P(P), ending at customer ik at time eik 6 t 6 lik ,
and such that ik R P(P0), where P0 = (0, i1, . . . , ik�1).

Let f(NG, t, i) be the cost of a least-cost (NG, t, i)-path. The ng-
routes for the VRPTW corresponds to the (NG, t,0)-path e0 6 t 6 l0,
NG # V0, of cost f(NG, t,0). Capacity constraints are ignored in both
(t, i)-path and (NG, t,0)-path relaxations.

3.1. Computational comparison of exact algorithms for the VRPTW

In this section, we report the computational comparison of the
exact methods of Jepsen et al. (2008) (hereafter called JPSP),
Desaulniers et al. (2008) (DHL) and Baldacci et al. (in press)
(BMR) on six classes of instances (C1, RC1, R1, C2, RC2 and R2)
(see Solomon, 1987).
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BMR was run on an IBM Intel Xeon X7350 Server (2.93 GHz–
16 GB of RAM). According to SPEC (http://www.spec.org/bench-
marks.html), the machine used by BMR is three times faster than
the Intel Pentium 4 3.0-GHz PC of JPSP and twice as fast as the Li-
nux PC Dual Core AMD Opteron at 2.6 GHz of DHL. For each class,
Table 2 reports the class name (Class), the number of customers (n),
the number of instances (NP), the number of instances solved by
each of the three methods (Solved) and the average computing
time in seconds (Time) (n.a. means data is not available).

The table shows that BMR solved all but one Solomon instance
and closed four open instances. Moreover, BMR outperforms JPSP
and DHL: all instances solved by the other methods were solved
by BMR and the average time is significantly lower. Instances of
classes C2, RC2 and R2 involving 100 customers are more difficult
than instances of classes C1, RC1 and R1 of the same dimension as
they feature wide time windows.
4. Conclusions

In the last decade, some innovative exact approaches for vehicle
routing problems have been proposed, producing a significant
improvement on the size of the instances that can be solved to
optimality. Indeed, these algorithms have brought more than one
hundred the number of customers that may be handled. The key
factor of the success of these approaches is the effective combina-
tion of the set partitioning formulation with families of cuts into
column generation based algorithms. This approach has signifi-
cantly improved the quality of the lower bounds that are now very
close to the optimal solution values. Furthermore, set partitioning
based approaches proved quite general as they are easily able to
incorporate additional constraints arising in practical applications.
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