Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

Ebbesen, Sune Dalgaard; Knibbe, Ruth; Mogensen, Mogens Bjerg

Published in:
Journal of The Electrochemical Society

Link to article, DOI:
10.1149/2.076208jes

Publication date:
2012

Document Version
Publisher’s PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

Sune Dalgaard Ebbesen, Ruth Knibbe and Mogens Mogensen

doi: 10.1149/2.076208jes

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://jes.ecsdl.org/subscriptions)

To subscribe to *Journal of The Electrochemical Society* go to: http://jes.ecsdl.org/subscriptions

© 2012 The Electrochemical Society
Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells

Sune Dalggaard Ebbesen,a Ruth Knibbe,a and Mogens Mogensenb

Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde, Denmark

Reduction of H₂O and CO₂ as well as oxidation of H₂ and CO was studied in a Ni/YSZ electrode supported Solid Oxide Cell (SOC) produced at DTU Energy conversion (former Risø DTU). Even though these Ni/YSZ based SOCs were developed and optimized for fuel cell use, they can work as reversible SOCs in mixtures of H₂O, H₂, CO₂ and CO. From polarization (i-V) and electrochemical impedance spectroscopic characterization, it is evident that, electrochemical reduction of both CO₂ and H₂O occurs during co-electrolysis of H₂O and CO₂ in these Ni/YSZ based SOC. During co-electrolysis, the equilibrium of the water gas shift reaction is reached, and CO is therefore produced via the water gas shift reaction also. Significant differences during oxidation/reduction in H₂O–H₂ and CO₂–CO mixtures were observed implying that different reaction mechanisms apply for the mixtures.

© 2012 The Electrochemical Society. [DOI: 10.1149/2.076208jes] All rights reserved.

In recent years there has been an increased focus on hydrogen as an alternative energy carrier because of limited fossil fuel sources, increasing oil prices and environmental considerations. However, the conversion to a hydrogen-based infrastructure will require major investments as the already existing infrastructure is based upon liquid hydrocarbons. Production of synthetic hydrocarbon fuels from renewable energy is a solution to reduce oil consumption and carbon dioxide emissions without the need for modifications of existing infrastructure. The raw material for synthetic hydrocarbon fuels is synthesis gas (H₂ + CO), which traditionally is produced via coal gasification or steam reforming of natural gas. Both processes consume fossil fuels and emit green-house gases. Simultaneous electrolysis of steam and carbon dioxide (co-electrolysis, H₂O + CO₂ → H₂ + CO + O₂) using renewable energy sources may be an alternative route for producing synthesis gas without consuming fossil fuels or emitting green-house gases. Also in line with the transformation toward renewable electricity, producing synthetic hydrocarbon fuels from electricity may be a solution to the increasing need for electricity storage.

Water (steam) electrolysis (H₂O → H₂ + 1/2 O₂) in Solid Oxide Cells (SOC) for hydrogen production was under development during the early 1980’es and has again become increasingly investigated during recent years as a green energy technology. Only limited studies have reported electrolysis of CO₂ (CO₂ → CO + 1/2 O₂) in SOCs. These studies were performed on SOCs based on metal cermet electrodes of palladium, platinum or nickel. The first studies of CO₂ electrolysis were performed in platinum and nickel based SOCs at NASA as a means for producing oxygen. Electrolysis has only been shown in a few studies, and there are discrepancies whether CO is produced via the reverse water gas shift reaction solely and that no electrolysis of CO₂ occurs, or if CO is produced both via the reverse water gas shift reaction and via electrolysis of CO₂.

It is the aim of the present study to investigate the reaction mechanism during co-electrolysis and to investigate the reaction mechanism of the electrochemical reduction of H₂O and CO₂ as well as oxidation of H₂ and CO in mixtures of H₂O – H₂, CO₂ – CO and H₂O – CO₂ – H₂ – CO to gain insight in the reaction mechanism and to establish the effect of the Water Gas Shift (WGS)/Reverse Water Gas Shift (RWGS) reaction.

