Methanotrophs assisted bentazone degradation

Papadopoulou, Aikaterini; Hedegaard, Mathilde Jørgensen; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen; Smets, Barth F.

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Methanotrophs assisted bentazone degradation

Aikaterini Papadopoulou, Mathilde Hedegaard-Jørgensen, Arnaud Dechesne, Hans-Jørgen Albrechtsen, & Barth F. Smets

Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 115, 2800 Kgs Lyngby, Denmark
akap@env.dtu.dk

Introduction

Drinking water is increasingly threatened by contamination from pesticides and pesticide metabolites, including bentazone, a thiazidane herbicide persistent in groundwater. Anaerobic groundwater often contains methane, which is easily oxidized by methane-oxidizing bacteria (MOB) upon groundwater aeration. These bacteria have known cometabolic degradation properties against some class of organic contaminants.

Goal: Test whether MOBs enriched from rapid sand filters can cometabolically degrade bentazone.

Materials and Methods

- Material from rapid sand filters used to enrich methanotrophic culture in continuous - flow lab scale reactors
- Batch assay of bentazone removal & mineralization
- \(^{14}\text{C}\) carbonyl-labeled bentazone in concentrations ranging from 0.2 to 2000 ug/L with and without methane (triplicates)
- Abiotic controls (autoclaved Filtralite)
- Methane analysis – GC-FID

Bentazone Removal & Mineralization

- No effect of CH\(_4\) in removal kinetics.
- Higher total mineralization in the absence of CH\(_4\)

Concentration Effect

- Removal in all concentration ranges
- Slower removal rate in the presence of CH\(_4\)
- Delay observed at high CH\(_4\) concentrations

Conclusions

- Microbial community fed only with methane in drinking water for > 1 year shows efficient and stable bentazone degradation in all concentration ranges
- Two possible removal patterns: (a) not inhibited by methane at low bentazone concentrations, (b) methane-inhibited at high concentrations
- Not consistent pattern with the typical cometabolic process
- Methane’s presence slows down bentazone degradation process unless present in low concentrations (<10 \(\mu\)g/L)
- Observed competitive inhibition between methane and bentazone