A new approach to speed-flow curves

Fosgerau, Mogens; Hjorth, Katrine; Jensen, Thomas Christian

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Abstract:

We develop a simple model of travel time as a function of travel demand, using loop detector data of travel times and traffic flows on a Danish motorway. Our goal is a model that avoids the potential endogeneity problems related to modelling travel time as a function of observed traffic flow. Instead, we employ the assumption that observed traffic flow is exogenous (and equal to demand) before congestion sets in, such that it can be used to predict when this happens. We model a single-peak scenario (morning/afternoon) with two traffic states: Uncongested and congested. We refer to the times of transition between the states as breakdown time (T_B) and recovery time (T_R). We estimate a simple distribution of travel times for each state, and we model T_B and T_R using duration models with exponential hazard rates depending on observed traffic conditions. The model predicts travel times by first predicting T_B and T_R and then applying the estimated travel time distributions.