Experimental

Planar Ni/YSZ supported SOCs of 5×5 cm² with an active electrode area of 4×4 cm² were used for the experiments. The cell was produced at DTU Energy conversion (former Risø DTU) and have a 10–15 μm thick Ni/YSZ cermet electrode; a 10–15 μm thick YSZ electrolyte and a 15–20 μm thick strontium-doped lanthanum man-
Table I. Break down of the polarization resistances for the SOCs produced at DTU Energy conversion (former Risø DTU) when characterized in 25% H2O – 75% H2 at the Ni/YSZ electrode and air at the LSM/YSZ electrode at 700°C and 850°C.33

<table>
<thead>
<tr>
<th>Circuit</th>
<th>700°C (Ω·cm²)</th>
<th>850°C (Ω·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 LSMHi</td>
<td>0.22 – 0.35</td>
<td>0.05 – 0.07</td>
</tr>
<tr>
<td>2 TPB</td>
<td>0.24 – 0.36</td>
<td>0.05 – 0.08</td>
</tr>
<tr>
<td>3 LSMLow</td>
<td>0.36 – 0.51</td>
<td>0.03 – 0.06</td>
</tr>
<tr>
<td>4 Diffusion</td>
<td>0.02 – 0.03</td>
<td>0.02 – 0.03</td>
</tr>
<tr>
<td>5 Conversion</td>
<td>~0.06</td>
<td>~0.06</td>
</tr>
</tbody>
</table>

Results

Figure 1 shows two sets of three i-V curves measured in electrolysis and fuel cell mode at 750°C and 850°C for H2O – H2, CO2 – CO or H2O – CO2 – CO mixtures (the exact gas compositions are indicated in the figure). The gas compositions and calculated ASR for the six polarization characterizations are shown in Table II. The balance of the gas mixtures supplied to the Ni/YSZ electrode was made with Argon in all experiments. The experiments were performed in random order (at each temperature) and all i-V curves and impedance spectra were reproducible. Pure oxygen was supplied to the LSM/YSZ electrode. Since oxygen was supplied to the LSM/YSZ electrode in all experiments, only the gas composition to the Ni/YSZ electrode will be stated below. For simplicity, the inert argon concentration will only be stated in the figures and tables, and not in the text.

The measured ASR for CO2 electrolysis was slightly higher than for both co-electrolysis and steam electrolysis. The lowest ASR was observed for co-electrolysis at the present conditions (Figure 1, Table II). In fuel cell mode, the highest ASR was observed for CO oxidation; whereas similar ASRs were measured for oxidation of H2 and CO when both CO2 and H2O were present – co-electrolysis conditions (Table II). The corresponding electrochemical impedance

an amplitude of 3.75 A/cm² with 6 points per decade. The impedance data were corrected using the short-circuit impedance response of the test set-up.

Data treatment.—To break down the impedance contributions from each of the two electrodes, the impedance spectra were fitted to an equivalent circuit consisting of an inductance, a serial resistance, and five RQ-equivalent circuits - as previously described for this type of Ni/YSZ based SOCs produced at DTU Energy conversion (former Risø DTU).33 When characterizing the aforementioned cells with 25% H2O – 75% H2 supplied to the Ni/YSZ electrode and air to the LSM/YSZ electrode the five circuits represent a high frequency oxidation; whereas similar ASRs were measured for oxidation of H2 and CO when both CO2 and H2O were present – co-electrolysis conditions (Table II). The corresponding electrochemical impedance
Table II. Measured cell voltage and ASR for the i-V characterisations shown in Figure 1, Figure 3 and Figure 5. Pure oxygen was passed over the oxygen electrode.

<table>
<thead>
<tr>
<th>Gas composition to the Ni/YSZ electrode</th>
<th>Cell voltage at OCV (mV)</th>
<th>ASR(^a) in Electrolysis mode ((\Omega \cdot \text{cm}^2))</th>
<th>ASR(^b) in Fuel Cell mode ((\Omega \cdot \text{cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>750°C</td>
<td>850°C</td>
<td>750°C</td>
</tr>
<tr>
<td>1 50% H(_2)O – 25% H(_2) – 25% Ar</td>
<td>940</td>
<td>961</td>
<td>912</td>
</tr>
<tr>
<td>2 25% H(_2)O – 25% H(_2) – 50% Ar</td>
<td>967</td>
<td>991</td>
<td>944</td>
</tr>
<tr>
<td>3(^d) 25% CO(_2) – 25% H(_2)O – 25% CO</td>
<td>953</td>
<td>969</td>
<td>913</td>
</tr>
<tr>
<td>4 25% CO(_2) – 25% CO – 50% Ar</td>
<td>987</td>
<td>1003</td>
<td>942</td>
</tr>
<tr>
<td>5 50% CO(_2) – 25% CO – 25% Ar</td>
<td>958</td>
<td>973</td>
<td>910</td>
</tr>
<tr>
<td>6(^e) 50% CO(_2) – 25% H(_2)O – 25% Ar</td>
<td>951</td>
<td>969</td>
<td>910</td>
</tr>
</tbody>
</table>

\(^a\)ASRs were calculated from the i-V curves as the chord from OCV to the cell voltage measured at a current density of \(-0.16\ \text{A.cm}^{-2}\) (electrolysis mode) or \(0.16\ \text{A.cm}^{-2}\) (fuel cell mode). The uncertainty for the ASRs calculated from the measured i-V curves is less than one percent.

