Resource estimations in contingency planning for FMD

Boklund, Anette; Sten, Mortensen; Holm Johansen, Maren; Hisham Beshara Halasa, Tariq

Publication date: 2014

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Resource estimations in contingency planning for FMD

Conclusions:

Based on results from a stochastic simulation model, it was possible to create a simple model in Excel to estimate the requirements for personnel and material during an FMD outbreak in Denmark. The model can easily be adjusted, when new information on resources appears from management of other crises or from new model runs.

Results:

Anette Boklund1*, Sten Mortensen2, Maren Holm Johansen3, Tariq Halasa1

1. Simulation model

Danish FMD-epidemics were modelled in InterSpread Plus, based on data from 2006-2007 (Boklund et al., 2013)

100 epidemics starting in cattle herds in cattle dense areas were selected for resource calculations. Based on numbers of detected herds, 45-55 percentiles were used.

2. Resource estimations

Resources for:
- detected herds
- suspected herds
- traced herds
- herds in zones
- local crisis-centers

Manpower and material was estimated

Based on the results from the simulation models, we estimated that the need for personnel would peak on day 7 with a need of approximately 170 veterinarians, 70 technicians and 45 administrative staff. However, the need for personnel in the Danish Emergency Management Agency (responsible for the hygiene barrier and initial cleaning and disinfection of the farm) would peak already on day 4 with a need for almost 500 persons, mostly recruits.

Materials and methods

1. Simulation model

Danish FMD-epidemics were modelled in InterSpread Plus, based on data from 2006-2007 (Boklund et al., 2013)

100 epidemics starting in cattle herds in cattle dense areas were selected for resource calculations. Based on numbers of detected herds, 45-55 percentiles were used.

2. Resource estimations

Resources for:
- detected herds
- suspected herds
- traced herds
- herds in zones
- local crisis-centers

Manpower and material was estimated

Based on the results from the simulation models, we estimated that the need for personnel would peak on day 7 with a need of approximately 170 veterinarians, 70 technicians and 45 administrative staff. However, the need for personnel in the Danish Emergency Management Agency (responsible for the hygiene barrier and initial cleaning and disinfection of the farm) would peak already on day 4 with a need for almost 500 persons, mostly recruits.

3. Working group

The Danish Veterinary and Food Administration
- Maren Holm Johansen, head of Veterinary Control Office, North
- Majbritt Birkmose, deputy head of Veterinary Control Office, North
- Jesper Valbak, official veterinarian, Veterinary Control Office, South
- Annelise Palliesen, official veterinarian, Veterinary Control Office, South
- Peter Lybecker Larsen, official veterinarian, Veterinary Control Office, East
- Sten Mortensen, head of contingency planning, head office
- Tina Mørk, veterinarian, head office
- Stig Møllergaard, deputy manager, head office
- Kim Vandrup Sisiggaard, head of Danish Alert Unit for Food
- Erik Jepsen, head of information

The Danish Emergency Management Agency
- Hans Kaj Henrik Bruhn, Major (CP)
- Anette Boklund, senior advisor
- Tariq Halasa, senior scientist