\(^b\)The measured OCV is in all cases between 13 and 18 mV below the calculated OCV, and the measured OCV after reduction of the NiO at start-up was 1051 mV (4% H\(_2\)O – 96% H\(_2\)) whereas the calculated OCV for this gas composition is 1078 mV. This points to some leak (gaseous and/or electronic) in the cells.

\(^d\)The gas composition at the outlet of the cell was measured to 34% CO\(_2\) – 17% H\(_2\)O – 17% CO – 8% H\(_2\) – 25% Ar at 850°C and 33% CO\(_2\) – 17% H\(_2\)O – 17% CO – 8% H\(_2\) – 25% Ar at 750°C.

\(^e\)The gas composition at the outlet of the cell was measured to 33% CO\(_2\) – 17% H\(_2\)O – 17% CO – 8% H\(_2\) – 25% Ar at 850°C and 33% CO\(_2\) – 17% H\(_2\)O – 17% CO – 8% H\(_2\) – 25% Ar at 750°C.

Figure 3 also shows two sets of three i-V curves for mixtures of H\(_2\)O – H\(_2\), CO\(_2\) – CO and H\(_2\)O – CO\(_2\) – CO. For H\(_2\)O – H\(_2\) and CO\(_2\) – CO mixtures, the cell was operated at less reducing conditions than for the experiments shown in Figure 1 and Figure 2. The gas compositions and measured ASRs for the six i-V curves are listed in Table II.

The measured ASR for CO\(_2\) electrolysis was higher than for both co-electrolysis and steam electrolysis. For this comparison (Table II and Figure 3) the lowest ASR in electrolysis mode was observed for reduction of H\(_2\)O. Also differences were observed in fuel cell mode; the highest ASR was observed for CO oxidation when only CO\(_2\) was present as the oxidizing species. When both CO\(_2\) and H\(_2\)O were present a lower ASR was observed for “CO oxidation”. The lowest
ASR in fuel cell mode was measured for H₂ oxidation in the presence of steam.

Figure 6 shows a comparison between i-V curves measured in mixtures of CO₂ with either CO or H₂ as the reducing specie (50% CO₂ – 25% CO – 25% Ar or 50% CO₂ – 25% H₂ – 25% Ar).

Figure 6 and Table II show that the ASR in both electrolysis and fuel cell mode is significantly higher when applying CO as the reducing specie.

Discussion

DC-characterization.— Continuity of the i-V curves across OCV was observed for all reported mixtures, showing that these Ni/YSZ SOCs can work as reversible SOCs in H₂O–H₂, CO₂–CO, CO₂–H₂ and H₂O–CO₂–H₂–CO mixtures. Each i-V curve yields two polarization resistance (ASR) values - one in fuel cell mode (positive currents) and the other in electrolysis mode (negative current). The fuel cell ASR provides information on the oxidation of H₂ and/or CO, forming H₂O and/or CO₂ respectively. The electrolysis ASR provides information on the reduction of H₂O and/or CO₂ forming H₂ and/or CO respectively. Typically the observed ASR values are lower in fuel cell mode than in electrolysis mode.

The following section will discuss initially whether any of the reactants are inert in the case of co-electrolysis. Then, the difference in the electrochemical activity of the various compositions will be discussed. Finally, the influence of the WGS / RWGS reactions will be addressed.

Lower ASRs are observed for H₂O reduction than for CO₂ reduction when operated in 25% H₂O – 25% H₂ and 25% CO₂ – 25% CO (Figure 1, Table II). A slightly lower ASR was observed when operating the SOEC in 25% H₂O – 25% CO₂ – 25% CO. If only steam electrolysis would occur, and CO₂ would be inert in the electrochemical reaction, the observed ASR for co-electrolysis would be identical to the ASR for steam electrolysis. Likewise if only CO₂ electrolysis would occur, and H₂O would be inert in the electrochemical reaction, the observed ASR for co-electrolysis would be similar to the ASR for CO₂ electrolysis. That the ASR for co-electrolysis is different from the ASRs of H₂O and CO₂ electrolysis indicates that both CO₂ and H₂O are active in the electrochemical reactions.

The polarization resistance can be subdivided into an electrochemical and a gas conversion part. The gas conversion part is dependent on the gas composition. To investigate the specific electrochemical reactions, the resistance originating from electrochemical reaction, and not from the gas conversion, must be compared. When keeping the absolute electrode potential (against a well defined reference) constant, and ensuring that the concentrations of the oxidizing / reducing species match, the part of the polarization resistance originating from the gas conversion will be identical. In this case, the measured ASRs directly reflect the electrochemical activity. The absolute electrode potential in the current experiment is given by the cell voltage (Table II) – which is measured at OCV.

When ensuring identical gas conversion resistance, the ASR for co-electrolysis (25% H₂O – 25% CO₂ – 25% CO) lies between that of H₂O and CO₂ electrolysis (50% H₂O – 25% H₂ or 50% CO₂ – 25% CO). This indicates that both CO₂ and H₂O electrolysis occur in these SOCs at the present conditions. Figure 6 shows that the ASR in both electrolysis and fuel cell mode in 50% CO₂ – 25% CO is significantly higher than in 50% CO₂ – 25% H₂. This indicates that CO₂ reacts with H₂ to produce H₂O and CO via the RWGS reaction – increasing the water content at the Ni/YSZ electrode. Thereby the ASR for “CO₂ electrolysis” is decreased because the ASR for H₂O electrolysis is lower than the ASR for CO₂ electrolysis. Conversely, Figure 1 and Figure 3 show that the ASR for CO oxidation (operation in fuel cell mode) is significantly lower when H₂O is added. This indicates that CO reacts with H₂O and produces H₂ and CO₂ via the WGS reaction. In this case, the hydrogen concentration at the Ni/YSZ electrode increases, and the ASR for “CO oxidation” decreases because the ASR for H₂ oxidation is lower than the ASR for CO oxidation.

The similar ASRs for the co-electrolysis gas mixtures, 25% CO₂ – 25% H₂O – 25% CO and 50% CO₂ – 25% H₂, implies that the electrode experiences the same gas composition in the two experiments. The equilibrium gas composition is determined by the thermodynamic equilibrium composition - which is identical for the two
compositions (Table II and Table III). The measured gas composition at the outlet of the cell (Table II and Table III) was indeed very close to the thermodynamic equilibrium composition (Table II and Table III) showing that equilibrium of the WGS / RWGS reaction is reached within the cell in agreement with previous reports on fast kinetic over nickel catalysts at the present conditions. These results show that the WGS / RWGS reaction occur in parallel with the electrochemical reactions in these SOC when operated in mixtures of H₂O, CO₂, H₂ and CO₂.

Based on polarization characteristics (i-V characterization), it was previously stated that CO is produced solely via the RWGS reaction. Although this model was developed for H₂O–H₂ mixtures, the same reaction type at the Ni/YSZ electrode irrespective of the gas mixture. Although this model was developed for H₂O–H₂ mixtures, similar goodness of fit was observed in H₂O–H₂ mixtures.

The total resistances measured by the impedance measurements are in good agreement with the ARSs measured by DC characterization (Table II and Table III). The ohmic resistance is comparable with the values obtained when establishing the model, whereas the resistances obtained for the electrochemical arcs (R_{LSM-High}, R_{TPB}, R_{LSM-Low}, R_{Diffusion}, and R_{Conversion}) are affected by the gas changes in agreement with the assignment to processes occurring at the Ni/YSZ electrode. The conversion arc is easy to fit at all temperatures as the arc is distinct in the raw data. The arcs originating from the reaction at the TPB and gas diffusion are the easiest to separate at high temperatures as the diffusion arc does not interfere with the electrochemical response. To investigate the reaction mechanism during co-electrolysis, the focus of the discussion in the AC-characterization will be on the polarization resistance caused by the reaction at the TPB, gas diffusion and gas conversion.

The total resistances measured by the impedance measurements are in good agreement with the ARSs measured by DC characterization (Table II and Table III). The ohmic resistance is comparable with the values obtained when establishing the model, whereas the resistances obtained for the electrochemical arcs (R_{LSM-High}, R_{TPB} and R_{LSM-Low}) are typically 10% lower. The lower resistances in the present study may be a consequence of oxygen flown to the LSM/YSZ electrode, and the higher steam concentration at the Ni/YSZ electrode, which was previously shown to increase the activity of these SOCs.

The electrochemical changes for the Ni/YSZ electrode (R_{TPB} + R_{Diffusion} + R_{Conversion}) show the same pattern as discussed above for the DC characterization, i.e. that both oxidation and reduction of CO – CO₂ and H₂ – H₂O occur in parallel with the WGS / RWGS reaction.
When decreasing the temperature for CO2 containing mixtures a decrease in resistance was observed. Such decreased resistance is expected for surface diffusion. As we have previously discussed, an increase in resistance around 100 Hz may also include surface diffusion,

$$\text{When increasing the temperature from 750 to 850°C a decreased } R_{\text{Diffusion}} \text{ was observed. Such decreased resistance is expected for surface diffusion. As we have previously discussed, an increase in resistance around 100 Hz may also include surface diffusion, for which an decreased resistance is expected when increasing the temperature. Although there is a clear increase in resistance when lowering the temperature, there is no consistency in the observed activation energies (E_a) between 0.1 – 0.3 eV, and experiments performed at a broader (especially lower) temperature range are necessary to conclude on the assignment of the diffusion arc. Further, the average tortuosity factor (in this case, assumed as the difference between the measured and theoretical diffusion resistances) in H2O – H2 mixtures is 1.0, whereas the average tortuosity factor in CO2 – CO mixtures is 1.2. Ideally the tortuosity factor should be equal for both mixtures, the higher tortuosity factor in CO2 – CO mixtures indicates that additional diffusion, such as surface diffusion, may be involved (as will be explained later, the surface diffusion may be more pronounced for CO2 – CO mixtures as no electron transfer occurs on CO2 – CO mixtures).

When decreasing the concentration of either H2O or CO2 from 50% to 25%, R_{\text{Diffusion}} \text{ is expected to increase equally by approximately } 60% \text{ for the H2O – H2 mixture, and by approximately } 40% \text{ for the CO2 – CO mixture. For H2O – H2 mixtures the observed increase is between 40 and 50%, whereas, surprisingly a decrease of a few percent (2 – 7%) was observed for CO2 – CO mixtures. The significant difference when changing the concentrations in H2O – H2 mixtures compared to changing the concentrations in CO2 – CO mixtures may be associated by diffusion of the different surface species in the two mixtures. The surface diffusion resistance of O2^2− \text{ is expected to be identical in both mixtures. Diffusion of O2^2− and H}^+ \text{ may be involved in the rate limiting step in H2O – H2 mixtures.}}$

In this case, increasing H2O concentration will lead to a decreased diffusion resistance when lowering the temperature, there is no consistency in the observed activation energies (E_a) between 0.1 – 0.3 eV, and experiments performed at a broader (especially lower) temperature range are necessary to conclude on the assignment of the diffusion arc. Further, the average tortuosity factor (in this case, assumed as the difference between the measured and theoretical diffusion resistances) in H2O – H2 mixtures is 1.0, whereas the average tortuosity factor in CO2 – CO mixtures is 1.2. Ideally the tortuosity factor should be equal for both mixtures, the higher tortuosity factor in CO2 – CO mixtures indicates that additional diffusion, such as surface diffusion, may be involved (as will be explained later, the surface diffusion may be more pronounced for CO2 – CO mixtures as no electron transfer occurs on CO2 – CO mixtures).

When decreasing the concentration of either H2O or CO2 from 50% to 25%, R_{\text{Diffusion}} \text{ is expected to increase equally by approximately } 60% \text{ for the H2O – H2 mixture, and by approximately } 40% \text{ for the CO2 – CO mixture. For H2O – H2 mixtures the observed increase is between 40 and 50%, whereas, surprisingly a decrease of a few percent (2 – 7%) was observed for CO2 – CO mixtures. The significant difference when changing the concentrations in H2O – H2 mixtures compared to changing the concentrations in CO2 – CO mixtures may be associated by diffusion of the different surface species in the two mixtures. The surface diffusion resistance of O2^2− \text{ is expected to be identical in both mixtures. Diffusion of O2^2− and H}^+ \text{ may be involved in the rate limiting step in H2O – H2 mixtures.}}$

In this case, increasing H2O concentration will lead to a decreased diffusion resistance when lowering the temperature, there is no consistency in the observed activation energies (E_a) between 0.1 – 0.3 eV, and experiments performed at a broader (especially lower) temperature range are necessary to conclude on the assignment of the diffusion arc. Further, the average tortuosity factor (in this case, assumed as the difference between the measured and theoretical diffusion resistances) in H2O – H2 mixtures is 1.0, whereas the average tortuosity factor in CO2 – CO mixtures is 1.2. Ideally the tortuosity factor should be equal for both mixtures, the higher tortuosity factor in CO2 – CO mixtures indicates that additional diffusion, such as surface diffusion, may be involved (as will be explained later, the surface diffusion may be more pronounced for CO2 – CO mixtures as no electron transfer occurs on CO2 – CO mixtures).

When decreasing the concentration of either H2O or CO2 from 50% to 25%, R_{\text{Diffusion}} \text{ is expected to increase equally by approximately } 60% \text{ for the H2O – H2 mixture, and by approximately } 40% \text{ for the CO2 – CO mixture. For H2O – H2 mixtures the observed increase is between 40 and 50%, whereas, surprisingly a decrease of a few percent (2 – 7%) was observed for CO2 – CO mixtures. The significant difference when changing the concentrations in H2O – H2 mixtures compared to changing the concentrations in CO2 – CO mixtures may be associated by diffusion of the different surface species in the two mixtures. The surface diffusion resistance of O2^2− \text{ is expected to be identical in both mixtures. Diffusion of O2^2− and H}^+ \text{ may be involved in the rate limiting step in H2O – H2 mixtures.}}$
CO₂ – CO mixtures. Although the diffusion of oxygen vacancies may play a role in CO₂ – CO mixtures, this does not exclude that also diffusion of O²⁻ is involved in the reaction. Actually, since only a very small increase in the diffusion resistance is observed when increasing the CO₂ concentration, the main reaction mechanism may involve diffusion of O²⁻. Because the diffusion partly covers surface diffusion, a Gerischer- or Warburg-type of model might have been used to describe the diffusion. As the diffusion covers both surface and gas diffusion, and that the observed resistances are all located within a few decades, and are relatively small for the SOC used in this study, no distinction could be made between the various types of circuit components. Polarization resistance caused by reaction at the triple phase boundary. — The resistance at the triple phase boundary (RTPB) shows notable differences when comparing the reactions in CO₂ – CO and H₂O – H₂ mixtures. The resistances (RTPB) are between 1.5 – 1.8 times higher for CO oxidation compared to H₂ oxidation. The Gibbs free energy for splitting water is almost identical to the enthalpy for water splitting at 750 °C – 850 °C. Consequently, the increased RTPB in CO₂ – CO mixtures cannot be directly related to the splitting of H₂O and CO₂ and may imply that different reactions at the TPB are involved in the two mixtures. That RTPB is larger in CO₂ – CO mixtures compared to H₂O – H₂ mixtures may be a consequence of impurities at the TPB, which would have a larger effect in CO₂ – CO mixtures, where oxygen transfer on the surface may govern the kinetics, than in H₂O – H₂ mixtures because of proton transfer in H₂O – H₂ mixtures as described in the introduction.

The RTPB decreases when increasing the steam concentration at the Ni/YSZ electrode, whereas the CO₂ – CO concentration at the Ni/YSZ electrode does not affect the RTPB notably. Consequently, different rate limiting steps may apply for the Ni/YSZ electrode in kinetics, than in H₂O–H₂ mixtures because of proton transfer in H₂O. The Ni/YSZ electrode does not affect the RTPB notably. Consequently, the increased RTPB in CO₂ – CO mixtures cannot be directly related to the splitting of H₂O and CO₂ and may imply that different reactions at the TPB are involved in the two mixtures. That RTPB is larger in CO₂ – CO mixtures compared to H₂O – H₂ mixtures may be a consequence of impurities at the TPB, which would have a larger effect in CO₂ – CO mixtures, where oxygen transfer on the surface may govern the kinetics, than in H₂O – H₂ mixtures because of proton transfer in H₂O – H₂ mixtures as described in the introduction.

The RTPB decreases when increasing the steam concentration at the Ni/YSZ electrode, whereas the CO₂ – CO concentration at the Ni/YSZ electrode does not affect the RTPB notably. Consequently, different rate limiting steps may apply for the Ni/YSZ electrode in kinetics, than in H₂O–H₂ mixtures because of proton transfer in H₂O. The Ni/YSZ electrode does not affect the RTPB notably. Consequently, the increased RTPB in CO₂ – CO mixtures cannot be directly related to the splitting of H₂O and CO₂ and may imply that different reactions at the TPB are involved in the two mixtures. That RTPB is larger in CO₂ – CO mixtures compared to H₂O – H₂ mixtures may be a consequence of impurities at the TPB, which would have a larger effect in CO₂ – CO mixtures, where oxygen transfer on the surface may govern the kinetics, than in H₂O – H₂ mixtures because of proton transfer in H₂O – H₂ mixtures as described in the introduction.

The RTPB decreases when increasing the steam concentration at the Ni/YSZ electrode, whereas the CO₂ – CO concentration at the Ni/YSZ electrode does not affect the RTPB notably. Consequently, different rate limiting steps may apply for the Ni/YSZ electrode in kinetics, than in H₂O–H₂ mixtures because of proton transfer in H₂O. The Ni/YSZ electrode does not affect the RTPB notably. Consequently, the increased RTPB in CO₂ – CO mixtures cannot be directly related to the splitting of H₂O and CO₂ and may imply that different reactions at the TPB are involved in the two mixtures. That RTPB is larger in CO₂ – CO mixtures compared to H₂O – H₂ mixtures may be a consequence of impurities at the TPB, which would have a larger effect in CO₂ – CO mixtures, where oxygen transfer on the surface may govern the kinetics, than in H₂O – H₂ mixtures because of proton transfer in H₂O – H₂ mixtures as described in the introduction.

Reaction mechanism. — AC and DC characterization performed in H₂O – CO₂ – H₂ – CO mixtures show that both reduction of H₂O and CO₂ as well as oxidation of H₂ and CO occur at the present conditions in these Ni/YSZ based SOCs. Furthermore, CO – H₂O, and CO₂ – H₂ react via the WGS / RWGS reaction, producing CO via the RWGS reaction during co-electrolysis. AC characterization provides insight in the reaction mechanism in H₂O – H₂ and CO₂ – CO mixtures, and shows significant differences during reactions in the two mixtures. Literature presents a number of reports with suggestions for the reaction mechanisms for oxidation of H₂ and CO on Ni/YSZ and other metal/YSZ electrodes. Nevertheless, many discrepancies are found in the data, and a comprehensive understanding of the reaction mechanisms is not yet achieved. One possible explanation for the many discrepancies may be that these cermet electrodes are regarded as clean electrode surfaces without impurities, whereas the studied cells (electrodes) will in practice certainly contain impurities. It is well-known that impurities tend to segregate from the bulk of YSZ to grain boundaries, external surfaces and interfaces. Impurity segregation to the interfaces and especially at the active triple phase boundary (TPB) will certainly influence the reaction mechanism.

For Ni/YSZ based SOC operated in electrolysis mode, water may dissociate on both Ni and YSZ. Dissociation of water on nickel followed by migration of oxide ions may therefore occur. The direct reaction between H₂ and O²⁻ on the YSZ followed by electron migration through zirconia to nickel has also been mentioned as a possibility, although without strong experimental evidence. For some Ni/YSZ electrodes a clear effect of changing from H₂O – D₂ to D₂O – D₂ has been suggested that proton migration (diffusion or electrical proton conduction) plays an important role in the ion transfer, and a mechanism involving water adsorbed on YSZ followed by proton migration has been suggested as the main charge transfer mechanism in H₂O – H₂ mixtures. Similar to H₂O, CO₂ may dissociate on either the nickel or YSZ surface, and a mechanism involving the surface migration of oxide ions over nickel and YSZ may occur. CO₂ – CO mixtures also. Further, for CO₂ – CO mixtures, it has been suggested that CO₂ adsors on oxygen vacancies on the support, and that both CO and CO₂ are directly involved in the electrochemical step. This reaction involves migration of vacancies at the surface of YSZ. A similar mechanism may occur in H₂O – H₂ mixtures. It has to be noted that the main reaction path, suggested for H₂O – H₂ mixtures, which includes proton migration (H⁺), is not a possible reaction path in CO₂ – CO mixtures.

The differences observed in this paper may be partly explained by the segregation of impurities to the TPB. Segregation of impurities to the TPB will have a larger effect in CO₂ – CO mixtures than in H₂O – H₂ mixtures because proton transfer is only possible in H₂O – H₂ mixtures, resulting in faster kinetics in H₂O – H₂ mixtures. On the other hand, that Rdiffusion increases with decreasing CO₂ concentration, whereas it decreases with decreasing H₂O concentration cannot be explained by segregation of impurities. These observations may be explained by different reaction mechanisms in the two mixtures. In the case of H₂O – H₂ mixtures diffusion of H⁺/H²⁺/OH⁻ may be involved in the rate limited step. For CO₂ – CO mixtures, along with surface diffusion of O²⁻, diffusion of oxygen vacancies may play an important role resulting in the observed slower reduction and oxidation rates in CO₂ – CO mixtures compared to H₂O – H₂ mixtures.

For Ni/YSZ based SOC operated in electrolysis mode, water may dissociate on both Ni and YSZ. Dissociation of water on nickel followed by migration of oxide ions may therefore occur. The direct reaction between H₂ and O²⁻ on the YSZ followed by electron migration through zirconia to nickel has also been mentioned as a possibility, although without strong experimental evidence. For some Ni/YSZ electrodes a clear effect of changing from H₂O – D₂ to D₂O – D₂ has been suggested that proton migration (diffusion or electrical proton conduction) plays an important role in the ion transfer, and a mechanism involving water adsorbed on YSZ followed by proton migration has been suggested as the main charge transfer mechanism in H₂O – H₂ mixtures. Similar to H₂O, CO₂ may dissociate on either the nickel or YSZ surface, and a mechanism involving the surface migration of oxide ions over nickel and YSZ may occur. CO₂ – CO mixtures also. Further, for CO₂ – CO mixtures, it has been suggested that CO₂ adsors on oxygen vacancies on the support, and that both CO and CO₂ are directly involved in the electrochemical step. This reaction involves migration of vacancies at the surface of YSZ. A similar mechanism may occur in H₂O – H₂ mixtures. It has to be noted that the main reaction path, suggested for H₂O – H₂ mixtures, which includes proton migration (H⁺), is not a possible reaction path in CO₂ – CO mixtures.

The differences observed in this paper may be partly explained by the segregation of impurities to the TPB. Segregation of impurities to the TPB will have a larger effect in CO₂ – CO mixtures than in H₂O – H₂ mixtures because proton transfer is only possible in H₂O – H₂ mixtures, resulting in faster kinetics in H₂O – H₂ mixtures. On the other hand, that Rdiffusion increases with decreasing CO₂ concentration, whereas it decreases with decreasing H₂O concentration cannot be explained by segregation of impurities. These observations may be explained by different reaction mechanisms in the two mixtures. In the case of H₂O – H₂ mixtures diffusion of H⁺/H²⁺/OH⁻ may be involved in the rate limited step. For CO₂ – CO mixtures, along with surface diffusion of O²⁻, diffusion of oxygen vacancies may play an important role resulting in the observed slower reduction and oxidation rates in CO₂ – CO mixtures compared to H₂O – H₂ mixtures.

Conclusions

A Ni/YSZ electrode supported Solid Oxide Cell (SOC) was operated as both an fuel cell and an electrolysis cell in mixtures of H₂O – H₂, CO₂ – CO, CO₂ – H₂ and H₂O – CO₂ – CO at 750 °C and 850 °C. Continuity of the i-V curves across OCV was observed for all applied mixtures, showing that these Ni/YSZ based SOCs can work reversible in H₂O – H₂, CO₂ – CO, CO₂ – H₂ and H₂O – CO₂ – CO mixtures. Both AC and DC characterization show that both reduction of H₂O and CO₂ as well as oxidation of H₂ and CO occur at the present conditions in these Ni/YSZ based SOC. In mixtures of CO₂ – H₂O – CO and CO₂ – H₂ equilibrium of the Water Gas Shift (WGS) / Reverse Water Gas Shift (RWGS) reaction is reached, and CO may therefore be produced via the RWGS reaction during co-electrolysis of steam and carbon dioxide. From AC characterization, significant differences during reactions in H₂O – H₂ and CO₂ – CO mixtures were observed implying that the rate limited step in both H₂O – H₂ and CO₂ – CO mixtures in these SOCs is associated with the segregations of impurities to the TPB, and that different reaction mechanisms apply for the mixtures. In the case of H₂O – H₂ mixtures diffusion of H⁺/H²⁺/OH⁻ may be involved, whereas for CO₂ – CO mixtures, along with surface diffusion of O²⁻, diffusion of oxygen vacancies may play an important role resulting in a slower reduction/oxidation rates in CO₂ – CO mixtures compared to H₂O – H₂ mixtures. Based on the segregation of impurities to the TPB, and that different reaction mechanisms, the O²⁻ ions has to be forced through the segregation layer in CO₂ – CO mixtures, whereas in H₂O – H₂ mixtures, the current is carried as protons through Ni and the YSZ, and reactions in H₂O – H₂ mixtures will therefore be less affected by impurities.
Acknowledgments
This work was financially supported by The Danish National Advanced Technology Foundation advanced technology platform “Development of 2nd generation bioethanol process and technology”, and the Danish Council for Strategic Research, via the Strategic Electrochemistry Research Center (SERC, www.serc.dk).

References
27. See supplementary material at http://dx.doi.org/10.1021/je202080s.